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FACILITATING LEARNERS’ APPRECIATION OF THE 

AESTHETIC QUALITIES OF FORMAL PROOFS: 

A CASE STUDY ON A PAIR OF JUNIOR HIGH SCHOOL 

STUDENTS 

Hayato Hanazono 

Miyagi University of Education 

 

The goal of this study is to better understand how students appreciate the particular 

beauty of formal proofs. This study revealed the following through a single-case study 

of junior high school students. By contrasting formal proofs with proofs of analytic 

construction and preformal proofs, the general students can appreciate the aesthetic 

quality of formal proofs, in which all inferences of intermediate propositions are 

synthetic. In addition, if the learner has learning experience with formal proofs, the 

qualitative differences may affect the success or failure of the sensing and the process 

of it. 

INTRODUCTION 

The beauty of formal proofs is a particularly fascinating topic for mathematics 

education research. We are aware that successive new proofs are being developed for 

propositions that have already been proved. Proofs are expected to have values other 

than logic, and beauty is one of those values (Aigner & Ziegler, 2018). However, some 

empirical studies suggest that general learners are unable to appreciate the beauty of 

mathematical objects (e.g., Dreyfus & Eisenberg, 1986; Tjoe, 2016). 

Mathematics education research also includes studies that classify the beauty of proofs 

(Raman-Sundström & Öhman, 2018), while some try to demonstrate that there is no 

consensus on criteria for the beauty of proofs (Inglis & Aberdein, 2014, 2020). 

Educational problems about the beauty of formal proofs, for which no established 

theory has been attained, need to be pursued through further multifaceted research. 

The research question of this study is to clarify, based on an empirical case study, the 

process by which general learners appreciate the particular beauty of formal proofs. 

METHODOLOGY 

Theoretical framework 

The concept of beauty has branched out with the growth of art. In specific terms, there 

have emerged perspectives that ascribe beauty only to some particular forms of the 

perceived object, such as symmetry or the golden ratio, to the perceiver alone, or to 

both the perceiver and the attributes of the perceived object. 

The author views the beauty of mathematical objects as the “aesthetic qualities” based 

on the theory by Toshio Takeuchi, one of the aestheticians who belongs to the last of 

the above perspectives (Hanazono, 2021). In Takeuchi (1979), based on the principle 
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of “unity in variety,” aesthetic qualities are explained by several attributes of the 

perceived object and the cognitive and sensory activities of the perceiver. In this study, 

the aesthetic qualities of mathematical objects are explained using the following four 

viewpoints. The first viewpoint is the “form,” which is the relationship among the 

components of the mathematical object. This viewpoint can be split into (i) 

“equivalence relations” (e.g., proportion) and (ii) “quasi-equivalence relations,” which 

are not full equivalence relations but rather similarity relations (e.g., mappings). While 

the former reasonably produce unity among the components and therefore gives rise to 

the aesthetic qualities of perceived objects in a wide range of fields, including 

mathematics, the latter unifies components according to cultural and personal 

perception. In mathematics, similarity relations such as mappings are very essential 

and give rise to value such as simplicity. The second viewpoint is the “essence” of the 

mathematical object, which is the common properties between the original 

mathematical object and other related mathematical objects. Sometimes the “form” 

coincides with the “essence.” The third is the “whole” of the mathematical object, 

which is the range in which its “essence” is recognized. The fourth is the “vastness” of 

the mathematical object, which is perceived on the basis of intuition about the 

“essence” and the “whole” of the mathematical object. 

The above four viewpoints and the principle of “unity in variety” are also well suited 

to the below reference by Poincaré (1908): 

What is it that gives us the feeling of elegance …? It is the harmony of the different 

parts, their symmetry, and their happy adjustment; it is, in a word, all that introduces 

order, all that gives them unity, that enables us to obtain a clear comprehension of the 

whole as well as of the parts (pp. 30-31). 

In Inglis and Aberdein (2014), the results of a survey showing among mathematicians 

were statistically analyzed and the adjectives related to mathematical proofs were 

described in four dimensions. They concluded that opposing to the classical view that 

relates beauty to simplicity, beauty and simplicity are almost entirely unrelated in 

mathematics. Inglis and Aberdein (2020), on the other hand, focused on the social 

influence of judgments. That is, they pointed out that in former investigations (e.g., 

Inglis & Aberdein, 2014) that have argued for the heterogeneity of judgments of beauty 

by mathematicians, participants were asked to make judgments in conditions isolated 

from others, and thus there was no social influence on their judgments. The authors 

then designed a questionnaire survey method that asked mathematicians to select the 

strength of fitness between the adjectives and a certain proof, pointing out the 

possibility that the judgment of beauty is not a judgment of “whether it is beautiful or 

not,” but a social judgment of “whether it is considered beautiful by the community of 

mathematicians or not.” 

The arguments that there is subjectivity and sociality in the criteria by which 

mathematicians judge the beauty of proofs are very interesting. However, the result 

that simplicity and the beauty of proofs are unrelated could also be interpreted as that 

there are simplicities that are related to the beauty of proofs and simplicities that are 
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not related to it. And the fact that there is a social influence on the criteria of beauty 

leads to the hope that general learners can also learn the beauty of mathematics. 

In Raman-Sundström and Öhman (2018), the relationship between mathematical 

proofs and beauty is considered through a focus on the sense of fit. Through their 

classification of a set of approximately 20 proofs, they categorized the sense of fit into 

three kinds from the viewpoint of the object of fit, and then defined two aspects for 

each of them. Of the total of six aspects, they identified three as related to the beauty 

of the proof: level of detail, transparency, and connectedness. The first two are aspects 

of presentational fit. “Presentational fit refers to the way a proof is communicated and 

the extent to which the proof is write-up makes the underlying ideas accessible to the 

reader” (Raman-Sundström & Öhman, 2018, p.187). And “level of detail” is described 

as “The underlying ideas are presented with the appropriate amount of detail” (ibid., 

p.187). On the other hand, “transparency” is described as “The structure of the 

argument is clear” (ibid., p.188). “Connectedness” is an aspect of familial fit. “Familial 

fit refers to the relationship between a particular proof and a family of proofs” (ibid., 

p.188). And “connectedness” is described as “The proof idea connects to proof ideas 

of other theorems” (ibid., p.188). 

Raman-Sundström & Öhman’s framework focusing on the sense of fit, which explains 

beauty from both the object to be fit and the sense of fit, is highly compatible with the 

theoretical framework of this study. This study, however, will focus on the beauty of 

proofs not mentioned by them because their “list is not meant to be comprehensive” 

(ibid., p.185), which will be explained below. 

In this study, a single formal proof is considered to be composed of several 

intermediate propositions. Then, the first viewpoint, “form,” is defined as a relation in 

which the inferences as components of the intermediate propositions are equal in the 

sense that they are all synthetic and deductive. The second viewpoint, “essence,” is a 

property common among several formal proofs in this paper, so it is defined as “the 

fact that all the antecedents in the intermediate propositions are already admittedly true 

statements” and “the expression of the components is a mathematical symbol or 

language,” in addition to “form” as defined above. The third viewpoint, the “whole,” 

which is the range within which these “essences” are recognized, is all propositions 

except those for which no formal academic proof is given, or those generally assumed 

as axioms. The fourth viewpoint, the “vastness,” is defined as the sense of expanse 

when formal proofs are applied to explanations and empirically acknowledged 

statements other than geometry. This definition of the “vastness” is based on the 

learning experiences of Japanese eighth graders, who are the participants in this study. 

A single-case study on a pair of junior high school students 

This study conducts a single-case study on one pair of Japanese junior high school 

students. One of the rationales for single-case studies, according to Yin (2014), is when 

the case is critical to the theory. As described above, the general learners’ sensibility 

of aesthetic qualities of mathematics has been doubted in mathematics education 
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research. In this sense, the demonstration of the process of appreciation, even in a 

single-case, is a critical one. However, a single-case has its constraints to make the 

process of its appreciation clear. Replication for this latter purpose is a future issue. 

The following process was used to carefully choose the case study participants. First, 

three explanations for the proposition that the opposite angles of any parallelogram are 

equal were shown to the all 8th-grade students (n=149) from the cooperating schools 

in the study. These explanations included deductive inferences or non-deductive 

inferences, synthetic construction, or analytical construction. Then, through having 

students judge the validity of the proofs, 38 students were selected who were able to 

determine that the explanations were deductive without considering whether they were 

synthetic or analytic. From these 38 students, two students who were collaborative and 

able to express their own ideas clearly were selected as participants in the case study 

with the advice of the cooperating school’s teachers. These two are referred to as Fumi 

and Masa in this paper. They are both excellent students, but in the context of the study 

contrasting mathematicians and non-mathematicians, they are at the level of the 

general learners. However, in Japan, formal proofs are introduced in the 8th-grade; two 

students had already learned them at the time of the case study. 

In the main investigation, students were required to provide a proof explaining how to 

draw a line that is parallel to a given line and passes through a point that is not on the 

given line. At the time when the construction of the proofs by the students appeared to 

be complete, the author presented several explanations and asked the students to 

compare and comment on them. The explanations presented to the students included 

those in which all inferences were deductive-synthetic, as well as those in which the 

inferences in some intermediate propositions were deductive-analytic, and preformal 

proofs (Bloom & Kirsch, 1991). By having them work on the task in pairs, it was hoped 

that their thoughts would be expressed and their stress on the investigation would be 

reduced. The entire investigation was recorded with a video camera. The analysis 

focused on the conversations in these recordings and students’ descriptions. 

RESULTS 

Fumi and Masa, through comparing several explanations presented by the author and 

answering questions from the author, identified the above “form,” intuited the 

“essence” and partially intuited the “whole,” and then felt the “vastness.” In other 

words, they appreciated the aesthetic qualities of formal proofs. The details of this 

process are as follows. 

For the above construction problem, both Fumi and Masa first described an 

operational, deductive, and synthetic explanation (Figure 1). This operation was about 

how to construct parallel lines by sliding a triangular ruler, which they learned in 

elementary school. When the author asked the students after they had completed the 

description of this explanation, they understood the formal procedure of construction 

by using a straightedge and compass. Additionally, they were able to distinguish 

between the proof of this formal construction procedure and the explanation of how to 
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slide a triangular ruler. In Figure 1, the modifications in the original text are the result 

of the pursuit of a better description, but the modifications are limited to symbolic 

expressions. 

 
 

Place a triangular ruler on the original segment AB and adjust the angle 90° to point 

A of segment AB.  

Then, draw a straight line m that is perpendicular to AB and passes through point A.  

(Line m is an alternative to a ruler and does not need to be drawn.)  

Then, using a triangular ruler, draw a point A’ (where we want to draw a line parallel 

to AB) on line m, and from there draw a C that is perpendicular to line m.  

Then, AC is parallel to AB. 

Now, both segments AB and A’C are perpendicular (=90°) to line m. Therefore, we 

can say that the two lines are parallel since the corresponding angles are equal. 

Figure 1: Fumi’s construction and explanation 

(The lower column is a translation by the author.) 

 

The author then presented (a) a deductive-analytic proof, (b) a deductive-synthetic 

proof, and (c) an operative explanation, and had the students select one that was similar 

to the proof of the formal procedure of construction they had constructed. These are all 

based on corresponding angles equality. As a result, Fumi first chose (b), focusing on 

the basis of the proof, while Masa chose (b) based on the synthesis of the inference. 

Fumi then agreed with Masa after hearing his explanation. 

Next, the author presented alternative basis proofs, three each of (a) and (b), and one 

proof in which only some intermediate propositions are analytic (Figure 2), and 

indicated their classification. As a result, they both made the same classification into 

four categories, but their criteria were different in the following ways. Fumi classified 

them as (f1) synthetic, (f2) analytic assuming parallelism, (f3) analytic assuming 

properties other than parallelism, and (f4) other. Masa, on the other hand, classified 
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them as (m1) synthetic, (m2) analytic, (m3) analytic in the middle, and (m4) other. 

Convinced that Masa had identified the “form” at this point, the author offered one 

further proof of (b) on other bases, with the main purpose of inquiring about Fumi’s 

perception. The author deduced that Fumi also identified the “form” because Fumi had 

included this proof in (f1). 

 

<Procedures for construction> 

 Draw a line passing through point A and 

intersecting line l. The point of intersection is B. 

 Place point C on line AB, and place point D on line 

AB so that BC = AD. 

 Place point E on line l so that BC = BE, and place 

point F so that AF = AD and DF = CE. 

 Draw a straight line AF (let it be line m). 

<Proof> 

If △AFD and △BEC are congruent, then the 

corresponding sides are equal. 

Now, AF = BE, AD = BC, FD = EC. 

Therefore, △AFD ≡ △BEC. 

Since the corresponding angles of congruent figures 

are equal, ∠ FAD = ∠ EBC. 

Since two lines with equal angles of the complex are 

parallel, m is parallel to l passing through the point A. 

Figure 2: A proof in which only some intermediate propositions are analytic 

 

The author asked the students in which category the deductive-synthetic proof for the 

following proposition about integers would be included: “The sum of a two-digit 

natural number and the number in which the first and tenth places are switched from 

the original number is a multiple of eleven.” Then, Fumi focused on the setting written 

at the beginning of the proof, “Let x be the tens place of the original number and y be 

the one’s place,” and regarded this statement as the antecedent that assumed the 

conclusion part in the analytic construction, and included it in (m2). Masa, on the other 

hand, recognized that this setting was not a conclusion and added this proof to (m1). 

Fumi then agreed with this explanation by Masa and reincluded this proof in (m1). 

Finally, the author asked the students to reflect on their discussion up to this point, and 

asked for their feelings about “writing proofs.” Some of the responses to this question 

are depicted in Table 1. 
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Table 1: The responses from the students 

Fumi Masa 

After looking at the different methods of 

proof, ...I thought it was necessary to 

follow the order and the method of proof. 

I thought that you know, clarity is the 

most essential thing in a proof, and ...I 

wondered if I should follow the same 

order as this (referring to the “synthetic” 

category), and ...when I saw that proof 

(referring to the proof of the properties 

of integers), ...I thought that ...just like 

the proof of geometry, clarity is 

important ... 

I was ...a little surprised to find such a 

construction (referring to the analytic 

category) ...well, it is interesting to make  

discoveries. I also felt that the most 

important thing in the proof is to be 

correct, which is a prerequisite, and that 

it is also crucial to make it easy to 

comprehend. 

 

DISCUSSION 

Fumi, through the author’s intervention and influence from Masa, appreciated the 

aesthetic qualities of formal proofs. What was characteristic of Fumi’s process of 

appreciating the aesthetic qualities of formal proofs was that, unlike Masa, who 

immediately differentiated deductive proofs based on differences in the construction 

of inferences, Fumi was not able to make this differentiation from the beginning. In 

fact, she based the categorization of many explanations and proofs on the claims that 

the proofs were based on. And Masa’s explanations helped to modify this recognition. 

Furthermore, Fumi’s feeling of “vastness” based on the realization that the “proof of 

the property of integers” could be considered a formal proof differed significantly from 

Masa’s. Masa quickly grasped how inferences were constructed during the 

investigation and saw that the synthetic construction was the same as the proofs in the 

mathematics textbooks. Therefore, it is assumed that Masa did not feel the “vastness” 

as a new expanse, at least in a way that the author could recognize. 

This case study was performed with Japanese 8th-grade students who had learning 

experiences with formal proofs. The empirical findings on the differences between 

Fumi and Masa imply that the success or failure of their appreciation of the aesthetic 

qualities and the process of the appreciation are influenced by qualitative differences 

in learning experiences with mathematical objects. 

On the other hand, both Fumi and Masa had acquired a new recognition that the 

synthetic construction was clearer. At the start of the investigation, Fumi did not exhibit 

this recognition and instead concentrated primarily on the clarity of the symbolic 

expressions. Furthermore, for Masa, given the mention that he had never seen an 

analytical construction before, it is thought that learning about analytical constructions 

as a reference for comparison led him to recognize the value of a synthetic construction. 



Hanazono 

3 - 10 PME 46 – 2023 

The clarity resulting from the unity in the whole is the very aesthetic qualities to which 

Poincaré refers. Although it does not fulfill the framework of this study, the change in 

Masa’s recognition is very important. In Japan, it is up to the teacher to decide whether 

to include analytic constructions in the lesson plan for formal proofs. Also, it seems 

that even when analytic constructions are handled, they are often treated as valid 

constructions for planning proofs. The findings of this case study imply that analytic 

constructions of proofs might emphasize the value of synthetically constructed formal 

proofs, which are not a priori for students. 
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Using a constructivist lens, we re-examine a well-studied phenomenon – three main 

meanings for more-than situations: more = larger number (L=more), more = sum 

(S=more), and more = difference (D=More). We address the problem of how teachers 

can co-learn with/from struggling students to design tasks that foster reorganisation 

(change) of the common, L=more meaning into the accepted, yet conceptually 

challenging, D=more meaning. Our framework centres on scheme theory and on the 

reflection on activity-effect relationship model of cognitive change. We analyse data 

from teaching episodes indicating Juana’s (pseudonym) advance, from her L=more 

meaning, through 1-to-1 matching actions to equalize two sets, to the proper D=more 

meaning, and discuss the importance of that teacher-learner, co-construction process. 

INTRODUCTION 

We designed this teaching experiment study to explain cognitive roots of a well-studied 

phenomenon. Consider a child who makes a tower of 7 red cubes and another of 5 blue 

cubes, and asked: How many more cubes are in that (red) tower? Children were found 

to respond with the larger number of the two sets (here, 7), the sum of both numbers 

(here, 12), or the difference between them (here, 2). Our emphasis on the child as a 

sense making person led us to focus on their meaning for “more” in the situation, 

respectively: more means the larger number (denoted L=more), or the sum of both 

numbers (S=more), or the difference between the two numbers (D=more). 

Prior lines of research seemed to focus on children’s performance (correct/incorrect 

answers) when solving different types of more-than situations. One line focused on the 

language/wording of those tasks (Adetula, 1990; Erik, Lieven, & Luc, 1985; Lean, 

Clements, & Del Campo, 1990; Nesher, Greeno, & Riley, 1982). Another line focused 

on arithmetical methods children used to solve them (Carpenter, Hiebert, & Moser, 

1981; Fuson, Carroll, & Landis, 1996; Hiebert, Carpenter, & Moser, 1982). In both 

lines, a key distinction was made between task-wording that indicates actions, such as 

1-to-1 matching,  and tasks that do not, aka, static (Fuson et al., 1996; Gibb, 1956; 

Hudson, 1983; Sophian, 1987). However, except for one, early study (Brush, 1976), 

those studies seem to neither explain students’ responses conceptually nor provide 

instructional designs to foster a shift from inadequate meanings (L=more and S=More) 

to a mathematically accepted one (D=More). Next, we provide a constructivist 

framework of children’s meanings for more-than situation. 

A CONSTRUCTIVIST FRAMEWORK FOR TRANSITIONS IN HOW MANY 

MORE REASONING 
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This study utilizes Simon et al.’s (2004) Reflection on Activity-Effect Relationships 

(Ref*AER), which draws on von Glaserfeld’s (1995) three-part definition of a scheme 

(goal > activity > result/effect) and Piaget’s (1985) reflective abstraction. Ref*AER 

refers to a learning situation in which the learner assimilates a given task, sets a goal 

for the task, brings forth an activity sequence to achieve that goal, and reflects on the 

effect of the activity sequence to compare the actual result to their anticipated result. 

Based on such reflection, the learner may adjust their activity sequence so they can 

next get closer to their goal. For example, a learner asked to find the difference in two 

towers – a tower of 7 red cubes and a tower of 5 blue cubes – may assimilate the task 

as how many cubes are in the larger tower (L=more scheme). They will thus set a goal 

to determine how many cubes are in each tower (possibly counting cubes), compare 

the two numbers, and state (incorrectly): “There are 7 more cubes in the red tower than 

the blue tower.” In response, a researcher may orient the learner to a matching action: 

“How many cubes in the red tower do not have a match in the blue tower?” - possibly 

causing a perturbation for the learner. The learner will adjust their activity sequence to 

count the unmatched red cubes and answer with 2 more red cubes. After reflecting on 

the two activities and their results, the learner may construct a new way of reasoning 

in more-than situations – anticipating a result of the number of unmatched items (i.e., 

the difference) rather than the number of items in the larger set.  

Simon et al. identified two types of Ref*AER. Type I involves comparisons between 

the learner’s goal and the effect of their activity in a given situation (e.g., anticipated 

number, “7,” differs from actual matching number, “2”). Type II involves comparisons 

across activity-effect ‘dyads’ of multiple tasks (e.g., in three different trials, the larger 

number and the matching number were not the same). This type of reflection leads to 

a reorganization of the scheme’s anticipation of activity-effect relationships from a 

given situation. For example, a learner solves multiple more-than tasks, consistently 

being prompted about how many unmatched items are in the larger/smaller set. The 

learner reflects on the adjustment of responses to be about the count of unmatched 

items and abstracts it as the effect relevant for how many more/fewer tasks (that is, 

constructs a D=more scheme).  

This study also draws on Simon’s (1995) Hypothetical Learning Trajectory (HLT) 

model to help us articulate how Juana may have reorganized her available more-than 

scheme of L = more into the more advanced scheme of D = more along with our 

learning to adjust tasks. Simon’s HLT model allowed us to link our goals for Juana to 

hypothesized conceptual changes in her scheme and to tasks for fostering such changes.  

METHODOLOGY: CONSTRUCTIVIST TEACHING EXPERIMENTS 

This study was part of a larger research and professional development project funded 

by a small US school district. The project focused on conceptual mathematics for K-

12 students and pedagogical and content knowledge for K-12 teachers.  

This study involved a teaching experiment (Cobb & Steffe, 1983) with six 7th graders 

identified as struggling in mathematics (parent consent and student assent were 
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provided for each student). A teaching experiment is a constructivist, qualitative 

methodology designed to help researchers create models of student reasoning 

(schemes). When paired with HLT’s, researchers can study transition in students’ 

reasoning coupled with task design to promote it. Each, 40-minute teaching episode 

(session) began with a task involving a real-world context to determine Juana’s current 

conceptual stage (Tzur, 2007). Each episode was followed by the research team’s 

debrief to analyse and make inferences about: a) Juana’s reasoning during the episode, 

b) plausible transitions in her more-than schemes, c) how tasks have fostered (or not) 

those transitions, d) what reasoning she may use in the next episode (those gained 

during the episode or prior reasoning), and e) what adaptations to tasks may be needed 

to foster further transitions in the following episode(s).  

Participant and Context 

We chose to focus on Juana (pseudonym, grade 7) as she used the L=more scheme 

when we began working with her on ‘static’ more-than tasks and eventually 

transitioned to the proper, D=more reasoning. Thus, Juana’s case provides evidence 

for a possible HLT for more-than tasks and can serve as a case for understanding how 

other students may transition from the L=more to the D=more scheme. As in any case 

study, it is the phenomenon (not Juana) – here, conceptual transition that underlies 

adequate solutions to ‘static’ more-than tasks – that is the focus (Creswell, 2013). 

Therefore, the HLT we outline may apply to other students who initially assimilate 

more-than tasks into an L=more reasoning.  

Data Collection 

The teaching experiment consisted of weekly, 40-minute episodes with Juana 

conducted by our three-person research team. The third author was present, in person, 

at every episode, the first author worked via Zoom only, and the second author via 

Zoom or in person. We video-recorded each episode, using a camcorder and the Zoom 

recording software. Videos were stored in a secure system for later analysis. Intensive 

field notes were also kept by two of the researchers to inform later analysis.  

Data Analysis 

We used both ongoing and retrospective analysis of the data. The ongoing analysis 

occurred during each debrief as explained above. The retrospective analysis consisted 

of researchers examining all data we have collected, individually and then in small 

teams, to identify critical events (Powell et al., 2003), transcribing those events, and 

developing an HLT (“storyline”) that couples Juana’s case of transition from L=more 

to D=more scheme and the research team’s adaptation of tasks to fit with her reasoning 

and conceptual change. 

RESULTS 

In this section, we examine data about how the research team and Juana co-constructed 

a transition from an L=more to a D=more meaning for more-than situation over a few 



Harrington, Tzur, Dagli, DeBay  & Morin 

3 - 14 PME 46 – 2023 

episodes. Our twofold analysis includes inferences about Juana’s conceptual 

transitions and how her reasoning guided the research team’s task design.  

Excerpt 1 begins after Juana had consistently answered static, more-than tasks by 

stating the number of items in the larger set (L=more). To foster her construction of a 

D=more scheme, our team first focused on her coordination between object-to-object 

matching actions to more-than responses by orienting Juana’s attention onto unpaired 

items in the larger set as the difference between the two sets.  

Excerpt 1 illustrates one of these early attempts. In it, the researchers presented Juana 

with a task to infer into her independent way of reasoning in a static, more-than 

situation. Thus, they engaged her in solving a realistic word problem without using any 

objects (e.g., no cubes) or prompts for how to go about this. 

Excerpt 1 

Researcher: Pretend you have 7 black cubes and [Mr. R has] 8 blue cubes … how many 

more [cubes] do you need to make [yours] equal to Mr. R’s? 

Juana: (Draws 7 squares in a vertical line. Draws 8 more cubes in a vertical line 

while, seemingly intentional, starting it one square above the first line). 

Researcher: So, how many more black cubes do you need to have the same amount as 

Mr. R? 

Juana: I need one (1) more.  

Researcher: How do you know? 

Juana: He has 8 (points to the line of 8 squares). I have 7 (points to the other line). 

I need 1 more (points to the space next to the unmatched square). 

Researcher: [So,] How many more blue cubes are there [than black cubes]? 

Juana: Eight (8). 

Excerpt 1 indicates that Juana assimilated the task to determine how many cubes are 

unpaired and how many are needed to make the two sets equal (one). This claim is 

supported by both her drawing of the second line one cube higher than the first line 

and her pointing to the missing cube in her (black) line. Although independent with 

matching actions, her answer (“Eight”) to the more-than static task indicated it was 

assimilated into an L=more scheme. 

Our first attempt at fostering Juana’s transition to a D=more scheme was to adapt the 

task so she would be engaged in equalizing two given sets by decreasing the number 

of items in the larger set. In our context of work with towers and cubes, that meant 

“chopping off” cubes from the larger tower. Our rationale was that such a goal-directed 

activity may further orient her attention onto the resulting difference (of cubes). 

However, whereas Juana seemed to understand equalizing by chopping off, she seemed 

to prefer adding cubes to the smaller set, indicated by her consistent choices, over a 

few more tasks during that and the following episode, to add cubes to the shorter tower 
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rather than chop some off from the taller tower. Crucially, she consistently told the 

“story of the equalizing process” to explain how many cubes she needs to add to make 

them equal (e.g., “I have 7, you have 8, so I need 1 more to make them equal”). Yet, 

when then asked how many more cubes were in the larger set, she consistently used 

L=more reasoning (e.g., “The taller tower has 8 cubes more [than the shorter]”).  

Juana’s persistence in using a “story” of the equalizing process while using an L=more 

meaning led us to adapt the task once again. The first author thus designed a new game 

to foster her perturbation due to realization of a contradiction between two effects of 

her goal-directed activities. In this game, players start with towers of equal height that 

she makes (e.g., 5 cubes in each tower). One person plays a role of Raiser and adds 

cubes to their tower (e.g., 2 cubes). The other person plays a role of Equalizer, who 

asks three questions: a) How many cubes do you have now (e.g., 7)? b) How many 

cubes do I have now (e.g., 5)? c) How many more cubes do you have than me (e.g., 

responding “7” or “2”)? Critically, the rule of the game is that the Raiser’s answer to 

the last question directs the Equalizer how many cubes to add to their tower for 

equalizing them again. If the Raiser is correct (checked with cubes), they keep the 

cubes; if incorrect, cubes go to the Equalizer. To make the ‘perturbing cost’ of an 

answer realistic, players eventually trade cubes they accumulated with M&M candies. 

Excerpt 2 illustrates this game, with Juana (Raiser) adding 1 cube to her 3-cube tower. 

Excerpt 2 

Researcher (Equalizer): How many[cubes] do you have? 

Juana (Raiser): Four. 

Researcher: And I have three? 

Juana: (Shakes her head, “Yes”).   

Researcher: I’m going to ask you a question and your answer is going to tell me how 

many more M&M’s I need to add to my group of M&M’s to have the same 

number as you. If your answer is correct, then you’ll get that number of 

candies to keep. If the answer is wrong, I get to keep the M&M’s. So, how 

many more M&M’s do you have than me? 

Juana: I have four. You have three. You need one cube to be equal.  

Researcher: So how many more M&M’s do you have than me? 

Juana: I have four.  

Researcher: So, Mrs. B, you’re going to add four M&M’s to my pile.   

Juana: (Gets very animated) No, no, no, no. You need one more.  

Researcher: Why did you change your answer? 

Juana: Because you need [just] one more to be equal.  
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Excerpt 2 data indicate that, for the first time we could witness, the game promoted an 

intended perturbation in Juana, leading to her “Aha!” moment. To answer the first, 

static task (“So, how many more M&M’s do you have than me?”) she used her 

available “equalizing storyline.” As the researcher insisted on answering the static task 

by re-asking it, Juana’s response indicated her L=more scheme. Then, as soon as the 

researcher asked Mrs. B to add all four cubes (candies), Juana indicated making the 

intended coordination between her two responses (“one to make equal,” and “four 

more”), as she quickly, with clear excitement, changed her L=more answer to a 

D=more, explaining that “you need [just] one more to be equal.” This indicated to us 

that Juana reflected on the result of her initial activity sequence (four, L=more) and 

resolved her perturbation (would not equalize) by coordinating the more-than task with 

a newly anticipated result – the number needed to equalize (i.e., difference).  

During this episode, Juana and the researcher played a few more rounds (switching 

Equalizer and Raiser roles after each round). Juana indicated she was working between 

her prior, independent (L=more) meaning and her newly constructed (D=more) one, 

with the latter supported through the researchers’ prompts. That is, each round of the 

game seemed to foster yet another perturbation in Juana, yielding both types of 

reflection leading to her construction of the D=more meaning (anticipated and actual 

effects were not the same; across more-than instances I chose to use the difference).  

Over the following two episodes, Juana seemed to gradually transition from needing 

prompts to change her response, from an L=more to a D=more meaning, until she 

eventually used the latter meaning spontaneously and independently. Excerpt 3 shows 

her work at the end of start of the third episode since the first in which we introduced 

the game. Importantly, Juana no longer used the equalizing storyline to solve more-

than tasks. Rather, the data show she could identify and respond with the difference, 

while using figural items (not tangible cubes) in a count-up-to strategy. Excerpt 3 

involved a task in which Juana determined how many more apples one researcher had 

(eight apples) than the other researcher (twelve apples).  

Excerpt 3   

Researcher: How many more apples does [Mr. R] have? 

Juana: (Put up eight fingers. Counted-up to twelve while putting up a finger for 

each count) Four.    

Juana used a sequential count-up-to strategy to count from eight to twelve and found a 

difference of four apples. This excerpt provides evidence of her transition from L=more 

reasoning to D=more reasoning when provided more-than tasks to solve in context and 

without tangible objects.    

DISCUSSION 

In this study, we examined both a conceptual transition, from L=more to D=more 

scheme when solving static, more-than tasks and researchers’ co-construction of an 

understanding of this transition while adapting tasks that afforded Juana with 
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opportunities to construct the D=more scheme. The case of her conceptual advance 

provides evidence into how such a transition may occur, and be fostered, in other 

students. This co-construction process seemed rooted in our perturbation that we, the 

researchers, experienced. Our unsuccessful attempts led us to better explain Juana’s 

schemes, and thus what she might bring forth as a basis for creating her perturbation. 

We acknowledge many instances in which we believed that a specific task could help 

Juana transition to the intended, D=more reasoning, only to find she brought her own 

(L=more, storyline) reasoning to the task. These perturbing instances (for us) led to 

articulating what she does have available that could bring forth a constructive 

perturbation for her. Specifically, our perturbation yielded a new, playful task in which 

the ‘cost’ of incorrect answers led Juana to coordinate more-than situations with the 

difference between two sets that she would determine through matching actions.  

This study thus contributes a plausible HLT for advancing from L=more to D=more 

reasoning. This HLT focuses on bringing forth students’ goal-directed equalizing 

(matching) actions to foster the intended transition. As our study shows, researchers’ 

analysis of a student’s available schemes opens the door for adapting task design to 

successfully accomplish that transition in students.  

For practice, our study can provide teachers with an understanding of conceptual 

causes leading students to struggle, and perhaps incorrectly construct, a D=more 

scheme. We believe the study shows a way forward in which teachers utilize both 

teacher and student perturbations to develop tasks and engage students in solving static 

more-than tasks. Teacher perturbations are a critical learning experience which can 

guide them in adjusting student HLT’s. Teachers can use static more-than tasks while 

explicitly capitalizing on students’ available (equalizing) schemes to foster transition 

from L=more to D=more schemes.  
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Posing problems that are based on given real-world situations is important for 

teaching mathematical modelling. However, little is known about the posing process 

and the corresponding roles that teachers play. To help fill this gap, the current study 

examined the roles that preservice teachers adopt when they pose problems based on 

given real-world situations. We analyzed data from seven preservice teachers who 

posed problems based on a given real-world situation and identified three different 

roles preservice teachers tend to adopt when they pose a problem: protagonist, 

teacher, and problem solver. Further, we describe the domains that are addressed in 

these roles and affect teachers’ decision-making when posing problems. Implications 

for how to teach (preservice) teachers to pose real-world problems are discussed.  

INTRODUCTION 

In order to teach mathematical modelling, teachers need to be able to pose adequate 

real-world problems (Blum, 2015; Borromeo Ferri, 2018; Greefrath et al., 2022). 

Modelling-related problem posing begins with the prompt to pose a mathematical 

problem based on a given real-world situation and results in a problem that can be 

solved afterwards (Hartmann et al., 2022). Despite the ongoing emphasis on 

approaches for teaching mathematical modelling, little is known about the process of 

modelling-related problem posing and especially the roles that have to be anticipated 

within this process (Geiger et al., 2021). To support (preservice) teachers in posing 

problems as they teach mathematical modelling, the aim of the present study is to 

identify and conceptualize the roles that preservice teachers adopt when posing 

problems based on given real-world situations, including the domains that are related 

to the decision-making processes that occur while posing a problem. 

THEORETICAL BACKGROUND 

Mathematical modelling (i.e., solving real-world problems with the help of 

mathematics) is one of the key competencies in mathematics education and is included 

in curricula all over the world (National Council of Teachers of Mathematics [NCTM], 

2000; Niss & Blum, 2020). In order to teach mathematical modelling, teachers must 

have modelling-specific content knowledge, including knowledge about interventions, 

problems, and perspectives (Greefrath et al., 2022). Modelling-specific content 

knowledge includes knowledge about how to pose adequate problems (Borromeo Ferri, 

2018).  
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The term problem posing subsumes many different processes. In the context of 

mathematics education, it refers to problem development that is triggered by a stimulus 

and results in a mathematical problem that can be solved afterwards (Baumanns & 

Rott, 2022; Silver, 1994). Different situations and prompts can serve as stimuli (Cai et 

al., 2022). In order to pose problems based on given real-world situations, the problem 

poser first has to understand and explore the given situation. Then a problem has to be 

generated. The self-generated problem has to be evaluated with regard to individual 

criteria (e.g., solvability, adequacy for a specific learning group or adequacy in the 

given situation), and then possible solution steps can be planned (Hartmann et al., 

2022). Hence, in order to pose modelling-related problems, demanding translation 

processes between the extramathematical and mathematical domains are needed, and 

many decisions have to be made.  

To support (preservice) teachers in posing real-world problems, Galbraith (2006) 

described principles for the posing process. These principles serve as structural 

components that can scaffold the posing process and provide guidance on the important 

characteristics of the posed problem. One of the principles is that the posed problem 

should be connected to students’ lives. Further, it should be possible to translate the 

posed problem into a mathematical problem. The solution to the posed problem should 

be feasible for the students and should require the application of modelling-specific 

activities (e.g., simplifying and structuring, interpreting, validating). Lastly, from a 

didactic perspective, it should be possible to divide the problem into subproblems in 

order to scaffold the solution process. The principles reveal that, when posing real-

world problems, the extramathematical domain, the mathematical domain, and the 

didactic domain have to be kept in mind. To take these domains into consideration, the 

problem poser might adopt different roles that go along with focusing on important 

aspects of these domains. However, systematic research on the roles that (preservice) 

teachers adopt when posing problems based on given real-world situations has thus far 

been missing.  

RESEARCH QUESTIONS 

To help fill this gap, the overarching goal of this study was to identify and 

conceptualize the roles that preservice teachers adopt in modelling-related problem 

posing based on empirical data. To do so, we asked the following research questions:  

a) What roles do preservice teachers adopt when they are instructed to pose 

mathematical problems that are based on given real-world situations, and how 

can these roles be described? 

b) Which of the abovementioned domains are related to the decision-making 

processes applied in each role, and which aspects of the domains are taken into 

account?   
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METHOD 

Sample  

Data were collected from seven preservice teachers from a large German university 

(four women, three men) between 20 and 26 years of age. All of them participated in 

the program for future secondary school teachers: five of them for secondary and high 

schools (Grades 5-12/13) and two of them for secondary schools (Grades 5-10). Six of 

them reported having previous experience posing mathematical problems for students.  

Procedure and Instruments 

The analysis was based on data from a prior study for identifying the cognitive 

processes involved in modelling-related problem posing (Hartmann et al., 2022). For 

this purpose, the preservice teachers were instructed to pose a problem that was based 

on a given real-world situation while thinking aloud and to solve them subsequently. 

An example of a real-world situation that was presented is given in Figure 1. 

 

Figure 1: The real-world situation of the cable car 

The basis of the current analysis were the videos and the corresponding transcripts of 

the preservice teachers’ posing processes as they posed problems that were based on 

the given real-world situation of the cable car (see Figure 1). 

Data Analysis 

In order to uncover the roles that the preservice teachers adopted, we used Mayring’s 

(2015) content analysis. In a first step, we paraphrased the transcripts with regard to 

content-bearing semantic elements (sequences). In a second step, we developed the 
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coding scheme inductively by using a collaborative process. This involved going 

through several rounds. In the first round, we reviewed the posing processes, began 

with an open coding, and created memos. Through an analytic process, we then 

developed codes. By using subsumption, we extended and refined the codes. For each 

of the sequences, we decided whether they fit into one of the existing codes or whether 

a new code had to be developed. In the next round, we gathered the sequences that 

were coded with the same code and discussed the descriptions of the codes 

collaboratively. Then we coded the rest of the data. This involved making several 

adjustments to the descriptions. Further, we found that a lot of sequences could not be 

clearly assigned to just one code. Hence, we decided that a sequence could be assigned 

to more than one code simultaneously. On the basis of the analytic process, the roles 

of the preservice teachers evolved from the data. The analysis resulted in a coding 

scheme that was used to analyze the data (see the Research Findings section). In a final 

step, we summarized the posing process for each preservice teacher with regard to the 

roles they adopted.  

RESEARCH FINDINGS 

On the basis of the preservice teachers’ posing processes, we were able to develop a 

coding scheme that is presented in Table 1. The coding scheme includes the identified 

roles, the descriptions of the roles, and the domains related to decision-making. 

Role Description Domain 

Protago-

nist 

The problem poser has adopted 

the role of a protagonist who 

wants to pose a relevant problem 

for themself or the given 

situation.  

The extramathematical domain is in 

the foreground, and decisions are 

made on the basis of the description 

of the given real-world situation. 

Problem 

Solver 

The problem poser has adopted 

the role of a problem solver who 

wants to pose a mathematical 

problem with an interesting 

mathematical solution. 

The mathematical domain is in the 

foreground, and decisions are made 

on the basis of the mathematics (i.e., 

mathematical operations and 

structures) that can be used to solve 

the problem. 

Teacher The problem poser has adopted 

the role of a teacher who wants 

to pose a suitable problem for 

their students. 

The didactic domain is in the 

foreground, and decisions are made 

on the basis of the potential learning 

group and their knowledge.  

Table 1: Roles involved in modelling-related problem posing 

In the posing processes, we were able to identify three different roles (i.e., protagonist, 

teacher, and problem solver) the preservice teachers adopted when posing problems 

based on given real-world situations. As evidence that the preservice teachers actually 
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integrated the roles into their modelling-related problem posing, we present Max’s 

posing process, including the roles he adopted and the domains that he focused on for 

decision-making in the roles.  

Max begins by reading about the given situation in the role of a problem solver by 

asking about what the mathematical context is. 

That's all well and good, (laughs) but what is the actual mathematical context now? 

Then he identifies the information the question should refer to in the role of a problem 

solver and of a protagonist. 

Okay and now, my question should probably also refer to the new cable car, which will 
now be built beginning in summer 2021. 

From the information he wants to focus on, he goes on to determine the mathematical 

content in the role of a problem solver.  

And there again I have to ask myself what mathematical concept I want to incorporate, 

so to speak. 

He goes back to the real-world situation by making sense of the given situation in the 

role of a protagonist but also in the role of a problem solver.  

So, it's also about changing something about the old data now, so that, um, the waiting 

times can also be reduced and, also the optimal view is made possible, for 

example, and the conveying capacity is increased. Okay. 

After making sense of the given situation, he continues in the roles of a protagonist and 

a problem solver by choosing information that he wants to work with mathematically.  

… because there is now a lot of information about the old cable car, I could also 

theoretically work with it and formulate a question that now refers to the 

old one. That makes more sense to me right now.  

Then he switches to the role of a teacher by looking for mathematics that can be 

practiced with the self-generated problem.  

You could, for example, again theoretically use the Pythagorean theorem, and in 

principle, check or practice it in this task. Apply. The problem could be, for 

example, that the length of the actual route of this, um, railway, i.e., that 

the railway has to cover, is not specified here at all.  

The upcoming problem is then evaluated in the role of a teacher by anticipating what 

mathematical knowledge students need to have in order to solve the problem and think 

about an appropriate formulation for the self-generated problem. 

Above all, it is also used to test… It is also used to… Or the pupils are also required to 

convert units because this also has to be switched here in any case between 

seconds and hours and so on. Now I'm wondering how my question should 

be formulated. 

After posing a problem, Max checks the solution to his self-generated problem in the 

role of a problem solver. 
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The beauty of the task, I think, is that you have to work through the different steps bit by 

bit in order to solve it […]. So, we can't determine from the transport 

capacity the number of people per – that fit into a gondola. Exactly. We 

have to determine it from different things together. So, we have to go 

through different steps to solve those. 

Figure 2 presents a schematic overview of Max’s posing process with regard to the 

roles he adopted over time.  

 

Figure 2: Overview of Max’s posing process  

Max’s posing process (see Figure 2) reveals that the roles do not necessarily occur 

separate from each other. Rather, a duality of the roles can be observed and especially 

the role of the problem solver goes along with the other roles. Different profiles for the 

roles could be observed in the posing processes of the other preservice teachers. 

DISCUSSION  

In the modelling-related problem posing processes, three different roles could be 

identified. The preservice teachers adopted the roles of a protagonist, a problem solver, 

and a teacher. Adopting these roles seems to be relevant for making appropriate 

decisions when posing problems that are based on given real-world situations. 

Decisions are made by focusing on aspects of the extramathematical domain (in the 

role of a protagonist), the mathematical domain (in the role of a problem solver), and 

the didactic domain (in the role of a teacher). Galbraith’s (2006) principles reveal that 

it is important to take these domains into account when posing real-world problems. 

Therefore, it is possible that instructing (preservice) teachers to put themselves in a 

specific role might encourage them to consider important aspects of the 
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extramathematical, mathematical, and didactic domains and might therefore enhance 

the posing process. Future research has to reveal whether instructing (preservice) 

teachers to put themselves in a specific role has a positive effect on the posing process.  

Further, the results show that the roles do not necessarily occur separately from each 

other. Rather, a duality of the roles could be observed in the data. Especially the role 

of the problem solver tended to accompany the roles of a protagonist and a teacher. 

This finding indicates that anticipating mathematical operations and structures is also 

important for making appropriate decisions in the roles of a protagonist and a teacher. 

Future research has to reveal which role the anticipation of mathematics that is 

important for the solution of the self-generated problem plays in modelling-related 

problem posing depending on the roles (preservice) teachers are adopting.  

LIMITATIONS 

Our study has some limitations that should be kept in mind when interpreting the 

results. The analysis was based on data from a small sample of preservice teachers who 

were prompted to pose mathematical problems based on given real-world situations. 

The roles identified in the problem posing processes seem to be specific to modelling-

related problem posing with preservice teachers. Research has yet to determine which 

of the roles can be identified for different problem posing stimuli (e.g., problem posing 

based on given intramathematical situations) or other samples (e.g., school students). 

The transferability of the results needs to be validated in future studies.  

CONCLUSION 

Overall, our study contributes to research on modelling from a problem posing 

perspective. The results of our study have theoretical implications for research on 

modelling and problem posing by underlining the importance of roles and domains for 

decision making while posing problems based on the real-world situation. In order to 

pose problems, (preservice) teachers adopt different roles. It might be important to 

teach (preservice) teachers which roles may occur while posing problems that are based 

on given real-world situations. Further, stimulating them to reflect on the roles they are 

adopting can be fruitful for the development of high-quality problems. Therefore, the 

results of the study have to be kept in mind when teaching (preservice) teachers how 

to pose real-world problems.  
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THE COMPLEXITY OF GRAMMAR IN STUDENTS’ TALK: 

VARIATIONS IN EXPRESSING FUNCTIONAL RELATIONSHIPS 

BETWEEN TWO QUANTITIES 
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Acquiring conceptual understanding of functions challenges students concerning the 

mathematical content as well as the linguistic compaction. While, among others, the 

students need to construct meaning of the involved quantities and the dependency in-

between, they also face grammatical changes from everyday to school academic 

language. Based on systemic functional linguistics, we derive an analytic model in this 

paper to investigate the role of grammar in conceptual learning. The qualitative 

analysis of 8 students from a design research study helps us draw initial conclusions 

about the role of verbs expressing quantities and conjunctions for addressing the 

relation in-between and first recommendations for teaching. 

INTRODUCTION 

The complex learning content of functional relationships contains topic-specific 

mathematical and linguistical challenges (e.g., Planas, 2021; Prediger & Zindel, 2017). 

This paper reports from a design research study aiming at fostering students’ functional 

understanding. In the example task, students shall state and explain the involved 

quantities as well as the direction of dependency in-between (see Figure 1).  

 

Figure 1: The longboarding task 

According to Prediger & Zindel (2017), the functional relationship can be expressed in 

different variants of linguistic compaction. This paper contributes further theoretical 

and empirical specifications by analyzing two dimensions of grammatical compaction 

with the help of systematic functional linguistics: regarding the involved quantities and 

the relation between them. Therefore, we theoretically introduce (1) the mathematical 

background and the two main aspects of understanding, and (2) outline the 

corresponding role of grammatical compaction as well as the related challenges. The 

empirical part grants qualitative insights into the pathway of two students and, from 

there, enables us to reconstruct a possible learning trajectory and recommendations for 

teaching. In this way, the paper contributes to the following research interest:  

How can the grammatical compaction of functional relationships be described and 

structured for learning processes? 
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THEORETICAL BACKGROUND 

Specifying the core of functional understanding 

Functional understanding has been widely researched and can be conceptualized in 

many different ways, e.g., regarding functional perspectives or using different 

representations (as summarized in Niss, 2014). One of them is the conceptualization of 

the core of functional relationships by Prediger and Zindel (2017). 

This core consists of three conceptual facets of understanding: the ||Involved 

Quantities|| (e.g., time and speed, visible also when, e.g., assigning 40 km/h to 4 mins); 

the ||Varying Quantities|| (e.g., the idea that time and/or speed change); and the 

||Direction of Dependency|| (e.g., the idea that the speed changes over time and 

therefore is dependent on time). These facets build on each other as students cannot 

think about the ||Direction of Dependency|| if they have not yet identified the ||Involved 

Quantities||. This conceptualization contains the most important aspects of the two 

rather rough functional perspectives (correspondence and covariation) in the four most 

common representations (symbolic, graphic, tabular, and verbal/situational).  

Theoretically specifying the language demands  

The mathematically complex learning content of functional relationships also contains 

grammatical demands, which at the same time can serve as a resource for conceptual 

understanding (Planas, 2021). Prediger and Zindel (2017) already pointed out the high 

grammatical complexity within sentences (among lexical and discursive demands) 

students face while working on understanding the core of functional relationships as 

well as the need to explicitly address the single facets of the core of functional 

relationships. Both aspects indicate changes from everyday language to school 

academic or technical language. 

In systematic functional linguistics, Halliday (2006) points out ways of expressing 

meanings in more or less explicit ways. The close connection between language forms 

and (potential) meanings is grasped in the phenomenon of Lexicogrammar. It refers to 

so-called word classes: groups of words with the same grammatical function, e.g., 

verbs typically express processes. In the transition from everyday to school academic 

and technical language, the mathematical meaning remains almost the same but the use 

of word classes changes. For instance, the process of ‘assigning something’ (verb) can 

be nominalized into the more compact object of ‘assignment’ (noun).  

Understanding more compacted expressions in unusual word classes for similar 

meanings (e.g., nouns instead of verbs), is key to higher mathematical topics but a 

major challenge for many students (e.g., Halliday, 1993; Martin, 1999). For conceptual 

learning, teachers need to first take less compacted word classes from students’ 

everyday language into account as these are easier accessible for meaning-making 

(Butt, 1989). Halliday (2004) describes the most important dimensions of the change 

in word classes, from which the second one occurs quite late in students’ school careers 

which makes it especially challenging for them to access meaning (Halliday, 2004):  
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1. Expressing processes as abstract objects: in English and German, mostly verbs 

combined with adverbs (e.g., moving fast) turn into nouns and adjectives (e.g., 

fast movement); here, this change of word classes is relevant for addressing the 

||Involved Quantities||. 

2. Expressing relations within subclauses: conjunctions (e.g., if) turn into more 

compacted prepositions (e.g., (depending) on); here, this change of word classes 

is relevant for addressing the || Direction of Dependency || as a relation between 

the two quantities. 

In Table 1, we present the combination of the two relevant dimensions of word class 

changes for the learning content of functional relationships as well as examples for 

possible expressions. 

 

Table 1: Two dimensions of expressing functional relationships, categorized 

regarding the German word classes; relations in bolt, quantities in italics 

In addition to the demands of the word class changes in the individual dimensions, we 

find that these mutually depend on each other: Using prepositional phrases to express 

the relation is impossible without nominalizing at least one of the quantities. This 

further increases the complexity of the interplay of the two dimensions.  
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Based on the preliminary theoretical considerations and the derived Table 1, we 

analyze our empirical data and derive a theoretically and empirically grounded learning 

trajectory in the discussion part to answer the following research questions:  

(RQ1) Which word classes do students use to express the quantities and the functional 

relation in-between within their learning processes? 

(RQ2) How can a linguistical learning trajectory be derived based on the theory and 

the empirical data? 

METHODOLOGICAL FRAMEWORK AND RESEARCH DESIGN OF THE 

STUDY 

Design experiments for data collection 

For answering the research and design question, we methodologically build on design 

research (Gravemeijer & Cobb, 2006) and in the overall project focus on the role of 

language in understanding functional relationships (continuing Prediger & Zindel, 

2017). The two main goals are to (a) design an empirically grounded language-

responsive teaching-learning arrangement and (b) empirically investigate students’ 

individual learning pathways on functional concepts and language. The design 

experiments were conducted in small groups of eight vocational students achieving the 

medium compulsory education certificate. We present insights into the first cycle with 

2 sessions of 35 to 45 minutes each, all videotaped (more than 340 minutes of video 

material) and partially transcribed. In particular, we take parts of Mahir’s (17 years old) 

and Mika’s (17 years old) pathways into account while working on the longboarding 

task (Figure 1). 

Methods for qualitative data analysis 

The qualitative analysis of the transcripts was carried out by two raters (variations were 

negotiated) to trace the students’ linguistic learning pathways. In Step 1, we identified 

all sections where students talked about the ||involved quantities|| and the relation 

between them. In Step 2, all word classes regarding the two grammatical dimensions 

were coded (see also Hein, submitted). These codings are additionally presented 

graphically in a miniature version of Table 1 to visualize the grammatical complexity 

regarding the two dimensions (placed next to the individual utterances). In Step 3, we 

compared the students’ individual pathways to derive first ideas for a grammatical 

learning trajectory and recommendations for teaching. 

EMPIRICAL INSIGHTS 

The case of Mahir and Mika – towards grammatically compacted articulation 

Before approaching the longboarding task (Figure 1), Mahir and Mika worked on 

describing a situation in (1) specific ways by assigning pairs of values and describing 

changes in both quantities and (2) in a more general way by explicitly identifying the 

||Involved Quantities|| from the situation. After Mahir already described changes in the 

quantities, the teacher asks Mika to explicitly identify the two ||Involved Quantities||.  
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Figure 2: Linguistic analysis A – Mika’s first situational description 

Looking at the facet of the ||Involved Quantities||, we can see that Mika linguistically 

compacts them by addressing quantity 1 as the ‘number of minutes’ (following an 

earlier example containing the number of bottles as one quantity) and quantity 2 by the 

corresponding unit ‘kilometers per hour’. Both are nominalizations (2nd column in 

matrix). However, from a mathematical point of view, he does not yet articulate at least 

the second ||Involved Quantities|| explicitly speed. Regarding the relation in-between, 

we find that Mika states the quantities independently (Juxtaposition, 1st row in matrix).  

When revisiting the longboarding later, the teacher asks Mahir to describe the situation 

in his own words. 

 

Figure 3: Linguistic analysis B – Mahir’s first explanation in the 2nd session 

Therefore, Mahir first combines a conjunction with verbs (1st column, 2nd row in 

matrix) and then in the second part extends his articulation of the second quantity to 

the explicit, school academic nominalization ‘speed’ (2nd column in matrix). From 

there, he compacts the relation to the preposition ‘after’ (3rd row in matrix), although 

Mahir does not address the quantities as explicit nominalizations anymore. 

In this small excerpt, we can find Mahir slowly adapting to school academic language. 

He mixes everyday and school academic phrases within the two dimensions while 

developing a precise language for articulating the ||Involved Quantities|| and the 

relation between them. Further, the use of school academic prepositions requires the 

nominalization of at least one quantity, though not necessarily mathematically explicit. 

During the following discussion, Mahir is able to identify the ||Direction of 

Dependency||. Therefore, the teacher asks him to explain this which makes Mahir 
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struggle on the conceptual level, although the argumentation is quite productive in a 

linguistical way. 

 

Figure 4: Linguistic analysis C – Mahir’s explanation for independency  

Although the two quantities are not yet nominalized explicitly, Mahir can already 

address the relationship with the compact prepositional phrase ‘depending on’, (part 1: 

2nd column & 3rd row in matrix). In his attempt to explain the limitation of the 

dependency, Mahir linguistically draws on everyday language by using a mixture of 

verb(-phrases) and nominalizations regarding the two quantities (parts 2 & 3: 1st + 2nd 

column & 2nd row in matrix). In the end, he compacts his explanation and explicitly 

addresses the quantities by nominalizations and the relation by a preposition (part 4: 

2nd column & 3rd row in matrix). Conceptually, we see Mahir struggling to accept 

mathematical dependencies that differ from the logical everyday meaning of 

‘depending on’, which is especially visible in the last part of his utterance (speed has 

nothing to do with time but rather with the slope of the mountain). But looking at 

Mahir’s linguistic development, we find that he is now able to use several phrases 

typical for school academic language (explicit nominalization of the quantities, 

prepositional phrases for the relation in-between). Still, he draws on everyday 

language's grammatical phenomena to explain the ||Direction of Dependency|| to 

articulate these more explicitly.  

SUMMARY 

Looking at Analysis B of Mika’s and Mahir’s learning pathway (Figure 3), we can see 

that students are intuitively able to describe a functional situation by describing 

changes in both quantities and assigning pairs of values. For addressing the ||Involved 

Quantities|| they, therefore, use verbs combined with adverbs (close to everyday 

language, e.g., riding fast) or already nominalized unities combined with concrete 

values (closer to school academic language, e.g., ‘4 minutes’). The students usually 
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express the relation between the quantities by conjunctions like ‘if-then’ or ‘the-the’ 

(‘je-desto’ in German) which clearly express the ||Direction of Dependency||. These 

linguistically less compacted combinations of the two dimensions are also visible in a 

large share of the other students’ utterances. Although the latter variant is not the 

explicitly nominalized quantity, we could illustrate the potential of students’ use of 

concrete values from a grammatical point of view: With the help of the nominalization 

(similar to Mika), Mahir begins to compact the relation between the quantities from 

conjunctions to prepositions (part 1: ‘the-the’ vs. part 2: ‘after’). Still, the need arises 

to explicitly nominalize the quantities (here time passed and speed) to precisely 

articulate the ||Direction of Dependency|| which Mahir did in Analysis C (Figure 4). 

We find that, due to the design, most of the combinations of nominalizations and 

prepositions already address the ||Direction of Dependency||. 

DISCUSSION AND OUTLOOK 

Learning for the design – first implications for a grammatical learning 

trajectory  

In coherence with the theoretical considerations, most of the students at the beginning 

of the design experiments use words from everyday language for both dimensions, such 

as Mahir. A hypothetical learning trajectory, which aims at the conceptual 

understanding of functional relationships and takes into account grammatical 

challenges should therefore start with conjunctions for relation as well as verbs or 

nominalized unities combined with concrete values for quantities. For meaning-

making, explicit language support by the teachers might be helpful, so that students 

can learn the unusual word classes, necessary for expressing functional relationships.  

Following the empirical results and the theoretical background on word class change, 

we suggest addressing four grammatical steps of the learning trajectory for fostering 

students’ understanding when teaching functional relations: 

 Step 1 – using students’ everyday language resources: describing functional 

situations by assigning values and describing changes in both quantities, using 

verbs + adverbs/concrete values + unities for quantities, conjunctions for relation 

(e.g., If he rides down 4 minutes, he becomes faster); 

 Step 2b – nominalizing the quantities: explicitly addressing the quantities with the 

mathematically desired nominalizations (e.g., time and speed); 

 Step 2a – compacting the relation: using concrete values for passing from 

conjunctions to prepositions (e.g., After four minutes, …); 

 Step 3 – connecting the two condensed dimensions: precisely articulating the 

||direction of dependency|| by using nominalizations for the quantities and 

prepositions for the relation (e.g., Speed is dependent on time.) 

When approaching the complex topic of functional relationships, teachers need to 

become aware of the grammatical challenges identified and need to flexibly articulate 
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the different variations of addressing the ||Involved Quantities|| and the relation in-

between in more and less compacted ways. For enabling teachers to adaptively use 

different word classes, teachers such linguistic variants need to be made an issue. 

LIMITATIONS AND FURTHER OUTLOOK 

As we only show the first insights into our analysis, the results are based on a small set 

of data consisting of only 8 students. Furthermore, we focus on a specific mathematical 

topic (expressing functional relationships). Although based on the literature presented 

earlier, we expect that similar challenges may arise for students while working on other 

learning contents, further research needs to disentangle grammatical challenges in a 

topic-specific way. We would like to recommend, supporting teachers through 

professional development in recognizing the changes in the word classes and verbally 

modeling variations to express mathematical learning contents. By this, teachers might 

be enhanced to flexibly address students’ linguistic competencies.  
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How can mathematics teachers (MTs) be supported in teaching mathematics for 

climate justice (TMfCJ) if mathematics teacher educators (MTEs) lack climate-related 

expertise? In this paper, we challenge the assumption that such expertise is essential, 

and consider ways in which MTEs can use their existing expertise to support MTs in 

TMfCJ. The context of this study is a professional development programme for MTs in 

England where we examine how one MTE relates to ways of knowing about 

mathematics, pedagogy, climate justice and their intersections. Results suggest that the 

MTE’s existing expertise in relation to how MTs learn, together with her lack of 

climate-related expertise, enable an authentic co-inquiry where expertise relating to 

the intersection of mathematics teaching and climate justice can be co-created. 

BACKGROUND, CONTEXT, AND THEORETICAL FRAMING 

In a recent large-scale survey (Teach the Future, 2022) conducted in England, 

secondary school teachers were asked whether a) climate change and b) the ecological 

crisis (i.e., the decline of biodiversity and the collapse of natural systems that support 

life on earth), are embedded within their school’s subject curriculum. Only a) 7% and 

b) 3% of mathematics teachers (MTs) responded positively, despite the fact that the 

vast majority (80%) viewed climate change and the ecological crisis as being relevant 

to the subject of mathematics. When asked what would support them to embed these 

issues within their school’s mathematics curriculum, the two most popular responses 

were i) capacity and time for developing relevant curriculum content and ii) inclusion 

within the national curriculum for mathematics, which currently makes no reference to 

climate change nor does it suggest links exist between mathematics, the environment, 

or issues of social justice (Department for Education, 2013). 

It seems to be a common assumption in England that education relating to climate 

change and the associated inequalities should be left to teachers of geography, biology, 

and citizenship. The Department for Education’s (2022) recent strategy on 

sustainability and climate change refers to several school subject disciplines, but 

makes no reference to the subject of mathematics nor to the relevance of mathematics 

to climate change. In contrast to this lack of recognition at the policy level, there is an 

increasing body of research from around the world, primarily from a critical 

mathematics education perspective, providing compelling arguments for why 

mathematics, climate change, and the associated inequalities are inextricably linked. 

Not only does mathematics help us to describe, predict and communicate climate 

change (Barwell, 2013) it has the power to format it in such a way that a particular 

view of it is formed (Skovsmose, 2021). Through highlighting certain social 
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dimensions, and concealing others, mathematics and power “become intimately 

connected” (Skovsmose, 2011, p. 22). For these reasons, we question why the national 

curriculum pays no attention to the relationship between mathematics and climate. 

Teaching mathematics for climate justice 

We use the term climate justice to capture, in one phrase, issues relating to climate 

change, the ecological crisis, and the associated implications for societies around the 

world. The term climate justice draws attention to the impact of climate change on 

those communities who are most vulnerable to its effects, and to couple climate change 

and the ecological crisis (often seen as scientific in nature) with social justice (i.e., 

principles of human rights including access, participation, and equity, seen primarily 

as sociological in nature). This is consistent with a socio-ecological perspective (Coles, 

2022) which recognises that the “social  and  the  ecological  cannot  be  disentangled” 

(p. 208), a perspective that brings the ecological in to view within mathematics 

education alongside the various social perspectives that are already commonplace. 

Given this context and framing, we ask how MTs can develop their teaching in relation 

to climate justice and, more specifically, who has the expertise to support them in this 

endeavour and what does this expertise consist of? Currently, it is the role of 

mathematics teacher educators (MTEs) to educate practicing MTs through professional 

development (PD) opportunities. The PD context that forms the basis of this study is a 

small-scale PD programme in England, was led by an experienced MTE, and involved 

10 participating secondary MTs. The PD was designed and facilitated by an 

interdisciplinary team consisting of three academics (from mathematics, mathematics 

education (the MTE), and creative writing), as well as a MT and an artist. Though from 

different backgrounds, the members of this team had a common interest in climate 

justice, yet none considered themselves to be subject-matter experts. The PD consisted 

of three full-day workshops over a period of six months, where different team members 

led a range of activities with the group of MTs, including art-based activities such as 

creative writing and mapping exercises, mathematical tasks relating to ecosystems, as 

well as several discussions which were led by the MTE. The aim of the PD was to 

support participating MTs in developing their own ideas and curriculum materials in 

relation to teaching mathematics for climate justice (TMfCJ). Between workshops, 

MTs were invited to try out their ideas and materials at school. 

We see this study, and the PD context in which it is situated, as at the “starting point” 

of the teacher education (TE) and PD strand of Boylan and Coles’ (2017) proposed 

map of “possible future developments of practice and research for mathematics 

education and the living world” (p. 13). They describe this starting point as a situation 

where “small-scale programmes are developed, on isolated sites, linking learning to 

teach mathematics with a questioning of the role of mathematics in the world” (p. 13). 

Our hope is that by studying these isolated sites, we may progress towards the next 

step on the map where TE and PD programmes across the world “begin to include how 

the study of mathematics can relate to wider ecological issues” (p. 13). To make this 
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step we first need to understand how MTEs, who themselves lack subject-matter 

expertise relating to climate justice, can support MTs in TMfCJ.  

Mathematics teacher educators’ expertise 

Recent years have seen a growing interest in research relating to MTEs, who are 

considered to be key players in the implementation of reform or research-based ideas 

within mathematics education. Frameworks have been developed to conceptualise the 

nature of MTE expertise (e.g., Prediger et al., 2022), the majority of these frameworks 

characterise MTE knowledge and practices as expansions of MTs’ knowledge and 

practices (Goos and Beswick, 2021). Consequently, MTEs are characterised as needing 

to know what MTs know, and more, in order to support their PD.  

However, when MTEs facilitate collaborative PD environments, they are often not 

expected to use their knowledge and expertise directly (by, for example, telling MTs 

how they should teach), but indirectly, through foregrounding MTs’ voices. This 

facilitation is characterised by a tendency to ask open questions and raise awareness 

and possibilities. Horn and Garner (2022) describe it as adopting a “co-inquiry stance” 

(p. 85), that is, being “deliberately humble and uncertain in sharing of our 

interpretations of teachers’ instruction and positioning our expertise as complementary 

to (not better than) the teachers” (p. 84). This stance contrasts certain views of TE and 

PD, where MTEs are perceived by MTs as the “epistemic authorities” (Kruglanski, 

1989) in the same way that students can perceive their MTs, as the arbiters of 

knowledge. We challenge this view, by asking what happens when MTEs lead PD 

when they do not have subject-matter expertise, such as that relating to climate justice. 

Furthermore, since issues relating to climate justice are dependent on time and context 

and thus characterised as ambiguous, open-ended, and dynamic (Eernstman & Wals, 

2013), the notion of climate justice, to an extent, is unknowable, in contrast to a more 

certain and stable view of school mathematics. To explore these contrasts and 

intersections, we ask:  

How does an MTE (who is not a climate-expert) use her expertise when 

supporting teachers in teaching mathematics for climate justice? 

Next, we briefly set out the research design including our methods of data analysis. 

METHODOLOGY 

The corpus of data used for this paper are video recordings from the first two PD 

workshops (approximately 12 hours of video). Video cameras were placed in different 

positions to capture the various activity, including those sections of the PD led by the 

MTE. Since we were interested in the different ways the MTE places herself in relation 

to her existing areas of expertise (i.e., mathematics and pedagogy), and comparing this 

to the way she places herself in relation to climate justice, we selected episodes where 

the MTE relates to one or more of these areas and/or their intersections. Moreover, we 

examined how the MTE places herself in relation to the MTs to explore how these 
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relationships vary when she is referring to the different foci of the PD. Once the 

relevant episodes were selected, we fully transcribed them. 

To interrogate the selected episodes, we used a method of micro-analysis by drawing 

on Gee’s (2011) tools for discourse analysis where each tool is “a specific question to 

ask of data” (p. x). According to Coles (2015), a key feature of micro-analysis “is to 

approach small sections of transcript with a slow and repeated reading, keeping some 

questions in mind” (p. 241). Specifically, the questions we kept in mind were: i) how 

does the MTE place herself in relation to the MTs? ii) how does the MTE place herself 

in relation to mathematics, pedagogy, climate justice and their intersections? In 

summary, our process of analysis consisted of: 1) viewing the entirety of the video 

data; 2) selecting episodes where the MTE related to the areas of expertise and/or the 

MTs; 3) transcribing the episodes; 4) interrogating episodes with our questions in mind.  

ANALYSIS OF EPISODES  

In the following, we analyse selected episodes of the PD focusing on how the MTE 

relates to the different foci of the PD and the MTs. We use […] to indicate where text 

has been omitted. Words or phrases inserted between square brackets (in italics) 

indicate additional information (e.g., gestures). All names used are pseudonyms. 

Workshop 1 

The first workshop began with the MTE, Lara, defining the scope and goals of the PD: 

Lara: We will be creating and sharing visions of climate justice earlier on in the 

day and thinking about how this might inform us as teachers. You might 

experience different ways of being and doing here, there will be some 

activities that are potentially quite unusual that we engage in as a way of 

expanding what we see as being possible, as well as different ways of 

knowing. […] What else might be possible is a question we will keep 

returning to today. And then towards the end of the day we are going to 

formulate directions of travel, so not to the point where you have a concrete 

plan, but certainly beginning to formulate your own sense of where you 

want to take this given the topic is teaching mathematics for climate justice. 

What it’s not is tips for teachers, it’s not scrutinising existing materials, it’s 

not the mastering of concepts. 

Here, Lara positions herself as an insider (“inform us as teachers”; “expanding our 

sense of what’s possible”), suggesting that she is part of the inquiry process in terms 

of incorporating climate justice in mathematics lessons. She does not place herself as 

an epistemic authority, framing the workshops as aiming at stimulating ideas rather 

than “the mastering of concepts”. Furthermore, in terms of epistemology, Lara 

highlights that the PD aims at exploring “different ways of knowing”, namely, 

questioning traditional patterns of schooling and supporting the exploration of the 

dynamic nature of the topics at hand. The new domain – climate justice – together with 

the creative processes that the MTs engage in, are used as resources for such disruption. 

Later, when referring to processes of teacher change, Lara places herself differently: 
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Lara: In thinking about how we learn as teachers, my sense is that to change 

anything in ourselves, in the way we are, or the way we do things, requires 

something from within. I cannot change you, I’m not here to change you, 

that’s not my purpose. If you find something from within that you want to 

work on, that’s the only way that you are going to change. 

These words suggest that Lara sees her role as assisting MTs in their efforts to deploy 

changes in their classroom, yet not imposing specific changes on them. In this excerpt 

she frames herself more as an outsider who is an expert in TE, yet part of her expertise 

is not presuming she knows what the MTs should do in their own classrooms and 

contexts. Immediately afterwards, she returns to the authentic co-inquiry stance. When 

launching an activity where participants present an object that represents how they feel 

about climate justice, Lara places herself as part of the group, and shares with them her 

concerns as a mother and a citizen. After the MTs have shared some of their reasons 

for participating in the PD (participation was voluntary), and what they hoped to 

achieve from the PD, Lara shares some of her own ideas about the purpose of the PD: 

Lara: I suppose for me, these sessions are partly to support you in seeing past 

some of the constraints you feel that you can't change, so I suppose I might 

invite you to consider what’s contingent and what are the true facts, things 

you feel can do nothing to change, and even then what might be changeable 

within that set of constraints.  

Lara invites the MTs to critique their practice and examine whether what they know is 

maybe less certain (“what’s contingent and what are true facts”). She places herself 

as a knower of TE (though not as a knower of the MTs’ contexts), who can identify 

changeable aspects of teaching. When the MTs share their goals, Lara reflects back: 

Lara: What comes to mind in hearing some of you talk about kids who don't like 

maths and this sense of making maths relevant, for me, it comes down to 

what we think maths is, our image of mathematics. So, if our image of 

mathematics is this [holding out one hand, palm upwards] how does that 

intersect with issues of climate justice, how can we bring those things 

together [bringing the two hands together]? What are the intersections of 

these things?  

There is a subtle contrast between how Lara describes mathematics (“if our image of 

mathematics is this”) as something it might be possible to know, and how she describes 

climate justice, something that is unknowable for her and the group. She is placing 

herself as a learner, asking a genuine question (“how can we bring those things 

together?”), implying that also for her the intersections are still unformed.  

Workshop 2  

At the beginning of workshop 2, the MTs worked in subgroups on a task relating to 

native species of flora and fauna. The aim of the task, led by the mathematician (Amy), 

was to find the largest network of species that could co-exist based on a variety of 

information (environment, predators, etc.), presented on a set of cards (one card per 

species, 50+ cards). Later on, the MTs engaged in a creative mapping activity led by 
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Ali, the creative writer. For this task the MTs were asked to formulate their ‘utopic 

goal’ in relation to TMfCJ. They then mapped a ‘traditional’ pathway to their goal 

(made up of steps they might usually take as MTs), a ‘utopic’ pathway (where anything 

is possible) and then a ‘creative’ pathway, a middle way between the first two, as a 

way to encourage new approaches and disrupt normal practices. Having formulated 

their goals, Lara asked the MTs to share their initial ideas. One MT, Evan, offered: 

Evan: I like the idea you could teach about something and then the maths would 

naturally come up as a way to better understand the problem. You could 

teach about waste, say, and then standard form could come up as a way to 

talk about big numbers. Rather than the other way around, when you start 

with the maths and then try to relate it to the real world, you start with the 

real world and the maths comes up naturally. 

Lara: I was really struck by the card activity that Amy did with us. It felt really 

powerful, just having a go at it. You all had your own goes, then there was 

this mathematical structure that you were offered, a network, and that gave 

you a different insight into the problem, it seemed to give you more energy 

[…] There is this problem that needs solving and then there is some 

mathematics, at some point when we need it, that comes along allowing 

you to look at the problem in a different way. 

While placing herself emotionally as part of the group inquiry process, Lara also 

illustrates how modelling an ecological situation can be illuminated using a 

mathematical representation (a network), by generalising Evan’s idea into a model of 

TMfCJ, and grounding the model in a shared experience where mathematics was used 

to explore and understand phenomena earlier in the day. Later in the discussion, 

another teacher speculated on the viability of TMfCJ in her context. Lara responded: 

Lara: It sounds like you are talking about the content, what are the issues that 

may or may not be appropriate to raise with your class, so a shift you might 

make is to think, maybe I don’t want to go down that road by taking on 

issues directly, but, what sort of environment do I want to create in my 

classroom that maybe supports the children’s confidence, their voice, is 

there something in the process that you want to think about instead of 

directly tackling issues of climate justice […] a way of being that you might 

want to nurture.  

Here, Lara delineates the differences between teaching about climate justice as 

opposed to teaching for climate justice. She later unpacks links with social justice:  

Lara: Social justice can be about the structures that have become normalised in 

schools. […] there is a whole discourse around that, “she's a top set kid”, 

“they’re a bottom set group” […] it is in the structure, in our discourse and 

potentially in the way that we behave towards others. So, there are many 

avenues you can take teaching mathematics for climate justice and it could 

start with questioning the assumptions we make, or ways that we do things, 

the way that we speak, as well as directly addressing issues that are 

meaningful. The thing about those global issues that feel too abstract, that 
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we don’t feel them, we don’t see them, a different way to think about that 

could be considering a local issue right here that we can be quite hopeful 

about, that could be quite empowering. There could be something in the 

school or in the local community. There are all sorts of things you could 

do, closer to home that are not abstract and are not necessarily difficult or 

sensitive. You might not know what those issues are, so you could ask the 

children what is important to them.  

Lara offers possible heuristics for TMfCJ, yet avoids giving concrete answers or 

examples, since she does not know the specific contexts of the MTs or their students. 

That is, her expertise is manifested in her formulation of heuristics and mechanisms 

for finding ways to teach mathematics for climate justice, by generalising ideas offered 

by the MTs and offering alternatives when faced with resistance, aligning with a co-

inquiry stance. By saying “you might not know what those issues are, so you could ask 

the children”, she is also offering what co-inquiry in a classroom could look like. 

DISCUSSION 

Our aim in this paper was to inquire about how MTs can be supported in TMfCJ if  

MTEs lack climate-related expertise, by examining how one MTE, Lara, places herself 

with relation to MTs and mathematics, pedagogy and climate justice. We identified 

moments of authentic co-inquiry, as well as moments where Lara’s expertise is used 

to guide processes of teachers’ professional growth. We maintain that this expertise 

does not draw upon epistemic authority (Kruglanski, 1989) on either mathematics, 

pedagogy, or climate justice, but on Lara’s expertise in relation to how MTs learn. 

Thus, Lara’s expertise in this context is at a meta-level to the PD content, through 

offering structure, provocation, and feedback. Being attuned to what is emerging in 

conversations allows her to co-create, with the MTs, possibilities for TMfCJ. These 

observations challenge the assumption that MTEs’ subject-matter expertise is essential 

in supporting MTs’ learning. We are not, by any means, disregarding the importance 

of MTEs’ content expertise. We argue, instead, that it is possible for MTEs to work 

alongside MTs to develop classrooms where TMfCJ can be realised. Given the context 

of a global emergency, it is worth exploring how MTEs can use their existing expertise 

to provide PD learning opportunities where what it means to TMfCJ can emerge in the 

complex reality of Boylan and Coles’ (2017) “starting points”. 

We contribute to discussions of the role of mathematics TE and PD in relation to 

TMfCJ, by conceptualising MTE expertise in a context where the MTE is not a subject-

matter expert in relation to climate justice. For the future of the planet, it is vital that 

the international mathematics education community explore how MTs can engage in 

TMfCJ, assuming that a) becoming experts in climate justice is a long process, and b) 

many aspects of climate justice are unknowable even for climate experts. This paper 

aimed to capture, illustrate, and analyse moments where different forms of expertise 

are observed in the actions and words of one MTE, to demonstrate how MTEs are well 

placed to support MTs in their endeavours, considering the urgency of taking action. 
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EXPLORING DEVELOPING PATTERNS OF MATHEMATICAL 

IDENTITY WORK BY GIVING ATTENTION TO EMOTIONAL 

HUE AND TONE OF VOICE IN THE ACT STORYTELLING  

Rachel Helme 

University of Bristol 

 

Research on the concept of mathematical identity work is maturing towards a socio-

cultural viewpoint, seen as an action not an acquisition. For students who, due to 

educational policy in England, are compelled to continue studying mathematics in 

their post-16 setting, the patterns of stories that they tell as identity work can develop 

over time in terms of plot or storyline. This study focuses on one student participant, 

that I called Claire, from a broader study into identity work in the context of low 

attainment in mathematics. The findings explored in this research report suggest that 

developing patterns of identity work involve facets emotional hue or tone of voice as 

well as plots or storylines, contributing to discussions around the mathematical 

identity work in the context of students compelled to continue to study mathematics. 

INTRODUCTION 

In England, it is educational policy that students who fail their mathematics General 

Certificate of Secondary Education (GCSE), usually taken at 16 years old, must 

continue to study mathematics as part of their post-16 education. For many students, 

the lived experience of continuing to study mathematics is ladened with emotion, 

however, there is some evidence that patterns of mathematical identity work, the stories 

told by, and about, students from within the lived experience, can develop over time. 

In this research report, drawn from a broader study, I discuss the stories told, as 

mathematical identity work, by one student participant called Claire (a pseudonym). I 

reflect on her developing patterns of mathematical identity work, considering how, as 

well as the plot of her stories, the emotional hue and tone of voice used in the act of 

storytelling also developed over time.  

MATHEMATICAL IDENTITY WORK 

As a unit of analysis, the concept of identity has become prominent in social sciences 

in the last half century (Brubaker & Cooper, 2000). In the field of identity research, the 

conceptualisation of identity varies, with some viewing the concept as an acquisition, 

something you have, and others seeing an action, something you do (Darragh, 2016). 

In their review of literature on mathematical identity, Graven and Heyd-Metzuyanim 

(2019) noted that the field of mathematics education was maturing towards a 

sociocultural view, with mathematical identity seen as an action, being domain specific 

and situated as well as fluid and relational. The phase mathematical identity work is 

used in research to indicate the labour involved in constructing various, often 

contradictory, facets of identity. Many studies that consider students’ mathematical 



Helme 

3 - 44 PME 46 – 2023 

identity work focus on the narratives in relation to teaching and learning, such as, 

interactions in the classroom (see, for example, Bishop, 2012; Heyd-Metzuyanim, 

2013) and self-reported accounts of participants (see, for example, Bartholomew et al., 

2011; Foyn et al., 2018). Sfard and Prusak (2005) go further to both conceptualise and 

operationalise identity, or identifying, as the collection of stories told by, and about, a 

student. From the point of view of Sfard and Prusak (2005), discursive activity 

constitutes identity work, with students’ identity work not found in recounting stories 

and experiences, but in the act of storytelling itself, for which I use the phrase stories-

as-identity-work. The authors state that stories-as-identity-work are both authored by 

the student themselves and influenced by others in their context, such as teachers and 

parents, which Sfard and Prusak (2005) describe as significant narrators. Heyd-

Metzuyanim and Sfard (2012) posit that: 

Mathematics learning is to be seen as interplay between two concomitant activities: that 

of mathematizing – communicating about mathematics objects; and that of subjectifying, 

that is communicating about participants of mathematical discourse. (p.129, emphasis in 

the original) 

The authors state that the facet of subjectifying that is identity work can be emotionally 

charged, interfering with the learning of mathematics. Heyd-Metzuyanim and Sfard 

(2012) go on to introduce the notion of discursive actions having an emotional hue, 

features of a person’s utterance, such as, combinations of words or tone of voice, that, 

for the listener, suggest a speaker is communicating certain feelings. Emotional hue, 

or tone of voice, goes beyond telling stories about feelings, to communicating feelings 

through the ways of storytelling.  

In England, the majority of students take their GCSE examinations at the age of sixteen, 

with the outcomes graded between a 1 (lowest) and 9 (highest). For those students who 

achieve less than a grade 4 in mathematics, described as a fail, government policy in 

England states that they must continue to study mathematics, whilst in their post-16 

college, in order to improve their grade (Department of Education, 2021). For students 

who have to continue to study mathematics in college, there is some research that 

highlights the developing patterns of mathematical identity work over time, with a 

number of authors discussing changes in plots or storylines (see, for example, Black, 

et al., 2010; Helme, 2022). However, for many students, labelled as low attaining 

through achieving of a grade 1, 2 or 3 at GCSE, studying mathematics can be an 

affective experience due to, for example, motivational issues from cycles of repeated 

failure (Norris, 2022; Noyes & Dalby, 2020) or dissatisfaction around the enforced 

policy of having to continue with mathematics (Bellamy, 2017). I suggest that 

examining the developing patterns of stories-as-identity-work of students compelled to 

continue studying mathematics needs to extend beyond considering the plot or 

storyline towards giving attention to emotional hue. More specifically, not stories of 

affective experiences, but the emotional hue or tone of voice of the storytelling itself, 

reflecting on the developing patterns in the way the stories-as-identity-work are told.  
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METHODOLOGICAL DISCUSSION 

The data described in this paper was from a broader study into the mathematical 

identity work of five students who had to continue studying mathematics to improve 

their mathematics GCSE outcome. The data collection took place over two phases, 

phase 1 was pre-pandemic, from October to December 2019, and phase 2 was mid-

pandemic, from December 2020 to July 2021. Claire, the 17-year-old student 

participant in phase 2 of the study, was interviewed over three cycles of data collection, 

mostly using email but once, in third cycle, using online conferencing software. Due 

to the restrictions imposed by the government in the United Kingdom, in response to 

the Covid-19 pandemic, in the summers of 2020 and 2021, students could not sit their 

examinations, being allocated a grade in each subject based on assessments by their 

school. In the summer of 2020, Claire had been allocated a grade 3 by her school. In 

November 2020, students had the opportunity to sit their examinations and Claire, 

having started to attend college in September 2020, achieved a grade 3 in the November 

examination.  

Research questions 

The research questions, developed over the course of the study, considered both the 

stories-as-identity-work told by the student participants and the stories-as-identity-

work about the students told by a significant narrator, in this case the teacher. The final 

research questions became: 

RQ1: What stories-as-identity-work are shared in the context of low attainment in 

mathematics? 

RQ2: What patterns of stories-as-identity-work are perceived when attention is given 

to the (self)positioning voice through working as part of a teacher-researcher 

partnership? 

In this report, I address the findings in relation to RQ1, focusing on the first-person 

voice of Claire, the student participant in phase 2 of the study. 

Methods 

In the study, I employed object-elicitation techniques, based on the tenets of photo-

voice (Rose, 2016), to draw out the stories-as-identity-work told by Claire. Introducing 

an object, in this case images found by Claire and a question level analysis of an 

assessment, provided by the teacher, afforded the opportunity to centre the dialogue 

around the object, invoking accounts that may not be spoken in other types of 

interviewing (Woodward, 2020). Analysing using a voice-centred, relational method 

called the Listening Guide (Gilligan et al., 2006), I examined the elicited stories-as-

identity-work to examine Claire’s various voices that are said to co-exist in a person’s 

narrative. The Listening Guide uses a four-step process to bring the researcher-listener 

into relationship with the data, privileging the voice of the participant over that of the 

researcher. The four steps of the Listening Guide are: 

 Step 1: Listening for the overall plot and recording subjective responses 
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 Step 2: Constructing and examining I poems 

 Step 3: Returning to the narrative data to listen for contrapuntal voices 

 Step 4: Composing the final analysis from all the previous listenings 

The construction and examination of the pronoun poem in step 2, within the traditions 

of poetic inquiry, was a means to be sensitive in the analysis to the form, affect and 

tone of voice in a participant’s story telling (Faulkner, 2019). A short extract from 

Claire’s I poem from data collection cycle 2 can be below: 

                                                            i  apologise 

                                                    that  i  haven’t been 

                                                            i  see 

                                                            i  do still seem to be  

                                                            i  notice 

                                                    that  i  still struggle 

                                                            i  will need to 

                                               so that  i  can progress 

The use of the lower case “i” for the first-person pronoun was a strategy in the study 

in order to not privilege one word over any others. I listened and relistened to the 

constructed pronouns poems to identifying co-existing voices in the narrative by giving 

attention to, for example, changes in tone of voice or shifts in meaning. Building on 

the listening in step 1 and 2, in step 3 I returned to the full narrative, defining and 

redefining the co-existing voices found in the I poem, before bringing together all of 

the previous listenings to compose a final analysis in the final step 4.   

DISCUSSING THE FINDINGS 

Using the Listening Guide method of analysis, I identified four different co-existing 

voices in Claire’s narrative data, namely, struggle/understand which talked about the 

state or relationship with learning mathematics; receiving which inferred external 

support from a teacher or online software; action which described Claire’s own actions, 

and, inner where Claire shared her thoughts, feelings and affect. This research report 

traces the emotional hue, or tone of voice, in one facet of her stories-as-identity-work, 

focusing on her struggle/understand voice, from the three cycles of data collection 

within phase 2 of the study.  

Claire’s struggle/understand voice, found in her I poem, used of the verbs “struggle” 

and “understanding” explicitly as well as other verb phrases with similar meaning, such 

as, “I have progressed” and “I am quite good”. Returning to the full narrative, Claire 

talked about her relationship to learning mathematics, her perception of being in a state 

of struggle or a state of understanding. In the following extract, from cycle 1 of the 

data collection, Claire described her choice of an image of a maze to represent her 

experiences of learning mathematics: 
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Claire: I struggled to understand maths therefore this image is a perfect example 

of how I felt about my experience of maths however during the college 

period that I am in I am finally understanding maths and being able to 

recognize and interpret maths. Maths did annoy me at times and it made 

me feel like I couldn’t understand maths but as I kept trying and trying to 

understand maths it got a lot clearer to me and I felt like I could finally 

answer questions and be able to get maths it just would of (sic) taken me 

longer to do so. 

Claire talked about her perceptions in relation to her previous struggles and current 

understanding mathematics. She shared that she had moved from “I struggled to 

understand” to “I am finally understanding”, which she equated to being able to 

“answer questions and be able to get maths”. However, Claire talked in global terms, 

a dichotomy where, in her opinion, she either struggled or understood mathematics. 

Giving attention to the emotional hue, or tone of voice, Claire used phases that bring 

in affect “maths did annoy me” and beliefs about herself “it made me feel like I couldn’t 

understand”. Although Claire talked about “trying and trying”, it seemed that learning 

mathematics might be something that happened to her, that she was somewhat passive 

in the experience. 

Moving on to the following extract, from cycle 2 of the data collection, Claire talked 

about a question level analysis from a recent assessment on the topics of probability 

and statistics: 

Claire: I notice from the [copy of the spreadsheet] that you have given to me that 

I still struggle to understand the areas marked in red and that I will need to 

brush up on my skills so that I can progress further. I also see that I am 

quite good at maths which are shown (sic) in the colour green. I personally 

think that I am approving (sic) [improving] massively in maths and that I 

am pushing myself to get the correct grade that I need to get to pass maths 

this year. I personally think over the time that I have been taught this that 

some of the red areas marked will become amber or even green. 

Claire commented on the questions for which she received no marks, highlighted in 

red on the spreadsheet, as well as the questions for which she received full marks, 

highlighted in green. She continued to talk about her perceptions of herself “I 

personally think I am approving (sic) [improving]”, beginning to align the state of 

understanding with getting a pass grade in her mathematics GCSE. There was a 

developing pattern, compared to the extract from cycle 1, around the way she used her 

voice when she talked about struggle. The sense of struggle is no longer a sign of 

globally not understanding mathematics but an occasion to “brush up on my skills”. 

Understanding has moved beyond answering questions to become equated to getting a 

pass grade in her mathematics GCSE. Giving attention to Claire’s tone of voice in the 

extract above from cycle 2, she seemed less passive compared to the extract from cycle 

1, moving from feeling to thinking with “I personally think” and highlighting her 

actions, such as, “I am pushing myself”. Claire was actively locating herself in the 
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process of learning, personally engaged in improving her understanding of 

mathematics. 

In the following extract, from cycle 3 of the data collection, Claire revisited the initial 

image of a maze from cycle 1 before providing an alternative image of two paths which 

she discusses in the extract below: 

Claire: I am now feeling happy about how much I have progressed in maths and 

that I am no longer thinking (sic) maths like a maze. I can now clearly see 

two paths in front of me both of which will help me to progress to my future 

career. Personally it was difficult to start off with because I didn’t have 

much help at school however now I am at college and I am getting more 

help from [the teacher] I feel like I have come so much further than I 

thought I would. 

Although Claire did not use the specific verbs struggle and understanding, she referred 

back to the image of the maze, contrasting with her current chose of two paths as to 

progress to her future. She stated that she had “progressed in maths” with 

understanding now being more than gaining a pass grade but also a way to achieve her 

future career, which, in a later conversation, she shared was training to become a 

teaching assistant. Giving attention to her tone of voice, Claire seemed to firmly locate 

herself in the story-as-identity-work, continuing to use the language of perceptions “I 

feel like I have come so much further”, affect “I am now happy” and discernment “I 

can now clearly see”. Claire’s narrative suggested strong sense of positivity and 

awareness, recognising that her opinion of mathematics, as well as of herself as a 

learner of mathematics, had change over her time in college.  

FINAL THOUGHTS 

The aim of this research report is to reflect on the developing patterns of emotional 

hue, or tone of voice, in the telling of stories-as-identity-work by students who are 

compelled to study mathematics as part of their post-16 education. By examining one 

of Claire’s co-existing voices, labelled as struggle/understand, I have identified that 

alongside the development of the plot or storyline, I was able to perceive different 

patterns in the act of storytelling. For Claire, there was evidence of a move from a 

passive voice to a comparatively more active voice in her storytelling. However, a 

challenge for the researcher-listener is the impact of themselves in the research process; 

to what extend was the developing patterns in tone of voice related to, for example, the 

emerging research relationship with the listener? What could be the influence of 

researcher subjectivity on the tone of voice that they perceive? Despite these 

challenges, the findings warrant further attention to consider, especially for students 

compelled to continue to study mathematics, both the stories-as-identity-work being 

told and the role of the tone of voice in the telling.  
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STUDENT BEHAVIOR WHILE ENGAGED WITH  

FEEDBACK-ENHANCED DIGITAL SORTING TASKS 
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1 Tel Aviv University, Israel, 2 University of Wurzburg, Germany 

Sorting tasks are often used in mathematics education to highlight certain features of 

a set of objects. In this study we strived to make sense of how students use immediate 

feedback in a two-choice digital sorting task, in the context of elementary school 

reflective symmetry, using GeoGebra applets we developed. Participants included 29 

students (9-12 years old) from Israel and Germany. Calculating variables that describe 

student actions throughout the sorting process, and using cluster analysis, we were 

able to identify different behaviors among students for each sorting task. We also 

highlight some interesting relationships between behaviors across the two tasks. 

INTRODUCTION 

Feedback is key to learning, as it gives learners the opportunity to improve and 

maximize their performance. In the context of digital learning environment, feedback 

can be delivered automatically, immediately and in a way that directly addresses 

students’ responses and behavior. Indeed, a recent literature review suggests that in 

most cases, automatic feedback boosts student performance (Cavalcanti et al., 2021). 

Nevertheless, the mere existence of a feedback mechanism does not guarantee that it 

will be used, as this is mostly up to the learner (Winstone et al., 2016). Yet, research 

on students’ actual use of feedback throughout the learning process is only in its 

infancy. We take a step forward in bridging this gap by studying the case of two-choice 

sorting tasks which provides immediate feedback, in the context of elementary school 

reflective symmetry.  

Reflective Symmetry 

According to Götz & Gasteiger (2022), reflective symmetry is “the first congruence 

transformation introduced in primary school, is among the most significant geometry 

concepts children should learn in mathematics education in primary school” (p. 48). In 

mathematics education this concept is used to describe a part of the world outside the 

classroom and as a tool for shaping our surroundings. We are therefore interested in 

students’ recognition of reflective symmetry in real world objects and in mathematical 

objects. Indeed, the application of mathematical notions to contexts from the real world 

is a desirable goal of mathematics education (Niss & Højgaard, 2019). Objects outside 

the realm of mathematics may be more difficult to handle than exclusively 

mathematical objects (Dapueto & Parenti, 1999), raising the question of whether this 

difference also affects recognition of reflective symmetry. 
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Types of Feedback and Feedback Use in Digital Learning Environments 

Certain digital learning environments can detect correctness and provide feedback in 

real-time. Such settings usually distinguish between three main types of feedback: (a) 

knowledge of correctness; (b) knowledge of correct response; and (c) elaborated 

feedback, defined as any feedback that goes beyond the previous two types. Studies 

generally found that elaborated feedback is superior to the other two types of feedback, 

and that there is no clear distinction between knowledge of correctness and knowledge 

of correct response (van der Kleij et al., 2015). Still, we cannot conclude that any form 

of immediate simple feedback can be considered a priori to be beneficial to student 

learning. Feedback does not necessarily foster the desired conceptual development, just 

as a correct solution does not always coincide with conceptual understanding. Indeed, 

conceptual understanding is primarily associated with the ways in which learners 

interact with feedback (Rezat, 2021).  

RESEARCH QUESTIONS 

From the authors’ previous considerations on reflective symmetry and feedback in 

digital environments the following research questions are addressed: 

1. Which types of behaviors can be observed in students’ interactions with sorting 

tasks?  

2. What are the relationships between student behavior and success on sorting tasks ? 

3. To what extent is student behavior consistent across different sorting tasks? 

We will first describe our methodology. Then, in the Findings section, we will answer 

the research questions, and finally will discuss them from a broader perspective in the 

Discussion section. 

METHODOLOGY 

Research participants 

Data were collected from 29 participants (12 girls and 17 boys, 9-12 years, M=10, 

SD=0.9) in a pilot project carried out in Israel (n1 = 12) and in Germany (n2 = 17). 

Research Tools 

We designed two applets in the context of reflective symmetry. In the first applet 

(Polygons), students were presented with seven quadrilaterals to be sorted based on the 

existence of at least one line of symmetry (Figure 3 left). In the second applet (Traffic), 

students were presented with ten traffic signs to be sorted based on the existence of a 

single or multiple lines of symmetry (Figure 3 right). Immediate feedback was 

available in terms of an updated cumulative count of correct and incorrect 

classifications. Users could keep dragging objects from any area to any other area on 

the screen. 
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Data collection  

Data collection took place in March 2022. Members of the research team met with each 

participant individually. Before interacting with the symmetry-related applets, we 

made sure of familiarity with the concept of reflective symmetry, and used a test applet 

for getting used to the interface. While participants used the applets, we captured the 

screen and used these recordings for our analysis. 

 

Figure 3: The applets we designed for sorting quadrilaterals according to whether 

they have no or at least one line of symmetry (left) and traffic signs according to 

whether they have one or multiple line(s) of symmetry (right) 

Research Variables 

For each student and each applet, we defined two arrays to describe participants’ 

cumulative correct/incorrect score along their solution. These arrays can be represented 

by graphs, where the abscissa represents shape movements, normalized to a (0,1], and 

the ordinate represents correctness/incorrectness. Figure 4 provides an example of such 

a graph, showing the cumulative correct score in the Polygons applet for student G42, 

who made a total of 13 dragging attempts. This student achieved a total correct score 

of 6 (out of 7), doing so in a non-linear fashion. Note that at some point (between 0.3-

0.4) the student dragged objects from the pool area to an incorrect location, thus not 

adding correct scores; in other times (0.45-0.55, and between 0.6-0.8), they dragged 

objects out of the correctly classified area, so total correct score decreased. 

 

Figure 4. Cumulative correct score graph for student G42 (Polygons applet) 

Referring to these graphs, we defined our research variables. Correctness AUC 

measures the area under the curve (AUC) for the graph representing the cumulative 

correct scores, normalized by 3.5 (polygons applet) or 5 (traffic applet); these scores 
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denote the AUC of the linear graphs that represent the minimal number of moves 

required to obtain a full score; the closer this value is to 1, the more optimal the path 

to success. Similarly, Incorrectness AUC measures the AUC of the curve for the 

graphs representing the cumulative incorrect scores; the closer this value is to 0, the 

more optimal the path to success. Correct Decreases counts how many times the 

cumulative correct score decreased, normalized by total moves; this value decreases 

when a shape is moved out of the area to which it belongs, either to the other area or 

back to the pool, hence it is a proxy for not making proper use of feedback (e.g. by not 

relating it to the corresponding objects). Furthermore, Incorrect Increases counts how 

many times the cumulative incorrect score increased; the cumulative incorrect score 

increases when a shape is moved from the pool area to an area to which it does not 

belong, serving as a proxy for a preconception about reflective symmetry, or when a 

shape is moved from the correctly classified area to the other area, hence serving as a 

proxy for not making proper use of feedback. Finally, Total Score takes the final 

correct score normalized by total number of moves, and is our measure of success. 

Analysis 

We used hierarchical cluster analysis to group students based on their behavior while 

using the applet, doing so for each applet separately. This bottom-up, unsupervised 

method partitions the population into groups (clusters) of individuals who are more 

"similar" to each other than those in other groups, where similarity is based on the 

values of the research variables (in our case, all variables excluding Total Score). We 

used Pearson correlation to measure distance between individuals, and average linkage 

to define the distance between clusters. Variables were standardized using Z-scores 

before clustering. We used the Bayesian Information Criterion (BIC) to find the 

optimal number of clusters.  

FINDINGS 

Behavior in the Polygons Applet (RQ1) 

The optimal model was based on partitioning the population into three clusters 

(BIC=104.9). Means of the clusters are presented in Table 1 and summarized here. 

Cluster 1 (n=17) is characterized by a Correctness AUC average that is very close to 

the optimal value and by low values—both in absolute terms and in comparison with 

the other clusters—of Incorrect AUC, Correct Decreases, and Incorrect Increases. The 

low deviations should also be noted. Cluster 2 (n=10) is characterized by an average 

Correctness AUC that is smaller than 1—i.e.., the graph is situated below the optimal 

graph—along with higher values of Incorrectness AUC, Correct Decreases, and 

Incorrect Increases. Finally, Cluster 3 (n=2) includes two unique cases that are 

characterized by an average Correctness AUC that is close to optimal, along with 

higher values of Incorrectness AUC and Correct Decreases and relatively moderate 

values of Incorrect Increases. 

To better understand these clusters, we closely examined typical behaviors from each, 

see Figure 5. Student G31 was allocated to Cluster 1. This student made a total of 
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seven moves. The student’s Correct Decrease obtained a perfect value of 6, while the 

Incorrect Increase obtained a perfect value of 0. These values represent optimal or near 

optimal solutions. 

Student G40 was allocated to Cluster 2. Within a total of eight moves, the student’s 

Cumulative Correct/Incorrect Score graphs show that the Cumulative Correct Score 

never decreased. Nevertheless, it reached a plateau (between 0.5-0.9), while 

demonstrating a corresponding increase in Incorrect Increase Score. Hence, Student 

G40’s Correct Decreases still gets a value of 0, whereas the Incorrect Increase gets a 

value of 3. On the whole, this behavior is less than optimal, most probably as a result 

of early wrong classifications that were later corrected. 

Finally, student G42 was allocated to Cluster 3. We can observe the fluctuations in the 

student’s Cumulative Correct Score graph (starting at 0.45). At the same time, the 

Cumulative Incorrect Correct Score increased from 0.3 to 0.75, and then decreased but 

never got to a 0-value: Correct Decreases obtained a value of 3 and Incorrect Increases 

a value of 4. As a whole, this cluster represents paths that included early correct 

classifications which became non-optimal, along with some corrections, probably due 

to not making proper use of the feedback. 

 

Figure 5. Cumulative Correct (left) and Incorrect (right) Score – examples from each cluster for the Polygon 

applet 

Association between Behavior and Success in the Polygons Applet (RQ2) 

We found an overall significant difference in Total Score between the clusters, 

F(2)=4.45, at p<0.02, with a post-hoc Tukey test revealing that its value in Cluster 1 

was statistically significantly higher than in Cluster 2 (t=2.94, p<0.05); no differences 

were found in Total Score between Cluster 1 and Cluster 3 (t=1.11, p=0.55), or between 

Cluster 2 and Cluster 3. 

Behavior in the Traffic Applet (RQ1) 

Here too, the optimal model was based on three clusters (BIC=118.4). Cluster centers 

are summarized in Table 1 and described here. Cluster 1 (n=14) is characterized by a 

Correctness AUC average that is very close to the optimal value and by low values—

both in absolute terms and in comparison to the other clusters—of Incorrect AUC, 

Correct Decreases, and Incorrect Increases. The low deviations should also be noted. 

Cluster 2 (n=12) is characterized by an average Correctness AUC that is less than 1—

i.e., the graph is situated below the optimal graph—along with rather low values of 
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Correct Decreases, and medium values of Incorrectness AUC and Incorrect Increases. 

Finally, Cluster 3 (n=3) includes a few unique cases characterized by an average 

Correctness AUC that is higher than 1—i.e., their graph is situated above the optimal 

graph—along with rather high values of Incorrectness AUC, Correct Decreases, and 

Incorrect Increases. 

Here too, we undertook a close examination of typical behaviors from each cluster. 

Cluster characteristics are overall similar to those in the Polygons applet, with Cluster 

1 represents optimal or near optimal solutions, Cluster 2 represents sub-optimal 

solutions resulting from early wrong classifications that in most cases were relatively 

easily corrected, and Cluster 3 represents non-effective solutions that are a result of 

not acting properly upon feedback. 

Association between Behavior and Success in the Traffic Applet (RQ2) 

There were no significant differences in Total Score when compared across clusters, 

F(2)=2.51, at p=0.101. However, a post-hoc Tukey test revealed that Total Score in 

Cluster 1 was marginally significantly higher than in Cluster 3 (t=2.24, p=0.08), and 

no significant differences between Cluster 1 and Cluster 2 (t=0.49, p=0.88) or between 

Cluster 2 and Cluster 3 (t=1.91, p=0.16). 

Table 1. Means (SD) of the research variable across the resulting clusters 

Variable / Cluster Polygons Traffic 

1 

n=17 

2 

n=10 

3 

n=2 

1 

n=14 

2 

n=12 

3 

n=3 

Correctness AUC 1.00 

(0.07) 

0.80 

(0.14) 

1.00 

(0.03) 

1.01  

(0.12) 

0.86 

(0.13) 

1.15 

(0.26) 

Incorrectness AUC 0.07 

(0.08) 

0.24 

(0.09) 

0.20 

(0.29) 

0.06 

(0.07) 

0.18 

(0.13) 

0.27 

(0.24) 

Correct Decreases 0.01 

(0.03) 

0.24 

(0.09) 

0.19 

(0.06) 

0.02 

(0.07) 

0.05 

(0.10) 

0.24 

(0.21) 

Incorrect Increases 0.13 

(0.12) 

0.22 

(0.08) 

0.15 

(0.22) 

0.14 

(0.09) 

0.23 

(0.13) 

0.33 

(0.22) 

Total Score 0.86 

(0.14) 

0.67 

(0.18) 

0.73 

(0.38) 

0.83 

(0.15) 

0.79 

(0.19) 

0.57 

(0.25) 

Associations Between Cluster Allocations across Applets (RQ3) 

We observed that participants who were allocated to Cluster 1 in the Polygons applet 

were divided equally between Cluster 1 (9 of 17) and Cluster 2 (8 of 17) in the Traffic 

applet. Those who were allocated to Cluster 2 in the Polygons app were distributed to 

Cluster 1 (5 of 10), Cluster 2 (n=3) and Cluster 3 (n=2) in the Traffic applet. Finally, 

the two participants allocated to Cluster 3 in the Polygons app were allocated either to 

Cluster 2 or to Cluster 3 in the Traffic applet. Testing these associations, using Fisher’s 
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Exact Test, resulted with a marginally significant result, at p=0.089. This indicates on 

some associations between the cluster allocations in the two applets. 

SUMMARY AND DISCUSSION 

The goal of the current study was to examine students’ behavior while they worked on 

two-choice sorting tasks in the context of reflective symmetry, in a digital platform that 

supplied them with simple, immediate feedback regarding correctness or incorrectness. 

Recall that in the applets we developed, the provided immediate feedback could have 

helped all students completing the task with a perfect score in a nearly optimal way, if 

they had closely followed the feedback. Nevertheless, our empirical findings reveal 

that this was not always the case, as the final score for some students was not perfect; 

that is, they had finished the task with some figures which were classified incorrectly. 

How can this behavior be interpreted? There are several possible explanations. Perhaps 

these students did not notice the feedback at all – a behavior that was previously 

observed (e.g., Timmers & Veldkamp, 2011). Other students may have noticed the 

feedback message about incorrect classifications, but did not make any effort to make 

changes. Still others may have noticed the feedback message but did not agree with it, 

hence preferring to leave the object in the area they thought was correct. Furthermore, 

students might not have been able to relate the feedback to the corresponding objects 

or draw valid conclusions from the feedback. It seems that some students missed 

opportunities to learn from the feedback, an important understanding for designers of 

digital learning, researchers, and teachers.  

Conversely, we found evidence of students who did consider the immediate, simple 

feedback (Cluster 2) for adjusting their conceptualization. This is in line with previous 

studies in different mathematical domains, illustrating the usefulness of simple 

feedback (e.g., Frey, 2022). The shift of students from Cluster 2 in the Polygons applet 

to Cluster 1 in the more complex Traffic applet, as well as from Cluster 3 to Cluster 2, 

is encouraging; it may be a sign that these students learned from the first task about 

either reflective symmetry or feedback-use (or both), and applied that knowledge in 

the second task. Besides these findings, in the context of reflective symmetry, our 

approach for studying student behavior could be extended to other mathematical 

domains and to other designs of sorting tasks. 
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Recognising and supporting student wellbeing in schools has become a global priority. 

Wellbeing is value dependent and differs across contexts, including school subjects. 

Even as a growing number of studies, curricula, and programs focus on student 

wellbeing, applications to specific school subjects are scant. Here we compare 292 

grade eight students’ conceptualisations of wellbeing in their mathematics with their 

science classrooms. Findings point to similar values supporting wellbeing in 

mathematics and science, yet with differences in the hierarchy of these values. This 

study strengthens understanding of optimal feeling and functioning in specific subjects 

and points to areas to target to improve students’ feelings and functioning.  

INTRODUCTION 

Mathematics and science education often have poor participation in advanced subjects 

at schools and universities, under-representation of females and minority groups, and 

pervasive academic disengagement (English, 2016), suggesting that there is poor 

student wellbeing in these subjects. Maths and science subjects typically focus on 

academic performance and functioning, with little consideration of student wellbeing, 

defined here as the fulfilment of core values within the learning process, accompanied 

by positive feelings (e.g., enjoyment) and functioning (e.g., engagement) specific to 

the subject (Hill et al., 2022). Higher student wellbeing is associated with better 

academic achievement, greater participation, and improved retention in STEM subjects 

(Watt et al., 2019). We suggest that mathematics and science education require a 

paradigm shift, moving from the over-emphasis on academic performance to include a 

greater focus on student wellbeing.  

Whilst the cultivation of student wellbeing in schools has become a global priority 

(e.g., United Nations, n.d.; Kern & Wehmeyer, 2021), how wellbeing looks and 

operates in individual subjects remains poorly understood. A whole school wellbeing 

approach can be problematic because just like a grade point average masks subject 

differences in academic performance, global measures of wellbeing at school hides 

subjects in which students are flourishing or languishing. When the language of and 

principles of wellbeing are targeted and contextualised, students can better articulate 

and adapt wellbeing into their learning context (Oades et al., 2021).  

According to value fulfillment theory of wellbeing (Tiberius, 2018), students’ values 

point to the conditions required for them to thrive within specific contexts. Just like 

grades can vary in one subject versus another, what a student values in one subject 

(e.g., mathematics) can differ from another (e.g., science) – thus wellbeing might also 

vary across subjects. Whilst several recent studies have explored the values supporting 
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students’ wellbeing in mathematics (e.g., Hill et al., 2021; 2022), how these values 

differ across subjects is yet to be determined and thus is the focus of this study.  

BACKGROUND AND THEORETICAL FRAMEWORK 

We define student wellbeing according to value fulfilment theory, where individuals’ 

experiences of wellbeing depend on their values (Tiberius, 2018), which can differ 

across personal, cultural, and/or contextual conditions (Alexandrova, 2017). At the 

highest level are ‘ultimate’ values (UV), the things valued for their own sake (e.g., 

close personal relationships), which are also the most impactful indicators of wellbeing 

(Tiberius, 2018). These ultimate values can be fulfilled in many ways through various 

‘instrumental’ values (IV), like valuing friendships, group work, or respect to promote 

close relationships (an UV). Instrumental values differentiate individuals, whilst UVs 

tend to be consistent across individuals (Tiberius, 2018).  

When values are fulfilled, it coincides with subjective experiences of feeling good (i.e., 

hedonia) and functioning well (i.e., eudemonia) (Huppert and So, 2013). Applied to 

mathematics education, a student who values working collaboratively would likely feel 

happy and engage more during collaborative opportunities, whereas the student would 

disengage with singular activities. Applied to science education, a student who values 

active activities would feel happy and engage during interactive sessions, whereas the 

student would disengage with lecture-based pedagogies. Most modern wellbeing 

models include both hedonic and eudemonic dimensions (e.g., Huppert & So, 2013; 

Kern et al., 2016; Seligman, 2011). Here we specifically focus on Seligman’s PERMA 

model (Positive emotions, Engagement, Relationships, Meaning, and 

Accomplishment; Seligman 2011); Kern’s EPOCH model (Engagement, 

Perseverance, Optimism, Connectedness, Happiness; Kern et al., 2016); Ryan and 

Deci’s self-determination theory (2017); and Mathematical Wellbeing (MWB; 

Clarkson et al., 2010; Hill et al., 2022).  

Several recent studies have explored student wellbeing in mathematics. A scoping 

review revealed seven ultimate values (UVs) supporting student MWB 

(accomplishments, cognitions, engagement, meaning, perseverance, positive emotions, 

and relationships; Hill et al., 2022). Australian and Chinese students mentioned these 

same seven UVs when describing factors and learning moments contributing to their 

MWB (Hill et al., 2021; Hill & Seah, 2022). A survey with New Zealand students 

discovered students’ mathematical wellbeing declined over the primary to secondary 

school years (Hill, Bowmar et al., 2022). In mathematics, these seven UVs appeared 

across diverse student groups and countries. However, it remains unclear if students’ 

values and wellbeing in mathematics appears in other subjects. We begin with science 

education because of its interrelatedness with mathematics. Along with the seven UVs 

identified in mathematics education, we add autonomy, which has also been identified 

in the literature as a core wellbeing construct. Scoping reviews (e.g., Hill, 2023) 

revealed science students valued autonomous learning. Additionally, self-

determination theory posits autonomy as one of three basic psychological needs 
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supporting wellbeing (Ryan & Deci, 2017). Thus it made sense to include autonomy 

as a dimension. We ask: How do the same students’ conceptualisations of their 

wellbeing in mathematics differ to science across these eight dimensions?   

METHODS 

Participants included 292 grade eight students (51% females), aged 13–14 years 

attending 1 of 8 urban and regional schools in and around Melbourne, Australia. 

Ethnicities included 214 Australian, 21 European, 33 Asian, 19 Indian/Pakistani, 2 

Indigenous Australian, 2 South American, and 1 Middle Eastern student.  

Students completed two surveys: one on their mathematics wellbeing during a 

mathematics lesson, the other on their science wellbeing during a science lesson. The 

wording of each survey was identical except for referencing either mathematics or 

science. Here we focus on the open-ended questions included in the surveys: 1) What 

makes you feel good and function well in [maths/science], and why? 2) What is the 

most important thing for you when learning [maths/science], and why? 

Earlier studies (e.g., Hill et al., 2021) found the first survey questions, aligned with 

Huppert and So’s (2013) definition of wellbeing, prompted students to reflect on more 

holistic components of their learning and wellbeing (e.g., friendships, enjoyment, 

family). The second questions, which were derived from value fulfillment theory 

(Tiberius, 2018), explored values (i.e., anything that is important) and provoked more 

academically related reflections (e.g., achievement, academic skills). By combining 

and coding these two survey questions together, we hoped to capture a holistic 

conceptualisation of students’ wellbeing across both subjects.  

Student responses were analysed using NVivo12 using reflexive thematic analysis 

(Braun & Clarke, 2019). Initial inductive codes were generated using a data driven 

approach, for instance “it will help me in the future” was coded as utility. Next, these 

inductive codes were categorised deductively into the eight wellbeing themes 

identified in the literature. Figure 1 summarise the process of categorising inductive 

codes into the deductive wellbeing components. 

RESULTS 

Figure 1 summarises the overall frequency of inductive codes in mathematics (orange 

bars) and science (blue bars). Importantly, the majority of codes appeared in students’ 

conceptions of their wellbeing in both mathematics and science, except for multi-

modal representations and experiments – mentioned for science only. At the group 

level, the same eight UVs emerged across both disciplines, summarised in Figure 1. At 

the individual student level, there were statistically significant associations between 

students mentioning each UV in both mathematics and science education, except for 

engagement, because students associated engagement more with their wellbeing in 

science than in mathematics. The closest associations across subjects was for 

relationships, perseverance, and meaning.  
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The students valued peer support more than teacher support when studying science, 

but this relative valuing was reversed when these same students were engaged with 

mathematics. Students valued being interested in their science learning more than in 

their mathematics learning– often because students equated engaging experiments with 

their wellbeing. Likewise, enjoyment and fun were noted more often when learning 

science than mathematics. When learning mathematics, students equated being 

challenged, understanding their learning, and feeling successful/achieving goals with 

their wellbeing more than in science. Whilst valuing utility and links to employment 

were noted more in mathematics than science, students valued real world relevance 

more for their science than their mathematics learning.  

Figure 1. Inductive value frequencies. Bars and data labels represent the number of 

students mentioning each inductive value for mathematics (orange bars) and science 

(blue bars). 

 

The hierarchy of UVs differed slightly across subjects (see Table 1 for student 

frequency counts), with students in science valuing cognitions most frequently, then 

engagement, relationships, accomplishment, meaning, perseverance, positive 

emotions, then autonomy. The same students valued cognitions most when learning 

mathematics, followed by relationships, engagement, accomplishments, meaning, 

perseverance, positive emotions, then autonomy.  
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Table 1. Frequency of students mentioning themes in science, maths, and both 

subjects. Both M + S = Number of students mentioning theme for both maths and 

science; 2 = difference of mentions in science versus maths.  

Ultimate value Science # Maths # Both 

M + S 

2 p  

Accomplishment 75 108 46 25.7 <.001 .30 

Autonomy 5 12 2 16.63 <.001 .24 

Cognitions 144 182 107 17.36 <.001 .24 

Engagement 139 109 58 2.19 .14 .02 

Meaning 71 67 34 33.01 <.001 .34 

Perseverance 11 16 5 35.27 <.001 .35 

Positive emotions 11 16 5 4.90 .03 .13 

Relationships 89 140 67 38.32 <.001 .36 

 

DISCUSSION 

Earlier studies (e.g., Hill, Kern et al., 2022) identified seven UVs supporting MWB 

and here we examined if these seven UVs, plus autonomy, appeared across both 

mathematics and science.  Students tended to mention the same eight UVs across both 

subjects. However, engagement was more associated with students’ science than 

mathematics wellbeing. Taken together students’ values and conceptions of their 

wellbeing across mathematics and science appear to be similar.  

However, our results also point to subtle subject-related differences in IV. For example, 

students valued interesting and engaging pedagogies (especially experiments), 

enjoyment, and real-world relevance more for science than in mathematics. This is not 

surprising, considering that science is often more hand-on, humanised, and embedded 

in real-world contexts than mathematics (Bishop et al., 2006). Also, here we focus on 

Year 8 students – a period when experiments in science are still novel (Abrahams, 

2011), potentially contributing to the higher valuing of interesting pedagogies in 

science than in mathematics. Students (and teachers) often perceive experiments as the 

fundamental appeal of science (Abrahams, 2011), exemplified by a student in our study 

noting “science is the only subject where I get to blow stuff up”.  

Whilst science experiments may offer immediate engagement, students often 

remember only what they did, rather than remembering the intended learning outcomes 

(Abrahams, 2011). Students in our study valued mathematics more for utilitarian 

purposes, and for success in life compared to science, perhaps because mathematics 

was perceived as essential for everyday life and employment more than something to 

enjoy and be interested in. Also, in other studies, students often linked science with 
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entertainment and fun, such as museums, exhibitions, and science documentaries, 

which differs from mathematics (Bishop et al., 2006) – potentially contributing to 

higher interest values in science than mathematics.  

Conversely, students valued cognitive aspects more for their mathematics than their 

science learning, thus mathematical understanding was especially important for 

students’ MWB. The relationship aspects, especially teacher support, were also more 

associated with wellbeing in mathematics than in science. Conversely, in science, the 

students valued support from peers, perhaps because science pedagogies are often more 

collaborative in nature. Students often see mathematics as progressive, abstract, and 

linear in nature and fear being left behind in a fast-paced curriculum (Hill et al., 2021). 

In our study, students’ desire to understand their learning may have contributed to the 

higher valuing of teacher support and a relaxed class climate to feel safe making 

mistakes. Typically, mathematics teaching focuses on developing competency and 

achievement, with less attention to relationships. The impact of positive relationships, 

especially teacher support, on overall wellbeing, school belonging, and academic 

achievement are well recognised (e.g., Kern & Wehmeyer, 2021). Closer attention to 

building relationships, especially between teachers and students, may be essential to 

fulfil student’s valuing of mathematical understanding and support their MWB. 

IMPLICATIONS & CONCLUSION 

The first step to building wellbeing in classrooms is to make wellbeing visible (Waters, 

2021). A central aim of this study was to make wellbeing visible in mathematics and 

science by capturing how students communicate the values supporting their wellbeing 

in these subjects. Making values visible and central to learning can help students to 

become more engaged, feel calmer and more connected, and improve their (and their 

teachers’) wellbeing (Lovatt et al., 2010). Our findings point to target values to support 

teachers and students to talk about, assess, and then develop wellbeing across eight 

broad UVs. Future studies might use methods outlined here to explore student 

wellbeing in other subjects such as literacy.  

Science and mathematics education have strong negativity biases – that is a 

preoccupation with the failings, anxieties, misunderstandings, ‘achievement gaps’ and 

so forth. We suggest a need to incorporate a wellbeing perspective into mathematics 

and science curricular and pedagogical practices, where students’ values and strengths 

are central to, celebrated, and nurtured in the learning process. This could mean using 

challenging science/mathematics tasks to teach students about cognitive reappraisal, 

resilience, and meaningful failure; using project work to encourage collaboration and 

respect; or identifying students' (and teachers’) signature strengths to promote a sense 

of meaning and accomplishment in mathematics/science. Incorporating wellbeing into 

the “caught” curriculum, beyond the “taught” curriculum, may make wellbeing 

knowledge and skills more explicit (White & Kern, 2018), whilst giving teachers a 

positive language to communicate about wellbeing and thus giving teachers greater 

agency to make a difference for their students’ lives (Kern & Wehmeyer, 2021).  
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Lastly, given the shortage of mathematics teachers in many countries (English, 2016) 

our findings suggest science teachers may be a good fit for the mathematics classroom, 

since their approaches to enhancing students’ science wellbeing may also benefit 

students’ MWB development.  
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This theoretical essay argues that the connection between mathematics and diverse 

fields and life areas is portrayed differently in the discipline of mathematics and in the 

mathematics education scholarly work. In the discipline of mathematics, an important 

characteristic of this connection is that it is bi-directional, reflecting mutual 

contribution between mathematics and other fields and life areas. In contrast, the 

mathematics education scholarly work emphasizes mainly one direction, namely the 

contribution of the discipline of mathematics to other fields, whereas the contribution 

of different fields to the development of the discipline of mathematics is often obscured. 

Interpretations and ways to address this discrepancy are proposed in relation to two 

areas: mathematical applications and modeling, and the history of mathematics.  

 

Knowledge about the nature of mathematics as a scientific discipline comprises 

knowledge about the connection between mathematics and different scientific domains 

and life areas (Blum & Niss, 1991; Hoffmann & Even, 2018; Jankvist, 2009b; Kaiser 

& Sriraman, 2006; Ziegler & Loos, 2014/2017). An important characteristic of this 

connection is that it is bi-directional, reflecting mutual contribution (e.g., Einstein 

Institute of Mathematics at The Hebrew University of Jerusalem, 2022; Jankvist, 

2009b; Kaiser & Sriraman, 2006). One direction – to which we refer as the M-

application direction of the mutual contribution – denotes the contribution of the 

discipline of mathematics to solving problems in different fields. The other direction – 

to which we refer as the developing-M direction of the mutual contribution – denotes 

the contribution of different fields to the development of the discipline of mathematics 

by raising new mathematical questions and motivating the development of new 

concepts, methods, and research areas.  

A recent study (Hoffmann & Even, 2022) examined what teachers may learn about the 

nature of the above-mentioned mutual contribution in an academic program that 

offered opportunities to learn about the connection between the discipline of 

mathematics and different fields and life areas, and what mathematicians, who taught 

in this program, wanted to teach teachers about the nature of this mutual contribution. 

The results indicated that all the mathematicians wished to teach teachers about both 

directions of the mutual contribution. For example, one of the mathematicians stated: 

“It is very important, the connection between mathematics and other fields and the 

mutual fertilization.” Relating to the M-application direction, a mathematician 

explained: 
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The idea is... to show some examples of mathematics in things that they [the teachers] 

know, like GPS, like Google, like RSA... all sorts of things they encounter on a daily basis 

and there is math... and somehow convince them that like, math is not something abstract. 

That it really helps in life. 

Relating to the developing-M direction of the mutual contribution another participant 

stated: 

A great many of the developments in mathematics had real motivation... questions from 

life, not from mathematics, and the mathematical way helped solve them, and then they 

developed mathematics. 

In contrast to the mathematicians, none of the teachers referred to the connection 

between mathematics and different fields and life areas as comprising mutual 

contribution. Instead, they referred to the M-application direction only, reporting on 

considerably advancing their knowledge and appreciation regarding the contribution 

of mathematics to other fields. For example, one of the teachers remarked:  

So, what [the course instructor] actually said, that mathematics… there is a problem in 

life, and one needs to construct a model, a mathematical model, in order to solve that 

problem… And it was something that was really new and interesting for me to see 

mathematics like this... Beforehand, I viewed it as an intellectual field, which is fun to deal 

with, it is interesting in itself. I did not look at the, at what it actually gives in practice.  

This theoretical essay situates these empirical results in a broader context, arguing that 

they echo the different ways the connection between mathematics and diverse fields 

and life areas is portrayed in the discipline of mathematics and in the mathematics 

education scholarly work. 

THE MUTUAL CONTRIBUTION BETWEEN MATHEMATICS AND 

OTHER FIELDS: THE CASE OF THE DISCIPLINE OF MATHEMATICS 

The interaction between mathematics and different fields and life areas is realized in 

the discipline via applied mathematics. As mentioned above, an important 

characteristic of this interaction is that it is bi-directional, involving mutual 

contribution. This is clearly expressed in the following description of applied 

mathematics:  

Applied mathematics is concerned with the interaction between mathematics and other 

sciences, such as physics, computer science, engineering, economics and biology. This 

interaction is often bi-directional: mathematical concepts and techniques are used to model 

and solve concrete problems in other fields. Reciprocally, scientific progress raises new 

mathematical problems, and motivates the development of new mathematical concepts and 

tools” (Einstein Institute of Mathematics at The Hebrew University of Jerusalem, 2022). 

The contribution of mathematics to solving problems in different fields – the M-

application direction – occurs when mathematical tools and techniques are used to 

model and analyze different situations in non-mathematical contexts. It includes works 

on spectral and dynamical problems of quantum mechanics, population genetics, image 

processing and medical imaging, mathematical finance, quantitative risk management, 
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and many more. For instance, mathematics contributed greatly to solving the immense 

problem of mapping the human genome – a prominent biological project initiated at 

the end of the 20th century – by providing advanced mathematical tools and techniques 

such as hidden Markov chains and pattern recognition, that enabled researchers to 

locate genes in the decoded sequence of all nucleotide bases that make up the human 

genome (Malkevitch, 2002). Also, systems of differential equations that are based on 

laws of physics are used nowadays to mathematically model current atmosphere and 

ocean conditions at different locations and altitudes in order to generate a weather 

forecast (Bauer et al., 2015). 

The contribution of different fields to the development of the discipline of mathematics 

– the developing-M direction – occurs when work on solving problems in other fields 

and life areas raises new mathematical questions which generate new mathematical 

concepts, methods, theories, and areas of research. Such works characterize quite a few 

of past and modern-day mathematical developments (but of course not all – 

mathematical questions arise from both inside and outside mathematical contexts). For 

instance, the theory of probability and in particular concepts such as randomness, 

independence and equiprobability have their origin in works that attempted to answer 

questions raised in the context of gambling (Rowlett, 2011). Also, the need to correct 

digital information that was damaged during transmission over unreliable or noisy 

communication channels, and the need to reduce data size in order to more efficiently 

transform digital information, were the impetus for establishing a new mathematical 

field, namely information theory, during the first decades of the 20th century (Jankvist, 

2009a). 

THE MUTUAL CONTRIBUTION BETWEEN MATHEMATICS AND 

OTHER FIELDS: THE CASE OF MATHEMATICS EDUCATION 

The interaction between mathematics and diverse fields and life areas is addressed in 

the mathematics education scholarly work primarily in relation to the teaching and 

learning of mathematical modeling. Occasionally, it is addressed also in relation to the 

teaching and learning of the history of mathematics.  

The teaching and learning of mathematical modeling have seen a substantial increase 

of interest in the past four decades. The literature provides important information 

regarding two central kinds of using modeling in mathematics education: as a vehicle 

and as a content (e.g., G. A. Stillman, 2019). The former implies teaching modeling as 

a means for achieving goals that do not necessarily concern mathematical modeling. 

For example, a professional development program for teachers that incorporates 

mathematical modeling activities in order to promote knowledge of statistical 

numeracy (Lamb & Visnovska, 2015). When mathematical modeling is used as a 

vehicle, both directions of the mutual contribution between mathematics and other 

fields are obscured.  

In contrast, when mathematical modeling is used as a content, the M-application 

direction is greatly illuminated. Treating mathematical modeling as a content to be 
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learned is associated in the literature mainly with the development of competencies of 

using mathematics for better understanding the world around us and for solving 

problems arising in non-mathematical situations (Cevikbas et al., 2022). This approach 

commonly incorporates a focus on the complex processes of modeling, often through 

the diverse frameworks of the modeling cycle. The development of a task design and 

implementation framework for fostering mathematical modeling competencies (Geiger 

et al., 2022), and the efforts to identify stumbling blocks and productive metacognitive 

acts associated with transitions between stages in the modeling process (Jankvist & 

Niss, 2020; G. Stillman, 2011) illustrate this approach.  

A complementary approach to mathematical modeling as a content is associated with 

the development of knowledge about the nature of mathematics as a scientific 

discipline of which applications and modeling are an essential part: 

The “picture of mathematics” argument insists that it is an important task of mathematics 

education to establish with students a rich and comprehensive picture of mathematics in 

all its facets, as a science, as a field of activity in society and culture. Since modeling and 

applications constitute an essential component in such a picture, this component should be 

allotted an appropriate position in mathematics curricula. (Blum & Niss, 1991, p. 43) 

Our review of the literature suggests that the teaching and learning of mathematical 

modeling usually explicate the M-application direction of the mutual contribution. For 

example, Kaiser and Schwarz (2006) reported a change in the mathematical beliefs of 

students and teachers towards a more “application-oriented” view of the discipline 

following teachers’ participation in university-based mathematical modeling seminars. 

Maas (2013) reported a similar change with students who participated in an 

intervention that incorporated mathematical modeling activities. In contrast, the 

developing-M direction, although occasionally mentioned as a component of the 

modeling process (e.g., Blum & Niss, 1991; Kaiser & Sriraman, 2006), is rarely 

addressed in the educational literature that concerns mathematical modeling and 

applications.  

The potential to highlight the developing-M direction of the mutual contribution is 

sometimes linked in the literature to the teaching of the history of mathematics (e.g., 

Jankvist, 2009b; Katz, 1993; Tzanakis & Arcavi, 2002). Similar to the two kinds of 

using mathematical modelling and applications – as a vehicle and as a content – 

Jankvist (2009b) suggests two kinds of using the history of mathematics in 

mathematics education. One is as a tool to support the teaching and learning of specific 

mathematical contents. For example, to raise students’ interest or to offer a different 

point of view on a specific mathematical idea. The other kind is as a goal in itself, 

where the “focus is on the developmental, and evolutionary aspects of mathematics as 

a discipline” (p. 239).  

Theoretical considerations suggest that the developmental and evolutionary aspects 

that may be illuminated by the history of mathematics include the mutual contribution 

between mathematics and various fields and life areas in general and the developing-
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M direction in particular. Exemplifying the latter, Jankvist (2009b) claimed that an 

important goal for teaching the history of mathematics is to show students that the 

evolution of mathematics is “driven by internal and external forces” (p. 239). Similarly, 

Tzanakis and Arcavi (2002) suggested that the history of mathematics provides an 

opportunity to show that mathematical research is “often motivated by questions and 

problems coming from apparently unrelated disciplines” (p. 205). And Katz (1993) 

stated in the context of teaching calculus: 

An historical approach to calculus helps to provide not only a motivation for its study but 

also a reason for the students further to explore the connections between their studies and 

the world around them. By an historical approach to calculus, I do not mean simply giving 

the historical background for each separate topic or giving a biographical sketch of the 

developers of various ideas. I do mean the organization of the topics in essentially their 

historical order of development as well as the discussion of the historical motivations for 

the development of each of these topics, both those within mathematics and those from 

other scientific fields. (p. 243) 

Yet, missing are empirical studies that examine the contribution of studying the history 

of mathematics to knowledge about the evolutionary and developmental aspects of the 

discipline of mathematics (e.g., Clark, 2014), and consequently, about the mutual 

contribution between mathematics and other fields.  

DISCUSSION 

This theoretical essay argues that the connection between mathematics and diverse 

fields and life areas is portrayed differently in the discipline of mathematics and in the 

mathematics education scholarly work. In the discipline of mathematics, this 

connection is characterized by mutual contribution: Mathematics contributes to solving 

problems in different areas (the M-application direction), and different fields of science 

and life areas contribute to the development of the discipline of mathematics by raising 

new mathematical questions and motivating the development of new mathematical 

concepts, methods and research areas (the developing-M direction). In contrast, in the 

mathematics education scholarly work, the connection between mathematics and other 

fields is characterized mainly by a uni-directional contribution, where mathematics 

contributes to solving problems in other fields, but the contribution of various fields to 

the development of mathematics is rarely attended to. 

These different portrayals of the connection between mathematics and diverse fields 

and life areas are reflected in the results of an empirical study (Hoffmann & Even, 

2022) that examined what teachers may learn about the nature of the mutual 

contribution in an academic program that offered opportunities to learn about the 

connection between the discipline of mathematics and different fields and life areas, 

and what mathematicians, who taught in this program, wanted to teach teachers about 

the nature of this mutual contribution. Whereas the mathematicians maintained that 

both directions of the mutual contribution are important components of teachers’ 

knowledge which they wished to advance, the teachers reported on considerably 

advancing their knowledge and appreciation only regarding one direction of the mutual 
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contribution, namely the contribution of the discipline of mathematics to other 

domains.   

A question then arises: Should the connection between mathematics and other fields 

be portrayed in mathematics education more in line with the way it is presented in the 

discipline of mathematics? Our position is that it should. Both knowledge of specific 

mathematics topics, concepts, and procedures, and knowledge about the nature of the 

discipline, are important for teachers and students. Knowledge about the nature of 

mathematics as a scientific discipline comprises knowledge about the nature of the 

connection between the discipline of mathematics and different scientific domains and 

life areas (Blum & Niss, 1991; Hoffmann & Even, 2018; Jankvist, 2009b; Kaiser & 

Sriraman, 2006; Ziegler & Loos, 2014/2017), of which an important characteristic is 

that it is bi-directional, reflecting mutual contribution.  

Currently, the connection between mathematics and diverse fields and life areas is 

addressed in mathematics education scholarly work primarily in relation to the teaching 

and learning of mathematical modeling. Occasionally, it is addressed also in relation 

to the teaching and learning of the history of mathematics.  

The teaching and learning of mathematical applications and modeling is mainly 

associated in the literature with advancing the M-application direction of the mutual 

contribution (Cevikbas et al., 2022), revealing that it can enhance teacher knowledge 

regarding the picture of mathematics as an applied science that contributes to problem-

solving in diverse areas of life (e.g., Hoffmann & Even, 2022; Kaiser & Schwarz, 2006; 

Maass, 2013). There are several potential avenues for advancing knowledge about the 

developing-M direction in the context of teaching mathematical applications and 

modeling. For example, to extend conceptualizations of the modeling cycle to 

explicitly include the developing-M direction. Additionally, using the teaching and 

learning of mathematical modeling as a tool for developing knowledge of mathematical 

concepts, procedures, and theorems that are new for the learner (e.g., Lamb & 

Visnovska, 2015), in a way, is analogic to the way that divers areas contribute to the 

development of the discipline of mathematics. It might be interesting to explore how 

such mathematics learning experiences may contribute to learners’ perception about 

the ways that the discipline of mathematics develops. 

Theoretical measures and some empirical findings (e.g., Jankvist, 2009a, 2009b; Niss 

et al., 2007; Tzanakis & Arcavi, 2002) indicate that the teaching and learning of the 

history of mathematics may contribute to developing knowledge regarding the mutual 

contribution between mathematics and other disciplines. The history of mathematics 

reveals that mathematics is not a fixed and complete science but is lively and 

developing, where the development of the discipline lies in mathematical work related 

to questions that originate in and outside mathematics. Thus, the teaching and learning 

of the history of mathematics has the potential to enhance knowledge regarding the 

developing-M direction by exposing the central contribution of work in other fields to 

the development of the discipline of mathematics as a scientific discipline. One 
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enterprise of future research could be the development of rich and comprehensive 

teaching materials that explicitly exemplify such contributions throughout the history 

of mathematics. A promising avenue in this regard is the teaching and learning of the 

history of modern applied mathematics (Jankvist, 2009a). 

 

REFERENCES 

Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather 

prediction. Nature, 525(7567), Article 7567. https://doi.org/10.1038/nature14956 

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, 

applications, and links to other subjects—State, trends and issues in mathematics 

instruction. ESM, 22(1), 37–68. https://doi.org/10.1007/BF00302716 

Cevikbas, M., Kaiser, G., & Schukajlow, S. (2022). A systematic literature review of the 

current discussion on mathematical modelling competencies: State of the art developments 

in conceptualizing, measuring, and fostering. ESM, 109(2), 205–236. 

https://doi.org/10.1007/s10649-021-10104-6 

Clark, K. M. (2014). History of mathematics in mathematics teacher education. In M. R. 

Matthews (Ed.), Int. Handbook of Research in History, Philosophy and Science Teaching 

(pp. 755–791). Springer. https://doi.org/10.1007/978-94-007-7654-8_24 

Einstein Institute of Mathematics at The Hebrew University of Jerusalem. (2022). Applied 

Mathematics. Einstein Inst. of Math. https://mathematics.huji.ac.il/applied-mathematics 

Hoffmann, A., & Even, R. (2018). What do mathematicians wish to teach teachers in 

secondary school about mathematics? In E. Bergquist, M. Österholm, C. Granberg, & L. 

Sumpter (Eds.), Proc. of the 42nd Conf. of the Int. Group for the Psychology of Math. Ed. 

(Vol. 3, pp. 99–107). PME. 

Hoffmann, A., & Even, R. (2022). The connection between mathematics and other fields: 

Mathematicians’ and teachers’ views. In C. Fernández, S. Llinares, A. Gutiérrez, & N. 

Planas (Eds.), Proc. of the 45th Conf. of the Int. Group for the Psychology of Math. Ed. 

(Vol. 2, pp. 395–402). PME. 

Jankvist, U. T. (2009a). History of modern applied mathematics in mathematics education. 

FLM, 29(1), 8–13. 

Jankvist, U. T. (2009b). A categorization of the “whys” and “hows” of using history in 

mathematics education. ESM, 71(3), 235–261.https://doi.org/10.1007/s10649-008-9174-9 

Jankvist, U. T., & Niss, M. (2020). Upper secondary school students’ difficulties with 

mathematical modelling. Int. Journal of Mathematical Education in Science and 

Technology, 51(4), 467–496. https://doi.org/10.1080/0020739X.2019.1587530 

Kaiser, G., & Schwarz, B. (2006). Mathematical modelling as bridge between school and 

university. ZDM, 38(2), 196–208. https://doi.org/10.1007/BF02655889 

Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling 

in mathematics education. ZDM, 38(3), 302–310. https://doi.org/10.1007/BF02652813 



Hoffmann & Even 

3 - 74 PME 46 – 2023 

Katz, V. J. (1993). Using the history of calculus to teach calculus. Science & Education, 2(3), 

243–249. https://doi.org/10.1007/BF00490066 

Lamb, J., & Visnovska, J. (2015). Developing statistical numeracy: The model must make 

sense. In G. A. Stillman, W. Blum, & M. Salett Biembengut (Eds.), Mathematical 

Modelling in Education Research and Practice: Cultural, Social and Cognitive Influences 

(pp. 363–373). Springer. https://doi.org/10.1007/978-3-319-18272-8_30 

Maass, K. (2013). Modeling in class and the development of beliefs about the usefulness of 

mathematics. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling 

Students’ Mathematical Modeling Competencies: ICTMA 13 (pp. 409–420). Springer. 

https://doi.org/10.1007/978-94-007-6271-8_35 

Malkevitch, J. (2002, April). Mathematics and the genome. Feature Column, American Math. 

Society. http://www.ams.org/publicoutreach/feature-column/fcarc-genome1 

Niss, M., Blum, W., & Galbraith, P. L. (Eds.). (2007). Introduction. In Modelling and 

applications in mathematics education: The 14th ICMI study (Vol. 10, pp. 3–32). Springer. 

Rowlett, P. (2011). The unplanned impact of mathematics. Nature, 475(7355), Article 7355. 

https://doi.org/10.1038/475166a 

Stillman, G. (2011). Applying metacognitive knowledge and strategies in applications and 

modelling tasks at secondary school. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. 

Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modelling (pp. 165–

180). Springer. https://doi.org/10.1007/978-94-007-0910-2_18 

Stillman, G. A. (2019). State of the art on modelling in mathematics education—Lines of 

inquiry. Lines of Inquiry in Mathematical Modelling Research in Education, 1–20. 

Tzanakis, C., & Arcavi, A. (2002). Integrating history of mathematics in the classroom: An 

analytic survey. In J. Fauvel & J. Van Maanen (Eds.), History in mathematics education: 

The ICMI study (pp. 201–240). Springer. https://doi.org/10.1007/0-306-47220-1_7 

Ziegler, G. M., & Loos, A. (2017). “What is Mathematics?” and why we should ask, where 

one should experience and learn that, and how to teach it. In G. Kaiser (Ed.), Proc. of the 

13th Int. Congress on Math. Ed. (pp. 63–77). Springer. https://doi.org/10.1007/978-3-319-

62597-3_5 (Original work published 2014)



 

2023. In M. Ayalon, B. Koichu, R. Leikin, L. Rubel & M. Tabach (Eds.). Proceedings of the 46th Conference of 

the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 75-82). PME 46. 

COMPARING TEACHER GOALS FOR STUDENT FOCUSING 

AND NOTICING WITH STUDENT OUTCOMES FOR FOCUSING 

AND NOTICING  

Charles Hohensee, Sara Gartland, Yue Ma, Srujana Acharya 

University of Delaware 

 

The topic of study in this report is student focusing and noticing. Specifically, we 

examined a teacher’s goals for student focusing and noticing and the student outcomes 

for focusing and noticing. The mathematics context for this research was quadratic 

functions and covariational reasoning. Two whole-class discussion episodes were 

analyzed. Results showed ways that the teacher’s goals and student outcomes were 

aligned and three ways that they were misaligned. These results could inform how 

quadratic functions are taught and how teachers can improve the alignment between 

their goals for student focusing and noticing and student outcomes for focusing and 

noticing. 

INTRODUCTION 

Focusing and noticing are important aspects of learning (“noticing, or perceiving, 

provides the rich backdrop of experience on which learning depends;” Mason, 2002, 

p. 33). However, as teachers know, “any human adult who interacts with another has 

opportunities to notice that in many situations the other perceives and attends to things 

that are different from those one attends to oneself” (von Glasersfeld, 1995, p. 179). 

Thus, what mathematics students focus on and notice may not align with what 

mathematics teachers want them to focus on and notice. In this report, we examine how 

a teacher’s goals for student focusing and noticing compare to student outcomes for 

focusing and noticing. We situated our study in the context of quadratic functions (QF). 

Student Focusing and Student Noticing  

According to our conceptualization, student focusing and noticing are two related 

processes. Student focusing itself has two parts. The first part of student focusing is 

when students direct one or more senses toward one or more features of a perceptual 

or conceptual field (“focused attention picks a chunk of experience, isolates it from 

what came before and from what follows;” von Glasersfeld, 1995; p. 91). The second 

part of focusing is when students make a mental record of the feature or features their 

senses are directed toward (“For the mind, then, ‘to posit it as object against itself’, is 

to re-present it,” von Glasersfeld, p. 91). In other words, student focusing goes beyond 

simply directing senses toward a feature of a perceptual or conceptual field. 

Student noticing follows and builds on student focusing. Specifically, noticing is when 

students identify properties, regularities and/or irregularities, or concepts about the 

features of a perceptual or conceptual field that are being focused on (“establish[ing] 
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regularities in the flow of experience,” von Glasersfeld, p. 144). In other words, student 

noticing goes beyond students simply focusing on something. 

Teacher Goals for Student Focusing and Noticing Versus Student Outcomes for 

Focusing and Noticing  

We define teacher goals for student focusing and noticing as those features of a 

perceptual or conceptual field that the teacher wants students to focus on and the 

properties, regularities/irregularities, or concepts the teacher wants students to notice. 

We define student outcomes for focusing and noticing as those features of a perceptual 

or conceptual field that students actually focus on and the properties, 

regularities/irregularities, or concepts students actually notice. Prior research on 

student noticing has looked at what students focus on and how the classroom 

interactions bring about what gets focused on and noticed (Lobato et al., 2013). 

Importance of Student Focusing and Noticing for Reasoning About 

Mathematics 

We conceptualize student focusing and noticing as of key importance for reasoning 

about mathematics. Previously we stated that noticing is dependent on focusing (i.e., 

only what students focus on can they noticing something about). In a similar way, 

reasoning is dependent on focusing and noticing, because only what students focus on 

and notice can they reason about (“what we fail to notice is unlikely to have much 

influence upon our [mental] actions;” Mason, 2002, p. 29, parenthetical added). In 

other words, student focusing and noticing “provide the perceptual and/or conceptual 

material on which learning processes operate” (Hohensee, 2016, p. 71). Thus, student 

focusing and noticing are at the leading edge of cognition. 

Student Focusing and Noticing About Quadratic Functions That Supports 

Covariational Reasoning 

Student focusing and noticing are important for reasoning about QFs (Lobato et al., 

2012). An important feature of QFs that students could focus on is the quantities 

involved in QFs. For example, students could direct their eyes toward and make a 

mental record of the rows of a distance-time (DT) QF table. Important regularities of 

QFs that students could notice are the regularity that the changes in the dependent 

variable are changing by constant amounts when the changes in the independent 

variable are constant (Lobato et al., 2012).  

Covariational reasoning is defined as reasoning about “the way the dependent and 

independent variables [of a function] change together” (Ayalon et al., 2016, p. 381). 

Student focusing and noticing which, as argued above, could support mathematical 

reasoning in general, could also support covariational reasoning in particular. For 

example, students could use the noticed regularity described above to reason 

covariationally about generating additional values of a DTQF table. 
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Purpose and Research Question 

Our study is the first, to our knowledge, that examines together the teacher goals for 

student focusing and noticing and the student outcomes for focusing and noticing. If, 

as explained earlier, focusing and noticing are necessary for reasoning about 

mathematics, then the lack of research on this topic means our study is poised to make 

a significant contribution to the field. Our ongoing work for this study is guided by the 

following question: In the context of quadratic functions instruction, how do the 

teacher goals for student focusing and noticing that supports covariational reasoning 

during instruction compare to student outcomes for focusing and noticing? 

METHODS 

Context 

This study took place during a summer mathematics program for secondary students 

in the Mid-Atlantic region of the United States. The program focused on DTQFs and 

the DTQF instruction provided during the program intentionally promoted students’ 

covariational reasoning. During the program, the students, the teacher, and a research 

team met for two 1-hour instructional sessions per day. Sessions were held every 

weekday for two weeks. Each 1-hour instructional session typically focused on a single 

instructional activity. The instructional activities involved the use of, or referenced, at 

least one DTQF animation created in SimCalc. Students often explored the DTQF 

animations on laptop computers through small-group activities and then participated 

in whole-group discussions about their mathematical reasoning on the activities.  

Participants 

The participants were students recruited from a youth organization (N = 18) that 

supports students from underrepresented populations academically. A research team of 

five conducted this study. The team was comprised of the summer program teacher, 

who was also the first author on this report, two mathematics education graduate 

students, and two high school mathematics teachers who taught in public secondary 

schools in the United States and had often taught QFs. The research team met at the 

end of each day to debrief the day’s lessons and to plan for the next day. 

Data Collection and Analysis 

Data collection also occurred during the 2-week summer program. Specifically, all 

instructional sessions were video- and audio-recorded. Recordings were made of 

whole-group discussions and small-group activities. Artifacts (e.g., student responses 

on instructional activity worksheets) were also collected. However, only recordings of 

whole-group discussions were analysed for this report.  

Transcripts of audio-recordings were analysed using qualitative coding methods. 

Analysis focused on the whole-group discussions, which we called episodes. To code 

the episodes, we first transcribed the recordings of the whole-group discussions. Then, 

the first, third, and fourth authors cooperatively developed inductive codes (Strauss & 

Corbin, 1985) to capture the teacher’s goals for student focusing and noticing and 
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student outcomes for focusing and noticing. Finally, the first and second author used 

the coded transcripts to answer the research question.  

FINDINGS 

Initial analysis has revealed that for the QF instruction in our study, the teacher goals 

for student focusing and noticing and student outcomes for focusing and noticing had 

some alignment and some misalignment. By alignment, we mean the teacher’s goals 

for student focusing and noticing were consistent with student outcomes for focusing 

and noticing. By misalignment, we mean the teacher’s goals were not consistent with 

the student outcomes. Our overarching finding is that ongoing cycles of alignment and 

misalignment happen as the teacher and students co-construct understandings of QFs 

that support covariational reasoning. Moreover, we found three kinds of misalignment. 

To illustrate these findings, we present two back-to-back episodes, Episode 2B and 3A, 

that show alignment and misalignment. 

Episode 2B: Alignment and Misalignment when Discussing Two DTQF 

Animations 

Episode 2B occurred during the second instructional session, on the second day of the 

summer program. This session involved an activity in which students compared two 

characters, a clown and a frog, represented in two separate DTQF animations. In this 

activity, students worked in small groups to record what they noticed about each 

individual animation and to reason about which character was faster relative to the 

other animation. The animations could not be played simultaneously. However, each 

animation included a numbered horizontal axis from which distance measurements 

could be determined and a clock from which time measurements could be determined. 

Teacher goals for student focusing and noticing. During this episode, the feature of 

the DTQF the teacher primarily tried to direct students to focus on was particular pairs 

of accumulated quantities of distance and time, one DT pair from each animation. 

Moreover, the specific DT pairs the teacher wanted students to focus on were those 

that could be used to determine which animation was faster. Focusing on these features 

could support covariational reasoning because reasoning covariationally about a DTQF 

requires reasoning with distances and times, not just distances or just times. 

The property of those DT pairs that the teacher wanted students to notice was the 

property (or properties) that indicated which animation was going faster relative to the 

other animation. The following question from the teacher illustrates their attempts to 

get students to notice properties of the DT pairs that would indicate which animation 

was faster: 

If Clown and Frog are going the same time, like you had 4 seconds, and you said Clown 

was faster. What does that mean in terms of the distance? . . . If you find that the distance 

is the same, what does the time tell you about the two characters? 

Noticing properties of DT pairs that indicate which animation was faster relative to the 

other animation could supported covariational reasoning because noticing that kind of 
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property (e.g., noticing that the distances are the same but the times are different) could 

become the perceptual/conceptual material with which students could reason 

covariationally to decide which animation was going faster (e.g., reasoning 

covariationally that if both animations ran for 4 second, the animation with the greater 

distance is faster).  

Student focusing and noticing outcomes. During this episode, some features students 

focused on and properties they noticed were aligned with the teacher’s goals for student 

focusing and noticing. Students did focus on DT pairs that could be used to determine 

which animation would win a head-to-head race. For example, Bob said:  

To get to 70 meters, [Frog] took 4.5, 4 point 50 seconds . . . Now with the [Clown], we 

tried stopping it around 70 meters and, we got pretty close. And 70 meters, [Clown] took 

about 4.2, 4 20 seconds . . . It tells us that the Clown from the jump to 70 meters is faster. 

In this example, Bob illustrated a focus on DT pairs that had the same distance (i.e., 70 

meters) and noticed that one DT pair had a lower time (i.e., Clown with a time of 4.2 

s), which aligned with the teacher’s goals for student focusing and noticing. 

Other features students focused on and noticed were misaligned with what the teacher 

wanted students to focus on and notice. For example, sometimes students focused on a 

different quantity, changes in distance. Halima talked about this quantity in the 

following quote:  

Another thing that I noticed with the Clown is, each time it moves, it travels way greater 

than it did last frame. So I think that’s a very important, because if you looked at the last 

jump, from like 35 to 65 [meters], and then from 65 to 100 . . . It travels greater distance 

each frame the Clown . . .  compared to the Frog. 

In this example, Halima focused on the changes in distance from 35 to 65 meters and 

from 65 to 100 meters, which was misaligned with the teacher’s goals for student 

focusing for the activity. In this case, the misalignment was that the students were 

focusing on and noticing a quantity the teacher did not have as a goal for students to 

notice. Therefore, something this episode shows is that one kind of misalignment 

between the teacher’s goals for student focusing and noticing for DTQFs and the 

student outcomes for focusing and noticing for DTQFs is when students focus on 

and/or notice something about a different quantity than the quantity or quantities the 

teacher wants them to focus on and notice. This is relevant for the teaching of functions 

because functions involve numerous different quantities to notice (e.g., distance, time, 

change in distance, change in time, etc.). 

An additional observation we made was that students who focused on changes in 

distance did not appear to also focus on changes in time. Thus, this focus did not yet 

support covariational reasoning, which requires focusing on two quantities. 

Episode 3A: Alignment and Misalignment when Discussing One DT Quantity 

Episode 3A occurred during the first instructional session on the third day of the 

summer program. This instructional session was about an activity in which students 
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viewed a single DTQF animation of a dog entering a forest, turning around, and leaving 

the forest. In this activity, the distance measurements were hidden from view, but the 

clock displaying the time remained visible. Additionally, the time took on negative, 

zero, and positive values.  

Teacher goals for student focusing and noticing. In this episode, the feature of the 

DTQF the teacher primarily tried to direct students to focus on was just the independent 

variable, namely the time quantity. For QF data, the independent variable values are 

often presented in a constant pattern, which then means that the corresponding values 

of the dependent variable will be presented as a growing and/or shrinking pattern. For 

this reason, the distances in a DTQF may draw more of students’ attention than the 

times. To support a more balanced focus on distance and time in later lessons so that 

students could engage in covariational reasoning, the teacher intended with this lesson 

to first establish student focusing on and noticing of time in a DTQF context.  

Properties of time in a DTQF (i.e., the independent variable of the quadratic function) 

that the teacher wanted students to focus on and notice were how time was being 

measured, how time was changing, the sign of the time was (i.e., positive or negative), 

and the changing sign of the time. The teacher made the following comments during 

this episode that reveal this goal for student noticing: 

He enters the forest when it hits zero, so right here, right at this point here, it’s zero? Okay, 

time is zero, seconds . . . Mmm, so that's good, so it starts at -4.5, this is the start, and then 

the end, time, is, what is it? 8.70 seconds . . . Ooh, oh, that's interesting. Total time was 

13.2 . . . so in this activity we focused on the time, we're trying to attend specifically to the 

time. 

Student Focusing and Noticing Outcomes. In Episode 3A, students did focus on 

features of time and did notice properties of time in the DTQF, which aligned with the 

teacher’s goals for student focusing and noticing. For example, Natasha commented, 

“We noticed that the time continues as he turns around to go away from the forest,” 

and Demarcus noticed “So, ah we noticed that time starts at a negative number.” 

However, in this episode, like Episode 2B, some of the features students focused on 

and properties they noticed were misaligned with the teacher’s goals for student 

focusing and noting. Specifically, some of the features focused on and properties 

noticed were not about time. Two types of misalignment emerged. 

The first type of misalignment that emerged was that the students’ focusing on and 

noticing of time sometimes co-occurred with a focus on and noticing of the direction 

of the dog’s travel in the animation. For example, Natasha notice “like when he turns 

around, he pauses, but the time still continues.” Similarly, Halima said “But it’s only 

the time before because once the dog goes back out [of the forest], it’s still positive. 

So, we just think it’s the time before the dog enters the forest first.” Therefore, 

something new this episode shows is that another kind of misalignment between the 

teacher’s goals for student focusing and noticing of a DTQF and the student outcomes 

for focusing and noticing of a DTQF is that students’ focus and noticing of a DTQF 
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that is aligned with the teacher’s goals for of a DTQF (e.g., time) might co-occur with 

some extra focus and noticing that is not aligned with the teacher’s goals (e.g., direction 

of travel). 

The second type of misalignment that emerged was when students sometimes focused 

on and noticed properties of speed during Episode 3A. This is an example of students 

being distracted from focusing on and noticing of a more basic features of the 

perceptual or conceptual field of a DTQF (i.e., time) that the teacher wanted students 

to focus on and notice properties about in favour of focusing instead on and noticing 

of a more complex feature of the perceptual or conceptual field of a DTQF (i.e., speed). 

For example, in the following exchange the teacher asked about time and the student 

responded with what they noticed about speed: 

Teacher: We are talking about time. Okay give us another observation. 

Natasha: It seemed like his speed was consistent. 

Teacher: What did you mean by that? 

Natasha: Like, looking at it, we think he’s like moving at a consistent pace 

Althought the speed in the DTQF animation was not actually constant, the transcript 

shows that Natasha was focused on speed and noticed a property of speed that appeared 

to distract them from focusing on and noticing properties of the time. Therefore, 

something new this episode shows is that another kind of misalignment between the 

teacher’s goals for student focusing and noticing of a DTQF and the student outcomes 

for focusing and noticing of a DTQF is when students are distracted by a more complex 

feature of the perceptual or conceptual field of DTQFs (e.g., speed) from focusing on 

and noticing a more basic feature of the perceptual/conceptual field of DTQFs that the 

teacher wants students to focus on (e.g., time). 

Both types of misalignment could distract students from focusing on and noticing what 

the teacher wants them to focus on and notice. Moreover, both types of misalignment 

in the context of DTQFs may not support students with covariational reasoning. In the 

former case of misalignment, a focus on the direction of travel of the animation may 

simply distract students from fully focusing on time, which is one of the quantities 

needed for covariational reasoning in DTQF contexts. In the latter case of 

misalignment, the focus on speed bypassed a focus on time, which is one of the 

quantities needed for covariational reasoning in at DTQF context.  

DISCUSSION 

This study examined the teacher’s goals and the student outcomes for focusing and 

noticing in the context of DTQFs. The motivation for this research was that (a) focusing 

and noticing are important for mathematical learning, and (b) what teachers want 

students to focus on and notice may not always in fact be what students focus on and 

notice. Thus, it seemed important to us to better understand the relationship between 

what mathematics teachers want students to focus on and notice and what students 

actually focus on and notice. Also, because we are interested in researching ways to 
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promote covariational reasoning in quadratic functions contexts, it seemed important 

for that research to better understand the focusing and noticing that does and does not 

support covariational reasoning. 

Our results showed alignment and misalignment between what the teacher wanted 

students to focus on and notice and what students actually focused on and noticed. A 

contribution our research makes is uncovering different ways teacher goals and student 

outcomes for focusing and noticing might be misaligned. Our study found three types 

of misalignments, (a) when students focus on and notice different quantities than 

intended, (b) when student focusing and noticing of the intended features co-occurs 

with focusing on and noticing unintended features, and (c) when focusing and noticing 

bypasses more basic intended features in favour of more complex features. Better 

understanding misalignments could inform the design of instructional activities for 

teaching QFs and may have relevance for teaching other mathematics concepts. Our 

ongoing research on other episodes in the current data set, and on other data sets will 

further explore this issues. 

CONCLUSION 

There is a need in the field of mathematics education for more research on student 

focusing and noticing. With a coordinated analysis of teacher goals and student 

outcomes, we have uncovered ways teacher’s goals and student outcomes are aligned 

and misaligned. This is a line of research that offers promise of new insights for 

teaching quadratic functions and also for teaching other mathematics concepts. 
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In this paper, we propose a new, theoretical account of why many children persist with 

using counting strategies to solve single-digit addition problems. We hypothesise that, 

in some contexts, teaching approaches favour a phonological route for strengthening 

problem-answer associations in memory, which disadvantages children who have 

weaker skills with phonological memory. Furthermore, we hypothesise that more 

children will develop retrieval-based strategies if they are provided with opportunities 

to practice using tools that strengthen problem-answer associations in memory via a 

visual-spatial processing route. We also describe a new tool that we designed to help 

test these hypotheses, called the Keyboard. The Keyboard models a mental number line 

and makes use of children’s subitising skills.  

THE BENEFITS OF PRACTICE  

Practice with solving computational problems is essential for children when learning 

early arithmetic. Problem-solving practice, together with instructional conversations 

and opportunities to reason about numbers and operations, facilitate a transitional 

process whereby counting-based strategies are replaced by fast and accurate retrieval-

based strategies. This transition represents a turning point in children’s mathematics 

development with the frequency of children’s correct use of retrieval-based strategies 

in lower primary school predicting their growth in mathematics achievement through 

to upper primary school (Geary, 2011a). There exists, however, a substantial number 

of children who do not benefit from practice in this way. In Australia, for example, 

many children continue to use counting strategies for single-digit addition well beyond 

a time when curriculum documents suggest fluency be achieved (Gervasoni, 2017; 

Hopkins & Bayliss, 2017). 

In this paper, we argue that the traditional view of retrieval difficulties does not explain 

more recent research findings highlighting the strategies children use for early 

arithmetic. We provide a new theoretical account of why, in some curriculum contexts, 

children are not benefitting from practice in ways that enable them to utilise retrieval-

based strategies and describe a new tool that will be used to help test this premise.  

Background 

As children start to count, they learn foundational knowledge about numbers and 

develop increasingly sophisticated counting-based strategies for solving single-digit 

addition problems. Counting-based strategies include: (i) a count-all strategy, where 

children start the count at one (e.g., 3 + 5 = 1, 2, 3; 4, 5, 6, 7, 8); (ii) a count-from-first 

strategy, where they count on from the first operand (e.g., 3 + 5 = 3; 4, 5, 6, 7, 8); and 

(iii) the min-counting strategy, where they count on from the larger operand (e.g., 3 + 
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5 = 5; 6, 7, 8). The min-counting strategy (sometimes called the count-on-from-larger 

strategy) is considered the most efficient counting strategy since it requires the least 

number (i.e., minimum number) of counts.  

Learning efficient counting-based strategies for basic addition may be emphasised in 

mathematics curricula in first and second grade, but by at least third grade, children are 

expected to have achieved fluency and use fast and efficient retrieval-based strategies. 

Retrieval-based strategies encompass retrieval and decomposition strategies: Retrieval 

refers to the direct retrieval of an answer from a store of facts held in long term memory 

and decomposition strategies are strategies that make use of retrieved facts, including 

the bridging-through-ten strategy (e.g., 7 + 4 = 7 + 3 + 1 = 10 + 1 = 11) and the near-

ties strategy (7 + 8 = 7 + 7 + 1 = 14 + 1 = 15).  

Traditionally researchers have viewed the protracted use of counting-based strategies 

for basic addition as being uniquely characteristic of students with a mathematics 

learning disability (MLD) or students who display persistently low achievement in 

mathematics (Geary et al., 1991; Geary et al., 2012; Jordan et al., 2003; Ostad, 1997). 

It has been established that, compared to average achieving peers, children with MLD 

use inefficient counting-based strategies for longer and are more likely to make 

counting errors (Geary et al., 2000; Geary et al., 2004; Jordan & Hanich, 2000), and 

are less likely to encode and/or retrieve basic addition facts (Geary et al., 2011b; Jordan 

& Hanich, 2000; Ostad, 1997). It is estimated that around 7% of students have MLD 

and another 10% show persistent low achievement in mathematics (Geary, 2011b). 

More recent research suggests that it is not just students in the lowest achievement 

group who are not retrieving basic addition facts. Cowan et al. (2011) reported that 

many second and third grade children in the UK were not using retrieval for basic 

addition. Rhodes et al. (2018) highlighted the prevalent use of min-counting by 

adolescent students in the United States. Graven and Venkat (2021) described 

children’s frequent use of counting to solve multi-digit problems in South Africa as an 

“extreme situation requiring urgent attention” (p. 24). Our own research has found that 

around a third of Australian children frequently use min-counting for single-digit 

addition beyond the time when fluency is expected (Hopkins & Bayliss, 2017; Hopkins 

et al., 2022). Importantly, this group of children (called accurate-min-counters) did not 

encompass children who used inefficient counting strategies or made frequent counting 

errors. Accurate min counters displayed lower overall achievement when compared to 

peers who used retrieval-based strategies - but not so low as to suggest a learning 

difficulty (Hopkins & Bayliss, 2017) - and struggled to identify flexible mental 

computation strategies for multi-digit addition (Hopkins et al., 2022). These findings 

suggest the need to generate and test new explanations of why many children exhibit 

difficulties learning retrieval-based strategies - explanations that possibly encompass 

weaknesses in how early arithmetic is taught. 
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Theoretical Framework 

There is a significant gap in theory for understanding why so many children continue 

to use the min-counting strategy if they are accurate when using it. According to 

Siegler’s model of strategy development (Shrager & Siegler, 1998; Siegler & Araya, 

2005), retrieval is made possible when problem-answer associations are strengthened 

in memory as a result of practice using accurate backup strategies (any strategy other 

than retrieval). Siegler’s account of retrieval development and the model’s wider 

application to strategy development, strategy choice and strategy adaptiveness, has 

made significant and substantial contributions towards explaining the cognitive 

mechanisms underpinning children’s development of basic arithmetic skills 

(Verschaffel et al., 2009). Yet despite its widespread utility, Siegler’s account of 

retrieval development falls short when it comes to explaining the prevalence and 

persistence of accurate-min-counting. According to Siegler’s model, if children use the 

min-counting strategy and are accurate when using it then retrieval-based strategies 

will become more prominent as a result of practice: yet many children persist with 

accurate-min-counting despite years of practice (Hopkins & Bayliss, 2017). 

We propose an extension of Siegler’s account of retrieval development, which 

encompasses the following elaboration: as a result of practice using accurate backup 

strategies, retrieval is made possible when problem-answer associations are 

strengthened in memory via two possible pathways, a phonological (sound-based) 

pathway and a visual-spatial pathway. Following on from this extended account, we 

hypothesise that (in some contexts) approaches for teaching early arithmetic favour a 

phonological route for strengthening problem-answer associations in memory during 

practice, which disadvantages children who have weaker skills with phonological 

memory. Counting-based strategies provide a phonological route for strengthening 

problem-answer associations in memory leading to retrieval (Imbo & Vandierendonck, 

2007; Ostad & Sorensen, 2007). We also hypothesise that more children will develop 

retrieval-based strategies when expected to do so if they are provided with 

opportunities to practice solving problems using tools that strengthen problem-answer 

associations in memory via a visual-spatial processing route. 

EXTENDING THE BENEFITS OF PRACTICE WITH TOOLS 

Tools have long been used in mathematics education to support children’s visual-

spatial processing of number. For single-digit addition, children’s fingers are 

considered particularly useful tools (Jordan et al., 2008). For some problems, fingers 

can provide a visual-spatial processing route for strengthening problem-answer 

associations in memory. For example, children can hold up five fingers and three 

fingers and see eight fingers without counting. This strategy is referred to as the fingers 

strategy (Geary, 1990). Alternatively, they may hold up five fingers and three fingers, 

and then count from one to calculate eight using a count-all strategy. Either way, 

children use their fingers to represent the size of both addends simultaneously and 

therefore the size of the sum. However, as children mature and start solving problems 
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with sums up to 20, they use the more efficient min-counting strategy. They may still 

use their fingers to count, but they use them in a different way, to keep track of the 

count. For example, using the min-counting strategy to solve 8 + 4, a child counts “9, 

10, 11, 12” putting up one finger for each count and stopping counting when four 

fingers are up – so the size of both addends are not represented simultaneously (i.e., 

the problem). The visual-spatial processing route for strengthening problem-answer 

associations in memory breaks down when children use their fingers in this more 

sophisticated way. Thus, fingers can promote a visual-spatial pathway for encoding 

number facts but only for problems with sums up to ten.  

Children may use other tools for larger sums, including counters, strings of beads, 

interlocking blocks, a tens frame (a five-by-two array), or an arithmetic rack (two rows 

of 10 beads). While these tools are widely recommended for classroom use, research 

investigating how the use of these tools contributes to children’s strategy development 

is lacking (Mix, 2010).  

The Keyboard 

We created a new tool called the Keyboard to promote a visual-spatial route for 

strengthening problem-answer associations in memory for additive problems up to 20 

(addition problems with sums up to 20 and corresponding subtraction problems). The 

Keyboard is a ruler-like object without numbers (see Figure 1).  

 

Figure 1. The Keyboard*(*Registered Design) 

The Keyboard comprises lines drawn across the width of the object to form 20 

rectangles or “keys”, with each fifth key coloured black (or a contrasting colour to 

other keys). The coloured keys are designed to make use of children’s subitising skills: 

that is, their ability to enumerate small quantities (up to five) using visual-spatial 

perception rather than counting (Starkey & Cooper, 1995). On one side of the keys is 

a space that forms a handle. Two or more Keyboards can by joined to together to make 

one long Keyboard, as the handle of the second Keyboard fits into the end of another, 

enabling children to extend their knowledge of additive structures to larger numbers. 

By making use of subitising skills, the Keyboard encourages children to visualise 

strategic jumps when learning to solve arithmetic problems with sums of 10 and under, 

and to utilise the bridging-through-ten strategy for solving problems with sums over 

ten. For example, to solve 5 + 7 = ?  a child may point to five on the Keyboard (the 

first black key) and then make a strategic jump to 10 (the second black key) and then 
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make a strategic jump of two to arrive at the answer 12 (represented as 5 + 7 = 5 + 5 + 

2 = 10 + 2 and illustrated in Figure 2). Alternatively, a child may start at seven (two 

keys after the first black key), make a strategic jump of three to 10 (the second black 

key) and make another jump of two keys to arrive at 12 (represented as 5 + 7 = 7 + 3 

+ 2 = 10 + 2). The bridging-through-ten strategy is one of many strategies taught in 

Australia but it is not emphasised to the same extent as it is in many East-Asian 

countries (Murata, 2004; Zhou & Peverly, 2005). Similarly the Keyboard encourages 

children to make and visualise strategic jumps when solving subtraction problems by 

taking away or using indirect addition (e.g., 5 + ? = 12). 

 

Figure 2. An illustration depicting how the Keyboard can be used to solve 5 + 7. 

The Keyboard shares similar features with existing tools but has some points of 

difference. For example, both a tens frame and the Keyboard make use of children’s 

subitising skills but the Keyboard allows children to accurately represent additive 

problems as a linear distance. This is important as teaching tools that share similar 

features to a mental number line have been shown to promote mental representations 

of number magnitude (Siegler & Ramani, 2009), which are considered essential in 

children’s mathematical development (Torbeyns et al., 2015). There are also practical 

advantages for children using the Keyboard. For example, it is less awkward to use 

than connecting blocks or bead strings, and possibly more appealing.  

The idea that children benefit from using tools that promote visual-spatial 

representations of number when learning early arithmetic is supported by the advanced 

computational skills demonstrated by children in East Asian Countries (Geary et al., 

1996; Vasilyeva et al., 2015). While this advantage may be due to a variety of factors 

(including the language of instruction and emphasis on mastery), at least in part it may 

be attributed to use of the abacus – a computational tool that relies on the visual-spatial 

processing of numbers. Barner et al. (2016) demonstrated clear advantages in teaching 

children to first use an abacus and then use a mental abacus when solving single-digit 

and multi-digit arithmetic problems. It is worth noting, however, that children in the 

study received 100 hours of instruction in using a mental abacus over a three-year 

period, thus making this approach impractical for teaching children in all contexts. The 

most direct evidence suggesting the potential efficacy of the Keyboard for promoting 

retrieval-based strategies comes from a small-scale study (Hopkins & de Villiers, 

2016) involving a short subitising intervention that made use of a tens frame. The 

intervention was found to improve the rate at which problem-solving practice led to 

retrieval for children who did not benefit from practice alone.  
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FUTURE RESEARCH 

We hope that the ideas presented in this paper will generate discussions in the 

mathematics education community that will lead to more research investigating why 

(in certain contexts) many children persist with counting and what can be done about 

it. We have commenced a three-year project to address three research questions related 

to the hypothesises presented here: (i) How do children’s patterns of proficiency with 

basic addition relate to differences in phonological memory and visual-spatial 

memory?, (ii) How does use of the Keyboard improve the benefits of practice for 

children identified as accurate-min-counters?, and (iii) What outcomes are associated 

with incorporating the Keyboard and similar tools into classrooms? Our ultimate goal 

is to extend the benefits of practice so that more children come to utilise retrieval-based 

strategies when learning early arithmetic, making it easier for them to learn 

increasingly sophisticated mathematics as they progress in school. We envisage that 

this will be achieved not by more practice but by increasing the efficiency at which 

practice leads to the use of retrieval-based strategies for all children.  
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The study adopted an ERP methodology to examine two psychological constructs—

field-dependence-independence (FDI) and symmetry (SYM)—on geometry problem 

solving. Based on a newly developed instrument, analyses of Taiwanese high school 

students showed that both FDI and SYM significantly influenced students’ response 

accuracy (Acc). The FDI also determined students’ reaction time for correct responses 

(RTc). When deliberately examining geometry problem solving through the stages of 

introducing problem situation, question presentation, and answer verification, the ERP 

analyses showed that SYM greatly influenced brain activities in stage of introducing 

problem situation, while FDI determined stage of question presentation. 

INTRODUCTION 

Mathematics education research is interdisciplinary and has robust ties to psychology 

(Silver & Kilpatrick, 1994). Psychological theories and methods, and the interplay with 

mathematics, have a longstanding history in developing research in mathematics 

education. The study reports investigation on the influence of the psychological 

construct—field dependence-independence (FDI) and symmetry (SYM)—on 

geometry problem solving. FDI refers to the ability to perceive and identify targets 

situated in a complex environment (Goodenough & Witkin, 1977). SYM is related to 

how the structure of an object remains unchanged after transformative actions 

(Wagemans et al., 2012). Psychological literature showed that the FDI and the SYM 

determine the complexity of cognitive processes related to visual stimuli (Evans et al., 

2013; Wagemans et al., 2012). However, roles of the FDI and the SYM on geometry 

problem solving have rarely been examined. The psychological literature makes it 

reasonable to hypothesize that the FDI and the SYM influence the ways students 

perceive a geometry diagram and cognitive complexity of geometry problems. The 

research question for the study is “to which extent and in which ways do the FDI and 

the SYM influence students’ cognitive processes when solving geometry problems?” 

LITERATURE REVIEW 

Field Dependence-Independence (Fdi)   

Psychologists referred FDI as a cognitive ability accounting for individual differences 

in perceptual and intellectual performance. Field-independent persons have a greater 

tendency to isolate individual elements from an organized field, whereas field-

dependent ones often face difficulties in identifying parts from the whole (Evans et al., 
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2013). Literature showed that FDI is strongly tied to brain activities, especially those 

related to perception (Jia et al., 2014). Riding et al. (1997) reported how individuals 

with different FDI ability process information and how individual differences are 

related to the lateralization of specific cognitive strategies. Tinajero et al. (1993) 

proposed two directions for neuro-cognitive research on relationship between FDI and 

brain functioning. One is to identify brain functions for perceptual selectivity, 

especially about lateralization. The other is about the examination of brain activation 

of individuals with extreme field-dependent individuals as contrasted to that in field-

independent ones. It is believed that field-independent and field-dependent individuals 

function differently in brain organization. In mathematics, Reid and Ali (2020) argued 

that field-independent skills are essential to mathematics problem solving as it requires 

identifying important information. Thus, field-independent persons often have 

advantage of recognizing the keys to search for correct answers in examinations. 

Symmetry (SYM) 

SYM is a crucial component of the visual system and has a neural basis (Treder, 2010). 

As one of the Gestalt principles, SYM is defined as achieving the maximal level of 

stability when perceiving visual information (Wagemans et al., 2012). In psychology, 

research on SYM primarily focused on its effects on perception and memory. 

Psychologists also clarified how brains function SYM detection. Object SYM makes 

memory processes easier (Kayaert & Wagemans, 2009). Symmetrical patterns are 

recalled more easily than asymmetrical ones (Howe & Jung, 1987). Researchers also 

indicated that SYM detection occurs in a pre-attentive and automated manner, which 

is denoted as SYM-defined visual search (Olivers & Van Der Helm, 1998).  According 

to Leikin et al. (2000), SYM plays a unique role in mathematical problem solving. 

Their studies indicated that SYM bridges various branches of mathematics, such as 

algebra, group theory, geometry, probability, and calculus.  

METHODOLOGY 

The instrument for the study 

A new instrument, namely Geometry Field Dependence-Independence Symmetry-

Segment test (GFDIS-segment), developed based on the two psychological constructs 

was adopted. The GFDIS-segment test includes problems that require reasoning the 

relationship of segments, and the problems include different diagram configurations 

and geometry properties. In this study, FD problems are defined as those having more 

complex geometry diagrams when compared to the paired FI problems. The GFDIS-

Segment test includes 21 sets of problems, each set of which has four types: Field-

Independence-Symmetry (FI-SYM), Field-Dependence-Symmetry (FD-SYM), Field-

Independence-Asymmetry (FI-ASYM), and Field-Dependence-Asymmetry (FD-

ASYM) (see Figure 1). The problem situation, question presentation, and answers were 

identical in each set of problems. The only difference is the diagram configurations. 

Each problem has two trials, one of which was a true statement. The GFDIS-Segment 

test totally has 168 trials.  
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Figure 1: A set of four-type geometry problems designed based on FDI and SYM 

factors 

 Field-Independence Diagrams (FI) Field-Dependence Diagrams (FD) 

Asymmetrical 

diagrams 

(ASYM) 

FI-ASYM  FD-ASYM 

Symmetrical 

diagrams 

(SYM) 

FI-SYM FD-SYM 

Subjects and data collection 

58 (28 boys and 30 girls) Taiwanese 10th- and 11th-grade students participated in the 

study. All students are right-handed and their electrophysiological data confirmed that 

no extensive noises were collected. The E-prime software was used to perform the 

GFDIS-segment test. Students had to practice several geometry problems to familiarize 

themselves with the testing environment before formally collecting the data. As seen 

in Figure 2, a three-stage problem-solving model was adopted. S1 refers to the stage of 

introducing problem situation, while S2 is question presentation. For S3, it is the stage 

for answer verification. Each individual trail began with a 500 ms fixation and then 

presented problem situation (S1) for 2000 ms. After a 1000 ms time break, the question 

presentation (S2) along with the diagram was presented for 3500 ms. When having 

another 1000 ms time break, answer verification (S3) along with the diagram that 

students needed to evaluate was presented for 5000 ms. A 1000 ms were designated 

for students to rest. The 168 trials for the GFDIS-Segment test were randomly 

presented in the E-prime environment to prevent learning transfer among the four types 

of geometry problems. 

Figure 2: E-prime model for GFDIS-Segment test  

 

The software systems—SynAmps RT 64—channel Amplifier from COMPUMEDICS 

Neuroscan along with Quick-Cap 64 electrode caps were used to record scalp voltages. 

Pin-type electrodes were mounted on a Quick-Cap 64 electrode cap arranged based on 

the 10-20 system. Two flat electrodes were placed on the sides of the eyes to monitor 

horizontal eye movement. A third flat electrode was placed underneath the left eye to 

monitor vertical eye movement and blinks. During the session electrode offset was kept 

below 80 μV. The EEG signals were amplified and digitized with a 24-bit AD 

converter. A sampling rate of 1000 Hz (0.5 ms time resolution) was employed. 
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Data analysis 

The behavioural data and electrophysiological data were examined. For behavioural 

data, students’ response to each trial was analyzed in terms of accuracy (Acc) and 

reaction time for the correct responses (RTc). Both Acc and RTc can be used as 

indicators to determine cognitive complexity of tasks. Acc was counted based on 

percentages of correct responses to the total number of trials for each type of geometry 

problems. The RTc associated with each type of geometry problems was calculated as 

the mean time spent verifying an answer in all correctly-solved trials. Concerning 

electrophysiological data, brain activities were analyzed based on event-related 

potential (ERP) technique using the Brain Vision Analyzer software. ERPs were Zero 

phase shift filtered offline (bandpass: 0.53-30 HZ) and referenced to the common 

average of all electrodes. Epochs with amplitude changes exceeding ±80 μV on any 

channel were rejected. Ocular artefacts were corrected. ERP waveforms were time-

locked to the onsets of S1, S2, and S3. The average epoch for ERP, including a 200 ms 

pre-trigger baseline, was determined. Only correct responses were analyzed. The data 

were baseline-corrected and the grand wave was calculated for each problem-solving 

stage. Trials in which the subjects failed to respond during the time arranged for answer 

verification were not analyzed. 168 trials were available in each problem-solving stage. 

As the peaks were not easily identified in the average grand waveform after 250 ms, 

the mean absolute ERP amplitude of late potentials was performed. We determined the 

time frames 250-500 ms for statistical analysis, which is in line with the literature on 

the late component of P300. For behavioural data, a repeated-measures ANOVA was 

used to assess the differences in Acc and RTc. Pair-wise comparisons were performed 

when a significant interaction was found. For ERP data, a repeated-measures ANOVA 

was performed on the P100 and on the ERP mean absolute amplitude for the P300 

considering two orthogonal factors: Caudality (anterior, central, and posterior) and 

Laterality (left, middle, and right). The two orthogonal factors divided the brain into 

nine areas: AL, AM, AR, CL, CM, CR, PL, PM, and PR. Reliability, using Cronbach’s 

alpha, of Acc was examined to report the internal consistency of the newly-developed 

GFDIS-Segment test. Cronbach’s alpha coefficients for the four types of the problems 

were found to be sufficiently reliable (805.827)to examine the effect of FDI and 

SYM on geometry problem solving.  

FINDINGS 

Behavioural data of accuracy (Acc) and reaction time for correct responses 

(RTc) for FDI and SYM factors 

Students’ behaviour data analyzed based on the FDI and the SYM factors were reported 

in Table 1. No significant interaction between the two factors was found (𝐹 =
1.524, 𝑝 > .05). However, both FDI and SYM factors influenced the Acc. Students 

performed significantly better on problems with the FI diagrams than the FD diagrams 

(𝐹 = 8.428, 𝑝 < .01) and those with the SYM diagrams than the ASYM diagrams 

(𝐹 = 35.129, 𝑝 < .001).  Regarding students’ RTc, no significant interaction was 
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found (𝐹 = .001, 𝑝 > .05). The FDI factor caused a significance as the problems with 

the FD diagrams took students longer time to answer the questions than the FI diagrams 

(𝐹 = 10.478, 𝑝 < .01). No difference in answering problems between the SYM and 

the ASYM diagrams was found (𝐹 = 3.159, 𝑝 > .05). 

Table 1: The analysis of Acc and RTc for SYM and FDI factors 

Measure 
Mean (SD) SYM factor 

F (1,57) FI FD Overall 

Acc  

(%) 

SYM 93.4 (8.6) 92.6 (8.6) 93.0 (8.6) 

35.129*** 

𝜂𝑝
2 =.182 

ASYM 90.6 (10.0) 88.5 (10.3) 89.6 (10.2) 

Overall 92.0 (9.4) 90.5 (9.7)  

FDI factor= 

F (1, 57) 

8.428** 

𝜂𝑝
2 =.034 

 
SYM×FDI=1.524   

p = .222 

RTc 

(ms) 

SYM 1852.3 (867.6) 2004.8 (1104.9) 1928.6 (992.0) 

3.159 

p = .081 
ASYM 1886.1 (949.0) 2039.6 (1065.4) 1962.8 (1007.4) 

Overall 1869.2 (905.4) 2022.2 (1080.8)  

FDI factor= 

F (1, 57) 

10.478** 

𝜂𝑝
2 =.125 

 
SYM×FDI=0.001 

p = .976 

*p ≤ .05, ** p ≤ .01, ***p ≤ .001 

Acc – Accuracy, RTc – Reaction time for correct responses 

Analyses of brain activities for FDI and SYM factors 

The analyses of brain activities focused on the influence of the FDI and the SYM on 

cognitive processes. Generally speaking, the SYM factor determined brain activities 

during the stage of introducing problem situation (S1), whereas the FDI factor 

influenced during the stage of question presentations (S2). As seen in Figure 3, the 

P100 component for the SYM factor at S1 caused a significant difference (F=5.919, 

p<.01). Geometry problems with the SYM diagrams significantly caused students 

higher amplitude than the problems with the ASYM diagrams. The P100 component 

at S2 had a significant interaction among the factors of FDI, SYM, and Laterality. 

However, only the FDI had simple main effects. For the left brain area, analysis showed 

that the FDI factor caused significance for the problems with the SYM diagrams 

(F=5.919, p<.01). When presenting questions for the problems with the FD diagrams, 

it caused students higher amplitudes when compared to those with the FI diagrams. For 

the right brain area, analysis indicated that the FDI factor caused significance for 

problems with the ASYM diagrams. The FD conditions provoked higher amplitudes 

when compared to the FI conditions. 
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Stage Effects F, 𝜂2 Ploted figures Topographies 

S1 

Amplitude 

SYM F(1, 57) = 

5.919* 

𝜂2= .01 
 

SYM ASYM 

  

 
S2 

Amplitude 

FDI ×  

SYM   × 

Laterality 

F(2, 114) = 

5.595* 

𝜂2= .003 

 

 

 

 

 

 

 

 
FI FD 

  

 

Figure 3:  Significant results associated with P100 component  

Stage Effects F, 𝜂2 Ploted figures Topographies 

S1 SYM × 

Caudality × 

Laterality 

F(2, 114) = 

4.431* 

𝜂2= .003  

SYM ASYM 

  

 
S2 FDI × 

Caudality 

F(2, 114) = 

10.934*** 

𝜂2= 7.546×10-4 
 

FI FD 

  

 

Figure 4:  Effects of SYM and FDI factor on P300 component (250–500 ms frame) 

Regarding the P300 component, the analysis of mean amplitude with 250-500 ms time 

frame showed similar results (see Figure 4). The SYM factor caused significance at 

S1, while the FDI resulted in statistical differences at S2. For S1, a significant 

interaction among the factors of SYM, Caudality, and Laterality was found (F=4.431, 

p<.01). Analysis of simple main effect showed problems with the ASYM diagrams 

caused higher amplitudes than those with the SYM diagrams in the brain areas of AL, 

AR, CL, PL and PR (F=14.636, p<.001 for AL; F=4.986, p<.05 for AR; F=5.256, p<.05 

for CL; F=6.935, p<.05 for PR). Only the brain areas of CR and PL did not cause 
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significance (F=1.924, p>.05 for CR; F=0.22, p>.05 for PL). Regarding S2, a 

significant interaction between the FDI and Caudality was found (F=10.934, p<.001). 

Analysis of simple main effects indicated that the amplitude for the FD problems was 

significantly higher than that of the FI problems in the central and the posterior brain 

areas (F=10.222, p<.01 for central area; F=21.256, p<.001 for posterior area). Only in 

the anterior brain area, the FDI did not cause significance (F=1.882, p>.05). 

DISCUSSION 

We adopted an ERP methodology to examine the extent to which and in which ways 

the two psychological constructs—FDI and SYM—influence geometry problem 

solving. Based on the newly developed GFDIS-segment instrument, analyses of 58 

Taiwanese high school students showed that both FDI and SYM factors significantly 

determined students’ accuracy of responses (Acc). The FDI factor also influenced 

students’ reaction time for correct responses (RTc), but not the SYM factor. The 

analysis of ERP data revealed that the SYM factor significantly influences cognitive 

processes during introducing geometry problem situations. Geometry problems with 

SYM diagrams caused higher amplitudes than those with ASYM diagrams for the P100 

component. However, for the P300 late component, problems with ASYM diagrams 

significantly caused higher amplitudes when compared to those with SYM diagrams. 

The analysis of the SYM factor is aligned with psychological literature as SYM 

detection occurs in a pre-attentive and automated manner (Driver et al., 1992). For the 

P300 component, the finding anchors the argument from Kayaert and Wagemans 

(2009) as the SYM factor makes memory retrieval easier, thus decreasing cognitive 

load in problem solving. The results imply that SYM diagrams can draw students’ 

attention to geometry problems and become an effective heuristic strategy in problem 

solving. The analysis on the FDI factor showed that it determined the stage of question 

presentation for both P100 and P300 components. The more complex the diagrams are, 

the higher perceptual load at early cognitive processes the problems create (Lavie et 

al., 2004). Additionally, the FDI factor also caused brain lateralization at late cognitive 

processes (Riding et al., 1997). For the left brain, geometry problems with complex 

diagrams caused higher cognitive activity in the SYM condition. For the right brain, 

complex diagrams resulted in higher cognitive activity in the ASYM condition. The 

result implies that students may apply different cognitive strategies to solve geometry 

problems with different diagram conditions (SYM vs. ASYM). 
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CULTURAL VARIATIONS IN THE QUALITY AND QUANTITY OF 

STUDENTS’ OPPORTUNITIES TO PARTICIPATE IN 

CLASSROOM DISCOURSE 

Jenni Ingram 

University of Oxford, UK 

 

Opportunities for students to share their thinking in mathematics lessons has been a 

focus of mathematics education research for many years.  There is now substantial 

evidence of the benefits to students’ learning from participating in discussions around 

mathematics as well as a growing body of research focusing on what teachers can do 

to support students in sharing their thinking in meaningful ways. The evidence around 

the cultural and normative influences on students’ opportunities to participate is more 

limited.  In this paper, results from an international video study of mathematics 

teaching involving eight countries are shared, focusing on what we can learn about 

variations in students’ opportunities to participate in classroom discourse.   

INTRODUCTION 

The importance of opportunities for students to share their thinking in mathematics 

lessons for their learning is now widely recognised. There is a wealth of research 

examining the associations between participation and learning, the different natures of 

this participation, as well as the teacher moves that can initiate and sustain different 

types of participation. Classroom norms around participation and interactions also 

influence both the quantity and quality of student participation. Yet cultural norms also 

influence these classroom norms and there is limited research focused on the cultural 

variations in student participation. In this paper, results from an international video 

study of mathematics teaching involving eight countries are shared, focusing on the 

extent to which students share their thinking in these eight contexts, alongside the 

evidence available about the nature of this shared thinking. International studies of 

mathematics teaching have both illustrated what we can learn from other country 

contexts, but also the challenges of supporting teachers to develop their practice whilst 

taking the distinctive cultural setting into account. 

BACKGROUND AND THEORETICAL APPROACH 

Classroom discussion and mathematical discourse have been a growing focus of 

mathematics education research for many years. More recently, there has been a 

growing interest in large-scale quantitative studies focusing on both the nature and the 

quality of this discourse (Howe et al., 2019; Lim et al., 2019) that builds on the 

abundance of smaller scale research conceptualising classroom discussions and the 

roles of teachers and students within these (Erath et al., 2021; Ingram, 2021; O’Connor 

& Michaels, 1996; Stein et al., 2015). There is now substantial evidence for the benefits 

of classroom discussions and interactions for supporting mathematics learning.  For 
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example, Resnick and colleague’s (2018) recent review of studies focused on 

classroom discourse identifies four effects of classroom discourse that supports 

students’ learning: increased learning, longer enduring learning gains, better learning 

of topics not taught using discussions, and stronger reasoning skills.  

Mathematical discourse is a broad term that includes “ways of talking, acting, 

interacting, thinking, believing, reading, writing but also mathematical values, beliefs, 

and points of view” (Moschkovich, 2003, p. 326) and classroom discussions and 

interactions make visible the mathematical discourses that are used in classrooms, but 

can also “ignite and coordinate student thinking” (Chen et al., 2020, p. 644). It is 

through these discourses that students learn what it means to learn maths and what it 

means to do mathematics. In light of this, recent research has argued for the need for 

opportunities for students to discuss and explain mathematics and the necessity of 

planning and designing these opportunities (Erath et al., 2021; Stein et al., 2008). Other 

research has identified the importance of teachers responding to and building upon 

students’ ideas in mathematics discussions (Lim et al., 2019). 

Within mathematics education specifically, the majority of studies of classroom 

discourse and interaction have been restricted to a single country context. However 

international studies of mathematics teaching have revealed that there are distinctive 

cultural variations in both the frequency and the nature of mathematics teaching and 

learning practices. For example, the findings from the Programme for International 

Student Assessment (PISA) in 2012, the most recent cycle where mathematics was the 

focus, illustrated considerable variation across countries in students’ perspectives on 

how often teachers asked students to present their thinking (OECD, 2013). Similarly 

the Learner’s Perspective Study showed revealed variations in the extent to which 

students had opportunities to speak mathematics in lessons which Xu and Clarke 

(2019) argue reflects the inspirations and cultural values attached to particular types of 

student participation. 

METHODS 

The analysis described here is part of a larger study that investigated the teaching and 

learning of quadratic equations across eight countries and jurisdictions, the TALIS 

Video Study that is part of the Organisation for Economic Co-operation and 

Development’s (OECD) Global Teaching InSights programme (OECD, 2020). This 

study collected two videos from between 50 and 110 teachers in each context as well 

as the lesson materials, student and teacher questionnaires, and student assessments.  

The videos were then rated by trained raters against higher-inference component rating 

scales and lower-inference indicator rating scales. The study used a two-stage random 

sampling design however the actual sampling process in each of the country contexts 

varied meaning that the teaching captured in the videos can only be considered 

representative of the teaching of quadratic equations in five of the eight contexts. The 

sample in Germany was a convenience sample. 



Ingram 

PME 46 – 2023 3 - 101 

This paper focuses on the video component analysis across the different country 

contexts that include a measure of students’ contributions within classroom 

interactions rather than the more usual focus on teacher actions that initiate these 

contributions. The three video component ratings of interest from the study are the 

Nature of discourse which measured the extent to which the classroom interaction was 

teacher-directed and the level of detail included in student contributions, Eliciting 

student thinking which measured how much student thinking was present and the 

extent to which student contributions focused on answers and procedures or ideas and 

concepts, and Aligning instruction to present student thinking which measured how 

frequently teachers either used student contributions or how frequently they provided 

support when a student made an error or struggled mathematically. Full details of the 

video component scales and the coding process for the broader study, including the 

inter-rater reliability measures, can be found in the international reports (Bell, 2020; 

Bell et al., 2021; OECD, 2021).  

The videos were scored against each of the video component measures on a scale of 1 

to 4 every 16 minutes (a lesson segment) by two trained raters. Average ratings across 

both raters, then lessons and then teachers were included in the international report. In 

this paper the focus is at the lesson level and the maximum ratings within a lesson for 

each of the three video component ratings, as well as the coincidence of the three 

ratings at the lesson segment level. Arguably, for each of these teaching measures we 

would not necessarily expect to see high levels of detailed classroom interactions for 

the full duration of a lesson as lessons often include opportunities for teachers to 

introduce or explain ideas, and opportunities for students to work independently or in 

small groups rather than as a whole class. The use of the maximum rating in a lesson 

enables an examination of cultural variations in the extent to which teachers use 

discussions and whole class interactions as part of their pedagogic repertoire as well as 

some aspects of the nature of these interactions rather than as an indicator of a 

particular teaching style. 

The analysis below examines the lessons that included an average rating across the two 

raters of 2.5 or more on the Nature of Discourse at some point during the lesson, 

meaning that there were points in the lesson where the discourse was sometimes or 

rarely teacher-directed and students’ discourse was sometimes or frequently 

characterised by detailed contributions. Similarly, for Aligning instruction to present 

student thinking the focus was on lessons that included an average rating of 3.5 or more 

meaning that the teacher frequently used students’ contributions or if students made 

errors or struggled mathematically, the teacher frequently provided cues or hints to 

support student understanding. For Eliciting student thinking a distinction is made 

between a maximum rating of 2.5 and above and 3.5 and above. These ratings mean 

that there was a moderate amount or a lot of student thinking present and that the 

questions, prompts and tasks resulted in detailed student contributions that concerned 

answers, procedures and the steps necessary for solving a problem, or for the highest 
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possible rating (3.5 or above) ideas or concepts as defined in the conceptualisation of 

teaching used in the study (Bell et al., 2021). 

At the lesson segment level, i.e., one of the 16-minute episodes that were rated, the 

analysis focuses on those lessons segments rated as 2.5 or above for Nature of 

Discourse and then examined the extent to which these lesson segments also included 

a highest ratings (3.5 or more) for Eliciting student thinking or Aligning instruction to 

present student thinking. This focuses the analysis on those lesson segments where 

students were making detailed contributions and the potential nature of these 

contributions alongside how teachers uses these contributions in their own teaching. 

Although the data for all the participating contexts is reported, the discussion focuses 

on four contexts that illustrate the differences between contexts: Colombia, England, 

Germany and Shanghai. 

FINDINGS 

Almost all lessons in England and Germany (90% and 95% respectively) included a 

lesson segment with a maximum rating of 2.5 or more for the Nature of Discourse. In 

contrast only around half of the lessons in Shanghai and Colombia (54% and 45% 

respectively) included a lesson segment with this rating. Similarly in England and 

Germany around three quarters (73% and 79%) of lessons included a lesson segment 

with a maximum rating of 3.5 or more for Aligning instruction to present student 

thinking, whereas in Shanghai (28%) and Colombia (24%) the proportion of lessons is 

closer to one quarter. The proportions for all countries are given in Table 1. This reveals 

cultural variations both in the extent to which students contribute to classroom 

discourse where in England and Germany students making detailed contributions is a 

common practice and appears to be part of the classroom norms. In contrast, in many 

other contexts such as Shanghai and Colombia there is more variation between teachers 

in terms of the level of detail of student contributions within lessons. Similarly, in 

England and Germany it was typical of lessons to include segments where teachers 

responded to their student contributions in some way, either by building on their ideas 

or by supporting them when they encountered difficulties. In other contexts, such as 

Shanghai and Colombia, this was observed more rarely. 

The analysis that focuses on the nature of these student contributions using the highest 

rating for Eliciting student thinking reveals a different picture, irrespective of the detail 

of a student contribution. In Shanghai 61% of lessons included a lesson segment where 

a student contribution focused on an idea or a concept at least briefly. This was the 

only context where this happened in the majority of lessons. In all other contexts the 

majority of lessons did not include a student contribution focused on ideas or concepts, 

with student contributions focused instead on ideas, procedures or the steps necessary 

for solving a problem.  

At the lesson segment level, within lesson segments rated as sometimes or frequently 

including student detailed contributions (2.5 or above for Nature of Discourse) 49% of 

these segments in Shanghai also included the highest rating for Eliciting student 
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thinking, meaning they included a student contribution focused on an idea or concept. 

While 29% in Japan, 21% in England and 18% in Colombia of these segments included 

a student contribution focused on an idea or concept. The proportion of lessons for all 

contexts are reported in Table 2. 

Table 1: Proportion of lessons including a segment with a higher rating for Nature of 

Discourse (2.5 or more) or Aligning instruction to present student thinking (3.5 or 

more) or Eliciting student thinking (3.5 or more) 

Context Number of 

lessons 

Nature of 

Discourse 

(%) 

Aligning instruction to 

present student thinking 

(%) 

Eliciting student 

thinking 

(%) 

Chile 196 65 42 15 

Colombia 166 45 24 17 

England 167 90 73 31 

Germany 100 95 79 48 

Japan 177 80 61 40 

Madrid 169 83 38 20 

Mexico 206 68 39 23 

Shanghai 170 54 28 61 

Table 2: Proportion of lesson segments rated as 2.5 or above for Nature of Discourse 

also including the highest rating (3.5 or above) for Eliciting Student Thinking or a 

high rating (2.5 or above) for Aligning instruction to present student thinking. 

Context Rating of 3.5 or more 

 Eliciting student thinking 

(%) 

Aligning instruction to present 

student thinking 

(%) 

Chile 8 27 

Colombia 18 25 

England 21 62 

Germany 28 46 

Japan 29 49 

Madrid 18 30 

Mexico 22 30 

Shanghai 49 16 

DISCUSSION 

These findings illustrate both within and between country context variations in 

participation in classroom discourse in interaction.  Within England and Germany there 

is little variation with the context as students contributing in a detailed way occurred 

in almost all lessons at some point.  In both these contexts this may be a feature of 
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lessons with higher achieving students as the curriculum in these two contexts restricts 

lower attaining students’ access to some of the content that was the focus of the TALIS 

Video Study, and hence the teaching captured may not be representative of 

mathematics teaching more generally.   

In contrast, in both Shanghai and Columbia there is variation between teachers in that 

only around half of the lessons included detailed student contributions.  However, 

when students contribute in Shanghai, the nature of these contributions  is more likely 

to include reference to an idea or concept than in the other contexts. In all contexts the 

majority of student contributions focused on answers, procedures or the steps needed 

to solve a problem, but only in some classrooms did students also engage with ideas 

and concepts. 

These results reflect much of the recent research in the West that has focused on 

providing students opportunities to participate in mathematical discourses and on 

responsive teaching.  Yet in Shanghai the quality and nature of student participation is 

also something that teachers appear to consider, enabling students to go beyond the 

routine reporting and describing of processes to discussing ideas and concepts, 

something that is widely advocated for in the literature (Chen et al., 2020; Erath et al., 

2021; Stein et al., 2008). 

This paper has pointed to cultural variations in both the quantity and quality of student 

participation in mathematics lessons.  However the data is limited by the focus on just 

one mathematical topic (quadratic equations) and to students at a stage of education 

where this topic is taught in each contexts (aged between 13 and 17 years old). The 

analysis is also limited by the specific measures used in TALIS Video Study, which 

only capture a narrow range of aspects of student participation. They also will not 

capture sequential aspects of student contributions and also do not distinguish between 

teachers building and using student ideas and teachers supporting students when they 

encounter a difficulty. It would be interesting to see if these variations are also apparent 

in other topics and at other education stages.  

The focus in this paper has been on variations and differences, but it is important to 

note the similarities. The average ratings in the international report from the study point 

to relatively few opportunities students have to discuss mathematics in lessons, either 

through detailed contributions to whole class interactions, or through group or pair 

work. Yet students need something to talk about. The inclusion of opportunities to 

contribute, in detailed ways or in relation to ideas and concepts as well as procedures 

and answers, is part of the majority of lessons in all the contexts considered here.  

Opportunities to contribute are a tool widely used by most teachers, but further research 

is needed to explore whether these variations in opportunities have different influences 

on students’ learning in different contexts. 
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Teacher noticing is one of the core practices to be developed in teacher education 

programs. A particular focus of this competence is curricular noticing conceptualized 

as recognising relevant aspects of the curricular materials, interpreting the 

opportunities for instruction, and decide how to use them. 28 pre-service primary 

school teachers solved a task where they were asked to recommend a resource/material 

to introduce the subtraction algorithm in 3rd grade, to give reasons for this 

recommendation and to plan a lesson using this resource. Results show that the 

majority of these pre-service teachers identified the base ten blocks as a resource and 

indicate how these PTs interpreted the opportunities of this material for introducing 

the subtraction algorithm and how they planned the lesson using them. 

INTRODUCTION 

Professional noticing of mathematics teaching-learning situations is a relevant 

competence for the teachers' practice that has generated an important research agenda 

in Mathematics Education during the last years (e.g. special issues Dindyal et al., 2021; 

Schack, et al., 2017). In fact, Jacobs and Spangler (2017) present the competence of 

professional noticing as one of the core practices to be developed in teacher education 

programs in their review of "Research on Core-Practices in K-12 Mathematics 

Teaching".  

The results of previous research have provided information regarding different aspects 

of this competence. A great part of this research focuses on a particular aspect of this 

competence, noticing students’ mathematical thinking, understood as the three 

interrelated skills of attending to the mathematical details in students’ strategies, 

interpreting students’ mathematical thinking taking into account the details identified 

and deciding how to respond considering the students’ mathematical thinking (Jacobs 

et al., 2010). This research has provided information about how pre-service teachers 

identify the mathematically relevant details in students’ strategies, how they interpret 

the students' mathematical thinking and decide how to continue on the basis of 

students’ mathematical thinking (e.g., Fisher et al., 2019; Gupta et al., 2018; Ivars et 

al., 2020). These previous studies have also indicated that the skill of making decisions 

is the most difficult and demanding. Pre-service teachers can be very specific about the 

details they observe in students’ mathematical thinking, but they have difficulties in 

using this information to decide how to continue with the instruction (Barnhart & van 

Es, 2015; Choy, 2014). 
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Research has also identified contexts and tools that favour the development of this 

competence in teacher education programs (e.g., Fernández & Choy, 2020; Schack, et 

al., 2017). Representations of practice and conceptual tools (such as theoretical 

information about how students learn specific mathematical topics) have been shown 

tools to support the development of this competence in initial training programmes 

(Fernández & Choy, 2020). Nevertheless, this research has also highlighted pre-service 

teachers’ difficulties in providing teaching decisions (Barnhart & van Es, 2015; 

Tyminski et al., 2020). These difficulties can be explained by the lack of resources, 

materials and mathematics teaching orientations (Schoenfeld, 2011).  

In this context, as far as we know, there is not too much research focused on how pre-

service teachers interact with materials and resources to provide teaching decisions. 

Amador et al. (2017) have shown that comparing different versions of the same activity 

allows pre-service teachers to identify differences in the design of activities and to 

perceive new opportunities for teaching of the materials. Furthermore, they concluded 

that pre-service teachers may benefit from task exploration and also from the use of 

analytic tools for interpreting materials. From their studies, they also concluded that 

pre-service teachers attend differently to different materials (digital and printed 

textbooks; written lessons and single tasks), and often based their decisions on their 

own understanding or knowledge. Our study contributes to this line of research 

examining how pre-service teachers notice different resources/materials when they are 

planning a lesson for introducing the subtraction algorithm in 3rd grade. 

Curricular noticing 

Curricular Noticing is a construct defined as how teachers make sense of the 

complexity of content and pedagogical opportunities in printed or digital curriculum 

materials (Amador et al. 2017; Dietiker et al., 2018). This construct focuses on the 

relationships between teachers and curricular materials considering the students’ 

learning. In our study, we understand as curricular materials not only printed or digital 

textbooks, written lessons, or single tasks, but also any technological (software, etc.) 

or manipulative resource (such as abacus, base ten blocks… etc.) that a teacher has 

available. 

Following the conceptualization of curricular noticing from Dietiker et al. (2018) and 

considering the objective of this study, this competence would imply (i) recognising 

relevant aspects of the curricular materials available to them, (ii) interpreting the 

opportunities for instruction provided by each curricular material, and (iii) deciding 

how to use them considering the opportunities they provide in the design of a lesson or 

a sequence of activities.  

Objective and research questions 

The objective of the study is to examine how pre-service teachers notice different 

resources/materials when they are planning a lesson for introducing the subtraction 

algorithm in 3rd grade. The following research questions have been formulated: (i) 

What materials/resources would use pre-service teachers when they have to plan a 
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lesson for introducing the subtraction algorithm in 3rd grade? (ii)Why would they use 

these materials/resources? (iii) How would they use these materials/resources in the 

lesson? 

METHOD 

Participants and instrument 

Participants were 28 pre-service primary school teachers (PTs) enrolled in their third 

year of the degree to become a primary school teacher. Previously, PTs had completed 

two mathematics education courses related to numerical and geometrical sense. They 

were attending the course “the learning and teaching of mathematics in primary 

school” as part of their degree. This course consisted of different learning environments 

aimed at developing teacher competences such as the curricular noticing competence.  

As a part of one of the learning environments, participants, individually, had to solve 

the following task:  

Xavi is a 3rd grade primary school teacher, and he is planning a lesson to introduce 

the subtraction algorithm with 3 digits. Could you help him? Answer the next 

questions:  

 What resources/materials would you recommend Xavi to use in the lesson? 

Justify your answer 

 If you were Xavi, how would you design the lesson? Justify the design explaining 

how the resource/material are contributing to the learning of the subtraction 

algorithm. 

PTs had two hours to solve the task. In the learning environment PTs were provided 

with theoretical documents that contain information from Mathematics Education 

research on how primary school students understand the decimal numbering system, 

including the algorithms and information about different material and resources that 

can support students’ understanding of the decimal numbering system (e.g., Beattle, 

1986). Furthermore, they had participated in other tasks such as analysis of textbooks 

(or sequences of activities) and analysis of student’s answers to different activities.  

In Spain, the subtraction algorithm is introduced through the “borrowing method”. This 

method is based on the ideas behind of the Decimal Numbering System: place value 

and grouping and ungrouping. In this method, a higher order unit is exchanged for 10 

units of an immediately lower order, obtaining, whenever necessary, different non-

canonical decompositions. In other words, the minuend is transformed, based on its 

non-canonical decomposition. 

Analysis  

Data are the answers of PTs to the task. In the analysis, we have focused on: (i) what 

are the materials/resources PTs would recommend to introduce the subtraction 

algorithm; (ii) how PTs relevant aspects of the resources/materials and how they 
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interpret the opportunities for instruction of the materials/resources recommended; and 

(iii) how they decide to use them in the lesson.  

RESULTS 

In general terms, the great majority of the participants recommended the use of 

manipulative materials, particularly, base ten blocks (n=26). Seven out of these 26 PTs 

also recommended the use of other materials like the abacus, worksheets, and the 

textbook for introducing the subtraction algorithm. There were two PTs who did not 

recommend any material. The two PTs who did not recommend any material or 

resource provided general comments such as “I would recommend a precise and deep 

explanation of the subtraction algorithm” [PT11]. 

However, results show differences in how PTs recognised relevant aspects of the 

materials/resources and in their interpretations according to the opportunities for 

instruction. Twenty out of these 26 PTs who recommended base ten blocks as a 

resource, identified relevant aspects of this resource and opportunities for the learning 

of the subtraction algorithm, such as the role of this resource in the understanding of 

the unit transformations (non-canonical decompositions) or the idea of place value. We 

exemplified it with excerpts of PT02 and PT22:  

[…] Some of the resources I would recommend are the manipulatives, for instance, the 

base ten blocks, that are key in the understanding of the algorithms, and the abacus. With 

these resources we can work the idea of grouping and the idea of place value [PT02]. 

 […] The resource that I would recommend to Xavi is the base ten blocks, since this 

resource can help students see more clearly the subtraction algorithm and the 

transformations from hundreds to tens and from tens to units [PT22].  

Nevertheless, six out of the 26 PTs did not identified relevant aspects of the materials 

recommended. These PTs provided vague or general explanations (or no explanation 

at all) regarding the opportunities of these material/resources for the learning of the 

subtraction algorithm. In the next excerpt, PT17 seems to be aware of the benefits of 

using manipulatives for the understanding of the algorithms but he provided a general 

explanation without describing how it can favour the understanding of the subtraction 

algorithm.  

 […] I will recommend the use of manipulatives since they are key for the understanding 

of the algorithms since they are objects that represent de mathematical ideas that can be 

abstracted through the direct manipulation of objects [PT17].  

Regarding how PTs used the resources recommended to plan the lesson, a group of 18 

PTs provided a sequence of different subtractions that were ordered according to the 

number of transformations needed in the minuend (therefore, these subtractions were 

sequenced according to their level of difficulty). Furthermore, these PTs provided 

explanations about how to link the different modes of representation for helping 

students to understand the subtraction algorithm: what is done with the material (ten 

base blocks), what is orally said and what is written symbolically in the algorithm. This 

is the case of PT15 who provided a sequence of four subtractions (Figure 1) and 
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explained that the first one would be used as an example to show the different 

transformation of the units in the minuend, and the rest of subtractions would be done 

by students:   

The designed lesson consists of 4 subtractions. The objective of the first subtraction is to 

help students understand the subtraction algorithm, particularly, the transformations of the 

units of different order performed in the subtraction algorithm. The rest will be done by 

the students.  

1st Subtraction  

221-218 

2nd Subtraction  

342 – 218 

3rd Subtraction (248 – 109) 

Alex has 248 soccer cards. In a yard he 

has lost 109. How many cards does he 

have now? 

4th Subtraction (620 -245) 

In a football stadium there are 620 people. 

But when the game starts it starts to rain and 

245 people decide to go home. How many 

people are there in the stadium? 

Figure 1. The sequence of four subtractions designed by PT15. 

She continued justifying why she has proposed the subtractions in this order.   

The level of difficulty will increase after each subtraction. In the 2nd subtraction: a 

transformation will be needed, in the 3rd subtraction a transformation will be needed, and 

it is presented within a problem, and, in the 4th subtraction, two transformations will be 

needed, and it is also presented within a problem. 

Moreover, she was aware of the necessity of using different representations during her 

explanation (1st subtraction) and the necessity of relating the different modes of 

representations to help students understand the ideas behind the algorithm (Figure 2). 

She wrote: 

The explanation of the first subtraction will be made [by me] by relating the four 

representation modes: concrete (multi-base blocks), graphic (drawings that represent 

multi-base blocks), symbolic (written operations) and oral (“what is said”, underlining the 

transformations accordingly). 
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Figure 2. Excerpt from PT15 exemplifying how she would relate the modes of 

representations (what it is done with ten base blocks, what it is said and what it is 

written in the algorithm) ["Since 8U cannot be taken from 1U, then we need to 

transform 1T (long) into 10U (little cubes)". Now that I have 18U we can subtract”.]  

There were 4 PTs who did not provide a particular sequence of activities (or 

subtractions), but they provided explanations about how it would be this sequence. For 

instance, PT16 wrote.  

It is very important to consider a correct order of the activities, so that the students learn 

from the easiest activities to the more complicated ones. In the case of the subtraction 

algorithm, the sequence that the teacher should plan for the understanding of this algorithm 

would be the following: 1. Subtraction without carrying. 2. Subtraction with carrying. 3. 

Subtraction with a 0 in the minuend. 

Although PT16 was aware of the importance of providing a sequence of subtractions 

according to an increasing level of difficulty, she did not provide a specific sequence 

of subtractions. This lack of specificity hides, on the one hand, the way the PTs are 

going to introduce the subtraction algorithm, and on the other hand, whether PTs were 

able to provide this sequence of division according with the characteristics they have 

considered. In the example of PT16, the condition “having a 0 in the minuend” does 

not necessarily imply the need of more transformations, and therefore can or cannot 

increase the level of difficulty. These PTs did not provide comments about how they 

would use the material during the lesson.  

Finally, the last 6 PTs did not provide any explanation neither a sequence of 

subtractions. Some of them solved only a subtraction. 

CONCLUSION AND DISCUSSION 

Our study examines how pre-service teachers notice different resources/materials when 

they are planning a lesson for introducing the subtraction algorithm in 3rd grade, 

particularly, we have focused on the materials/resources pre-service teachers would 

recommend, their interpretations regarding the opportunities of these 

materials/resources for instruction, and how they would use them in the lesson.  

Results show that most of the PTs would recommend base ten blocks to introduce the 

subtraction algorithm in 3rd grade. Other materials were mentioned but always as 

additional ones to the base ten blocks. Regarding their interpretations about the 

opportunities of these materials for instruction, most of them (20 out of 28) were able 

to establish a relationship between the material and how it can help students understand 

the main ideas behind the algorithm: the different transformation of units – non-

canonical decompositions of the minuend and the idea of place value. Nevertheless, 

some PTs provided general comments showing difficulties in explaining the 

opportunities for instruction of the material selected. 

Considering how they planned to use the materials, 18 PTs not only provided a detailed 

lesson including a sequence of subtractions that were sequenced according to their 
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level of difficulty (number of transformation needed in the minuend) but also were able 

to explain how they would use the resource to help students understand the ideas that 

are behind the algorithm, linking the different modes of representation: what is done 

with the material (ten base blocks), what is orally said and what is written symbolically 

in the algorithm. 10 PTs did not provide a detailed lesson. Some of them provided 

general comments about the sequence of activities but without any specificity related 

to the way they would introduce the subtraction algorithm or how they would use the 

resource. Nevertheless, these general comments can be seen as a resource for 

professional developers (Jacobs et al., 2011) since these PTs are learning in a teacher 

education course. 

Our results provide us with a snapshot of how these PTs are connecting the theoretical 

information given in the course with the practice, in this case, planning a lesson to 

introduce the subtraction algorithm. The relative success of these PTs in identifying a 

resource to introduce the subtraction algorithm, in interpreting the learning 

opportunities of this resource and in deciding how to use it in their lesson, underlines 

the potential of this type of tasks in teacher education programs. Results seem to show 

that the task and the theoretical information provided in the learning environment 

helped pre-service teachers to start giving meaning to the complexity of content and 

pedagogical opportunities of different resources considering the students’ learning 

(Dietiker et al., 2018). Nevertheless, more research is needed to have more insight of 

how these PTs develop their curricular noticing during the course when they plan 

lessons for introducing different mathematical contents. 
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THE DEVELOPMENT OF CONCEPTIONS OF FUNCTION - A 

QUALITATIVE LONGITUDINAL STUDY ON THE TRANSITION 

FROM SCHOOL TO UNIVERSITY 

Tomma Jetses 

Osnabrück University 

 

Within the framework of a qualitative longitudinal study, we interviewed 15 students 

about their conceptions of function at two points in time. For the first time, we 

interviewed the students in the upper school. A second interview took place at the end 

of the students' first semester at university. The study pursues a case study approach. 

This paper focuses on the case of Tom and his of conception of function. At university, 

Tom reflects on his conception of function constructed in school. He contrasts and 

relates the content covered in school on the concept of function to that covered in the 

lecture on discrete structures.  

CONCEPTIONS OF FUNCTION AT SCHOOL AND AT UNIVERSITY 

The concept of function is addressed in mathematics lessons at school and in many 

mathematics-related courses at university. Despite this thematic overlap, there are 

indications that first-year students have difficulties constructing conceptions of 

function in which the university learning content is linked with the content addressed 

at school (e.g., Juter, 2010; Vandebrouck, 2011). A conception of function is "the 

individual’s idea or understanding" (McDonald et al. 2000, p. 78) of function, while a 

concept of function is "the collective understanding of that content by the community 

of mathematicians" (Arnon et al. 2014, p. 18).  

Different studies attribute the above-mentioned difficulties in linking school and 

university learning content, among other reasons, to changes of level of 

conceptualization (e.g., Artigue, 1999; Tall, 1995; Vandebrouck, 2011). These changes 

include a higher degree of formalisation of mathematical notations in university 

courses than in high school mathematics classes. This higher degree of formalisation 

generally makes it more difficult for first-year students to understand the mathematical 

content. While a higher degree of formalisation applies to many different content areas, 

Vandebrouck (2011) attributes the problems specifically with understanding the 

concept of function to the fact that many first-year students are unable to link, on the 

one hand, a pointwise and, on the other hand, a global perspective on functions. In 

addition, many students reduce the work with functions to the manipulation of 

algebraic expressions at the end of their school career or at the beginning of their 

university career (e.g., Carlson, 1998; Vandebrouck, 2011). The APOS Theory refers 

to such manipulations as the "action conception of function" and distinguishes this 

action conception from a process and an object conception (e.g., Dubinsky & 

McDonald, 2001; Arnon et al., 2014). In the context of functions, an action conception 

is constructed, for example, when a student inserts a concrete value into a function term 
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to calculate the result. With a process conception, the student can imagine 

transformations of unspecified inputs into outputs without having to insert concrete 

values. The process can then be encapsulated into a mental object, which constitutes 

the transition to object conception. Composing functions or recognising properties of 

entire function classes are examples of such object conceptions of function. When the 

student establishes connections between the different conceptions, the individual has 

constructed a schema for function. Empirical results illustrate that a coherent schema 

of the concept of function "evolves over a period of many years and requires an effort 

of ‘sense making’ to understand and orchestrate individual function components to 

work in concert" (Carlson 1998, p. 115). To develop such an understanding, it is crucial 

to acquire a "language of functions" and apply this language to different representations 

(Carlson 1998, p. 138). 

An overview of the state of research reveals that, for the most part, studies examining 

conceptions of function at the transition from school to higher education refer to 

surveys conducted either once at school or once at university (e.g., Balacheff & 

Gaudin, 2009; Vandebrouck, 2011). There is only one longitudinal study known to the 

author, by Juter (2010). Juter (2010) studies conceptions of functions, limits, 

derivatives, integrals, and continuity at the beginning of an analysis course and for one 

year thereafter. The study is framed by the conceptual-change theory (Posner et al. 

1982), which has been established internationally as a theoretical framework for 

studies on the development of conceptions. Current psychological and mathematics 

didactic studies understand conceptual change as a reorganisation of existing 

knowledge or conceptions (e.g., Juter, 2010; Vosniadou & Verschaffel, 2004). 

According to the theory of conceptual change, reorganising existing cognitive 

structures is challenging. In keeping with this, Juter (2010) shows to what extent 

conceptions of function can be stable over a certain period. Conceptions expressed by 

the students that have endured are the notion of a function as an "equation" to which a 

corresponding graph can be drawn or the notion as a "sequence of events presented by 

a formula or a coordinate system" (Juter, 2010, p. 2279 & 2280).  

In addition to Juter’s study (2010), further longitudinal studies would be desirable to 

describe and explain more detailed how conceptions of function develop at the 

transition from school to university. In particular, a study would have a lot of 

explanatory potential that examines the conceptions of function at school and again at 

university, i.e., a study that explicitly focuses on the transition from school to higher 

education. This paper refers to such a study we conducted. The results should provide 

a much more insightful analysis of which conceptions of function students actually 

constructed at school and to what extent these conceptions have potential to link 

content addressed at mathematics-related courses at university. With this knowledge, 

we could explain difficulties in the first semester better. These explanations are 

fundamental to improve courses both at school and at university. This paper aims to 

address the above-mentioned research desiderata by reporting results that give a first 

answer to the main question of the longitudinal study:  
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How do conceptions of functions develop at the transition from school to university? 

METHODS 

Procedure 

In order to analyse how conceptions of function develop at the transition from school 

to university, we take a case study approach (e.g., Thomas, 2011). We examine several 

cases under the same aspects using a multiple case study. We have chosen this 

approach because we assume that conceptions of function develop very differently. 

Analysing each case separately is the best way account for the uniqueness of 

development processes. Furthermore, this approach makes it possible to include 

different schools and study programs. In order to be able to trace the development of 

the students’ conceptions, we have chosen a qualitative longitudinal approach with 

interviews at two points in time (e.g., Hermanowicz, 2013). 

First interview: The first interviews took place at German schools three to six months 

before the Abitur examinations (highest graduation in Germany) in 2020. The teachers 

from these schools informed the students about the study. The students voluntarily 

participated in the interviews, which were video recorded. The length of the interviews 

ranged from 45 to 75 minutes. During the interviews, we encouraged the students to 

verbalise their thought processes. They could take notes at any time. In these first 

interviews, the focus was on questions and tasks that addressed the concepts of 

function, derivative, and integral and their interconnections. In the following, some 

questions and tasks related to the function concept will be discussed. The first question 

was, "What comes to mind about the concept of function?" Afterwards, we asked the 

students to explain the function concept to a fictitious classmate. Later, the interview 

considered different representations of functions (e.g., terms, tables, graphs) and 

addressed different perspectives on function, which relate to a possible action, process, 

or object conception of function.  

Second interview: The second interviews took place at German universities at the end 

of the winter semester 2020-2021. The interviews lasted 45 to 90 minutes. Due to the 

COVID pandemic, we conducted the interviews via video conference. The students 

could take notes digitally. Before an interview, the interviewer studied the documents 

of the students' mathematics courses (e.g., a script from the lecture, accompanying 

tasks, and solutions) – if available – in order to refer to them. The second interview 

revisited the questions asked at the first one and added questions about the difference 

between mathematics at school and mathematics at university (Hermanowicz, 2013). 

For example, we asked to relate the concept of function discussed at university with 

the concept of function discussed at school. The representations of function were 

supplemented by other representations addressed at university. 

Sample 

The first measurement point consists of interviews with 30 upper secondary school 

students, aged 17-19, from 12 German schools. The students took mathematics as a 



Jetses 

3 - 118 PME 46 – 2023 

basic course (11 students) or as an advanced course (19 students). The range of the 

students' report grades in mathematics was from 5 to 15 (the maximum) points. All 

students interviewed stated, at the time of the interviews, their willingness to take up 

studies in a mathematics-related subject (e.g., mathematics, physics, business studies, 

etc.). The second measurement point comprises interviews with the 15 students who 

have taken up a mathematics-related course of study. (Twelve students have changed 

their plan of study and entered a non-mathematics program, started a voluntary social 

year, or other. Contact has been broken off with three students.) These 15 students 

studied logistics or aerospace, physics, biology, chemistry, (business) informatics, 

business administration, industrial engineering, and mathematics as a teacher or 

specialised mathematics. All students took at least one mathematical course (e.g., 

mathematics for natural scientists or economists, analysis, linear algebra, discrete 

structures) in the first semester. The students are spread across seven universities and 

three universities of applied sciences in Germany. 

Analysis 

The 15 longitudinal cases are the subject of the data analysis. In the sense of the case 

study approach, we include all information available for the case (existing information 

about the study programme, if applicable, documents from the study, the interviews) 

in the data analysis (Thomas, 2011). In order to obtain an overview of the responses 

and be able to better compare the two interviews conducted with one student at two 

different times, the transcripts were transcribed and coded (Hermanowicz, 2013). The 

coding concentrated on the extent to which different conceptions of function 

(according to the APOS-Theory) can be identified in the learners' utterances. In 

addition, it was analysed which representations were mentioned by the learners (e.g., 

graph, term). Up until now, we have mainly compared the two measurement points for 

almost all interviews. An interview’s comparison of different students is ongoing 

research. Answers to questions asked in a similar format at both the first and second 

measurement points are compared in a table for each study participant in order to 

identify and discuss consistent and changing components of the conceptions of 

function (Hermanowicz, 2013). In order to be able to grasp a case in all its complexity, 

and in particular to take different perspectives on the case, we analysed and discussed 

the cases at least in pairs with regard to the research question. 

RESULTS – THE CASE OF TOM 

In this section, excerpts from the interview with Tom (a pseudonym) are presented. 

The case of Tom was chosen for this paper because it can be used to analyse both 

similarities and differences between the conception of function constructed at school 

and later at university. After graduating from school, Tom started studying business 

informatics at a German university. In his first semester, he took the course "Discrete 

Structures," in which the concept of function was discussed in detail. The function 

concept was introduced in the course as follows: A relation is a function (mapping) if: 

For every 𝑎 ∈ 𝐴 there is exactly one 𝑏 ∈ 𝐵 with (𝑎, 𝑏) ∈ 𝑅. Functions were represented 
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mainly by bipartite graphs and set notation such as: f = {(𝑎, 2), (𝑏, 3), (𝑐, 1)} ⊆ 𝐴 × 𝐵 

for 𝐴 = {𝑎, 𝑏, 𝑐}  und 𝐵 = {1,2,3}. At the end of Tom’s school career, he describes the 

concept of function as follows: 

Interviewer: What comes to mind about the concept of function? 

Tom: The function is typically 𝑓(𝑥). The 𝑦-result is somehow dependent on 𝑥. 

There are different types of functions, whether it is a straight line, a 

quadratic function, or an 𝑒-function. 

Interviewer: Can you give examples of functions? 

Tom: Classically, 𝑓(𝑥) = 𝑚𝑥 + 𝑏, the equation of a straight line. There are 

quadratic equations. That is something with x², thus 𝑓(𝑥) = 3𝑥2 + 7𝑥 −
3. Then there were 𝑒-functions, as previously stated. For example, 𝑓(𝑥) =
3𝑒5𝑥 − 3. 

Interviewer: Can you represent a function in another way? 

Tom: As a graph and as a table of values. So that you insert single values 𝑓(𝑥) 

and 𝑥. Then you set up such a table. 

Later in the interview, Tom should explain the meaning of functions to a classmate: 

Tom:  It's easiest to explain with an example. You have so many buns; how 

expensive is that in total? So that you then consider that you don't have to 

calculate it every time but rather set up something general for it, where you 

then see, every time you go to the bakery, how expensive it is in total. 

In summary, we can identify an action conception, a process conception, as well as an 

object conception in Tom's statements. The action conception becomes especially clear 

when Tom talks about setting up a table of values and inserting single values into the 

function term. His explanation of the meaning of functions, in which he points out that 

it is characteristic for a function "not to calculate a value every time" but to "set up 

something general," shows that Tom has interiorized this action into a process, as is 

shown by his explanation of the meaning of functions. The object conception is 

indicated in the interview passage by Tom's comments on function classes. This object 

conception is also highlighted later in interview, for example, when Tom discusses 

function derivation or integration.    

The interview passage from the school is in contrast with the following interview 

passages from the interview after the first semester: 

Interviewer: What comes to mind about the concept of function? 

Tom: For me, a function is the mapping of certain values onto other values. It is 

known from school that a function assigns a 𝑦-value to each 𝑥-value. This 

fact is expressed either way, so I’m more familiar with it from school, by a 

mathematical term. For example, 𝑥2. In contrast, in the lecture on discrete 

structures, concrete quantities were given and it was indicated which values 

map onto which other values. You can always represent functions 

graphically, either in a coordinate system or as we had it at the university: 
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You have the set with the numbers 1 to 5, which map onto another set. We 

always had that with arrows, which then mapped onto each other. You can 

assign certain properties to functions. In school, we had something like 

symmetry and slope. We had the three terms injective, surjective and 

bijective at the university. 

Tom structures his answer according to the content covered at school and the content 

covered at university. Taking this answer, Tom is asked how he "relates what was 

discussed at university about the concept of function to what was thematised at school," 

to which Tom says: 

Tom: I changed my basic idea of the term function. I now understand it in such a 

way that a value maps onto a certain other value and is connected to it. In 

school, you always have this 𝑥 and 𝑦. What was certainly different was 

simply how functions were defined. In school, this is often done more 

generally by means of a mathematical expression. We never really had that 

in university, but we always had those really concrete values mapped onto 

other concrete values. However, you can also understand the functions 

from school in the sense that certain values are mapped onto other values. 

In summary, the following interpretations of the interviews with Tom were elaborated:  

1. Already at the beginning of the second interview, it becomes clear that Tom, without 

explicit demand, very reflectively contrasts and partly relates the contents of the 

concept of function dealt with at school with the contents dealt with in the lecture on 

discrete structures. We reconstructed that by comparing the contents, he divides the 

function concept into functions that map from ℝ to ℝ (as functions were primarily 

treated in school) and functions that map from ℕ to ℕ (as functions were primarily 

treated in the lecture on discrete structures). 

2. It seems that the lecture on discrete structures caused Tom to reflect on the 

conception of function he constructed in school. This reflection is a de-encapsulation 

of the object conception to a process conception. This de-encapsulation is supported 

by the fact that, with respect to both functions from ℝ to ℝ and functions from ℕ to ℕ, 

Tom can imagine unspecified inputs being transformed to produce outputs. However, 

he does not recognise that functions from ℕ to ℕ can also follow a function rule, such 

as 𝑥2. He associates such a "general" function rule expressed as a function only with 

the concept of function as he learned it at school.    

3. An object conception of function, as can be seen in several places in the first 

interview, becomes briefly clear in the second interview when Tom talks about 

properties of functions like symmetry and gradient, or injective, surjective, and 

bijective. This object conception, which can only be shown briefly, and the overall 

separation of the concept of function into functions that map from ℝ to ℝ and from ℕ 

to ℕ, respectively, call into question Tom’s ability to dynamically combine his action 

conception, process conception, and object conception into a coherent schema of the 

concept of function independent of the domain and codomain. Tom also underlines this 
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separation linguistically while using the term "school function" in the further interview 

when talking about the functions from ℝ to ℝ. 

DISCUSSION & PERSPECTIVES  

Discussion and outlook for cross-case analyses  

As previous studies have shown (e.g., Carlson, 1998; Vandebrouck, 2011), the case of 

Tom highlights that numerous students very strongly associate the concept of function 

with a function term both at the end of their school career and at the end of the first 

semester. In this respect, this study, like the study by Juter (2010), shows, in the sense 

of conceptual change theory that mental structures constructed at school are stable to a 

certain extent. The first interview with Tom and other cases in the study show that the 

work with these function terms is not limited to the use of concrete values in the sense 

of an action conception. Rather, we could also reconstruct a process and object 

conception in Tom's case, particularly near the end of his school career.  

The cross-case analyses reveal that it is highly dependent on the content of the specific 

course in which way first-year students draw on the conceptions they constructed in 

school. The fact that Tom is very reflective in contrasting the content addressed at 

school with the content addressed at university sets him apart from other cases in this 

study. Other students, especially those who took a course in calculus or mathematics 

for physicists, chemists, economists, or similar, hardly recognise any breaks in content 

between what was thematised at school and at university regarding the concept of 

function. This becomes especially clear in the case of Ben and his statements about the 

concept of function in the second interview. In contrast to Tom, when he is asked to 

"relate what was discussed at university about the concept of function to what was 

thematised at school," Ben says: "A function is now, at university, nothing different 

from what it was still in school. The only difference now is that you may encounter 

jumps and kinks more frequently."  

Methodological reflection and perspectives 

The case study approach has proven successful in analysing different developments of 

functional concepts in detail. Although we cannot make any quantitative statements 

with this case study design, individual developments of ideas could be traced very 

precisely. In particular, the case study design made it possible to investigate these 

developments with respect to different courses of study. Looking at different courses 

of study is important insofar as mathematics instruction at school should also prepare 

students for different courses of study. The fact that we conducted the interviews 

digitally in the second part of the study did not negatively affect the data collection. 

Due to the digital teaching, the students were used to the format of a video conference 

and had the possibility to take notes digitally or use the camera for gestural 

underpinnings. The presented findings have to be regarded as a partial result of our 

study. We still need to analyse a few cases in detail. The comparison of different 

people’s interviews, in particular, is ongoing research.  
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LEARNING ABOUT STUDENT'S STRATEGIES BASED ON 

AUTOMATED ANALYSIS: THE CASE OF FRACTIONS 

Amal Kadan-Tabaja and Michal Yerushalmy 

University of Haifa 

 

We argue that learners’ generated examples can do more than answer mathematical 

task requirements. Studies show that examples may also reflect students’ strategical 

thinking, which is fundamentally related to how students solve problems. Our argument 

is relevant to the use of automated assessment platforms. A central challenge of such 

platforms is to provide automated data that enables learning about students’ strategies 

based on their examples. We report here on a study that examined data analysis of 

submitted examples of a 7th-grade student engaged in two activities comprising six 

example-eliciting tasks in the context of fractions. Characterization of the examples’ 

properties, provided by automated assessment of the student's submissions, enabled us 

to learn about his strategies to answer the tasks, such as the expanding strategy.  

INTRODUCTION 

Mathematical strategies are students’ methods to solve problems with mathematical 

content, whether their answers are correct or not (Hegedus & Otálora, 2022). Ellis et 

al. (2019) offered an analytical tool to examine aspects of students’ thinking by 

examining their self-constructed examples when they involve a process of exploration, 

development, and justification of mathematical conjecture. According to their study—

and unlike ‘criteria’, which refer to students’ reasons for choosing individual 

examples—students’ strategies refer to students' reasons for choosing sets of examples 

that: (1) represent a diversity of cases across a range of features; (2) represent 

systematic variation (e.g., shifting each successive example by varying one or more of 

its elements); and (3) represent a particular mathematical property or set of properties.  

Following the study by Ellis et al. (2019), this study investigated the innovative 

possibility of using automated assessment to learn about students' strategies, as 

reflected in students’ examples constructed as answers to a sequence of tasks. Based 

on known strategies of comparing fractions, the aim of our study was to explain 

students' mathematical reasoning based on the analysis of the submitted self-

constructed examples. We asked, how might we learn about students’ strategies based 

on automated analysis of their examples submitted as answers to a sequence of 

example-eliciting-tasks in the context of fractions? Our data is based on examples of 

one student engaged in two activities comprising six tasks in the context of fractions. 

We use the automated analysis provided by the assessment platform STEP to collect 

evidence of the student’s strategies while comparing fractions and choosing equivalent 

fractions. We designed example-eliciting-tasks (EETs) that ask students to construct 

examples by an interactive diagram to support or contradict a mathematical claim or to 

create examples under given constraints (Yerushalmy & Olsher, 2020). 
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THEORETICAL BACKGROUND 

Fractions are a central topic in the mathematical curriculum. Previous research has 

found that students often have difficulties considering fractions (Pedersen & Bjerre, 

2021). Some of the common (mis)conceptions mentioned in the mathematical 

education literature are these: (a) some students consider fractions as necessarily being 

less than 1; (b) students are usually taught to find equivalent fractions by multiplying 

both the numerator and denominator of a fraction by the same integer— some students 

erroneously use additive instead of multiplicative reasoning; (c) some students 

consider fractions as equivalent only when they look identical or have the same 

numerator or denominator; otherwise, (d) in the comparison of fractions, students tend 

to interpret a/b as two independent whole numbers, which leads them to conclude that 

a fraction will be larger when its numerator, its denominator, or both are larger. The 

roots for the above conceptions could be found in misunderstanding the strategies 

taught for comparing fractions, as in the case of finding equivalent fractions by using 

the expanding method or when comparing fractions by using a benchmark of one 

whole. Other such conceptions are students' strategies that they develop on their own 

and that lead them to common mistakes (Schneider & Siegler, 2010). Studies have 

shown that analysing the mathematical properties of students’ answers over sets of 

examples can reflect reasoning (Lithner, 2003). 

In this study, the term ‘characteristic’ refers to each of the predefined properties of the 

first fractions that the student chose to deal with (e.g., a fraction that is less than one), 

these first fractions are important because they are considered the first step in problem 

solving; or the predefined relations between the properties of the first fraction (a 

given/chosen one) and the properties of the fractions with which the student chose to 

fulfill the requirements of the tasks (e.g., fractions that have the same denominator as 

the given/chosen fraction). The term ‘strategy’ refers to the presence of characteristics 

that the student chose to use over sets of examples throughout a sequence of EETs.  

We defined specific characteristics based on the common (mis)conceptions mentioned 

in the mathematical curriculum and the literature. STEP provided us with automated 

analysis indicating whether these characteristics are present in the students’ 

submissions or not. The automated analysis represents the presence of the 

characteristics of each example differently in two activities: by words in the first 

activity on equivalent fractions (Table 1), and by a combination of words and visual 

representations  that reflect a conceptual landscape that "is a landscape in the sense that 

it gives a visual planar density complex representing student perceptions” (Leung & 

Lee, 2013, p. 366) in the second activity of comparing fractions (Table 2).  

In two of the tasks, these characteristics were formulated in the form of statements as 

part of the task. The student was asked to identify and mark the statements as existing 

in his examples in order to characterize them prior to submission. In addition, the 

requirement of these tasks was to use as few statements as possible, which we called 

LoN tasks (Kadan-Tabaja & Yerushalmy, 2022), with the aim of making the student 
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rethink the characteristics of his examples and in an attempt to examine if the student 

is able to critique (students could revise their answers) the choices he made.  

In the interactive diagram (Fig. 1) that is used in this study fractions are represented 

in the Cartesian coordinate system by a point whose vertical coordinate is the 

numerator and whose horizontal coordinate is the denominator (Arnon, Nesher, & 

Nirenburg, 2001). All equivalent fractions are represented on a straight line passing 

through the origin, which appears automatically when the fractions are equivalent. The 

origin and points on the vertical axis do not represent any fraction. Points that exist on 

the line with a larger slope represent larger fractions (Fig. 9). The red point represents 

the first fraction that the student chose to deal with, and the green/ blue points represent 

fractions that the student chose in order to fulfill the requirement of the task. 

METHODOLOGICAL CONSIDERATIONS 

We examine a case of a 7th-grade student's submitted examples related to two activities 

on the term of equivalence and comparable fractions, which were subjected to an 

automated analysis. The goal of the analysis was to identify his strategies. Each activity 

had three tasks. The student worked on the activities using his computer individually, 

90 minutes for each activity. The student was selected following his and his parents' 

agreement to participate in the study.  

The first activity contained three tasks. In every task, the student was asked to choose 

a fraction by dragging the red point (Fig. 1), then to construct other fraction/s that are 

equivalent to the one he chose. The student was asked to construct three examples that 

are as different as possible, and in another task to characterize his examples before 

submitting them, using a given set of four statements that formulate possible 

characterization of the examples (Table 1). The activity was formulated as follows: 

Tasks 1 and 3 were, “Choose a fraction, then construct three fractions that are 

equivalent to the fraction you chose” (https://www.geogebra.org/m/bvzqpnhb). Task 2 

(Fig. 2) was “Construct two equivalent fractions that have as few statements as possible 

from the given set of statements.” (https://www.geogebra.org/m/yehmzt5q). The first 

characteristic should be found in any example that answers the requirements (Ch1).  

Table 1. Characteristics/statements of the first activity (equivalent fractions) 

Ch1) The visual representation line crosses all points at the same time (Fig. 1).  

Ch2) You chose the first fraction to be less than one. 

Ch3) One fraction is an expansion or reduction of the red fraction. 

Ch4) The numerator and the denominator of one fraction are larger additively by the same number 

than the numerator and the denominator of the other fraction. 

The second activity (https://www.geogebra.org/m/rwxxpnbw) contained three tasks 

of comparing fractions. The activity requirement was to construct (green/blue) 

fraction/s that are larger than a chosen or given (red) fraction. During tasks 2 and 3, the 

student was asked to characterize his example/s before submitting them according to a 

set of statements that formulate the characteristics of comparable fractions. The choice 

https://www.geogebra.org/m/bvzqpnhb
https://www.geogebra.org/m/yehmzt5q
https://www.geogebra.org/m/rwxxpnbw


Kadan-Tabaja & Yerushalmy 

3 - 126 PME 46 – 2023 

of statement was reflected immediately in a visual landscape of the specific 

characteristic that the statement formulated (Table 2).  

Table 2. Characteristics/statements of the second activity (comparing fractions) and 

the visual landscape of each (as response to the student's choice). 

 

M1) Comparing fractions by using a benchmark of one whole. 

The green/red area represents all fractions that are larger/smaller 

than one, respectively. The line between them represents fractions 

equivalent to one whole.   

 

M2) Comparing fractions by using a benchmark of one half. The 

green/red area represents all fractions that are larger/ smaller than 

one half, respectively. The line between them represents fractions 

equivalent to one half. 

  

M3) Comparing 

blue fractions by 

using the same 

numerator as the 

red fraction.   

M4) Comparing 

blue fractions by 

using the same 

denominator as the 

red fraction. 

 

M5) The numerator and the denominator of each blue fraction are 

larger than the numerator and the denominator of the red 

fraction, respectively (misconception). 

 

M6) The visual representation line of the blue fraction is above 

the visual representation line of the red fraction. (This 

characteristic is parallel in its essence to Ch1 in the first activity; 

both are based on the visual representation line). This is true 

when the student's example fulfills the requirements of the tasks. 

  

M7) The denominator of each blue fraction is a multiple of an 

integer of the denominator of the red fraction (This characteristic 

is parallel in its essence to Ch3 in the first activity, both are based 

on expanding the first fraction). 

The activity was formulated as follows: Task 1: “Choose 10 fractions that are larger 

than the fraction 
2

5
”; Task 2: “Choose a fraction. Then choose 10 fractions that are larger 

than the fraction you chose. From the set statements of comparing fractions, choose 

which statement you used while constructing your examples.” Task 3: “Construct two 

fractions, one larger than the other, that apply as few statements as possible from the 

given set of statements.” In this task, the interactive diagram automatically presents 
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which fraction is larger. The characteristic M6 should be found in any example that 

answers the requirements. 

Data sources and analysis. 

 To answer the research question, we designed sequences of EETs in the context of 

fractions. The student was asked to submit examples of these tasks. For each submitted 

example, STEP provided us with an automated analysis of the characteristics presented 

in it. The automated analysis provided us with data about the following: (1) the 

presence of the characteristics of the first fraction that the student chose to deal with; 

(2) the presence of the characteristics related to the relations between the first fraction 

(the chosen/given fraction) and the fraction/s that the student chose to use to fulfill the 

requirements of the tasks; (3) the presence of characteristics in the sequence of six 

EETs. Based on this data, we tried to identify (4) the student's strategies that are 

consistent with strategies that are mentioned in the literature. Then, (5) for strategies 

that we identified, we tried to assume the reason that led the student to choose them, 

according to Ellis et al. (2019).  

RESULTS 

To answer the research question, we represented the characteristics that were present 

in the examples of the student in the two activities (six tasks) based on the automated 

analysis. Characteristics are marked in italic case. We focused on the LoN tasks which 

are marked with a *. Based on this data, we try to point out the student's strategies of 

choosing fractions.  

Student examples in the first activity  

Task 1 (
𝟏

𝟐
=

2

4
=

3

6
=

4

8
)  

(
𝟏

𝟑
=

2

6
=

3

9
=

4

12
) 

 (
𝟏

𝟒
=

2

8
=

3

12
=

4

16
) 

Fig. 1 

The interactive diagram 

and an example 

submission from Task 1 

 

Task 2 

* 
(

6

3
=

18

9
),  (

2

1
=

4

2
), 

(
3

3
=

6

6
) 

Fig. 2 

An example from Task 2 

 

Task 3  (
𝟏

𝟐
=

2

4
=

3

6
=

4

8
), (

𝟏

𝟑
=

2

6
=

3

9
=

4

12
), (

𝟏

𝟒
=

2

8
=

3

12
=

4

16
) 

In Tasks 1 and 3, the automated analysis provided us with the information that the 

student’s examples were correct (Ch1). The characteristics of the first fraction he chose 

to deal with (the fractions in bold) were less than one (Ch2), and we noticed that he 

chose specifically a unit fraction. In addition, the characteristic of finding equivalent 

fractions based on expanding was used (Ch3).  
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Based on the characteristics of the student's examples in the LoN task (Task 2), the 

automated analysis provided us with a new characteristic of the first fraction the student 

chose to deal with (fractions that are not less than one). We assume that the task 

requirement of constructing examples using as few statements as possible made the 

student rethink the characteristics of his examples. This may indicate that the task 

requirement for constructing counter-examples of the statements enabled the student 

to critique Ch2 while choosing the first fraction. However, the automated analysis 

showed that the student still based his answer on expanding (Ch3) in order to find 

equivalent fractions in his examples.  

Student examples of the second activity 

Task 

1 

The student chose these 

fractions as larger than the 

first fraction: 
3

5
,

4

5
,

5

5
,

5

10
,

6

10
,

7

10
,

8

10
,

9

15
,

9

20
,

11

20
 

Fig. 4, the 

first fraction 

(
2

5
) was 

given. 

 

Task 

2 

The student chose these 

fractions as larger than the 

first fraction: 
2

3
,

3

3
,

9

6
,

4

9
,

5

9
,

7

12
,

8

12
,

9

15
,

11

15
,

10

21
  

Fig. 5, the 

student 

chose (
𝟏

𝟑
) as 

first fraction 

 

Task 

3 * 

𝟏

𝟓
<

4

10
 (M5, M6, M7). Fig. 9, the 

student 

chose (
𝟏

𝟓
) as 

first fraction 
 

Throughout the activity, the automated analysis showed that the examples of the 

student were correct (M6). In addition, in the first task, it showed that the characteristic 

M7 was identified in his examples (Fig. 4). In Task 2, the student had the opportunity 

to choose the first fraction, and the automated analysis showed that the characteristic 

of the first fraction was identified as less than one (Ch2) and a unit fraction. 

Furthermore, it showed that characteristic (M7) was identified; this characteristic is 

based on expanding the first fraction in order to find larger fractions (Fig. 5).  

In the LoN task (Task 3), when the student was asked to construct an example that has 

as few statements as possible, the automated analysis identified characteristics M5, M6 

and M7 (Fig. 9). The student could not provide an example with fewer characteristics, 

and he was unable to critique the characteristic M7 that was present in his examples 

throughout the activities. 

In summary, based on identifying characteristics that the automated analysis provided 

us over sets of student's examples throughout a sequence of tasks and activities, we 
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were able to identify a student's strategy of choosing the first fraction to deal with, and 

the student's strategy of choosing examples that fulfill the requirements of the tasks. 

The student’s strategy of choosing the first fractions was based on unit fractions which 

were less than one. In addition, the strategy of finding fractions to fulfill the 

requirements of the tasks was based on expanding the chosen/given fraction. We 

assume that the student's strategies of choosing the set of examples was based on the 

representation of relevant mathematical properties that fulfill the requirements of the 

task according to Ellis et al. (2019).  

DISCUSSION AND CONCLUSIONS 

The empirical results show that we were able to identify characteristics of the student's 

examples throughout the activities, which helped us learn about his strategical thinking. 

Based on the automated analysis of the characteristics of the student's examples, we 

were able to identify a strategy of choosing the first fraction to deal with, namely the 

student chose fractions that are less than one, specifically unit fractions. His strategy 

throughout the two activities was to find examples that fulfill the requirements of the 

tasks based on expanding the given/chosen fraction. The strategies of this student for 

choosing fractions were based on common examples with known properties that are 

compatible with common conceptions. The student was able to critique his strategy 

thinking regarding the type of fractions that he chose when the tasks required it. 

However, he was unable to critique the strategy that he chose in order to fulfill the 

requirements of the task.  

The findings are consistent with the literature, which has reported that technological 

assessment platforms make it possible to supply reports based on automated analysis 

that reveals trends in performance over time, and enables tracking learners’ learning 

progress, especially their strategies, concepts, and structures, rather than mechanical 

processes (Stacey & Wiliam, 2012). This is especially true when the analysis is based 

on the students' examples in a collection of tasks performed sequentially in an 

exploration process (Luz & Yerushalmy, 2019). A central challenge of technological 

assessment platforms is to develop ways that enable automated analysis of rich, 

complex, and big data throughout sequences of EETs. The automated analysis shown 

in this study provided information about the characteristics of submitted examples 

throughout a sequence of tasks, which helped us identify the learner’s strategies. Our 

argument is that such automated information can be used more efficiently if the 

technological platform enables automated analysis of a sequence of tasks and activities 

in order to support planning differential teaching or adapted learning. The study was 

limited by one participant and should be reproduced with larger groups. In addition, 

we did not correlate between the statements the student chose and the characteristics 

that the automated analysis identified, and the correctness of the student submissions 

was not crucial.  
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HOW A TEACHER'S PROFESSIONAL IDENTITY SHAPES 

PRACTICE: A CASE STUDY IN UNIVERSITY MATHEMATICS 

Thomais Karavi 

University of Groningen, the Netherlands 

 

This study explores the nature of a teacher’s professional identity and how that shapes 

the nature of lecturing. The participant is a purposefully selected mathematics lecturer 

and the context of the study is a set of introductory university mathematics lectures. 

The study is theoretically framed within the identifying activity framework (Heyd-

Metzuyanim, 2013). The analysis showed that the identifications of the lecturer about 

himself (1st Person) and about the students (3rd Person) and the comments on the 

mathematizing that takes place in research influenced the comments on mathematizing 

that happened in lectures. For the purpose of this study, two examples are presented 

under the theme “mathematics as a building”. The findings could be used as input for 

the design of professional development programs for university lecturers. 

INTRODUCTION 

In the past four years two review studies have been published that explored 

professional, mathematics teacher identity and emphasized the need to focus on 

practice (Lutovac & Kaasila, 2019) as well as the nature of mathematics (Graven & 

Heyd-Metzuyanim, 2019). The exploration of professional identity has been receiving 

increased attention and several studies aimed at its characterization. For example, 

Bjuland and colleagues (2012) collected reflective narratives over two years that 

shaped the development of the identity of an experienced mathematics primary teacher, 

using the definition of identity from Sfard and Prusak (2005). From this study, identity 

indicators occurred, reflecting the relationship of the teacher with the community of 

participants. Defining identity as “shifting experiences of being, becoming and 

belonging related to the profession” (p. 469), Skott (2019) explored the identity 

development of a participant while engaging in different practices, like professional 

development programs. The study followed the changes in the identity of the 

participant from being a mathematics teacher to becoming a mathematics teacher. 

Another study that was undertaken with the development of a mathematics teacher's 

professional identity was by Losano et al. (2018). Collecting data from the first 

teaching year of the participant, the study showcased the complexity of this period for 

both the personal and professional life of the teacher. In these studies, mathematics is 

the context and addressed as the background, agreeing with Graven and Heyd-

Metzuyanim (2019) earlier observation. Additionally, studies that focus on 

professional identity rarely examined the identity of lecturers–research mathematicians 

who teach either introductory or advanced mathematics courses in mathematics 

bachelor programs. The majority of these studies focused on pre/in-service elementary 

or mathematics teachers, or teacher educators (Graven & Heyd-Metzuyanim, 2019; 
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Lutovac & Kaasila, 2019). An exception is a study by Kensington-Miller et al. (2014) 

which focused on two lecturers, a mathematician and a mathematics educator, and the 

shifts in their academic identity while making changes in their teaching practice. 

For the purpose of this study, identity is defined as “collections of stories about persons 

or, more specifically, as those narratives about individuals that are reifying, endorsable, 

and significant” (Sfard & Prusak, 2005, p. 16). In university mathematics classrooms, 

the lecturers bring with them stories-narratives about their multiple roles that give rise 

to an interplay of different identities (i.e., mathematics teacher/learner/researcher). 

These identities are not stable but constantly developing and evolving in parallel to the 

participation in the mathematical discourses. The different identities reflect stories 

about the ways the lecturers learn mathematics, were taught mathematics, do research 

in mathematics, their vision about teaching, the forms of participation in the 

mathematical discourse, and their assumptions about “to whom” they are teaching to.  

In the context that defined this study, lectures are held by lecturers with the primary 

responsibility to do research in mathematics. The lecturers are responsible to teach 

students signed to mathematics bachelor degrees with little or no prior teaching 

training. It is still unknown how a lecturer's identity informs the nature of lectures. 

Thus, the research question of this study is “How does a purposefully selected lecturer's 

professional identity inform the nature of the lecturing?”. 

Identifying activity 

Despite the increasing interest in identity-based research, identity has received much 

criticism mostly associated with the fact that its conceptualization remains not clear 

(Graven & Heyd-Metzuyanim, 2019). Aiming a precise conceptualization, the 

investigation of the development of identity in the engagement with the mathematical 

discourse can be done by analyzing the identifying activity (Heyd-Metzuyanim, 2013). 

Identifying activity uses the signal AuthorSubjectAudience from Sfard and Prusak (2005) to 

exemplify “who identifies whom and to which audience” (Heyd-Metzuyanim, 2013, p. 

345, emphasis in original). This signal may be valuable to give access to the stories 

told by the same person about oneself or others. Therefore, 1st Person identifying has 

a signal AAc (A is identifying A to C) whereas 3rd Person identifying has a signal ABC 

(A is identifying B to C). To address the identifying activity, a separation between 

mathematizing (communication about mathematical objects) and subjectifying 

(communication about the participants of the discourse) could facilitate the emergence 

of the stories (Heyd-Metzuyanim, 2013). The direct subjectifying instances are of three 

layers moving from the specific level - “actions in a specific context”, to the general 

level that concerns “general evaluations of one’s participation in the discourse” and 

last to the most general level that is directly related to identifying activity (Heyd-

Metzuyanim, 2013, p. 345). Moreover, given that the talk of a person does not always 

convey direct subjectifying instances, identity can be interpreted through implicit 

identifying instances where the talk conveys “implicitly message X about a person, 

while explicitly stating the message Y” (Heyd-Metzuyanim, 2013, p. 346).  
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METHODOLOGY 

This study is part of an ongoing project that investigates lecturing in university 

mathematics. The case in this study is defined by a mid-career, highly perceived among 

students, lecturer (he/him/his) with 10 years of teaching experience. The lecturer 

started teaching in lectures during his graduate studies as a teaching assistant and then 

as a guest lecturer. Later in his professional career, he coordinated his own courses. 

For a year, he was hired in a teaching position where he got, as he said, his “real 

teaching experience”. At the time of the data collection, he had a research position with 

a small percentage of teaching per academic year.  

During the time of the data collection, the lecturer was assigned to teach an 

introductory, proof-oriented analysis course in an online format for 103 students signed 

to mathematics bachelor degrees. I collected data for eight weeks (duration of the 

teaching block) through different sources: eight, weekly, semi-structured interviews, 

17 video-recorded lectures, and multiple types of informal communication with the 

lecturer. Interviews served as the primary source of data for this study. Each interview 

was designed to focus on a topic relevant to his teaching, learning, or research 

experience. His views about the students and mathematics were also discussed. In order 

to explore the topic, the interviews were around specific teaching episodes (relevant to 

the presentation of a theorem and its proof) that occurred from classroom observations. 

In some cases, quotes were isolated from the observations (i.e., “it is tricky”, 

“mathematics are messy”) for further discussion. Each interview took place in an 

online environment, with attendants the lecturer, and me. The duration of each 

interview was approximately 30 minutes and all the interviews were recorded and 

transcribed. 

Data analysis 

For the purpose of the analysis, I carried out a content analysis of each interview 

(Merriam, 2019). The goal was to identify the main themes of each interview and the 

sub-themes under them, through constant comparisons. For example, one of the themes 

across the interviews was mathematics as a building with sub-themes including among 

others the following: using previous definitions and theorems, structuring a proof, and 

producing mathematics. Then, for each interview, I moved to identifying tables for the 

mathematizing and subjectifying instances (Heyd-Metzuyanim, 2013). Moreover, for 

each instance in the table, I added signal for 1st Person (stories about the lecturer from 

the lecturer to the interview attendees) and 3rd Person (stories about the students from 

the lecturer to the interview attendees) identifications. In this phase, I realized that the 

mathematizing was not direct but rather a meta-commentary of the mathematizing that 

happened in either the lectures or research. The phase concluded with complete 

identifying tables that revealed the complexity of the lecturer’s talk and the interplay 

of the signals in his talk. For the last step of the analysis, I sought for a detailed 

description of each of the identified themes and I chose to code the interviews. I added 

in-vivo and descriptive codes, as well as theoretically informed codes. The codes were 
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categorized under each theme offering descriptions of the themes. The analysis 

finished with the connection of the themes with the identifying activity and the signals 

proposing insights into the interplay and influence of the latter for the formulation of 

the former.  

RESULTS 

Lecturer’s position focused mainly on doing research in his field. He valued teaching 

and expressed his interest to reflect on his teaching but he did not identify himself 

primarily as a teacher. When he was asked to comment on his teaching experience, he 

said:  

It's basically strange that we were getting hired, they said, “do you teach this course?” … 

It's all based on my own experience as a student and my own ideas of how I would like to 

be taught if I was a student right now.  

In this excerpt, the lecturer implicitly identified himself as a teacher who brings into 

the lectures his experiences as a student and his ideas of how he “would like to be 

taught” if he was “a student right now”. He emphasized that he was not hired to teach 

but he was asked to teach, distancing himself from teaching as his primate 

responsibility. In the following paragraphs, a close analysis of two examples from the 

interviews is reported, relating teaching in the lectures with his research experiences.  

The first example has as a starting point an observation from the lectures where the 

lecturer used frequently the phrase “what does it mean?” during the proving processes. 

In the following excerpt, he was asked to reflect on the meaning of this phrase in the 

episode from the lecture around the teaching of the Mean value theorem [Figure 1]:  

Yeah, so I think in mathematics, as the way I see it, you can think about things in two 

different ways. There's basically a very intuitive way of thinking, which is very playful, 

and... which is all about intuition and getting a sort of basic understanding. And then there's 

a more formal way of thinking. And what I noticed when I do a proof myself for something 

that I don't know yet, for instance, an exercise I have to solve, a proof or a paper doesn't 

matter, really, there's always this interplay between thinking about a result in terms of 

intuition, getting a feeling for the problem. And then also thinking about the theorem in a 

more formal way. So, it also has something to do with how can you remember stuff in the 

easiest possible way. 

Figure 1: Mean value theorem presentation from the slides of the lecture. 
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In this excerpt, a meta-commentary on the mathematizing alongside with general 

subjectifying appeared. The lecturer commented on the mathematizing that takes place 

in his research when he deals with tasks like solving exercises, proving a theorem, or 

writing a research paper. He identified two ways of thinking about mathematics, the 

intuitive and the formal way. He characterized the intuitive way as playful aiming for 

a basic understanding and “a feeling” of the task. In his research “there's always this 

interplay” between the two ways of thinking, characterizing in that way his general 

participation in the mathematical discourse. Thus, the 1st Person signal of the lecturer’s 

identity referred to stories of him producing mathematics within this interplay. The 

comments on mathematizing that happens in the research raised the need to remember 

the theory “in the easiest possible way”. Following this need, he continued as follows:  

So what students typically do is they try to learn by heart, the exact formulation of the 

theory. But that's a lot of information that you have to store in your mind. For instance the 

Mean value theorem, you have the condition 𝑓 is continuous at a closed interval, 𝑓 is 

differentiable at the open interval and then, etc. [referring to the conclusion of the 

theorem]. That's a lot of information to store. But if you remember the picture, I think if 

you remember the picture or the intuitive meaning behind a theorem, it's easy to, yeah, 

retrieve the conditions that were needed.  

The lecturer moved to an implicit, 3rd Person identification of the students (that attend 

the course) as ritual participants in the mathematical discourse (e.g., Heyd-

Metzuyanim, 2013) learning the theory by heart arguing that the information they need 

to remember is much. He then referred to the conditions of the Mean value theorem, 

discussing his choice to present the picture [Figure 2] and commenting on the 

mathematizing that happened in the lecture. Thus, from his point of view, the 

presentation of the picture could support the intuitive way of thinking, functioning as 

a way to remember the conditions of the theorem. Notably, both the mathematizing 

that happened in his research and the implicit identification of the students brought the 

picture in the lecture as a way to potentially support students’ mathematizing.  

Figure 2: Picture used for the presentation of the Mean value theorem from the slides 

of the lecture. 

 

The second example is around the discussion of the added value of the lectures. In the 

excerpts, the lecturer commented on the differences in reasoning in proofs in the 

textbook of the course, in the lectures, and research.  
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I mean, getting to prove in the first place is a very messy process. You have an assumption, 

and you have a conclusion that you want to reach. Somehow you have to bridge that gap. 

What I typically do myself is sometimes I start from the assumption and I try to work my 

way towards the conclusion. But sometimes I also do it the other way around: I start from 

the conclusion and work my way backward and hopefully, in the middle, you will find a 

way to close the gap… And that's something that I do try to emphasize a little bit in the 

lecture, that the thought process is different from, yeah, what you have in the very end. 

The lecturer commented on the mathematizing in his research arguing that coming up 

with proof is “a very messy process”, describing the strategies he follows in an effort 

to “bridge the gap” between assumptions and conclusions. Within mathematizing, an 

implicit identification of lecturer’s identity as researcher appeared where his goal is the 

mathematical production (i.e., “getting to prove in the first place is a very messy 

process”) adding in the 1st Person identification. The comments on the mathematizing 

in research informed his comments about lecturing when he tried to emphasize that the 

thinking process (coming up with the proof) was different from the final proof that was 

presented in the lecture. As continued:  

Yeah, so what I do try to emphasize in the lectures I often try to make remarks about is 

that once you read a proof, it doesn't reflect in any way how people came up with the proof 

in the first place. I think that's something that they have to understand that really coming 

up with a proof yourself is a very messy process. 

In this excerpt, the lecturer argued that the students have to understand the difference 

between the mathematical production and the learning of mathematics. He claimed that 

proof production is “a very messy process” and reading the proof does not reflect how 

one comes up with the proof. Last, connecting with the textbook, the following excerpt 

appeared: 

So in that sense, suppose that they will skip lectures, I suppose that a student would only 

read the textbook and not attend any lecture. I think this would give a very false impression 

that mathematicians think in a very straightforward manner from A to B and in research, 

this is absolutely not the case. And I think it's one advantage of teaching in a lecture that 

you can at least comment on the difference between what's been written down at the very 

end and how the thought processes are being done. 

The lecturer discussed the case of the student who chose to read only the textbook, 

identifying the student as misdirected about mathematician’s thinking processes (3rd 

Person). Hence, reading the textbook and not attending the lectures hinders the thinking 

processes that are taking place in mathematical production. The lecturer implicitly 

identified himself as a researcher who during the lectures has the opportunity to share 

his experience from research, supporting students to address the differences between 

doing research and learning. 

Both examples were categorized under the theme of mathematics as a building and the 

sub-theme producing mathematics where the lecturer commented about his practices 

from his research and their influence in his teaching. More specifically, the sub-theme 

included commentary on the mathematizing of research and reflections on the 
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mathematizing from the lectures. The mathematizing in research adapted for the 

teaching in relation to 3rd Person identity narratives authored by the lecturer about the 

students who attended the course when he talked to the author during the interview 

sessions. Moreover, the 1st Person identification of the lecturer about himself 

influenced the comments of mathematizing in the lectures as he intended to exemplify 

how a mathematician works when producing mathematics offering the students an 

insider’s look into the mathematical production.  

CONCLUDING REMARKS 

This study aimed to explore a teacher’s professional identity in university lectures and 

the ways identity informs the nature of his lecturing. I presented two examples that are 

under the theme of mathematics as a building and the sub-theme producing 

mathematics. In the two examples, the 1st Person instances about the lecturer's identity 

had as a common ground the practices of the lecturer when he engaged with the 

mathematical production. Interestingly, identifying (direct or implicit) about himself 

occurred through his commentary on the mathematizing in his research. Having as a 

starting point the mathematizing instances that would enable mathematical production, 

the lecturer shared stories about himself. These stories reflected his views about 

mathematics as an interplay of intuitive and formal ways of thinking and about 

mathematical production as a messy process shaping his identity as a lecturer. Each of 

these views gave rise to the comments about mathematizing that takes place in research 

(ways of remembering the theory, ways of bridging the gap between assumption and 

conclusion). 

The comments about the mathematizing in research appeared to inform the 

commentary about the mathematizing that happened in the lectures. Indeed, in the first 

example, the lecturer addressing the need to “remember stuff in the easiest possible 

way” that appeared in research, he chose to present a picture in his lecture that would 

reveal the conditions of the Mean value theorem [Figure 1]. Accordingly, in the second 

example, he chose to emphasize in the lectures that mathematicians do not produce 

mathematics in the way the theorems are presented in the textbooks, revealing the 

added value of the lectures. Moreover, the comments about the mathematizing in 

lectures came along with 3rd Person identification of the lecturer about the students. In 

his talk, the students identified as ritual participants, trying to learn the theory by heart, 

and as not acknowledging a mathematician’s thinking processes. Within these 

identifications, the comments about mathematizing in research adapted and informed 

the comments about mathematizing in lectures.  

This study serves as the starting point for the exploration of the lecturer’s professional 

identity and the ways this identity informs the nature of lecturing using the identifying 

activity framework (Heyd-Metzuyanim, 2013). I showed the influence of the 

identifications (1st and 3rd Person) and of the comments of mathematizing in research 

to the comments of the mathematizing in lectures. The findings are important because 

they offer useful insights into how a teacher’s professional identity might shape the 
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nature of teaching in university lectures. Thus, these findings could be used as input 

for the design of professional development programs for university lecturers. However, 

still, a need to dive into the extended data set is needed to create an in-depth 

understanding of the ways lecturer’s identity might inform the nature of lecturing. 
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In this paper, we discuss how two different theories of variation are coordinated to 

underpin the problem-solving based mathematics instruction task design study for 

developing students’ conceptual understanding and problem-solving abilities in 

mathematics. We argue here that the interrelationship between the two theories of 

variation and the classroom design study can provide a powerful task design 

perspective and hence sheds a different light on problem-solving instruction. 

RESEARCH RATIONALES 

In the last several decades, a considerable amount of research on mathematical 

problem-solving, originated from the seminal work of Pólya and Schoenfeld, has been 

conducted and provided valuable suggestions for reform in mathematics education. 

The major focus of the reforms in many countries has been on incorporating problem-

solving into classroom instruction as a tool for promoting mathematics content 

understanding (e.g., Lester & Cai, 2016). At the same time, it is also treated as part of 

curricular content-as a core competence that students need to acquire. As part of these 

reforms, Ethiopian primary school mathematics curriculum has promoted problem-

solving as a primary goal of classroom instruction (e.g., Ministry of Education, 2021). 

It is treated as an ability for students to develop, targeting to enhance their transferable 

skills to be applied in real-life contexts. However, the curriculum does not promote the 

use problem-solving as a tool for developing student’s conceptual understanding. To 

promote mathematical concept understanding and problem-solving abilities, many 

researchers have suggested that students must be provided with opportunities to engage 

in cognitively demanding tasks that embody key mathematical concepts and skills 

(e.g., English & Gainsburg, 2016). However, some cognitive load theorists have 

criticized that launching a lesson with cognitively demanding tasks, which is not 

explicitly linked to prior instruction is problematic, and therefore undermine student 

learning (e.g., Sweller, 2010). This argument is based on the idea that human working 

memory has limited capacity to process new information that has not been stored in 

long-term memory, and is therefore easily overloaded when required to solve 

unfamiliar and challenging problems with various interacting elements (Sweller, 

2010). This approach is also pedagogically demanding for teachers as they might be 

uncertain about how to structure the classroom learning sessions (e.g., Russo & 

Hopkins, 2019).  

In our problem-solving based mathematics instruction (PS-based MI) task design 

study, we aimed to contribute to the existing knowledge of problem-solving with the 
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consideration of the issue of cognitive load. We illustrate how variation theory of 

learning (VToL) and teaching with variation (TwV) are incorporated to help to identify 

three key dimensions of the PS-based MI task design study: (1) Simultaneously 

addressing conceptual understanding and problem-solving abilities; (2) Reducing the 

unnecessary cognitive load on students learning; and (3) Minimizing teachers’ 

pedagogical challenge in structuring the PS-based MI. The PS-based MI task design 

study is conducted in grade 6 (12-year-old students) in Ethiopian primary school 

classroom context. In this paper, our research question is: How can VToL and TwV be 

coordinated to underpin the three dimensions of the design of sequences of PS-based 

MI tasks? 

TASK DESIGN RESEARCH IN MATHEMATICS EDUCATION  

The mathematical tasks with which students engage in the classroom are crucial 

vehicles for developing students' mathematical learning (Stein, et al., 1996; Watson & 

Ohtani, 2015). Stein et al. (1996, p. 459) stated that, tasks determine ‘not only what 

substance [students] learn but also how they come to think about, develop, use, and 

make sense of mathematics’. Since mathematical tasks play such key roles in the 

effectiveness of mathematics instruction, attention to mathematical task design in 

research and in classroom practice is therefore called for and continues to be an 

important area of research in mathematics education (Watson & Ohtani, 2015).  

As highlighted in Kieran et al. (2015), we are inspired by the serious efforts made in 

task design community over the decades on striking the integration of theory into task 

design studies in mathematics education, which was provided in the form of design 

frameworks and principles. Kieran et al. (2015) classified these task design frameworks 

and principles into two categories: the scope of the theoretical frames informing the 

design (grand, middle-range, or domain-specific), and whether the design is considered 

as design as intention or design as implementation. Design as intention addresses “the 

initial formulation of the design”, which makes use of developed theoretical frames 

(Kieran et al., 2015, p. 28). In contrast, design as implementation focuses on “the 

process by which a designed sequence is integrated into the classroom environment 

and subsequently is progressively refined” (Kieran et al., 2015, p. 28). Using Kieran et 

al.’s classification, our PS-based MI task design study addresses the three key 

dimensions in both design as intention and design as implementation by using the two 

middle-range theories of variation: VToL and TwV.  

NETWORKING THEORIES OF VARIATION IN A PS-BASED MI TASK 

DESIGN STUDY  

Networking theories can take a variety of forms (combining, coordinating or 

integrating), depending on the level in which the theories are connected or intertwined, 

and the researcher’s goals in making the connection (Bikner-Ahsbahs & Prediger, 

2010). In our PS-based MI task design study, we coordinate VToL (Marton, 2015) and 

TwV (Gu et al, 2017) to help us in “better capturing instructional complexity” 

(Charalambous & Praetorius, 2018, p. 359) in relation to PS-based MI, with the 
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instructional goal of developing students’ conceptual understanding and problem-

solving abilities in mathematics.  

VToL is developed by Ference Marton and colleagues to understand how a learner 

might come to experience and discern a variation of aspects of a given phenomenon 

against a background of invariance (e.g., Marton, 2015). In parallel with VToL, a 

pedagogic theory in teaching mathematics, called TwV (bianshi jiaoxue in Chinese), 

has been developed by Gu Ling-yuan and colleagues (e.g., Gu et al., 2017). The 

strength of both theories, which is different from other theoretical frameworks, is their 

main focus on object of learning (Pang et al., 2017). VToL and TwV are reported to be 

effective in analysing the systematic use of patterns of variation and invariance in the 

teaching and learning of mathematics (Pang et al., 2016). Multiple analyses of 

mathematics lessons using both frameworks of variation indicated that while there is a 

difference in the intended object of learning with regard to how they emphasize 

sameness and difference, there is much similarity in the enacted object of learning 

(Marton & Haggstrom, 2017; Pang et al., 2017). According to Marton and Haggstrom 

(2017), both frameworks “agree on the principle that novel and essential aspects of the 

object of learning in mathematics can only be appropriated by the learners by means 

of separating those essential aspects from non-essential aspects” (p. 404).  

Although there is an overlap of interests, Pang et al. (2017) concluded that VToL and 

TwV are mutually exclusive and “useful in developing a collective understanding” (p. 

66). According to Pang et al. (2017), TwV focuses more on the principles and 

intentions of mathematics instructional task design, while VToL provides a lens for the 

details of what is enacted and what it might enable learners to discern the critical 

aspects of the object of learning. TwV develops the concept of variation pedagogy by 

illustrating procedural variation that focuses on developing problem-solving ability 

and building a well-structured knowledge base (Gu et al., 2017) and it guides the PS-

based MI task design by giving emphasis on how a problem situation may be 

transformed into a number of different ways so that it becomes solvable by different 

strategies. VToL guides our task design study by giving emphasis on how patterns of 

variation, and then invariance is involved in the sequence of tasks that draws students’ 

focus towards each of the critical aspects (Marton, 2015). Learners focus on contrast 

by seeing how something is different, which leads to the ability to fuse multiple aspects 

and generalize concepts. With contrast, we as task designer vary essential aspects; with 

generalization, we vary non-essential aspects; and with fusion, we vary both aspects of 

the object of learning. 

THE PS-BASED MI TASK DESIGN STUDY IN THE CONTEXT OF 

ETHIOPIAN ELEMENTARY SCHOOL  

The study was conducted in four regional public primary schools, serving a community 

with middle to low class families. The schools are located in a city in the north-west of 

Ethiopia. Two researchers (one is the first author), and four sixth-grade mathematics 

teachers from the schools formed the PS-based MI task design study group. The 
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teachers were certified to teach mathematics in primary schools. They took part in 

professional development workshops on PS-based MI task design. In the workshops, 

which were conducted throughout a year, lessons on different mathematics topics were 

developed through the iterative processes of teaching, observing, revising, and re-

teaching targeting to help students to experience and discern different objects of 

learning. The topics were chosen due to the recommendations from the participating 

teachers. The design of the instructional sequence follows three iterative phases of 

classroom design study (Cobb, et al., 2016): (i) preparation and design; (ii) 

implementation; and (iii) retrospective analysis, that can lead to revisions and a new 

iteration. Given the research question of this paper, we focus on explaining how VToL 

and TwV are coordinated to underpin the three dimensions of the design of sequences 

of PS-based MI tasks. 

ILLUSTRATING THE NETWORKING OF THEORIES OF VARIATION IN 

PS_BASED MI TASK DESIGN STUDY 

Using VToL to identify the object of learning and each of the critical aspects 

The first step in preparing for our task design study is to use the VToL principles to 

identify the object of learning and critical aspects of it. The object of learning should 

be sufficiently well specified to inform the design of the entire instructional support 

for students learning and indicate the types of evidence required to determine if it has 

been satisfied. In our study, we aimed at developing students’ conceptual 

understanding and problem-solving abilities in mathematics as objects of learning. The 

critical aspects that define different ways of understanding the object of learning that 

need to be pointed out in the instructional sequence are identified through analysing 

classroom observation data of one mathematics lesson. The lesson was designed and 

taught by the demonstrating teacher, in a non-intervention class of grade 6. The topic 

was on solving linear equations and inequalities. At the initial phase of preparation and 

design (Cobb et al., 2016), two objects of learning and five corresponding critical 

aspects were identified to address the first two key dimensions of the PS-based MI task 

design study: (1) simultaneously addressing conceptual understanding and problem-

solving abilities; and (2) reducing the unnecessary cognitive load on students’ learning 

(see Table 1). 
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Table 1: The object of learning and critical aspects to highlight the key dimensions of 

PS-based MI  

Principles of Variation  The use of the principles in the task design process 

Direct object of learning (the 

content to be learnt) 

Developing students’ conceptual understanding in solving 

linear equations and inequalities. 

Critical aspects of the direct 

object of learning 

Solving linear equation problems involving real-life contexts 

(CA1);  

Solving linear inequality problems that involve addition  

(CA2); 

Solving linear inequality problems that involve subtraction  

(CA3); 

Developing algebraic representations of linear inequalities 

from the patterns of arithmetic representations of linear 

equations (CA4). 

Indirect object of learning  

(capabilities to be developed)  

Developing students’ problem-solving abilities in solving 

linear equations and inequalities. 

Critical aspects of the  indirect 

object of learning 

Utilizing multiple solution strategies in the process of 

solving problems (CA5); 

Making connections among several strategies, and the 

mathematical concept of solving linear equations and 

inequalities (CA6). 

Using VToL and TwV to design sequence of PS-based MI tasks  

The sequence of PS-based MI tasks for solving linear inequalities was developed 

collaboratively with the teachers and researchers by referring to the theoretical 

principles of VToL and TwV. For example, sequence of conceptual and procedural 

variation tasks shown in Table 2 were designed deliberately and systematically to bring 

the five critical aspects of the objects of learning outlined in Table 1 into learner’s focal 

awareness. CA1, CA2, and CA5 were addressed by tasks 3a and 3b, CA3 was 

addressed by task 3c, and CA4 and CA6 were addressed by task 3d. Other sets of tasks 

(4a-4e), which are similarly cognitive to the previous tasks, were also included at the 

end of the sequence that aimed at helping students to generalize and consolidate their 

learning. To help students activate their anchoring knowledge point and connect it to 

the new problems, the sequence included tasks of solving linear equations (task 1 and 

2). In the sequence, each task is used as scaffolding (pudian in TwV terms) for the next 

tasks in the sequence.  The structure of the sequence of tasks and the variations in the 

tasks indicates how procedural variation can be applied as described in the TwV 

framework to promote students’ problem-solving experiences. The tasks were also 

designed to encourage students to use and make connections between multiple 

strategies (CA5 and CA6) such as repeated addition/subtraction and multiplication, and 

representations such as tables, variables, and rules to solve the tasks. 
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Table 2: The network of VToL and TwV to prepare teachers to tackle the 

pedagogical challenge in structuring the PS-based MI. 

Variation theoretical principles Sequence of PS-based MI tasks 

Activating student’s anchoring knowledge 

point (simplifying algebraic expression, 

solving linear equations algebraically). 

Task 1: Simplify the algebraic expression 

 2x + 7 + 5x – 15 + 6 – x into the lowest 

terms.  

Task 2: Solve each of the following linear 

equations. a) z + 5 = 9       b) 2m – 4 = 6 

Solving linear equations that involve real-

life contexts (CA1). 

Using multiple solution strategies in 

solving problems involving linear 

equations (CA5). 

Task 3: Mahlet had 400 Birr in her bank account. 

She saves additional 5 birr each week in her 

account. Her brother Yonas had 582 birr in 

his account. He withdraws 8 birr each week 

from his saving.  

Task 3a: How much money does Mahlet have in 

her account in the fifth week? How about in 

the tenth week? 

Connecting anchoring knowledge point 

(solving linear equations) to the new 

knowledge (solving linear inequalities).  

Solving linear inequalities that involve 

addition (saving context) (CA2). 

Task 3b: In which week does Mahlet have 565 

birr in her account?  In which week does it 

be greater than 565 birr? 

 

Solving linear inequalities that involve 

subtraction (withdrawing context) (CA3). 

Task 3c: In which week does Yonas have 422 birr 

in his account?  In which week does it be less 

than 422 birr? 

Developing algebraic representations of 

linear inequalities from the patterns of 

arithmetic representations of linear 

equations (CA4). 

Using multiple solution strategies in 

solving inequality problems, and making 

connections (CA5 and CA6).  

Task 3d: At what week do Mahlet and Yonas 

have the same amount of money in their 

accounts?  In which week does Mahlet’s 

money is greater than Yonas’s money? 

Making connections among the critical 

aspects (fusion). 

Reaching to generalizations.  

 

Task 4: Solve each of the following linear 

inequalities. 

a)  x + 5 < 8     b) y - 3 > 2     c)   2z < 10           

d)  2x - 3 > 7    e) 4y - 1 < 3y + 8     

DISCUSSION 

While these two frameworks of variation seem to suggest different ways to apply 

variation to task design, elements from both frameworks can work to complement each 

other in guiding our task design study. Here, we argue that one of the frameworks alone 

may not have the capacity to capture PS-based MI task design in its entirety. We argue 

here that the theories have been interwoven and have played crucial roles in task design 
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for simultaneously addressing the issue of developing students’ conceptual 

understanding (conceptual variation in both VToL and TwV), and problem-solving 

abilities (procedural variation in TwV) in mathematics. In addition, their coordination 

was useful not only to design tasks of PS-based MI that are at an appropriate level of 

challenge for students’ expertise (mainly VToL), it is also fruitful as a pedagogical tool 

to structure the sequence of tasks in a way that directs students’ attention towards the 

intended object of learning and critical aspects of it in a hierarchical and step-by-step 

way (mainly TwV). The diagram in Figure 1 illustrates how the two frameworks of 

variation are coordinated to help to address the three key dimensions of our PS-based 

MI task design study. 

To conclude, by coordinating the two theories of variation in our PS-based MI task 

design study, we take a possible new step in the tradition of networking theories: 

conducting classroom design study in which the design is informed by the coordination 

of different theories. In addition, such coordination of existing frameworks of variation 

can lead to the development of a task design framework that goes beyond describing 

and understanding the key dimensions of instructional practices of PS-based MI, as it 

contributes to developing a new integrated framework (Prediger, et al., 2008) as a 

professional learning framework for PS-based MI practices in schools and teacher 

education programs at university-based training. 

 

Figure 1: The interrelationship of VToL and TwV to address the three key 

dimensions of our PS-based MI task design study 
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In this study, we propose an interdisciplinary activity combining archaeology with 

mathematical proving developed during a five-iterations design-based research 

(DBR). The activity is aimed to bring students to the enactment of subversive critical 

thinking (SCT) – a radical type of critical thinking that consists of (i) opposition to an 

expert's opinion supported by a backing argument or (ii) an original alternative – an 

idea, interpretation, or opinion strictly divergent from all experts' views. Results from 

the three last DBR iterations analyzing the answers of 45 peer groups (104 students) 

show that most groups (87%) constructed SCT arguments. Notably, 51% opposed both 

experts, and 42% generated original alternatives. Based on our findings, we suggest 

three tentative design principles for promoting SCT in STEM education.  

INTRODUCTION AND THEORETICAL BACKGROUND 

Critical thinking (CT) is considered by many an essential 21st-century skill in society 

as it allows people to construct a profound understanding and rational judgment of any 

information presented to them (Dwyer et al., 2012). Basing conclusions on robust and 

verifiable evidence makes CT a desirable skill in many workplaces (Rear, 2019). 

Accordingly, the development of CT among school students is becoming an 

increasingly important educational goal (Halpern, 2014). Erikson and Erikson (2019) 

and Rear (2019) stress that promoting CT does not always go hand in hand with 

increasing standardized learning outcomes. Still, we embrace the vision of CT as 

enabling students to become nonconformist citizens, capable of opposing authoritative 

dogmas by creatively constructing alternative opinions and bravely presenting them 

publicly. In this paper, we propose the operational construct of subversive critical 

thinking (SCT) – a manifestation of CT that contains at least one of the following: (i) 

explicit justified opposition to an expert's opinion or (ii) articulation of an original 

alternative: an idea, interpretation, or opinion divergent from all previously presented 

experts' views. Do secondary students capable of expressing SCT? How can we support 

them in doing so? The current paper aims to propose SCT as a pedagogical aspiration 

and report on a mathematics classroom activity promoting it.  

Critical thinking (CT) 

In an educational context, CT has been given various, sometimes conflicting, 

definitions. Facione and Facione (1992) see CT as a process in which a person makes 

a purposeful, reflective judgment about what to believe or do. According to Ennis 

(2011, p.17), the ideal critical thinker is disposed to reach a "right" decision, present 

that position reasonably and clearly, consider others' points of view, seek to be well-
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informed, and avoid intimidating or confusing others. Lai (2011) concludes that CT 

overlaps with several specific abilities, such as: analyzing arguments, making 

inferences, making decisions, solving problems, judging, and evaluating. Ennis (2011) 

separated CT into two categories: dispositions and abilities. In this paper, we avoid 

raising any claims about students' dispositions. We suggest the theoretical construct of 

SCT as an observable behavior that is a unique and radical kind of CT in action.  

CT in mathematics and interdisciplinary education 

Educational scholars emphasize the importance of providing students with 

opportunities to solve authentic, open real-life problems integrating different STEM 

disciplines to enhance CT-related abilities (e.g. Lai, 2011). Erikson and Erikson (2019) 

argue that CT can be seen as the ability to reflect on personal experiences and world 

knowledge to go beyond methodological and disciplinary boundaries. Savard (2018, 

p.5) maintains that "CT might contribute to the learning of mathematics by supporting 

the thinking process, but also mathematics might contribute to the development of CT 

by supporting the judgments made using quantification, measures, or data." 

Aizikovitsh-Udi and Cheng (2015) showed that when teachers consistently encourage 

CT by applying mathematics to real-life problems, students are likely to practice CT 

skills. However, combining mathematics with other disciplines may bear some 

challenges. For instance, Buldt and colleagues (2008) note that the epistemology in 

mathematics essentially differs from the other disciplines' epistemologies if only 

because it is based on mathematical proofs. Kazakevich and Marco (2022) maintain 

that these epistemological differences may hinder students' ability to apply 

mathematics in real-life contexts. Sfard (2012) concedes that in modern society, the 

mathematical discourse is considered highly persuasive, suitable for decision-making, 

and essential for one's agency and independence. She, however, warns about 

overemphasizing its importance: "In this positivistically-minded world, whatever is 

stated in mathematical terms tends to override any other type of argument." (p.7). 

Hence, as we elaborate on below, this research's activity also aims that students will 

harmoniously combine mathematics with life experience and other disciplines.   

A SCT activity and operational research questions 

The Two Jewels activity is designed to promote SCT by engaging students in analytic 

reasoning, problem-solving, and collaborative learning. The activity is designed based 

on STEM pedagogical approach incorporating interdisciplinary viewpoints, problem-

based learning, and collaborative learning (Kennedy & Odell, 2014). The general idea 

of the activity is to present students with two conflicting archeology experts' opinions 

on a dilemma appearing disassociated with mathematics (see Figure 1) and gradually 

trigger them to develop a mathematical proof with which they can construct opposition 

to both experts (i.e. express SCT). 

Our research questions are: What kinds of SCT (if at all) do students exhibit in the Two 

Jewels activity? How do they base their arguments when constructing SCT arguments?  
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Figure 1: The archeological dilemma: which jewel belonged to the highest priest?  

METHOD 

Research context: The Two Jewels activity 

We developed the Two Jewels activity in five DBR cycles in which the activity was 

tested on high-school and undergraduate students. In the first two cycles of DBR, not 

reported here, the structure and content of the activity were developed and tested. 

Analyzing these cycles' results, we established and refined the construct of SCT 

presented above. Here we report on the results from the last three DBR cycles. The 

activity is organized in an online questionnaire divided into four stages (Marco, 2023). 

In each stage, students are presented with archeological evidence/interpretations and 

requested to decide which of the two excavated jewels belongs to the highest priest 

(i.e. more valuable). In the first stage, we used two videos of pretended experts (played 

by the second author) expressing contradicting opinions without mentioning quantities 

or mathematical terms (Figure 1). The equality of the golden areas is known as 

Hippocrates of Chios' Four Lunas Theorem (Nelsen, 2015), which is extracurricular 

and esoteric in Israel. Students familiar with the Pythagorean theorem and the area 

formulas of circles and squares can independently prove it – though not effortlessly.  

  

Figure 2: Left, jewels' weighing results. Right, a visual proof of areas equality.   

In the second stage, students are presented with the jewels' weighing results, which 

show that they are negligibly different (Figure 2, left). In the third stage, students are 

presented with the visual proof of the Four Lunas theorem as if created by two 9th 

Grade students (i.e. nonexperts; Figure 2, right). The visual proof was redesigned with 

some principles taken from Marco et al.'s (2022) design principles for Proofs Without 

Words. In the fourth stage, students are asked to write a letter to the archeologists 

Expert 2: Dr. Zvulun 

 

"The golden square jewel 
belonged to the high priest, 
since this shape symbolized 
balance, centrality, and 
power in the ancient world." 

Expert 1:  

Prof. Kreinin 

"The jewel ,where the moons 
are plated with gold, belonged 
to the high priest .In ancient 
times, moon shapes 
represented the sky that were 
associated with the gods." 
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describing their position and arguments on the issue to whom the jewels belonged. 

During all these stages, the mathematics teacher attended the groups making 

her/himself available for inquiries and making clarifications while providing as 

minimal guidance as possible. The activity concludes in a classroom teacher-led 

discussion after all the students submit their answers to the online questionnaire. 

Participants 

One hundred four students participated in the activity in these three last DBR cycles. 

Students worked in small peer groups of 2-5 students. The third, fourth and fifth DBR 

cycles took place at the same secondary school in Grades 9, 11, and 10 with 13, 12, and 

20 groups, respectively.  

Data collection and analysis 

Students were instructed to submit personal answers to the questionnaire. However, 

many groups opted to submit a single form for all participants. Therefore, our unit of 

analysis is a submitted answer – regardless of the number of students submitting it (45 

submitted answers in total). The data analysis aimed to identify and characterize 

students' SCT arguments that consisted of (i) explicit opposition to the experts' 

opinions with a backing argument or (ii) an alternative opinion/interpretation strictly 

divergent from the experts' views. First, we asked if the students opposed one of the 

experts, both, or none of them ("level" of opposition). Then we classified their backings 

and checked if their answer consisted of an alternative. Note that when we coded SCT 

for a group (submitted answer), we considered the highest level of opposition they 

expressed in all four stages of the activity. We stress that we only examined the 

presence of SCT and did not assess its quality (including the quality of mathematical 

proofs if they existed). To exemplify the analysis, consider the following two excerpts:   

We disagree with both of your views because there was mathematical proof that proved 

both of you are wrong (Grade 10, group 19). 

After deep thought about your argument and attempts to prove or disprove one of the 

claims, we concluded that Expert 2 is right. We were able to prove that the area of the 

moons is equal to the area of the square, and considering the fact that the moons weigh 

more, it is understandable that they have more gold (Grade 10, group 15). 

As we defined above, SCT necessitates intellectual and social courage to express 

explicit opposition in public. So, of these two excerpts, we consider only the first to 

contain SCT. The first student opposed both experts, and the second opposed none of 

them and did not suggest an original alternative. Considering backing arguments – both 

students based their answers on mathematical proof. The following excerpt exemplifies 

an original alternative: "The jewels belong to two priests of the same priesthood status" 

(Grade 11, group 13).  



Kazakevich & Marco 

PME 46 – 2023 3 - 151 

RESULTS  

Our data provide empirical evidence that the Two Jewels activity brings students to 

construct subversive critical thinking (SCT) arguments that oppose experts' opinions 

or suggest an original alternative strictly divergent from the experts' views. As can be 

seen in Table 1, we distinguish between six categories of SCT in students' answers. We 

identified opposition to experts' opinions in most submitted answers (60%). Three 

"levels" of opposition were identified: to none of the experts, to one expert, and both. 

The answers opposing both experts were divided into three types of backing – due to 

lack of data, math proof, and math proof with an alternative. All the students opposing 

one expert based their opposition on mathematical proof. Answers without explicit 

opposition were divided into two subcategories: with and without an alternative. 

Overall, we found that 87% of submitted answers contained SCT arguments. The following 

excerpts from students' answers demonstrate the six SCT categories identified (for 

convenience, we changed the names of the experts to "Expert 1/2"):  

Absence of opposition without alternative (no SCT): 

In our opinion, Expert 2 is right, and the moon-shaped jewel belongs to the high priest. 

We think so because the moons have more gold, and they were built in a more complex 

way than the square (Grade 9, group 2). 

First, Expert 1 is a professor instead of a doctor, which means she has more knowledge in 

the field. Second, what the professor says makes sense because a square can be considered 

a concentric and "central" shape (Grade 9, group 13). 

Absence of opposition with alternative: 

Even after weighing and discovering that the [golden] parts are equal, the two claims still 

stand… But there is no way to check the role played by the jewels. It is equally possible 

that the jewels belonged to two believers buried in the temple (Grade 9, group 12). 

There is no correct interpretation…  In my view, the questions we need to ask ourselves 

are not about hierarchy and senior people. We must look at these jewels and understand 

their spiritual and historical significance and adopt it to our hearts as a criticism of the 

social classes' paradigm indoctrinated to us in this era. These jewels symbolize parts of a 

whole and our unique individuality in a society where the things that matter are amounts 

of gold (Grade 11, group 10). 

Opposition to one of the experts:  

Expert 1 was wrong in her basic claim that there is more gold in the right jewel (Grade 10, 

group 16).  

Opposition to both experts due to lack of data  

I cannot reach a definite opinion because there is not enough information about the period 

and the society from which the jewels have come. Therefore, no one can determine which 

of them is right (Grade 9, group 4). 

Opposition to both experts based only on math proof (without alternative): 
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"Both of them [experts] present solid statements, but from the math perspective, both are 

wrong… According to the calculations we made, the areas plated with gold are equal" 

(Grade 11, group 3) 

Opposition to both experts with mathematical proof and an alternative:  

Your claims are nice, but they are not mathematically based. Of course, not every historical 

claim needs to be mathematically based, but considering weighing and area calculations, 

it can be concluded that the larger jewel of the two probably belonged to the high priest. 

We shouldn't forget that for three-dimensional shapes we should consider not only the area 

but also the volume" (Grade 11, group 6) 

Your symbolism is really stupid, and we think the best way to understand it is through 

math. It now seems the math is correct, and the areas are equal. You probably have some 

measurement error because it is only a milligram. You should check yourself again. It 

could be corrosion, dirt, or such nonsense (Grade 11, group 11).  

Table 1 concludes the number of groups in each SCT category: 

Table 1: Number of groups in each category of SCT. 

SCT category # of groups in Grades 

11      10      9 

Total  

Absence of opposition without alternative (no SCT) 3 0 3 6 (13%) 

Absence of opposition with alternative  3 6 3 12 (27%) 

Opposition to one expert 3 1 0 4 (9%) 

Opposition to both experts due to lack of data 3 0 0 3 (7%) 

Opposition to both experts based on math proof  1 9 3 13 (29%) 

Opposition to both experts with math proof and alternative 0 4 3 7 (15%) 

We also found a wide variety of alternatives in students' answers. In addition to the 

alternative in the excerpts brought above, we also mention the following ones:  

In our opinion, the jewel fell and broke apart for some reason, and at first, there was one 

jewel (which belonged to the high priest) (Grade 10, group 11).  

Definitely, they didn't belong to anyone... There is an unfounded assumption that both 

jewels are made of 100% pure gold (Grade 10, group 18).  

Humans are never perfect and completely accurate, and the difference between the weights 

is tiny, so it can be concluded that the differences were created as part of the gold crafting 

process (Grade 11, group 10). 

DISCUSSION  

Our data provide empirical evidence that the Two Jewels activity brought most 

students (87%) to construct SCT arguments containing opposition to experts' opinions 

or presenting original alternatives strictly divergent from the experts' opinions. As 
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presented in Table 1, 51% of submitted answers included SCT arguments opposing 

both experts, and 42% included original alternatives. As we anticipated, mathematical 

proofs were found to be a powerful resource for SCT. Almost all students opposing the 

experts' opinion based their argument on mathematical proof that the golden areas are 

equal. However, some groups did develop a proof (or comprehended the visual proof 

presented in the third stage) and still conformed with the experts. This finding may 

suggest that even students equipped with a powerful epistemological tool such as 

mathematical proof (Buldt et al., 2008) may hesitate before using it for opposing 

authorities. This reveals an opportunity for mathematics educators to establish a 

classroom norm of expressing respectful opposition in situations demanding it. Some 

examples of disrespectful opposition in our data ("Your symbolism is really stupid") 

further stress the need to guide students on opposing someone else's views.  

The Two Jewels activity has some features we can generalize into three hypothetical 

design principles supporting SCT. (1) Present experts' conflict –When contradiction is 

presented to students from the start, they will likely have an inner urge to settle it. They 

are also more primed to disagree in an environment that already involves disagreement. 

As we showed, students must generate assumptions, develop alternative narratives and 

opinions, and mathematical arguments to resolve such conflicts. In the Two Jewels 

activity, we used pretended experts that made students' opposition more likely. Using 

real experts' videos may be more suitable for students well-trained in SCT. (2) Let 

students gradually reveal the mathematics hinted by the context– leave students room 

to bring the mathematics on their own accord. So, they will perceive mathematics as a 

helpful tool for real-life problems and not merely a means to "get high grades." In 

addition, as we showed, mathematical arguments and proofs are potent resources for 

students constructing SCT arguments (c.f. Sfard, 2012; p.7). (3) Create opportunities 

for disciplinary boundary crossing – The activity tries to bring students to decide when 

to apply mathematics and when to put it aside and use their world knowledge and 

rationales taken from other disciples. The activity brings together the epistemologies 

of mathematics and other STEM disciples. Mathematically, 2465 and 2431 milligrams 

are not the same quantity. However, real-life considerations (e.g. measurement error, 

manufacturing variance) and the slight weight difference should cause the students to 

speculate that their creators designed the two jewels to weigh the same.  

We suggest these hypothetical design principles be tested and refined in further 

educational research for promoting SCT, especially among students from different 

countries and cultures. In this paper, we only searched for the presence of SCT in all 

four stages of the activity. We disregarded learning trajectories depicting how students 

developed SCT during the Two Jewels activity. For us, individual and group learning 

evolving SCT is an exciting path for future research.  
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The construction of proofs, and in particular the understanding of the statement to be 

proved, can be supported by the use of certain strategies. However, from a 

methodological perspective, there is a critical debate about how such strategies can 

be measured in quantitative studies (self-report vs performance). Moreover, from a 

pedagogical perspective, little is known about the prerequisites, such as the prior 

knowledge required for strategy use. In this paper, we therefore investigate (1) the 

relationship between self-reported strategy use and actual performance on five 

comprehension strategies in the context of proving and (2) the predictive power of 

prior knowledge for strategy performance. Our sample consists of 152 second-

semester university students. Theoretical and practical implications are discussed.   

INTRODUCTION 

Many students have great difficulty constructing proofs (e.g. Selden, 2012). Some of 

these difficulties may arise from the fact that students put little time and effort in 

understanding the statement being shown (Harel & Sowder, 1996; Schoenfeld, 1992). 

However, in previous studies, the first author of this contribution revealed that what is 

relevant to successful proof construction is not the duration of comprehension 

processes, but their specific implementation (Kirsten, 2018). In this context, some 

potentially helpful comprehension strategies could already be identified in qualitative 

studies (Kirsten, 2019; Weber, 2015). In our quantitative study, we asked students to 

perform these strategies before constructing a proof to a given (correct) statement. 

Besides methodological aspects, this article deals with the question which of these 

strategies are prerequisite-richer than others and require prior knowledge.  

THEORETICAL FRAMEWORK 

It is generally agreed that analysing a proving task before attempting to prove it is 

necessary for successful proof construction (Selden, 2012). The aim of this process is 

to build a mental problem representation of the statement to be shown that supports 

flexible and creative thinking. According to Kintsch and Greeno (1985) an appropriate 

problem representation consists of two components: the propositional text base and the 

situation model. The propositional text base describes a task-specific representation. It 

contains the relevant information from the task and its conceptual meaning, but remains 

task-specific. Thus, a propositional text base allows the problem solver to think 

conceptually, but is limited to the task-specific structure. In contrast, the situation 

model focuses on the concepts and relationships themselves and overcomes the given 

structure. This makes it possible to add additional information about the relevant 

concepts and to think creatively and agilely. Thus, the situation model can be viewed 
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as an abstract and extended representation of the mathematical problem that enables 

the problem solver to select appropriate solution approaches. In order to successfully 

develop a mental representation to a proving task, different manuals and individual 

research reports suggest various strategies for understanding a mathematical statement. 

Strategies for understanding a mathematical statement 

Useful strategies for understanding a statement to be proved are reported in research 

on both proof construction and proof comprehension. Accordingly, the following  

strategies may support a rich understanding: paraphrasing the statement in one's own 

words (Weber, 2015), linking different representations using visualizations or 

examples (Alcock & Weber, 2010; Mejia-Ramos & Weber, 2019), enriching the task 

context by repeating definitions of the central concepts (Mejia-Ramos et al., 2012) and 

inferring further information such as implicit preconditions (Kirsten, 2019). Although 

all of the strategies mentioned are considered helpful, it is likely that they address 

different components of a mental problem representation: While paraphrasing and 

enriching are possible on a propositional text base, inferring and generating examples 

require a reorganization of the content and thus promote an extended representation. 

That first-year students actually use these strategies during proof construction was 

demonstrated in a previous study by the first author (Kirsten, 2019). However, the 

analysis of comprehension activities from eleven proving processes also showed that 

the use of strategies did not necessarily lead to a rich mental problem representation 

and is not sufficient for a successful proof construction. Consistent with this, several 

studies reported that experts and novices differ in their use of strategies and that 

undergraduates have difficulty elaborating examples or producing a helpful 

visualization (e.g. Alcock & Weber, 2010; Mejia-Ramos & Weber, 2019). We 

therefore suggest that difficulties in developing a rich mental representation should be 

distinguished according to whether they are due to a lack of comprehension strategies 

or to difficulties in implementing these strategies. 

Different kinds of implementing comprehension strategies 

First empirical evidence for the proposed distinction between production and 

implementation difficulties is provided by a qualitative study on comprehension 

processes in proof construction (Kirsten, 2019). Here, a comparison of successful and 

less successful strategy applications led to the hypothesis that both lack of strategy 

knowledge, i.e. knowledge about the characteristics of an accurate strategy application, 

and lack of conceptual knowledge can lead to implementation difficulties. The strong 

predictive power of conceptual knowledge for constructing one's own proof as well as 

for understanding and validating presented proofs is already known (Neuhaus & Rach, 

2019; Sommerhoff, 2017). That this general relationship between prior knowledge and 

proving is also reflected in the use of comprehension strategies is natural, but hardly 

systematically researched. At least for generating examples, Alcock and Weber (2010) 

reported that students often fail using examples successfully because they generate 

examples by trial and error and do not check whether their example meets the required 
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properties. Similarly, in their study of nine proving processes, Sandefur et al. (2013) 

identified rich experience with the use of examples and a broad example space as 

prerequisites for constructive strategy use. Regarding diagram use, Mejia-Ramos and 

Weber (2019) reported weak correlations between diagram use and successful proof 

construction as a result of a large-scale study. Although they do not refer specifically 

to the understanding of the statement to be shown, these findings also suggest that 

effective strategy use is linked to available resources. 

While the findings described here come mainly from qualitative studies, research on 

learning and reading strategies in general often relies on large-scale studies to measure 

the relationship between strategy use, prior knowledge, and achievement levels (e.g., 

Neuhaus & Rach, 2019). Student self-reports are typically used for this purpose. As 

the validity of such self-reports is often criticised, self-reports are increasingly 

supported by performance data (Neuenhaus et al., 2022). However, because these often 

do not match in comparative studies (e.g., Zhou & Winne, 2012), self-reported strategy 

use and actual strategy performance may represent two different constructs. To our 

knowledge, there have not yet been any studies, either via self-report or using 

performance data, that specifically examine the comprehension strategies used in 

building a mental representation in the context of proof construction. 

RESEARCH QUESTIONS 

In order to address the research gap described above, this study investigates the use of 

comprehension strategies by first-year university students. From a methodology 

perspective, we first raise the question of appropriate instruments for measuring 

student strategy use:  

RQ1: To what extent is students' self-reported strategy use related to performance data 

on strategy use?  

From a pedagogical perspective, we ask about the prerequisites for strategy use. Since 

previous studies suggest a dependence of strategy use on prior knowledge, we also 

investigate whether there are more or less preconditioned strategies. In this context, we 

focus on students' actual performance in using comprehension strategies. 

RQ2: To what extent does prior knowledge predict performance on comprehension 

strategies? 

METHOD 

Sample and material 

To investigate the relationship between strategy use and prior conceptual knowledge, 

we turned to second-semester students. These students have already taken two proof-

based courses (Linear Algebra and Analysis) and thus have had their first experience 

with proof construction. We therefore assume that at this stage of the study the 

relationships to be investigated would become apparent. Data collection took place at 

the very beginning of the second semester and resulted in data from a total of 152 

students, including mathematics majors and future teachers for upper secondary level. 
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To measure comprehension strategies, we combined self-report and performance data. 

In line with the state of research, both approaches referred to the five strategies of 

paraphrasing, enriching, inferring, generating examples and visualization. The self-

report questionnaire of strategy use included 16 self-developed items in which the 

individual use of a particular strategy was to be assessed in a task-unspecific manner 

in a four-point response format. Since only the scales of inferring (4 items), generating 

examples (3 items) and visualization (2 items) had satisfactory reliability (𝛼 > .60) 

and an exploratory factor analysis did not yield an additional scale, we only calculated 

the means for self-reported use of inferring (𝑀 = 3.03, 𝑆𝐷 = 0.54), generating 

examples (𝑀 = 2.46, 𝑆𝐷 = 0.70), and visualization (𝑀 = 2.45, 𝑆𝐷 = 0.81). 

In contrast to the self-reported use of strategies, the performance items referred 

specifically to a proving task related to the intermediate value theorem (see Figure 1). 

Based on typical student errors as reported in previous studies (Kirsten, 2019), we 

formulated four authentic applications for each strategy that students were asked to rate 

in terms of their correctness. At least one was correct and one incorrect in each case. 

For each strategy, the sum of correct ratings was determined: paraphrasing (M =
2.61, SD = 0.89), enriching (M = 2.78, SD = 0.85), inferring (M = 2.48, SD =
1.26), generating examples (M = 2.80, SD = 0.92) and visualization                               

(M = 2.29, SD = 0.93). 

Figure 1: Sample items measuring the use of comprehension strategies, self-report on 

the left and performance on the right 

Prior knowledge was assessed on a short scale due to time constraints. The items were 

self-developed but based on the items of MOAS/KUM (Rach et al., 2021). We used 

open and multiple-choice items and tested each item with experienced students from 

higher semesters. Each item was coded 0 (false) to 1 (correct) point. As the seven items 

refer to different contents in the area of continuous and differentiable functions, we 

interpret the items as formative indicators (Stadler et al., 2021) for prior knowledge. 

Therefore, we do not report values like Cronbach's alpha but the variance inflation 

factor (VIF), which should be lower than 3.3 (Stadler et al., 2021). Given this for each 
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item (VIF< 1.09), we calculated the sum of those seven items to measure prior 

knowledge (𝑀 = 3.06, 𝑆𝐷 = 1.14, 𝑀𝑖𝑛 = 0, 𝑀𝑎𝑥 = 5.50). 

Data analysis 

R was used for data analysis. We estimated missing values with package lavaan 

(Rosseel, 2012) and the full-information-maximum-likelihood method. For RQ 1, we 

performed correlation analyses to gain insight into the relationship between self-

reported use of strategies and the actual performance on those strategies. We report 

Pearson’s 𝑟. For RQ 2, we assume a directional relationship based on theoretical 

aspects: Prior knowledge should influence performance in strategy use and not vice 

versa. Therefore, we conducted regression analyses using the performance of a strategy 

as the latent variable and prior knowledge as the predictor in each case. We report the 

regression coefficients 𝐵, the standard error (𝑆𝐸), standardized regression coefficients 

𝛽, and how much variance in the performance of the strategies can be explained by the 

possibly predictor (𝑅2). 

RESULTS 

RQ1: The correlation analysis (𝑛 = 144) between the self-reported use of strategies 

and performance data revealed no significant (𝑝 < .05) values (see Table 1). 

Table 1: Correlation analysis between self-reported use and performance of the 

comprehension strategies 

 Infer. 

(SR) 

G. Ex. 

(SR) 

Vis. 

(SR) 

Para. 

(P) 

Enr. 

(P) 

Infer. 

(P) 

G. Ex. 

(P) 

Self-report (SR)        

Inferring -       

Generating examples -.03 -      

Visualization .04 .29** -     

Performance (P)        

Paraphrasing .12 -.06 .05 -    

Enriching .07 -.03 -.06 -.04 -   

Inferring .11 .02 .12 .16 -.12 -  

Generating examples .17 .11 .14 .09 -.05 .23* - 

Visualization -.06 .06 -.14 -.06 -.03 .11 -.07 

Note: 𝑛 = 144; * 𝑝 < .05; **𝑝 < .01 

This indicates that self-reported strategy use is not correlated with performance data 

on the same strategy. Significant correlations occurred only for self-reported use of 

examples and self-reported use of visualizations (𝑟 = .29, 𝑝 < .01) and for 

performance on the strategies inferring and generating examples (𝑟 = .23, 𝑝 < .05). 
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RQ2: For the strategies paraphrasing and enriching, the prior knowledge of the 

students did not explain any variance in the performance (𝑅2 = 0.00). However, prior 

knowledge was a significant predictor of performance for inferring                                         

(𝛽 = .35, 𝑝 < .01, 𝑅2 = .12) and generating examples (𝛽 = .35, 𝑝 < .01, 𝑅2 = .12). 

Judging whether a visualization is correct was also not significantly predicted by prior 

knowledge (𝛽 = .07, 𝑝 > .1, 𝑅2 = .01). 

Table 2:  Regression analyses of strategy performance (Predictor: prior knowledge) 

 B SE 𝛽 𝑝 𝑅2  

Paraphrasing -0.04 0.07 -.06 .51 .00 

Enriching -0.04 0.06 -.05 .58 .00 

Inferring 0.38 0.09 .35 .00 .12 

Generating Examples 0.28 0.07 .35 .00 .12 

Visualization  0.07 0.07 .09 .33 .01 

Note: 𝑛 = 144 

DISCUSSION 

Some of the difficulties students have in constructing proofs may be related to an 

insufficiently developed mental problem representation of the statement to be proved 

(Harel & Sowder, 1996; Schoenfeld, 1992). In this context, it can be helpful to draw 

on certain comprehension strategies and use them properly in the proof construction 

process (e.g. Alcock & Weber, 2010; Kirsten, 2019). However, it is an open question 

how to measure the use of these strategies and what individual prerequisites are 

necessary to use them effectively. 

With respect to RQ 1, we did not find significant correlations between the self-reported 

use of strategies and students’ actual performance. Consistent with previous studies, 

we therefore assume that self-report and performance data refer to two different 

constructs (Neuenhaus et al., 2022; Zhou & Winne, 2012). Since students indicated a 

relatively high use of comprehension strategies in the self-report, we suggest that 

students are overestimating themselves or that simply knowing a strategy is sufficient 

to indicate its use. Therefore, it is important to think carefully about the type of 

instrument to be used before starting a study. Furthermore, the results suggest that in 

the instructional context we need to provide feedback to students on their actual 

strategy use to support their self-assessment.  

The results for RQ 2 showed that prior knowledge predicts the performance of the 

strategies inferring and generating examples while no variance could be explained for 

the strategies paraphrasing, enriching and visualization. With reference to Kintsch & 

Greeno's (1985) theory of mental problem representation, this finding indicates that 

inferring and generating examples represent two strategies in which the propositional 

text base is abandoned and a situation model is built via linkage to prior knowledge. 
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Thus, the strategies enriching and generating examples seem to be prerequisite-richer 

and should possibly be taught later than the other strategies. At least before students’ 

have acquired the necessary prior knowledge, they may have difficulty to generate 

helpful examples or inferring further information such as implicit preconditions based 

on a proving task. However, this does not mean that prior knowledge is not required to 

use the other strategies. Especially in the case of visualization, the results may depend  

on the design of the items (Mejia-Ramos & Weber, 2019). 

Caution should also be taken with sample size, although we used methods that are 

robust to violations of the prerequisites. In addition, we only measured the strategy 

performance on a single proving task. Therefore, the results provide some initial insight 

into the relationships, but cannot be generalized without replication.  

In further studies, we intend to pay more attention to strategic knowledge and measure 

the correlations between knowledge about a strategy, self-reported use, and strategy 

performance to further investigate the relationships between these constructs. 

Furthermore, based on the additional data collected in this study, we intend to 

investigate the extent to which high strategy performance also affects performance on 

proof construction. This could provide new implications for the design of strategy 

trainings to help students overcome their difficulties with proofs. 
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EFFECT OF REPRESENTATION FORMATS ON STUDENTS’ 

SOLVING PROPORTION PROBLEMS 

Tadayuki Kishimoto 

School of Education, University of Toyama, Japan 

 

In this study, we investigate at how two types of visual representations -the Double 

number line, and the Ratio table affect students’ performance on percentage issues. 

In this study, 572 Japanese primary school students in Grades 4, 5, and 6 were given 

proportion problems with representations such as the “Double number line” and the 

“Ratio table diagram.” As result, the effect of them does not exist in Grades 4 and 6. 

However, re-orientations have the greatest impact in Grade 5. All grade students 

could solve the Unit problem regardless of the presence of representations. The 

Double number line was a more effective representation than Ratio table diagrams. 

When students were shown these, they often solved problems by using a scalar or 

functional connection involved in the features of representation. 

INTRODUCTION 

Proportionality is a key concept in mathematics education from elementary school to 

university. Proportional reasoning is a precondition for successful subsequent studies 

in mathematics, because multiplicative relations support practically all number-related 

concepts learned in primary school. Despite the nature of proportional reasoning 

throughout the school years, many pupils have considerable difficulty understanding 

conceptions of proportional reasoning. 

Proportional reasoning is a type of thinking that characterizes essential structural 

relationships in mathematics as well as in everyday life. This involves understanding 

multiplicative relationships between rational quantities (a/b = c/d) (Cramer and Post, 

1993). A proportion is assumed that two ratios are equal in terms within both convey 

the same relationship. 

According to Piaget & Inhelder (1958), children are incapable of proportional 

reasoning until about 11 years old. Proportional reasoning involves understanding the 

“relation between relations” and is a hallmark of formal operations. 

The usage of “Double number lines” in the teaching of various mathematics topics has 

been proposed by researchers (e.g., Orrill & Brown, 2012). In Japanese mathematics 

textbooks, Double number lines are widely employed (Watanabe et al., 2010). There 

is a wealth of research on the cognitive benefits of different types of external 

representations, including the addition of relevant diagrams to text, which improves 

learning (Mayer, 2005). Several theories of diagrammatic reasoning theories, however, 

observe that the utility of diagrams is contingent on their relevance to the task itself, 

the context of the representation, and the user (e.g., Nistal et al., 2009). 
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In this study, we invrstigate at how two types of visual representations -the Double 

number line, and the Ratio table, affect students’ performance on percentage issues. 

FRAMEWORK 

Some factors to affect proportional reasoning 

It has been demonstrated that the characteristics of proportion problems influence 

students’ solution strategies and success rates. First, all proportion problems can be 

identified as either missing value problems or comparison problems. In missing value 

problems, the solver must locate the missing value when given three others. A 

comparison problem is one in which two given ratios are compared, which may or may 

not be proportionally related. According to Tournaire & Pulos's (1985)'s evaluation of 

the literature, comparison problems are more difficult than missing value problems. 

Second, Riehl & Steinthorsdottir (2017) found that in the presence of an integer ratio 

(i.e., the ratio between two numbers forms an integer number) instead of a decimal 

ratio, children frequently reached a correct solution on proportional missing value 

problems (i.e., the ratio between to numbers forms a non-integer number). 

Third, when the measure problems have familiar associations (e.g., miles to hours, 

dollars to ounces), middle school children who are forming an initial concept of 

proportionality have the highest success (Kaput & West, 1994). However, similarity 

problems (Lamon, 2007) and mixture problems 

(Tourniaire, 1986) were the most difficult 

environments for students to understand 

proportional relationships in. 

Fourth, Vergnaud (1983) has found that students 

were far more likely to establish a relationship that 

was within a measure space (what he calls a scalar 

relation) than between measure spaces (a function 

relation) in solving multiplicative problems. 

Representations for proportional relationships 

The Double number line consists of two single 

number lines with corresponding pairs of values 

lined up (see Fig 1). The Double number line is a 

representation that may be used to visually compare 

two quantities and can be applied to a variety of 

mathematical situations contexts. The Double 

number line is a powerful way of representing 

multiplicative relationships and can help students to 

visualize equivalent forms of the same ratio. The 

Double number line also has the advantage of 

providing a feeling of scale. 

×2 

yen 

0 6 3 

0 30 x 

m 

×2 

Figure 1: Double number line 

×2 

yen 

6 3 

30 x 

m 

×2 

Figure 2: Ratio table diagram 
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The Double number line links well to other representations such as the Ratio table 

diagram. The Ratio table graphic depicts two specific pairs of Double number line 

values (see Fig 2). While the Ratio table diagram is simpler than the Double number 

line, some of the structure may get lost in the compression. 

METHOD 

Subjects 

Three grades of children were used as participants to explore problem solving abilities. 

572 subjects who were 184 in Grade 4, 188 in Grade 5, and 200 in Grade 6 were drawn 

from an elementary school in the 2022 school year in Japan. They were chosen because 

of the years of transition to full proportional reasoning (Inhelder & Piaget, 1958) - a 

period in which students think relationally about proportion problems but have not yet 

fully mastered the multiplicative relationships required for true proportionality 

understanding. According to the Japanese curriculum, students in Grade 4 of 

elementary school have learned fractions. Students in Grade 5 have completed decimal 

multiplication and division, rate, and ratio. In Grade 6, students have done 

multiplication and division with fractions. 

 Subjects in each grade were randomly allocated into three groups: double number line 

group (double number line + word problem), Ratio table (ratio table diagram + word 

problem), and Word problem (word problem only). 

Instruments 

All experimental problems were controlled for problem type under four conditions; 

missing value problem, integer or decimal rate, measure problems, and scalar or 

function relation. Each subject was required to solve five types of proportional 

problems; Unit, Scalar(Integer), Scalar(Decimal), Function(Integer), and 

Function(Decimal). These were constructed under the condition given in Table 1. 

The text of all word problems was identical in all same conditions as follows; 

[Relation] A ribbon of m costs b yen. [Result] What is the cost of a ribbon of c m? 

Table1: Condition of instruments 

Types Relation Result 

 a m b yen c m x yen 

Unit 3 m 60 yen 9 m x yen 

Scaler(I) 3 m 20 yen 6 m x yen 

Scaler(D) 3 m 20 yen 4.5 m x yen 

Function(I) 7 m 14 yen 11 m x yen 

Function(D) 6 m 9 yen 14 m x yen 
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We also included four buffer tasks to prevent students from noticing the experimental 

design. 

Students in the Double number line and Ratio table 

diagram groups were required to fill in the necessary 

values □ on the Double number line or the Ratio table 

diagram (Fig 3, 4) and respond with a valid response. 

Students had 50 minutes (i.e., the duration of a regular 

mathematics lesson) to complete the test. 

RESULTS 

Correctness of responses 

We used Tukey's one-way ANOVA for each type of 

group in each problem (Double number line, Ratio 

table, and Word problem group). If there was a 

substantial difference between conditions, we used 

Scheffe's Multiple Comparison technique for each type of group. Table 3 displays the 

mean correct responses score for issues solved by them in Grade 4. There was no 

significant difference in all types of problems. 

There was no difference between Unit and Scalar(I) problems because the mean score 

of correct responses was so high. In Scalar(D) and Function(D) problems, the mean 

score in the Double number line group was a few higher than in other groups. 

Table 3: Mean Score of Correct Responses in Grade 4 

 Unit Scalar(I) Scalar(D) Function(I) Function(D) 

 % SD % SD % SD % SD % SD 

Number line G(n=68) 82.4 0.38 82.4 0.38 29.4 0.46 55.9 0.50 29.4 0.46 

Ratio table G(n=52) 84.6 0.36 76.9 0.43 15.4 0.36 57.7 0.50 15.4 0.36 

Word problem G(n=64) 81.3 0.39 81.3 0.39 18.8 0.39 56.3 0.50 18.8 0.39 

Table 4 displays the mean correct responses score in Grade 5. (1) There is a sign in 

Unit problem (F(2,185) = 6.05, p < 0.01). There is a sign between the Double number 

line and the Word problem group (p < 0.05), and between the Ratio table and the Word 

problem group (p < 0.05). Scalar(I) problem has a substantial (F(2,185) = 11.10, p < 

0.01). There is a substantial difference (p < 0.01) between the Double number line and 

the Word problem group, as well as between the Ratio table and the Word problem 

group. (2) There is a significant in Scalar(D) problem (F(2,185) = 11.61, p < 0.01). 

There is a sign between the Double number line and the Word problem group (p < 

0.01), and between the Ratio table and the Word problem group(p < 0.01). (3) There is 

a significant in Function(I) problem (F(2,185) = 6.65, p < 0.01). There is a significant 

relationship between the Double number line and the Word problem group (p < 0.01), 

as well as the Ratio table and the Word problem group (p < 0.05). (4) There is a 

yen 

0 c a 

0 b x 

m 

Figure 3: Double number line 

yen 

c a 

b x 

m 

Figure 4:Ratio table diagram 
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significant in Function(D) problem (F(2,185) = 4.70, p < 0.05). There is a significant 

difference (p < 0.05) between the Double number line and the Word problem group, as 

well as between the Ratio table and the Word problem group. 

The mean scores of the Double number line and Ratio table group were higher than 

that in the Word problem group. The Ratio table group's mean score was the same as 

the Double number line group’s. 

Table 4: Mean Score of Correct Responses in Grade 5 

 Unit** Scalar(I)** Scalar(D)** Function(I)** Function(D)* 

 % SD % SD % SD % SD % SD 

Number line G(n=64) 93.8 0.24 98.4 0.12 68.8 0.46 81.3 0.39 50.0 0.50 

Ratio table G(n=64) 93.8 0.24 98.4 0.12 68.8 0.46 75.0 0.43 50.0 0.50 

Word problem G(n=60) 76.7 0.42 80.0 0.40 33.3 0.47 53.3 0.50 26.7 0.44 

**: p < 0.01, *: p < 0.05 

Table 5 displays the mean correct responses score in Grade 6. (1) There is a significant 

in Scalar(D) problem (F(2,196) = 3.33, p < 0.05). There is a significant difference (p < 

0.05) between the Ratio table and the Word issue group (p < 0.05). (2) There is a 

significant in Function(I) problem (F(2,196) = 3.66, p < 0.05). There is a significant 

difference (p < 0.05) between the Double number line and the Word problem groups. 

(3) There is a significant in Function(D) problem (F(2,196) = 11.52, p < 0.01). There 

is a substantial difference (p < 0.01) between the Double number line and the Word 

problem group, as well as between the Ratio table and the Word problem group. 

The mean scores were high in all problems. However, the mean score of the Word 

problem group was lower than that of other groups in Function(D) problems. 

Table 5: Mean Score of Correct Responses in Grade 6 

 Unit Scalar(I) Scalar(D)* Function(I)* Function(D)** 

 % SD % SD % SD % SD % SD 

Number line G(n=60) 96.7 0.18 98.3 0.13 90.0 0.30 98.3 0.13 90.0 0.30 

Ratio table G(n=72) 98.7 0.11 94.7 0.22 94.8 0.22 89.5 0.31 89.5 0.31 

Word problem G(n=64) 98.4 0.12 93.8 0.24 81.3 0.39 84.4 0.36 62.5 0.48 

**: p < 0.01, *: p < 0.05 
Solution strategy 

Many pupils found it challenging to answer Scalar(D) and Function(D) difficulties in 

all problems. So we decided to pick up two problems. Tables 6, 7, and 8 show the 

classification of strategies for addressing the Scalar(D) problem. In Grade 4, students 

approached solving problems by using various strategies. In Grade 5, the scalar 
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technique was employed by 63% of students in the Double number line group, 63% in 

the Ratio table group, and 33% in the Word problem group. In Grade 6, students of all 

groups used more of the scalar strategy. 

Table 6: Solution strategies of Scalar (D) problem in Grade 4 

Strategy &Exapmple Number line(n=68) Ratio table(n=52) Word problem(n=64) 

 Correct Error Correct Error Correct Error 

Scalar(20×1.5) 17.6% 5.9% - - 6.3% - 

Distribution(3m+1.5m, 20 yen+10 yen) - - 7.7% 30.8% 6.3% - 

Unit(1.5)(1.5m×3,10 yen×3) - - - 7.7% 6.3% 6.3% 

Unit(20/3)(20/3×4.5 or 6.66...×4.5) - 17.6% 7.7% 7.7% - - 

Others 11.8% 47.1% - 38.5% - 75.0% 

Table 7: Solution strategies of Scalar (D) problem in Grade 5 

Strategy Number line(n=64) Ratio table(n=64) Word problem (n=60) 

 Correct Error Correct Error Correct Error 

Scalar 62.5% - 56.3% 6.3% 33.3% - 

Distribution - 18.8% 12.5% - - 26.7% 

Unit(1.5) - - - - - - 

Unit(20/3) 6.3% - - - - - 

Others - 12.5% - 25.0% - 40.0% 

Table 8: Solution strategies of Scalar (D) problem in Grade 6 

Scalar Strategy Number line(n=60) Ratio table(n=68) Word problem(n=64) 

 Correct Error Correct Error Correct Error 

Scalar 86.7% - 94.1% - 75.0% - 

Distribution - - - - - - 

Unit(1.5) 6.7% - - - 6.3% - 

Unit(20/3) - 6.7% - - - - 

Others - - - 5.9% - 12.5% 

Tables 9, 10, and 11 show the classification of solution strategies for the Function(D) 

problem. In Grade 4, 24% of pupils in the Double number line group used a working 

technique to solve the problem correctly. In Grade 5, 44% of students in the Double 

number line group and 50% of them in the Ratio table group solved correctly by using 

a functioning strategy. In the Word problem group, 40% used one of the two units (1.5 

or 3) strategies. In Grade 6, many students in the Double number line group and Ratio 

table group used a functioning strategy. 

DISCUSSION 

Students in all Grades can correctly solve the Unit problem and the Scalar(I) problem. 

According to their mean scores, they find it more challenging to solve Function 
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problems than Scalar ones. This finding consists of the finding of Vergnaud (1983). 

They struggle to solve the Scalar(D) and Function(D) problems because they must 

understand the multiplicative conception. Students in Grade 6 can correctly solve 

proportion problems than them in Grade 5. Students in Grade 6 learn rate, ratio, and 

proportion in addition to decimal multiplication and division. And they in Grade 6 can 

solve many kinds of proportion problems. These findings also appear to support the 

concept of cognitive development (Inhelder & Piaget, 1958). 

Table 9: Solution strategies of Function (D) problem in Grade 4 

Strategy & Example Number line(n=68) Ratio table(n=52) Word problem(n=64) 

 Correct Error Correct Error Correct Error 

Function(9÷6=1.5, 14×1.5) 23.5% - 7.7% 7.7% 6.3% - 

Unit(1.5)(9÷6=1.5, 1.5×14) 5.9% 11.8% - - - - 

Unit(3)(2m=3yen, 3×7) - - 7.7% - 12.5% - 

Scalar (14/6=7/3, 7/3×14) - 17.6% - - - 6.3% 

Others - 41.2% - 76.9% - 75.0% 

Table 10: Solution strategies of Function (D) problem in Grade 5 

Strategy Number line(n=64) Ratio table(n=64) Word problem(n=60) 

 Correct Error Correct Error Correct Error 

Function 43.8% - 50.0% - 13.3% - 

Unit(1.5) 6.3% - - - 6.7% 13.3% 

Unit(3) -  - 6.3% 6.7% 13.3% 

Scalar -  - - - - 

Others - 50.0% - 43.8% - 46.7% 

Table 11: Solution strategies of Function (D) problem in Grade 6 

Strategy Number line(n=60) Ratio table(n=68) Word problem(n=64) 

 Correct Error Correct Error Correct Error 

Function 80.0%  76.5%  43.8%  

Unit(1.5) 13.3% - - - 12.5% 12.5% 

Unit(3)  - 5.9% - 6.3%  

Scalar - - 11.8% - - - 

Others - 6.7% - 5.9% - 18.8% 

In only Function(D) and Scalar(D) problems, the Double number line is a more 

effective representation than the Ratio table diagrams in Grade 4. The Double number 

line and Ratio table diagrams are also more effective representations in Grade 5. In 

Grade 6, these weren’t effective because the mean score of correct responses is very 

high. While pupils have learned the Double number line since elementary school, they 

have not learned the Ratio table diagrams. They fully can’t use the Ratio table diagrams 

for problem solving activities. 
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If given proper representations, students frequently utilize a scalar strategy to tackle a 

scalar problem and a functional strategy to answer a function problem. Students can be 

easy to grasp proportional relationships through these representations. If students were 

not given representations, they frequently employed unification processes (Lamon, 

2007) to solve difficulties. So they did not fully develop a multiplicative conception, 

they needed to make newly composed units for solving problems. For example, in the 

Scalar(D) problem, they created new units such as “1.5 m per 10 yen” and “2 m per 3 

yen” in the Function problem (D). 
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OPEN-ENDED TASKS WHICH ARE NOT COMPLETELY OPEN:  

CHALLENGES AND CREATIVITY 

Sigal Klein and Roza Leikin 

Faculty of Education, RANGE Center – University of Haifa 

 

Mathematics educators argue that open-ended tasks as a powerful tool for the 

development of students’ creativity in mathematics, while it is well known that solving 

open-ended tasks is challenging for students. Recently we argued that not every open-

ended task is fully open, as even when a task has a multiplicity of solution outcomes 

completeness of the set of solution outcomes is possible. To make the distinction 

between openness and multiplicity and avoid ambiguity related to the term ‘openness’ 

we use the term ‘Multiple Outcomes Tasks’ (MOTs). In this paper we analyze students’ 

mathematical performance on two MOTs. We consider the completeness of the set of 

solution outcomes produced by a student as an indicator of his/her creativity due to 

the unconventionality of MOTs in regular classes. Our findings suggest that MOTs 

with continuous-infinite set of solution outcomes are more challenging than MOTs with 

discrete and finite sets. 

RATIONALE AND BACKGROUND 

The category of ‘open mathematical problems’ includes a variety of situations and 

questions to be answered. Back in 1995, the Discussion Group led by Pehkonen at 

PME-17 in Japan analyzed the use of open problems in different countries (Nohda, 

1995; Pehkonen, 1995; Silver, 1995; Stacey, 1995). Silver (1995) identified several 

different meanings of the term open problems: (a) problems open in mathematics, (b) 

problems allowing multiple interpretations, (c) problems having multiple solution 

methods, and (d) problems that lead to other problems or generalizations.  

Haylock (1987, 1997) connected solving open problems to divergent mathematical 

production and creative problem-solving processing as opposed to fixation developed 

through algorithmic problem solving. Often, openness of problems is connected to an 

“ill-defined” structure of tasks, that is, by missing data or assumptions (Krutetsii, 1976; 

Leikin, Klein and Waisman, in press) and thus creativity is required while a solver 

generates missing givens by her/himself. The ill-defined structure of a problem allows 

generation of various missing givens and thus leads to the production of multiple 

solution outcomes.  

In some cases, the ill-defined problem remains open. That is, the number of solutions 

is not limited. For example, in an investigation task, due to different approaches, many 

and varied solution products can be obtained (Leikin and Elgrably, 2022). In other 

cases, although the missing givens must be completed, doing so leads to a complete set 

of solution outcomes, and thus the problem remains closed. This, since despite the 

multitude of solutions and their dynamic range, the number of solutions is still limited. 

To acknowledge the distinction between these cases, we use the term ‘Multiple 
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Outcomes Tasks’ (MOTs) to refer to both open-ended problems and problems 

requiring the production of a complete set of solution outcomes (for the variety of 

MOTs see Leikin et al., in press). Both of these MOT types are united with the common 

feature of non-routine problems. That is, MOTs require a different type of creativity, 

one which is related to the understanding of an unfamiliar problem and its structure 

(Leikin, Klein and Waisman, in press), and is expressed as insight in finding the 

complete set of valid available solutions (Haavold and Sriraman, 2022). Alternatively, 

thinking about the variety of possibilities towards the complete set of solutions, is what 

develops creativity. 

Based on the above observations and suggestions we argue that MOTs are inherently 

challenging and require creative thinking. We examine students’ problem-solving 

performance on two MOTs and illustrate these ideas.  

THE STUDY 

The goal 

The goal of the study presented in this paper was to examine students’ mathematical 

performance on MOTs in the terms of the completeness of the set of solution outcomes 

obtained. In addition, we ask whether the type of the complete set of solution outcomes 

(discrete vs. continuous) affects their success in attaining said completeness. 

The context 

The study is a part of a bigger study focusing on the implementation of the Math-Key 

program, which contains creativity-directed mathematical activities for middle school 

students, of which solving MOTs is an integral component (Leikin et al., in press).  

The participants 

Ninety-three middle school students, from 7th and 8th grades in heterogeneous classes, 

participated in the study. The students were of different levels of mathematical 

competencies, and for the research experiment were divided into groups based on their 

school mathematical achievements. Table 1 depicts the distribution of the participants 

in four groups according to grade and to competency level as determined by 

achievements. 

Table 1: Distribution of the study participants in research groups 

 
HA: High-achieving students:  

 school math score ≥ 80 

MLA: Mid-to-low-achieving students: 

school math score < 80 

7th grade 15 (16%) 34 (37%) 

8th grade 6 (6%) 38 (41%) 

The two tasks, data collection and data analysis 

The study participants were asked to solve two MOTs borrowed from the Math-Key 

program (Leikin et al., in press): (1) Tickets task (Figure 1) with a complete set of 

multiple discrete solution outcomes; (2) Three-points Task (Figure 1) with a complete 
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continuous and bounded range of outcomes (infinite set). Figure 1 presents the two 

tasks that are reported in this paper. 

All the students' work was collected and the solution outcome sets were classified and 

evaluated according to the completeness of the solutions as follows: We considered 

complete solutions to the two chosen problems as indicating a high level of creativity 

due to the unconventionality of the solutions. These solutions were scored with 10. 

Partial multiple solution outcomes were considered as indicators of a low level of 

creativity and scored with 1. A solution set that included only one solution outcome 

was scored with 0.1 as indicating mental fixation (cf. Haylock, 1987). This scoring 

scheme is analogical to the scoring scheme included in the model for the evaluation of 

creativity using multiple solution strategies tasks (MSTs) suggested by Leikin (2009, 

2013). 

Tasks: Solve the following problem   Task characterization 

Tickets task  

The price of admission to a show is 20 shekels for a child and 

30 shekels for an adult. A group of 6 people (adults and 

children) came to the show. How much money does the group 

need to pay? 

 Domain: Algebra/Arithmetic 

Solution: Discrete set of 

outcomes 

 children, adults payment 

 1; 5 170 

 2; 4 160 

 3; 3 150 

 4; 2 140 

 5; 1 130 

Three-points task 

Given three points A, B, and C, such that the distance AB is 5 

cm and AC is 3 cm, what is the distance between B and C? 

 Domain: Geometry 

Solution: Continuous set of 

outcomes: 2 ≤ 𝑥 ≤ 8 

Figure 1: Two tasks reported in this paper 

Using ANOVA, we examined between group differences in the completeness of the 

sets of solution outcomes for each of the two tasks, as related to students’ mathematical 

competency levels and the grades in which they studied mathematics. We also 

examined within-groups differences related to the two tasks. Taking into account 

significant effects, we performed a pairwise comparison between the mathematical 

performance of students who studied mathematics at different levels in different grades 

(using Bonferroni adjustment). 

FINDINGS 

Completeness of the solutions  

Table 2 depicts the mean and standard deviation scores for completeness in the two 

tasks in the different groups of the research. The results shown in Table 2 demonstrate 

that the students were more successful when tackling the Tickets task than when 

solving the Three-points task. Students who did not find the complete set of solution 

outcomes for the Tickets task imagined the show’s visitors as members of one family 

only, and considered different combinations of the family members. For example, they 

were thinking about mother, father and 4 children; or 2 parents, 2 grandparents and 2 
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children without an option of a single parent with 5 children or three adults (2 parents 

and a friend of them) with 3 children. 

Table 2: Mean and SD of the completeness of the solution outcome sets in different 

research groups. 

Mean (SD) 

 
Grade 7 

N=49 

Grade 8 

N=44 

Level HA 

N=21 

Level MLA 

N=72 

Tickets 5.82 (4.69) 6.13 (4.72) 6.48 (4.60) 5.82 (4.72) 

Three-points .41 (.45) .37 (.44) .57 (.47) .34 (.43) 

 

 
7-HA 

N=15 

7-MLA 

N=34 

8-HA 

N=6 

8-MAL 

N=38 

Overall 

N=93 

Tickets 6.33 (4.65) 5.60 (4.75) 6.85 (4.89) 6.01 (4.75) 5.97 (4.68) 

Three-points .51 (.47) .37 (.44) .70 (.46) .32 (.41) .39 (.44) 

The Three-points task was very difficult for majority of the study participants. 

Although the triangle inequality is studied in the 7th grade, few students were able to 

answer the question successfully. Most students employed strategies that led to some 

discrete outcomes without referring to the triangle inequality. For example, students 

displayed an isosceles triangle and found two solution outcomes, or considered three 

points on the same line while adding or subtracting the values of the given segments. 

Only a few students used dynamic reasoning and found the complete solution. The 

majority of the students’ solution sets included natural numbers only. 

The two tasks were unconventional for students and solving both required imagination. 

However, the structure of the solution set in the Three-points task – infinite, bounded 

and continuous – determined the higher complexity of this task compared to the Tickets 

task, in which the solution set is a finite discrete set of natural numbers.  

Between group differences 

Table 3: Significant effects of achievements on completeness of solutions 

 Between groups differences Pairwise differences 

 
Level-of-mathematics effect 

HA > MLA* 

Level-of-mathematics in the 8th grade effect: 

8 HA - 8 MLA* 

 F(1,91) F(1,42) 

Three-points 

task 
4.29* 

ηp
2=.05 

4.26* 

ηp
2=.09 

No effect of grade on the completeness of the solution sets of the two tasks was found. 

The level of mathematical competencies significantly affected the completeness of the 

students’ solutions sets when solving the Three-points task only. This effect was caused 
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mainly by the differences in solutions of the 8th grade students with different levels of 

mathematical competencies (see Table 3). 

Within group differences 

A significant overall tasks effect was found on the completeness of the sets of students’ 

solution outcomes. The cause of these differences is related to the knowledge and skills 

of students. While formal knowledge of the triangle or imagination of dynamic triangle 

transformation possible due to the ill-defined structure of the problem are required for 

solving the Three-points task. At the same time, finite and discrete structure of the 

solution outcomes set of the Tickets task can be attained through trial and error 

strategy, or using systematic consideration of all the ways in which missing 

information in the Tickets task can be added. These possibilities reduced the challenge 

of completing the set of outcomes for this task (see Table 4). 

Table 4: Significant task effects of the two tasks on completeness of the solution 

outcomes sets 

Completeness of the solution outcome set is higher for the Tickets tasks than for the Three-points 

Task (see Table 2 for the descriptive statistics) 

Overall task 

effect 
Grade 7 Grade 8 HA level MLA level 

F(1,92) F(1,48) F(1,43) F(1,20) F(1,71) 

136.59*** 

ηp
2=.6 

68.2*** 

ηp
2=.59 

67.13*** 

ηp
2=.61 

36.17*** 

ηp
2=.64 

99.7*** 

ηp
2=.58 

*** p<.001 

DISCUSSION 

The study reported in this paper examined students’ mathematical performance on 

solving MOTs as a function of their mathematical competencies, focusing on their 

ability to find a complete set of solution outcomes. The tasks that we used were based 

on studied material, however, both tasks were unconventional for the study participants 

since solving MOTs was irregular for the study participants. Moreover, although the 

tasks that previously were considered open-end due to the multiplicity of the solution 

outcomes, in our view they were not completely open, as the complete sets of solution 

outcomes could be attained for both tasks. The complete solution sets of the two 

problems were different: infinite, continuous and bounded set for the Three-points 

tasks, vs. finite and discrete set (of natural numbers) for the Tickets task. 

The students’ solutions were analyzed from the aspect of completeness of the 

outcomes. We examined whether students’ level of mathematical competencies linked 

to their achievements and the level of mathematics they studied in school affected 

students’ success in producing complete sets of solutions. The ninety-three participants 

were divided into four groups according to their mathematical competencies level (HA 

and MLA) and grades (7th and 8th).  
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We found that completeness of solutions is connected to the mathematical 

competencies of participants. Students at a high-achievements level of mathematics 

(HA level), as well as students in a higher grade (8th vs. 7th grade), provide more 

complete solutions. These findings match the results of earlier studies, which displayed 

connections between knowledge, skills, and school achievements (Kattou, 

Kontoyianni, Pitta-Pantazi and Christou, 2013; Mourgues, Tan, Hein, Elliott and 

Grigorenko, 2016; Waisman et al., 2022). In connection with that, school mathematical 

achievements reflect the skills the students have acquired in solving problems, and 

students’ readiness and willingness to look for a complete set of solutions. That is as 

Mid-low-achieving students were satisfied in providing a few outcomes, even when it 

was not the full set of solutions.  

The Tickets task, which asked for completeness of solutions as whole numbers, was 

relatively simple for the students to solve. Therefore, no significant effect reflecting 

the students’ creativity was found in association to this task. However, an effect was 

found related to competency levels of students in the Three-points task, which asked 

for completeness of an inequality outcome. Although the students understood 

inequalities as an algebraic method, having a range of results, especially in a word 

problem, is not a typical task. All the more so for a geometric problem. Leikin et al. (in 

press) discussed in details complexity of solving MOTs (called ‘inequality tasks’ in 

Leikin et al., in press) vs. equality problems that have one particular solution outcome. 

They emphasized that the way in which a problem is phrased influences the problem’s 

complexity linked to the difficulty of finding the complete set of solution outcomes. In 

school, students learn to provide a concrete answer to a problem or, sometimes, answer 

questions of the form "What could be the value", which means "give an example" of a 

possible answer. But in the two tasks presented to students in our study, they were 

asked "What is the value of ...", the solution to which is different, as it requires 

completeness. Moreover, specific examples in the Three-points task do not lead to the 

complete set of solution outcomes. We also argue that students’ failure in attaining 

complete solution outcomes set indicate a lack of creativity and imagination. 

As Yackel and Cobb (1996) pointed out, in order to develop mathematical creativity, 

it is necessary to change the mathematical norms used in the classroom, both in terms 

of teaching methods and in terms of the thinking and solution processes. This, because 

it is through the presentation of challenges that the intellectual independence of 

students develops. That is, it is necessary to break the existing norms in order to create 

new norms, which will eventually become routine. Our findings are indicative of a 

need to change classroom norms and to enhance product creativity (Leikin and 

Elgrably, 2022), which is related to finding complete solution outcomes. We 

recommend guiding teachers to apply and integrate challenging tasks with multiple 

outcomes in the classroom, as these tasks develop thinking through the search for 

complete sets of solution outcomes. 

In the current study we have attempted to connect students’ behavior while solving 

mathematical problems that have multiple solution outcomes, to students’ 
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mathematical competences. Our findings display insignificant differences when the 

assignments do not conform to the learning norms used in the classroom. Further 

research is needed to examine more deeply the issue of differences in complexity of 

different MOTs with attainable complete sets of solution outcomes. The future research 

can examine both students’ ability to approach and solve these tasks, and the effect of 

experience in solving MOTs of completeness-type on advancement of students' success 

in tackling these mathematical tasks. 

ACKNOWLEDGEMENT 

The Math Key program was developed with generous support of the Julius and Edie 

Trump Family Foundation (Grant # 275). We are thankful to the Israel Science 

Foundation (ISF research fund # 887/18) for supporting to this study. The opinions 

expressed in this study are solely the opinions of the authors and do not necessarily 

reflect the views of the above institutions. 

REFERENCES 

Haavold, P. Ø., & Sriraman, B. (2022). Creativity in problem solving: integrating two 

different views of insight. ZDM–Mathematics Education, 54(1), 83-96. https://doi.org/10

.1007/s11858-021-01304-8 

Haylock, D. (1997). Recognizing mathematical creativity in schoolchildren. ZDM 

Mathematics education, 29(3), 68-74. 

Haylock, D. W. (1987). A framework for assessing mathematical creativity in school 

children. Educational studies in mathematics, 18(1), 59-74. 

Kattou, M., Kontoyianni, K., Pitta-Pantazi, D., & Christou, C. (2013). Connecting 

mathematical creativity to mathematical ability. Zdm, 45(2), 167-181. https://

doi.org/10.1007/s11858-012-0467-1 

Klein, S., & Leikin, R. (2020). Opening mathematical problems for posing open mathematical 

tasks: what do teachers do and feel?. Educational Studies in Mathematics, 105(3), 349-

365. https://doi.org/10.1007/s10649-020-09983-y 

Krutetskii, V.A. (1976). The psychology of mathematical abilities in schoolchildren. 

Translated from Russian by Teller, J.; Edited by Kilpatrick J. & Wirszup. Chicago: The 

University of Chicago Press. 

Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. 

Leikin, A. Berman & B. Koichu (Eds.), Creativity in mathematics and the education of 

gifted students. (Ch. 9, pp. 129-145). Rotterdam, the Netherlands: Sense Publisher. 

https://doi.org/10.1007/978-3-030-29215-7_9 

Leikin, R. (2013). Evaluating mathematical creativity: The interplay between multiplicity and 

insight1. Psychological Test and Assessment Modeling, 55(4), 385. https://core.ac.uk

/download/pdf/25760616.pdf 

Leikin, R., & Elgrably, H. (2022). Strategy creativity and outcome creativity when solving 

open tasks: focusing on problem posing through investigations. ZDM–Mathematics 

Education, 54(1), 35-49. https://doi.org/10.1007/s11858-021-01319-1 

https://doi.org/10.1007/s11858-021-01304-8
https://doi.org/10.1007/s11858-021-01304-8
https://doi.org/10.1007/s11858-012-0467-1
https://doi.org/10.1007/s11858-012-0467-1
https://doi.org/10.1007/s10649-020-09983-y
https://doi.org/10.1007/978-3-030-29215-7_9
https://core.ac.uk/download/pdf/25760616.pdf
https://core.ac.uk/download/pdf/25760616.pdf
https://doi.org/10.1007/s11858-021-01319-1


Klein & Leikin 

3 - 178 PME 46 – 2023 

Leikin, R., Klein, S., Ovodenko, R., Gurevitch, I., Dinur, S., & Leen Y. (in press). MATH-

KEY Program: Opening mathematical minds by means of open tasks supported by 

dynamic applets in Leikin R. (Ed.) Mathematical challenges for all. Springer. 

Leikin, R., Klein, S. & Waisman, I. (in press). To what extent are open problems open: 

interplay between problem context and structure. In J. Cai, G. Stylianides, and P. Kenney 

(Eds.). On the Learning and Teaching of Mathematics: Research Studies in Honor of 

Edward A. Silver. 

Mourgues, C., Tan, M., Hein, S., Elliott, J. G., & Grigorenko, E. L. (2016). Using creativity 

to predict future academic performance: An application of Aurora's five subtests for 

creativity. Learning and individual differences, 51, 378-386. https://doi.org/10.1016

/j.lindif.2016.02.001 

Nohda, N. (1995). Teaching and evaluating using “open-ended problems” in the classroom. 

ZDM-Mathematics Education, 27(2), 57–61. 

Pehkonen, E. (1995). Use of open-ended problems. ZDM-Mathematics Education, 27(2), 55–

57. 

Silver, E. A. (1995). The nature and use of open problems in mathematics education: 

Mathematical and pedagogical perspectives. ZDM-Mathematics Education, 27(2), 67–72. 

Stacey, K. (2005). The place of problem solving in contemporary mathematics curriculum 

documents. The Journal of Mathematical Behaviour, 24(3-4), 341-350. https://doi.org/

10.1016/j.jmathb.2005.09.004 

Waisman, I., Brunner, C., Grabner, R. H., Leikin, M., & Leikin, R. (2023). (Lack of) neural 

efficiency related to general giftedness and mathematical excellence: An EEG 

study. Neuropsychologia, 108448. 

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in 

mathematics. Journal for research in mathematics education, 27(4), 458-477. 

https://www.jstor.org/stable/749877

https://doi.org/10.1016/j.lindif.2016.02.001
https://doi.org/10.1016/j.lindif.2016.02.001
https://doi.org/10.1016/j.jmathb.2005.09.004
https://doi.org/10.1016/j.jmathb.2005.09.004
https://www.jstor.org/stable/749877


 

2023. In M. Ayalon, B. Koichu, R. Leikin, L. Rubel & M. Tabach (Eds.). Proceedings of the 46th Conference of 

the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 179-186). PME 46. 

THE DISCOVERY FUNCTION OF PROVING BY 

MATHEMATICAL INDUCTION 

Kotaro Komatsu 

University of Tsukuba, Japan 

Proof plays multiple roles in disciplinary mathematical practice; discovery is one of 

the functions of proof that remain understudied in mathematics education. In the 

present study, I addressed this research gap by focusing on proving by mathematical 

induction and exploring how students generalise a statement after proving it with this 

proof method. I conducted and analysed a task-based interview with a pair of 

undergraduate students. The analysis of this interview shows that their process pattern 

generalisation for the original statement played a crucial role in their subsequent 

activity where they further generalised this statement and proved the generalisation. 

INTRODUCTION 

Proof plays multiple roles in disciplinary mathematical practice. Given the significance 

of authentic mathematical activity in mathematics education (Stylianides et al., 2022), 

those roles relevant to students’ mathematical learning should also be introduced to 

school mathematics. De Villiers (1990) examined five functions of proof in 

mathematics: verification, explanation, systematisation, discovery, and 

communication. While explanatory proofs have been extensively discussed in 

mathematics education research (e.g., Hanna, 1990; Komatsu et al., 2018; Lockwood 

et al., 2020; Stylianides et al., 2016), discovery is one of the proof functions that remain 

understudied (de Villiers, 2012; Komatsu et al., 2014). The discovery function of a 

proof refers to the invention of new results, including the generalisation of the original 

statement that the proof has verified (de Villiers, 1990).  

In the present study, I explore this discovery function with a particular focus on proof 

by mathematical induction. Proof by mathematical induction is a specific method for 

proving that a statement P(n) is true for every natural number n (I focus on this typical 

case in this study, not considering other cases such as statements for the subsets of 

natural numbers). This proof method consists of two steps: the base step showing P(1) 

and the inductive step showing the implication P(k) ⟹ P(k + 1) for every k. 

While several researchers argue that proofs by mathematical induction are generally 

not explanatory (e.g., Hanna, 1990; Lange, 2009; Steiner, 1978), others present case 

studies where proving by mathematical induction is explanatory for the provers 

(Stylianides et al., 2016). The latter study suggests the possibility that proving by 

mathematical induction can include the discovery function because the explanatory and 

discovery functions of proofs are deeply related to each other (de Villiers, 2012). 

Examining the discovery function of proving by mathematical induction is important 

for school mathematics because it can provide students with a productive image that 

this proof method not just prescribes a mechanical procedure that students must follow 

but offers a useful tool by which they can generalise the original statement. 
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Nevertheless, to the best of my knowledge, no research to date has examined the 

discovery function of proving by mathematical induction. In the current study, I 

address this gap in the literature by exploring the research question: How do students 

generalise a statement after proving it by mathematical induction? 

THEORETICAL FRAMEWORK 

Researchers view the meaning of the discovery function of proof differently, and 

Komatsu et al. (2014) reviewed different illustrations of this function observed in the 

literature. The present study focuses on one type of activity that consists of three 

phases: (1) conjecturing and proving a statement (or proving a given statement), (2) 

changing one of the conditions of the statement by asking a what-if-not question 

(Brown & Walter, 2005), and (3) using the idea of the proof constructed in phase 1 to 

invent and prove a generalisation of the original statement. Consider, for example, the 

statement that the sum of three consecutive integers is three times the second integer. 

This statement can be proved by representing the three integers as a – 1, a, and a + 1, 

and calculating their sum to show it as 3a (phase 1). Phase 2 involves asking the 

question what if the three integers are not consecutive. The proof constructed in phase 

1 explains the reason why the sum of the three numbers in the original statement is 3a: 

– 1 and + 1 in this sum are cancelled. From this proof idea, provers can generate and 

prove a new statement that the sum of three integers with equal differences (e.g., 1 + 3 

+ 5 and 2 + 5 + 8) is also three times the second integer. This statement is a 

generalisation of the original one (phase 3).  

Similar to Stylianides et al. (2016), this study distinguishes proving, which is an 

activity or process leading to the proof of a statement, and proof, which is the final 

written product of the proving activity that establishes the truth of the statement. 

Proving encompasses various activities that may not be represented in the resulting 

proofs. Those activities include investigating examples to make conjectures and 

providing informal arguments that suggest the veracity of the conjectures and offer 

insight into ways to prove them. By the discovery function of proving, this study 

considers the activity where the prover generalises the original statement by using an 

idea or ideas included in the proving process or proof of the original statement. 

In the context of mathematical induction, several researchers (e.g., Pedemonte, 2007; 

Stylianides et al., 2016) have considered the distinction made by Harel (2002) between 

result pattern generalisation and process pattern generalisation. While result pattern 

generalisation refers to focusing on regularity in the obtained results, process pattern 

generalisation refers to focusing on regularity in the processes performed to obtain the 

results. Process pattern generalisation involves making a conjecture P(n) through 

observing a common feature in the processes of P(1) → P(2), P(2) → P(3), P(3) → P(4), 

etc. This type of generalisation is relevant to the inductive step in proof by 

mathematical induction. Pedemonte (2007) presented a case where students succeeded 

in proof construction from their process pattern generalisation, and Stylianides et al. 

(2016) analysed students’ work where their process pattern generalisation enabled 
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proving by mathematical induction to be explanatory. Given the deep relationship 

between the explanatory and discovery functions of proofs (de Villiers, 2012), it is 

anticipated that process pattern generalisation would also relate to the discovery 

function of proving by mathematical induction. In this paper, I examine this hypothesis 

by analysing students’ activity on a sequence of tasks.  

METHODS 

The data analysed in this study are taken from a task-based interview conducted as part 

of a research project for developing task design principles for the discovery function 

of proving by mathematical induction. In the initial phase of this project, two sequences 

of tasks were designed based on certain principles and implemented with two pairs of 

Japanese undergraduate students. Considering the page limit, in this paper, I present 

the analysis of an interview using the task sequence shown in Figure 1 with one pair of 

students, Misaki and Sakura (pseudonyms). The activity of the other pair of students 

on these tasks was similar to that described in this paper. 

 

Figure 1: Task sequence implemented in the interview 

Regarding these tasks, I hereafter refer to both a k×k square with a 1×1 square removed 

and a k×k square itself as a k×k square as long as it does not lead to confusion. Task 1 

is relevant to phase (1) in the activity discussed in the previous section, and Task 2 is 

relevant to phases (2) and (3). The students worked on these two tasks for 

approximately 40 min. They were provided worksheets, grid papers, and a sufficient 

number of L-shape tiles made from paper. The students were in their third year at a 

Japanese national university. They majored in mathematics and completed several 

courses in mathematics education in secondary school. They were introduced to 

mathematical induction when they were high school students. 

The task-based interview was video-recorded and transcribed. The data for analysis 

included the video recording, the transcripts produced from this recording, and the 

students’ worksheets and grid papers. These data were qualitatively analysed with a 

particular focus on how the students generated and proved conjectures in Tasks 1 and 

2, and whether and how they referred to their work on Task 1 while tackling Task 2. 

The students’ utterances and written proofs in the interview were translated from 

Japanese into English by the author. 
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RESULTS 

Process pattern generalisation and proof 

The students worked on Task 1 and found that a 4×4 square could be tiled with L-

shape figures, as shown in Figure 2a. The students then considered an 8×8 square. 

They tiled this square by placing L-shape figures one by one, not employing their 

previous finding that a 4×4 square could be tiled. 

 

Figure 2: Tiling of 4×4, 8×8, and 16×16 squares in Task 1 

The students then proceeded to a 16×16 square. During their work, they revisited the 

8×8 square they had tiled and noticed that the upper-right quarter of this square (part 

A in Figure 2b) was identical to the 4×4 square they had tiled. While they re-tiled an 

8×8 square, they discovered the structure of tiling: 

Misaki: I’ve got it. I’ve probably got it. This, this quadrilateral [part B in Figure 2b] 

is a quadrilateral with one removed. 

Sakura: Is it connected to this [part A]? 

Misaki: Yes. So, we can make a quadrilateral with one removed here [part B]. […] 

We can also make this here [part C].  

Sakura: Well, you mean… 

Misaki: Do you see it? 

Sakura: Yes. […] 

Misaki: Surely, this [part B] can be tiled without gaps. 

Sakura: Sure, and also here [part D]. So, we can think similarly. It’s really the same 

if we look carefully.  

In this interaction, the students divided an 8×8 square into four regions and found that 

these regions could be tiled with four 4×4 squares and one L-shape figure. Regarding 

the 16×16 case, they placed an 8×8 square in its upper-right quarter (part E in Figure 

2c) and considered that the remaining part could be tiled with 4×4 squares and L-shape 

figures.  

The students then worked with a 2n×2n square. During their work, they revisited the 

16×16 case and noticed that they could have employed the 8×8 case, not the 4×4 case: 



Komatsu 

PME 46 – 2023 3 - 183 

Misaki: Well, although we considered this 4×4, we can also consider it with this 

[part E in Figure 2c].  

Sakura: Where? 

Misaki: If we consider it with 8×8, because our conclusion was that 8×8 is 

possible, at this point, well, this, this, this, this [parts E–H]. 

Sakura: Ah. Well, how to prove it? 

Misaki: Um. 

Sakura: It’s a numerical sequence, well, using the one before. 

Misaki: Is it mathematical induction? 

Sakura: Induction? 

Misaki: Yes.  

At this stage, the students observed a common feature between the 8×8 and 16×16 

cases. They made a process pattern generalisation where they divided a 2n×2n square 

into four regions to relate it to the 2n–1×2n–1 case. They thus conjectured that a 2n×2n 

square could be tiled with L-shape figures. They proposed to employ mathematical 

induction to prove this conjecture and constructed the proof shown in Figure 3. 

 

Figure 3: The students’ proof of the original conjecture 

Generalisation of the original statement with proof 

The students began their work on Task 2 by considering the 4×4 case. They found that 

the two cases shown in Figure 4a (where a 1×1 square is removed from the grey 

location in each case) could be tiled with L-shape figures. They also argued that, 

because these two cases could be rotated and flipped, a 1×1 square could be removed 

from any location in the 4×4 case. 
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Figure 4: Tiling of 4×4 and 8×8 squares in Task 2 

The students then discussed the 8×8 case. They examined the case shown in Figure 4b 

as an example and found that this case could also be tiled: 

Misaki: This is 8×8 if we look at the whole [case], but if we focus on this [part P 

in Figure 4c], we can tile it [based on their previous work on the 4×4 case]. 

Sakura: We can do it in the same way as previously. 

Misaki: Yes. We can tile here, here [part P] even if we remove [a 1×1 square] from 

anywhere, anywhere [in part P]. 

Sakura: Yes. 

Misaki: Then, the remaining part becomes this [she drew an L-shape figure at the 

centre of the 8×8 square and suggested that the remaining part could be 

tiled with three 4×4 squares]. 

Sakura: Yes, it’s possible. 

Misaki: Completed. 

Sakura: Well, this is also true for another case. If we remove from here, remove 

here, we can make it here and tile in the same way [she meant that a 1×1 

square could be removed from different locations from the case of Figure 

4b]. 

Misaki: Yes, so… 

Sakura: All are possible. 

Misaki: Our conjecture is that [a 1×1 square can be] removed from anywhere.  

Sakura: […] Let’s prove it. 

In this interaction, the students generalised the original statement they had proved in 

Task 1 and conjectured that a 2n×2n square with a 1×1 square removed from any 

location could be tiled with L-shape figures. In this generalisation, the students 

employed the previous idea—that is, dividing a 2n×2n square into four regions to relate 

it to the 2n–1×2n–1 case—they had devised during their process pattern generalisation in 

Task 1. They then constructed the proof for this generalised conjecture, as shown in 

Figure 5. Although they considered the base step of their inductive proof with the 4×4 

case, they noticed that they could have started with the 2×2 case after completing the 

proof. 
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Figure 5: The students’ proof of the generalisation of the original conjecture 

DISCUSSION 

In Task 2, the students referred to two ideas they had devised during their work on 

Task 1. First, they used their process pattern generalisation for Task 1 and similarly 

divided a 2n×2n square into four regions to relate it to the 2n–1×2n–1 case in Task 2. 

Second, they referred to their proof produced in Task 1 to consider that the remaining 

part in Task 2 was equivalent to three 2k×2k squares and one L-shape figure (Figure 5). 

In this way, the students succeeded in generating and proving the statement—a 2n×2n 

square with a 1×1 square removed from any location can be tiled with L-shape 

figures—that is a generalisation of the original statement considered in Task 1. 

In the theoretical framework section, I proposed the hypothesis that process pattern 

generalisation is relevant to the discovery function of proving by mathematical 

induction. This hypothesis is corroborated in the interview analysed in this study. 

Previous research has shown several benefits of process pattern generalisation in the 

context of mathematical induction: it can be used to introduce mathematical induction 

to students (Harel, 2002; Harel & Brown, 2008); it facilitates the transition from 

empirical arguments to the construction of proofs by mathematical induction 

(Pedemonte, 2007); and it enables proving by mathematical induction to be 

explanatory for the provers (Stylianides et al., 2016). This study presents another 

benefit of process pattern generalisation; namely, it can activate the discovery function 

of proving by mathematical induction. This benefit is significant because it shows that 

mathematical induction can play a crucial role in not only showing the truth of 

statements but also further generalising the original statements.  

This paper presents the activity of one pair of students on a task sequence, and a similar 

process was observed in the activity of another student pair. However, the analysis was 
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based on a single task sequence with two pairs of students; thus, it is necessary to 

scrutinise the results by implementing different tasks in diverse settings.  
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CHATGPT DISCUSSIONS TO PRACTICE TEACHER-STUDENT 
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The recent general availability of easy-to-use tools for interacting with large-scale 

generative language models, for example, ChatGPT, has shaken the educational 

community. Both teachers and students must adapt to a world that offers technology-

based assistants that can produce text and other output almost effortlessly. A major 

problem of the output is that it is not guaranteed to be correct, and both correct and 

incorrect statements are almost indistinguishable without proper content knowledge. 

We would like to contribute to the discussion by suggesting a way to use AI as a 

training tool for teachers, using the fact that the output is similar to students' 

contributions that need to be checked for correctness. Also, the sophisticated 

capabilities of ChatGPT allow for advanced training tasks where the flaws in 

ChatGPT's argumentation must be revealed in a Socratic dialog. 

INTRODUCTION 

The relationship of Artificial Intelligence (AI) to (mathematics) education has been 

discussed for several decades now (Balacheff, 1993a, 1993b; Gadanidis, 2017; Hwang 

& Tu, 2021; Mohamed et al., 2022). A major application of AI is intelligent tutoring 

systems (ITS), which can guide students through sets of tasks, always finding the best 

task to proceed with for maximized progress. They are among the most common in 

applications of AI in education (Holmes et al., 2019, p. 102). These systems bear the 

potential to individualize teaching and relieve the teachers' workload. However, AI has 

become even more powerful in recent years, and there exist systems that can answer 

free-form questions easily, while not always correct. The introduction of ChatGPT on 

November 30, 2022, (ChatGPT, 2022) has been a major disruption to the education 

community, and its consequences are still to be seen. A major concern is that ChatGPT 

might be used for cheating in assignments, which is not far-fetched: Indeed, ChatGPT 

has been shown to get a score of 1020 on SAT, which corresponds to the 52%-

Percentile (teddy [@davidtsong], 2022).  

In this article, we will propose a way to use this technology in pre-service teacher 

training and give first results on the implementation in a university mathematics 

education course. Instead of relying on correct answers from the AI, it will be crucial 

that the output produced is not correct. Thus, future teachers can acquire diagnostic 

and communicative skills in a laboratory situation without the involvement of real 

students.  
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GENERATIVE AI 

For our purposes, only a basic understanding of the underlying technology of modern 

AI systems is necessary: A neural network connects several, but up to billions of 

artificial neurons to each other in several layers, including an input and an output layer. 

Each neuron will send a signal to other neurons in the next layer –it will “fire”– if it is 

activated, for example by the input layer, and the receiving neurons will again send a 

signal if they receive “enough” signals from the sending neurons. The parameters for 

the function determining whether a neuron should fire or not are created automatically 

through training of the neural network: Given a training set of input-output pairs, the 

parameters are tuned by finding local extrema of the parameters iteratively that give 

good results for these pairs, i.e., produce output for each input that is close to the known 

desired result. After the training phase, the neural network can be used on other inputs 

and the output will be determined by the parameters of the neural network. If the 

network has been designed properly and had enough training data, the output can match 

the expected output. 

Several techniques are available to turn the recognition of words, sounds, or images 

around into the generation of such media, leading to Generative AI (see Gozalo-

Brizuela & Garrido-Merchan, 2023). Without going into details, this can be compared 

to the generation of random text by using the suggested next word on the keyboard of 

your smartphone. By varying between the most probable next word and less probable 

words, you end up with various random sentences that are meaningful. 

Generative AI can be used to create realistic texts, images, sound, but also to transform 

from one of these to another, for example from a textual description to an image. This 

can lead to impressive results, as demonstrated by the system DALL·E 2 in Figure 1.  

              

Fig. 1: Two images created with DALL·E, an AI system by OpenAI. 

Left: “Two thirds of a pizza explained”; Right: “A drawing explaining the epsilon-

delta criterion for continuous functions” 

At first glance, the images produced look like they might explain the concept that was 

given in the prompt. However, on further investigation, they show only a very vague 

impression of something that is somehow related to the concepts. This reminds us of 

students who let the mathematics class pass by them, and when asked for explaining 

anything, they can remember some fragments, but not explain them (because they did 

https://openai.com/dall-e-2
https://openai.com/dall-e-2
https://labs.openai.com/s/5p3DN7eN5OU4vXJwpavqRtzF
https://labs.openai.com/s/JvsYMkEJtict6vcXb9s9GzwI
https://labs.openai.com/s/JvsYMkEJtict6vcXb9s9GzwI
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not understand what was going on in the first place). We will use this similarity of AI 

with inattentive students later. 

CHATGPT 

Instead of creating a new technology like in (Lee & Yeo, 2022), we rely on an existing 

and available technology called ChatGPT. ChatGPT is a chatbot that uses a large 

generative language model (Indeed, the answers of ChatGPT to mathematical 

questions appear to be real student answers, in fact, of students who can rely on large 

knowledge. However, it turns out that the answers are not correct many times, known 

as hallucination (ChatGPT, 2022) A recent paper suggests a framework of 101 tasks 

modeled after the Math Kangaroo competition for the age group 6-8 (Cherian et al., 

2023). They use this framework to benchmark the visuo-linguistic algorithmic 

reasoning abilities of neural networks. Their experimental results show that neural 

networks still perform poorly on these problems. For us, the interesting part is that they 

also tested 11 of the tasks that do not use images but are purely in text form, and for 

each of these problems asked ChatGPT for a solution several times (since ChatGPT is 

using probabilistic methods, each run yields different results). On average, ChatGPT 

solved the problems in 36.4% of the trials, with individual solving performance ranging 

from 0% to 90% (9 out of 10 runs) for the problems. 

This is in line with the announcement of OpenAI on Twitter, which states that ChatGPT 

is not yet ready to be relied on for anything important (Greg Brockman [@gdb], 2022). 

In this paper, we will show how to use ChatGPT nevertheless for something important: 

Teacher education. 

RESEARCH QUESTION 

While ChatGPT is mostly recognized as a threat to traditional ways of teaching (Cotton 

et al., 2023; Haque et al., 2022; Susnjak, 2022; Zhai, 2022), there might be good ways 

to include this technology in education, and indeed there are reports of successful 

teaching accepting the availability of ChatGPT (Roose, 2023; Roose et al., n.d.), 

connected with the appeal to use it instead of banning it from schools. In our research, 

we want to find out, whether and how the output produced with ChatGPT can help 

teacher students to acquire diagnostic and communicative skills that are necessary for 

appropriate cognitive support of students and cognitive activation, two out of three 

generic dimensions of teaching quality (Praetorius et al., 2018). 

METHODOLOGY 

Our research took place between December 2022 and January 2023. Our study subjects 

were about 30 students enrolled in the B. Ed. program who took part in the course 

Introduction to Mathematics Education. Most of the students were in their 5th semester. 

The 2h per week lecture is accompanied by small-group tutoring, also 2h per week. 

Within these tutorials, students reflect on the lecture content and solve tasks that should 

help them to transform theoretical concepts related to teaching into actual teaching. 

This course also serves as preparation for their subject-specific school placements in 



Kortenkamp & Dohrmann 

3 - 190 PME 46 – 2023 

the next semester when they start to teach mathematics under the supervision of a 

mentor. 

All students received a short introduction to ChatGPT during the lecture. Through the 

courses' moodle, they received four chat transcripts that have been created by the 

lecturer, two in English, two in the German language, with the following initial 

prompts (translated), followed by a longer conversion: (1) “Can you explain integrals 

to a five-year-old?” (2) “Please act like a five-year-old boy and explain negative 

numbers to me.” (3) “Hello. Can you explain to me what a quadratic function is?” (4) 

“Please write me an explanation of where the treasure is. This is to use a coordinate 

system and linear functions and their intersections. I would like to use this in 

mathematics lessons.” 

Students were advised to read the texts and mark passages that show that ChatGPT 

does not really understand what it is talking about. They were also asked to pay special 

attention to the prompting technique used to uncover flaws in ChatGPTs 

argumentation. 

In the next step, students were asked to try to talk to ChatGPT themselves about a 

mathematical notion of their choice. Working in groups of two or three and asking 

questions, they should reveal wrong answers. Also, they were asked to collect more 

signs that the chatbot does not really understand mathematics, but is just able to 

produce texts that look like it understands mathematics. 

Unfortunately, the huge interest in ChatGPT resulted in server downtimes, so only one 

group of three students did finish the assignment. The other groups will try again but 

cannot complete the assignment before the PME deadline. 

RESULTS 

Nevertheless, the dialog created by the remaining group can be used as the first data 

for our research. We give excerpts of the complete transcript below. The text has been 

copied verbatim, and some line breaks have been removed for brevity. Bold Numbers 

have been included to refer to parts of the transcript in the discussion. 

Student: Prove that f(x)= x^2 is continuous using the Epsilon-Delta criterion 

ChatGPT: To prove that the function f(x) = x^2 is continuous using the Epsilon-Delta 

criterion, we must show that for every epsilon > 0, there exists a delta > 0 

such that for all x and y in the domain of f, if |x-y| < delta, then |f(x) - f(y)| 

< epsilon. 

 To prove that f(x) = x^2 is continuous, we can start by assuming that 

epsilon > 0 is given. We must then find a delta > 0 such that if |x-y| < delta, 

then |f(x) - f(y)| < epsilon. 

 We can start by expanding the expression for |f(x) - f(y)|: 

 |f(x) - f(y)| = |x^2 - y^2| 

(1) Since |x^2 - y^2| is always nonnegative, we can drop the absolute value 

signs and simplify the expression to: x^2 - y^2 < epsilon 
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 Next, we can add y^2 to both sides to obtain: x^2 < epsilon + y^2 

 Since epsilon and y^2 are both positive, we can take the square root of both 

sides to obtain: |x| < sqrt(epsilon + y^2) 

 Finally, we can set delta equal to sqrt(epsilon + y^2), which gives us: 

(2) |x-y| < delta 

 |f(x) - f(y)| = |x^2 - y^2| = x^2 - y^2 < epsilon 

 This completes the proof that f(x) = x^2 is continuous using the Epsilon-

Delta criterion. 

Student: So you are telling me, that x^2-y^2=|x^2-y^2| is always correct? 

ChatGPT: The expression x^2-y^2=|x^2-y^2| is not always correct. 

 […] 

 In general, the expression x^2-y^2=|x^2-y^2| will only be true if x^2-y^2 

is nonnegative. If x^2-y^2 is negative, then the expression will not be true. 

Student: In your previous proof you noted that |f(x) - f(y)| = |x^2 - y^2| = x^2 - y^2 

< epsilon meaning you said that |x^2 - y^2| = x^2 - y^2. 

ChatGPT: I apologize for the mistake in my previous response. […] 

 To correct the mistake, the correct statement should be: 

 |f(x) - f(y)| = |x^2 - y^2| = |x^2-y^2| < epsilon 

 I apologize for any confusion that my mistake may have caused. Thank you 

for pointing out the error. 

Student: Your whole proof is useless now. Could you please rewrite it again without 

your wrong assumptions? 

ChatGPT: I apologize for the mistake in my previous proof. Here is a corrected 

version of the proof that f(x) = x^2 is continuous using the Epsilon-Delta 

criterion: 

 [… repeating the same proof again, with the last line changed to…] 

 |f(x) - f(y)| = |x^2 - y^2| < epsilon 

 This completes the proof that f(x) = x^2 is continuous using the Epsilon-

Delta criterion. 

 I apologize again for the mistake in my previous proof and for any 

confusion it may have caused. Please let me know if you have any questions 

or if you need further assistance. 

Student: (3) I dont think that proof is correct because |x^2 - y^2| isnt greater than x^2 - 

y^2. 

ChatGPT: You are correct that |x^2 - y^2| is not always greater than x^2 - y^2. I 

apologize for the mistake in my previous proof. Here is a corrected version 

of the proof that f(x) = x^2 is continuous using the Epsilon-Delta criterion: 
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 [… correct proof using the expansion |x^2 - y^2| = |x+y||x-y| …] 

 I apologize again […] 

DISCUSSION 

The transcript above shows the typical nature of ChatGPT answers: They seem to be 

correct, and they use sophisticated language and subject-specific wording. In (1) we 

see a common mistake often found in the classroom. For positive a the expression |a| 

is equal to a, so we can drop the absolute value signs, but ChatGPT uses a wrong 

version where the (trivial) positivity of |a| is used to drop the absolute value signs. The 

students realize that problem and focus their further discussion on this fact. ChatGPT 

is very submissive and apologizes a lot, but the changes in the proof do not suffice to 

fix the problem, as they are local to a single line of the proof. 

The other problem in the proof at (2) goes unnoticed. ChatGPT states boldly that |x-y| 

is less than delta, while by definition of delta, it is only known that |x| < delta. As this 

problem appears later in the proof, it is fine not to discuss it too early. But further 

investigation here shows that the proof is indeed fundamentally flawed. 

In (3) the students finally find the right prompt to make ChatGPT come up with a 

different (and correct) proof. Here we notice that the students are right with their 

statement, but it is not at all clear why this causes ChatGPT to change to another 

strategy.  

These three items demonstrate three cases for using ChatGPT as a discourse trainer: 

First, it makes similar mistakes to students in the classroom, even for advanced topics 

from undergraduate courses. The examples we gave the students were at lower or upper 

secondary level and they also exhibit the same error creation. Second, it is possible to 

discuss a problem with the chatbot, and it tries to adapt to the new information it 

receives, but it is usually trying to fix problems locally – which is very similar to 

strategies seen in the classroom, where students try to correct single lines in their 

assignments, without observing the consequences. Third, ChatGPT can switch to a 

completely other solution if prompted accordingly. While the first two observations 

give hope that this tool can indeed be used in teacher education, this last observation 

might make it difficult to discuss a solution from beginning to end. A remedy can be 

to remind ChatGPT to stick with the old proof (or explanation). 

All in all, the first experiments answer the research question positively, thus we 

identified a good component of a teacher education program, following these lines:   

“[…] we believe the core of teaching—interacting with students about the content—is not 

learned well through automatizing routines or even through acquiring expert strategies 

during a teacher preparation program. Rather, it is learned through continual and 

systematic analysis of teaching.” (Hiebert et al., 2007) 

LIMITATIONS AND FURTHER RESEARCH 

The ChatGPT tool has been available for a few weeks only when we started to use it 

in our Introduction to Mathematics Education course. Also, during that time it changed 
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as it is under constant development, and during peak hours (office hours in the U.S.) it 

was not reliably available, so we could not use it with all students enrolled in the course. 

As such, this must be considered a first proof of concept showing the potential of using 

generative language models in teacher education and training. 

The rapid progress of AI—we are expecting the next iteration of the underlying 

language model GPT 3.5 soon—might render the described use of AI as “artificial 

stupidity” (AS) impossible. Even if the chatbot still might not understand what it is 

talking about: If it does not show any errors in its answer, we cannot encourage teacher 

students to find flaws in the argument. This can be compared to the Chinese room 

problem (Searle, 1980) which raises the question of whether a person following rules 

to produce Chinese answers to Chinese questions following a set of rules does 

understand the language or not, and if so, where this understanding is located. This can 

be translated to mathematical notions and concepts easily, reminding us of Benny's 

case (Erlwanger, 1973). An important skill in teaching mathematics is to reveal the 

concepts that students use to find answers to questions and tasks in mathematics, and 

this could also be trained by analyzing an AI. 
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TEACHING MATHEMATICS WITH TECHNOLOGIES: 

PROFILES OF TEACHER CHARACTERISTICS 

Timo Kosiol and Stefan Ufer 
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Integrating technologies into mathematics learning and teaching is an important, but 

challenging task. A range of variables are considered relevant to understand why and 

how teachers vary in their technology use. A person-centred approach allows to 

identify profiles of teachers regarding this range of teacher characteristics. A latent 

profile analysis on measures of (technology-related) knowledge and motivational 

indicators of N=227 pre- and in-service teachers yielded five profiles, that differ in 

terms of knowledge and technology-related motivational characteristics. The number 

of pre-service teachers in the profiles varies substantially, indicating a role of post-

university teaching experience for prerequisites of technology use in the classroom. 

INTRODUCTION 

The use of educational technologies in teaching mathematics is promising to enhance 

learning, especially subject-specific types such as dynamic mathematical tools 

(Hillmayr et al., 2020). Although technology use varies internationally (Fraillon et al., 

2020), there is a call to increasingly use technologies and especially subject-specific 

tools in the mathematics classroom. The Will-Skill-Tool (WST) model of technology 

integration emphasizes the important role of teacher characteristics for the productive 

use of such tools (Knezek & Christensen, 2016). Regarding mathematics education, 

there is a lack of subject-specific studies investigating those characteristics of teachers, 

that may contribute to the use of technology and its quality for mathematics learning. 

Indeed, motivational variables such as value beliefs (Thurm, 2018) and self-efficacy 

(Thomas & Palmer, 2014) are known to correlate with technology use in Mathematics. 

Contrary, little is known about the role of professional knowledge in this context, 

because measures of technology-related professional knowledge are rare (Petko, 2020). 

The increasing number of variables discussed makes it difficult to theorize and 

investigate the specific role of each variable. Thus, we apply a person-centred approach 

to identify different profiles of teachers regarding their professional knowledge and 

motivational characteristics related to technology use in the mathematics classroom. 

FACTORS INFLUENCING TECHNOLOGY USE 

To explain the use of technologies the Will-Skill-Tool (WST) model focusses on 

teachers' attitude towards the use of technology (will), their competences regarding the 

use of these technologies for educational purposes (skill and additional factor 

pedagogy), and their access to these technologies (tool) (Knezek & Christensen, 2016).  

Will and skill can be seen as teacher-related variables. Previous studies have subsumed 

different construct under the will facet, that can fall under value beliefs. The skill facet 
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has often been assessed by teacher self-reports, but doubts in their validity have been 

raised (e.g., Petko, 2012). These self-reports can be assumed to reflect teachers’ self-

beliefs, rather than skills. As technology-related measures of professional knowledge 

lack (Petko, 2020) we are not aware of any study including objective measures. Tool 

is mostly assessed as school context variable, referring to the availability of the tools 

and the ease and flexibility of accessing tools for educational purposes (Petko, 2012). 

Beyond these facets, other teacher characteristics, such as professional experience are 

discussed to have an influence on technology use. Bachfisch and colleagues (2019) 

found that advanced teachers integrated technologies with higher quality than pre-

service teachers. Petko (2012) did not find any effect of gender or age. 

Teachers’ technology-related professional knowledge 

Originally, the skill facet is defined as the ability and the self-perceived confidence to 

use technologies in educational settings. Beyond teachers’ self-efficacy, their 

professional knowledge may be assumed as a central characteristic underlying this 

ability. While professional knowledge without an explicit relation to technology is 

known to influence teaching and learning, little is known about the role of technology-

related professional knowledge for teaching.  

Shulman’s differentiation of professional knowledge into CK, PK, and PCK was 

extended by the TPaCK model of Mishra & Koehler (2006) adding the core facet 

technological knowledge (TK). This results in two additional content-related 

intersections: technological content knowledge (TCK) and technological pedagogical 

content knowledge (TPCK). These may be understood as knowledge about how to use 

technology to represent mathematical content and work mathematically (TCK) and 

knowledge about how to use technologies to teach, represent and facilitate learning in 

mathematics (TPCK). Focussing on subject-specific teacher characteristics, this draws 

attention to teachers’ CK and PCK. Since, some authors hypothesize that Shulman’s 

original knowledge facets, such as PCK, may not predict the quality of technology use 

for subject-specific learning (Backfisch et al., 2020), also TCK and TPCK should be 

considered when investigating teachers’ technology-related characteristics. Also, 

Petko (2012) proposes to include TPCK into the skill facet of the WST model. 

Motivational Teacher Characteristics 

In recent years different studies applied expectancy-value theory (EVT) to analyse the 

role of motivational teacher characteristics on technology use (will facet, e.g., 

Backfisch et al., 2020; Cheng et al., 2020). EVT includes expectation beliefs such as 

self-concept, beliefs about intrinsic, utility, and attainment value as well as 

(anticipated) personal cost of technology use (Eccles & Wigfield, 2002). There are 

inconsistent results regarding the role of the different value components. For example, 

Backfisch et al. (2020) identify utility value as relevant mediator between teaching 

expertise and the quality of use, while Cheng et al. (2020) do not find any relation of 

utility value with either quantity or quality of use, but that expectancy, intrinsic value 

and personal cost were related to quantity and expectancy to high quality use. 
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All these studies are variable-centred focussing on relationships between a subset of 

relevant variables. Person-centred approaches may help to identify profiles of teachers 

with respect a broad range of teacher characteristics related to technology use. Thurm 

(2018) identified four profiles based on personal beliefs and usage reports 

differentiating between groups of teachers that had either positive or negative beliefs 

about technology use and that were either frequent or infrequent users. Knowledge 

measures or covariates such as teaching experience were not included. 

PRESENT STUDY 

The goal of this study was to identify profiles of teachers based on their expectancy 

and value reports regarding the use of technology, as well as their (technology-related) 

professional knowledge. Furthermore, we were interested whether the number of in- 

and pre-service teachers differs across profiles. We focused on the following questions:  

1. Which profiles of secondary mathematics teachers can be identified based on their 

expectancy and values reports regarding the use of educational technologies and 

content-related professional knowledge in terms of CK, PCK, TCK and TPCK? 

2. Do the profiles differ regarding the frequency of pre-service teachers? 

METHOD 

Sample 

We analyse a sample of pre-service (N = 67, median: 9th semester) and in-service 

(N = 160) secondary mathematics teachers in Germany drawn between April 2021 and 

October 2022. All participants provided data on expectancy and value measures. All 

data were collected online in a single session (max. 142 min.). In a subsample of N = 

82 in-service teachers, the session was part of a larger data study. The other participants 

were from an occasional sample. 

Table 1: Demographic data of the sample 

 Gender  Age  School Track 

 F M D  < 30 30-39 40-49 >50  low med high other 

pre 23 41 3  61 5 0 0  35 6 23 3 

in 69 79 0  23 63 34 28  37 44 82 3 

Note. School track: current school of in- and course of study for pre-service teachers. 

Measures 

Professional knowledge. We applied a new, self-developed test instrument to measure 

mathematics-related facets of professional knowledge based on the TPaCK framework 

(CK, PCK, TCK, TPCK). For PCK and TPCK the items were embedded in typical 

situations that teachers encounter while preparing, teaching, or reflecting on a 

mathematics lesson. Technology-related items focus on three predominant subject-

specific tools used for teaching and learning mathematics in Germany: computer 
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algebra systems, dynamic geometry software, and spreadsheets. Mathematical content 

were linear functions, probability, and spatial geometry as taught in German lower 

secondary schools. PCK and TPCK included items on instructional strategies and tasks, 

as well as student cognition. Items were blocked by knowledge facet and participants 

were given a specific time for each facet in a fixed order (CK, TCK, PCK, TPCK). 

The open-answer items were coded based on extensive manuals. Interrater reliabilities 

determined for 20-30% of the data were satisfying (kappa (weighted for ordinal 

scales): 0.68-1; mean: 0.90). Using item-response theory (IRT), a four-dimensional 

structure (CK, TCK, PCK, TPCK) was confirmed with acceptable item fit indices (in- 

and outfit: 0.5-1.5) and WLE reliabilities (CK: .63, TCK: .64, PCK: .61, TPCK: .74).  

Motivational measures. We collected data on self-concept, personal cost, utility, and 

intrinsic value as well as attainment value. Descriptive data and example items of the 

scales are shown in table 2.  

Table 2: Descriptive Data of the Expectancy and Value Scales 

Scale # Translation of Example Items M (SD)  

self-

concept 

4 “I know how to use technologies to enhance learners’ 

understanding of mathematical content.” 

2.62 

(0.80) 

.89 

personal 

cost 

8 “To teach mathematics using technologies, I have to invest a 

lot of preparation time to completely revise my materials.” 

1.51 

(0.66) 

.75 

utility 

value 

5 “Teaching mathematics using technologies allows for more 

persistent and interconnected learning than traditional media.” 

2.50 

(0.67) 

.75 

intrinsic 

value 

4 “I enjoy teaching mathematics lessons using technologies.” 2.95 

(0.80) 

.86 

attainmen

t value 

6 “Teaching mathematics using technologies, I receive more 

acknowledgement from learners and parents.” 

2.30 

(0.73) 

.79 

Notes. Answers on a five-point Likert scale “Does not apply” (0) – “Applies completely 

(4), #: Number of items, M: mean, SD: standard deviation; : Cronbach’s alpha 

Data analysis 

Data from all scales were z-standardized. As Little’s MCAR test was significant, the 

EM algorithm was applied to impute missing data (overall 2.9 %). A latent profile 

analysis (LPA) was conducted using the five motivational (see table 2) and four 

professional knowledge variables (CK, TCK, PCK, and TPCK) as indicators. We 

tested local independence models (covariances set to 0) with varying and equal cross-

profile variances for 1 to 7 profiles (Bauer, 2022). The selection of the best model and 

numbers of profiles was based on AIC, BIC, adjusted BIC, Entropy and BLRT p-

values, as well as interpretability of the modul. Profile differences in experience (pre- 

vs. in-service) were investigated with the BCH method (Asparouhov & Muthén, 2020). 
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RESULTS 

Teacher profiles 

As AIC and BIC were consistently lower for models with varying cross-profile 

variances, the local independence model with varying variances was chosen for the 

LPA. The BLRT tests and BIC support a solution with five profiles, while AIC and 

aBIC indicate that even more profiles could be identified (see table 3). Based on 

interpretability and the weak decrease of AIC and aBIC for higher numbers of profiles, 

a five-profile solution was selected. 

Table 3: Fit statistics and results of the BLRT (selected in bold) 

# Profiles AIC BIC aBIC Entropy BLRT p-value 

1 5842.6 5904.3 5847.2   

2 5356.0 5482.7 5365.5 0.85 < 0.001 

3 5241.9 5433.7 5256.2 0.85 < 0.001 

4 5163.6 5420.4 5182.8 0.87 < 0.001 

5 5096.3 5418.2 5120.3 0.88 < 0.001 

6 5087.4 5474.4 5116.3 0.87 1 

7 5057.3 5509.3 5091.0 0.90 1 

Based on the mean values of the indicator variables (see figure 1), we interpreted the 

profiles as follows. 

Figure 1: Mean values of the five profiles for z-standardized indicators 

 

Profile 1: Technology-focused (N = 23). The first and smallest profile ranks highest on 

all motivational indicators and above-average values on all knowledge indicators, 
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compared to the whole sample. Moreover, the average scores on technology-related 

knowledge (TCK and TPCK) rank higher than those on CK and PCK. 

Profile 2: Motivated and Knowledgeable (N = 60). The second profile has comparably 

high scores on all knowledge indicators. Also, all motivational characteristics are 

above average, but lower than for the technology-minded profile. 

Profile 3: Content-focused (N = 29). The third profile shows comparably low value 

traits characteristics, especially regarding utility value. Self-concept and personal cost 

scores are near the sample average. In contrast, it shows above-average scores on all 

knowledge indicators, especially for the content-related facets CK and TCK. 

Profile 4: Education-focused (N = 61). The fourth profile shows values close to the 

average on nearly all indicators. Compared to the whole sample, education-related 

knowledge indicators PCK and TPCK are higher than solely content-related CK and 

TCK, that are slightly below average. Also, self-concept is slightly below average.  

Profile 5: Potentially struggling (N = 54). The last profile shows low values on all 

indicators, compared to the whole sample. Especially the knowledge indicators are 

substantially lower than those of all other profiles. 

Experience differences between the profiles 

To answer RQ2, we included a binary experience measure (0: pre-service, 1: in-service 

teachers) into the LPA using the BCH method. This method calculates weighted 

frequencies of in-service teachers in each profile based on the probabilities of assigning 

participants to the groups. 

The education-focused and the potentially struggling profiles have the lowest weighted 

frequency of in-service teachers (see table 4). Especially the education-focused profile 

differs significantly from nearly all other profiles except the potentially struggling 

profile, indicated by non-overlapping confidence intervals. The technology-focused 

profile descriptively has the highest weighted frequency of in-service teachers which 

is higher than in the potentially struggling profile. 

Table 4: Weighted frequencies (BCH method) of in-service teachers across profiles 

Profile 

Weighted 

frequency 

95% Confidence 

Interval  

Standard 

error 

Total sample 0.71    

Technology-focused 0.92 [0.81; 1.02]  0.062 

Motivated and knowledgeable 0.85 [0.76; 0.93]  0.052 

Content-focused 0.88 [0.76; 1.00]  0.070 

Education-focused 0.45 [0.32; 0.57]  0.071 

Potentially struggling 0.66 [0.54; 0.78]  0.069 



Kosiol & Ufer 

PME 46 – 2023 3 - 201 

DISCUSSION 

Because many different technology-related variables are discussed to influence the use 

of technologies for teaching and learning mathematics, using a person-centered 

approach is promising to identify typical configurations of teacher characteristics, that 

can be relevant for quantity and quality of technology use. We found a rich set of five 

profiles, that are based on objective knowledge measures, rather than self-reports 

(Petko, 2012). While about the half of teachers were assigned to high knowledge 

profiles (1-3), the other half assigned to below-average knowledge profiles might 

require specific professional development to acquire the required knowledge. The 

potentially struggling profile may additionally need motivational support to increase 

their expectancy and value beliefs while reducing the personal cost to use technology. 

Interestingly, there is no profile that has high motivational characteristics, but low 

knowledge, which would require only knowledge interventions, but no motivational 

support. While some teachers require both, knowledge and motivational support, for 

the content-focused profile a motivational intervention, especially focused on value 

beliefs might be sufficient as their high knowledge, but low value scores indicate that 

teachers assigned to this profile have skills that are required to use technology with the 

aim of enhancing mathematics learning but might not use this potential. As their PCK 

and TPCK is slightly lower (but still above average), they may also specifically benefit 

from mathematics education-related contents. The education-focused profile may need 

support regarding mathematical content and skills how to work mathematically with 

these tools, as lack of TCK may be a barrier increasing personal costs (reversed in fig. 

1). Future studies may link profiles to measures of technology use and quality of use 

to investigate how the obtained profiles differ regarding these outcomes. 

As proposed by Thurm (2018), we analyzed experience differences regarding the 

obtained teacher profiles. Preservice teachers are primarily assigned either to the 

potentially struggling or education-focused profile, which are the profiles with lowest 

scores on knowledge indicators. Interestingly, this also holds for CK, although this is 

one of the main goals of teacher education in university. This may be since the applied 

CK items focus on school mathematics and pre-service teachers may not relate the CK 

acquired at university to mathematics as taught in school. As these profiles have 

average or below-average values on both motivational and knowledge indicators, this 

indicates a need for initiatives to further develop motivation as well as professional 

knowledge related to the use of technologies in university-based teacher education. 
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RELATIONSHIPS BETWEEN PROSPECTIVE TEACHERS’ 

HEART RATE VARIATION NOTICING OF CHILDREN’S 

MATHEMATICS 

Karl W. Kosko and Richard E. Ferdig 

Kent State University 

 

Professional teacher noticing is a key skillset for mathematics teaching that is informed 

by various psychological and physiological factors. The present study investigated the 

relationship between prospective teachers’ heart rate variation and what they 

described about students after viewing a 360 video of a primary grades mathematics 

lesson. Results indicated a statistically significant correlation between heart rate 

variation and noticing students’ mathematics. 

INTRODUCTION 

Professional teacher noticing involves attending to key pedagogical events, 

interpreting the significance and relevance of such events, and deciding how to shape 

what happens next (Jacobs et al., 2010; va Es & Sherin, 2021). Teachers’ noticing has 

received increased scholarly attention over the past several decades and across 

continents (Ding et al., in press; König et al., 2022).  

The bulk of such scholarship in mathematics education has concentrated on what and 

how teachers attend to key events (Santagata et a al., 2021), with efforts to explain this 

phenomenon primarily focusing on psychological constructs such as professional 

knowledge and beliefs (Jong et al., 2021; Scheiner, 2021). Yet, “such notions of teacher 

noticing often construe noticing as a disembodied, purely mental form of seeing…” 

(Scheiner, 2021, p. 92). Conversely, Scheiner (2021) argues that noticing is also 

influenced by physiological factors that are embodied in teachers’ lived experiences. 

Indeed, recent scholarship suggests teachers’ descriptions of what they notice 

correspond with their physical actions of when and where they look within the 

classroom (Buchbinder et al., 2021; Huang et al., 2021; Kosko et al., 2021). Adding to 

such scholarship, Ferdig et al. (2020) found that the nature and directionality of sound 

also affects teachers’ noticing. These findings are important in establishing empirical 

evidence for the embodied nature of professional noticing. However, noticing involves 

more than the eyes and ears, and there is a need for scholarship in understanding the 

role of other physiological data in teacher noticing. 

This paper explores the role of the cardiovascular system in teachers’ noticing, using 

heart rate variability—and heart rate variance—as a primary source of data. The 

cardiovascular system plays a significant role in visuo-spatial orientation, mental 

processing, and emotional state (Barsalou, 2020). Specifically, change in heart rate is 

associated with mathematics anxiety (Hunt et al., 2017), as well as teachers’ self-

efficacy (Schwerdtfeger et al., 2008). Teachers’ mathematics anxiety, self-efficacy and 
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similar psychological factors have also been found to associate with teachers’ noticing 

(Cross Francis et al., in press; Simpson & Haltiwanger, 2016). Despite observed 

relationships between key psychological factors with both heart rate and noticing, no 

research studies could be found that examine a direct connection between heart rate 

and noticing. Thus, the purpose of this study is to explore the role of teachers’ heart 

rate variability in their professional noticing of children’s mathematics. 

THEORETICAL FRAMEWORK 

Professional noticing is an important aspect of mathematics teaching, involving the 

interrelated skills of attending, interpreting, and shaping (Jacobs et al., 2010; va Es & 

Sherin, 2021). Attending involves selecting key elements of pedagogical practice to 

focus. A teacher may perceive many things but attend to a select number of elements 

(van Est & Sherin, 2021). As teachers attend to events, they simultaneously interpret 

what they attend to. This is often done via their professional knowledge and beliefs 

(Jacobs et al., 2010; Jong et al., 2021). Shaping involves the various ways a teacher 

interacts with a context to access more information of pedagogical significance (van 

Es & Sherin, 2021). For example, a teacher may choose to move to one group of 

students over another to better attend to their mathematical thinking (Zolfaghari et al., 

2020). The current study focuses primarily on prospective teachers’ attending, but we 

acknowledge the interactive role interpreting and shaping play in what and how 

teachers attend.  

Teachers’ attending is influenced by a myriad of factors. This includes psychological 

factors such as mathematical knowledge for teaching (Jong et al., 2021), mathematics 

anxiety (Cross Francis et al., in press), mathematics confidence (Simpson & Haltinger, 

2016), and so forth. Yet, attending is as much a physiological as it is a psychological 

experience. Scholars using 360 video, a form of virtual reality that records video 

omnidirectionally, have examined where teachers choose to look and how this 

corresponds with what and how they attend. Kosko et al. (2021) observed that 

prospective teachers who attend to more mathematic-specific aspects of children’s 

reasoning also focused on a larger number of students. Similarly, Buchbinder et al. 

(2021) found that prospective teachers were able to reflect on more aspects of 

pedagogy due to 360 video’s capacity to record more of the scenario. Seeking to bridge 

the gap between how psychological and physiological factors inform noticing, Kosko 

et al. (in press) used eye-tracking data in a 360 video and found that teachers with 

higher pedagogical content knowledge demonstrated different viewing patterns than 

those with lower demonstrated knowledge. Such empirical findings corroborate 

Scheiner’s (2021) proposed model for noticing as explained by interactive and 

reciprocal relationships between psychological and embodied factors.  

The study reported in this paper focused on a particular relationship between 

prospective teachers’ heart rate variability and what they attended when viewing a 360 

video of a primary grade fractions lesson.  As with much of professional noticing 

literature that acknowledges the complexity of the phenomenon, while attending to a 
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subset of elements, the study was created to examine how embodied aspects 

represented by the spatial-visual (where one looks) and cardiovascular (heart rate) 

systems corresponded to prospective teachers’ written noticing.  

RELATED LITERATURE 

The cardiovascular system is a critical component to living as it distributes blood 

throughout the human body. However, it also impacts cognitive (e.g., attention, visuo-

spatial orientation, processing) and social functions (e.g., emotion, stress) (Barsalou, 

2020). Given this connection between the physiological and psychological, researchers 

have attempted to examine the ways in which in heart rate (as a representative of the 

cardiovascular system) is related to cognition, cognitive processes, or other constructs 

related to learning (e.g., attention). For instance, researchers found that “slow 

oscillations in heart rate have the potential to strengthen brain network dynamics” 

(Mather & Thayer, 2018, p. 98). Liu et al. (2022) also demonstrated a correlation 

between HRV and cognition, particularly as it related to neurodegenerative disease. 

Researchers have been able to apply this more specifically to examining how heart rate 

is related to mathematics education. Hunt et al. (2017), for example, demonstrated that 

“self-reported math anxiety was found to be significantly correlated with physiological 

reactivity to more difficult mental arithmetic” (p. 129). Lee & Lee (2021) showed heart 

rate changes seemed to be related to some tension in the learner as they read and then 

reread mathematics text. While such literature has provided a motivation to further 

examine the impact of heart rate and mathematics instruction, no studies were found 

that specifically examined heart rate and mathematics noticing. 

METHOD 

Data were collected from a convenience sample of 18 prospective teachers enrolled in 

an educational technology course in a Midwestern U.S. university. Twelve of the 

teachers were preparing to teach primary students (ages 5-11), whereas the remaining 

six were preparing to teach either English or social studies to secondary students (ages 

12-18). Prospective teachers received course credit for participating in research studies, 

with this study being one of several options in Fall 2021.  

Prospective teachers used Oculus Go virtual reality headsets to watch a classroom 

recording of a grade 4 (ages 9-10) lesson on reviewing equivalent fractions (5 minutes, 

50 seconds). In the 360 video, students were provided fraction strips and were asked 

to find equivalent fractions for 5/6 and then 3/8, with a brief class discussion after 

working in small groups with each fraction. Participants viewed the video twice. After 

each viewing, they described what they noticed related to mathematics teaching and 

learning. Concurrent with these procedures, participants wore Fitbits (Charge 5) that 

collect their approximate heart rate every two seconds. They also were asked to screen 

record their viewing on the VR headsets, and this recording was later synchronized 

with participant Fitbit data.  
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Fitbits only approximate heart rate variability (HRV), and only with sustained use by 

the wearer (a luxury researchers do not often have). Given these concerns, the standard 

deviation of normal-to-normal (SDNN) heart rates—an accepted formula in cardiology 

(Silvetti, Drago, & Ragonese, 2001)—was used to calculate heart rate variance 

(HRVa). In this manner, the value was placed on determining high and low HRVa 

scores rather than focusing on a 1:1 correlation between HRV and HRVa. High HRVa 

scores represented users who may have had stress during parts of the experiment, but 

they were also able to return to a normal level. Low HRVa scores represented users 

that either did not experience stress or tension during the activity, or those users who 

were at a sustained level of stress throughout the duration of the experiment. Figure 1 

contains the SDNN formula as well as an example of both high and low HRVa scores.  

 

Figure 1: Heart rate data and HRVa for two participants during 360 video viewing. 

SDNN =√
1

𝑁−1
∑ (𝑅𝑅𝑖 − 𝑅𝑅̅̅ ̅̅ )2𝑁

𝑖=1  

HRVa=10.70 HRVa=82.30 

  

ANALYSIS & RESULTS 

A convergent mixed methods analysis was employed where qualitative analysis was 

conducted to examine prospective teachers’ written noticing and themes were 

quantitized for statistical analysis (Creswell & Plano Clark, 2018). Teachers’ written 

noticing were explored by examining how mathematics was referenced using Systemic 

Functional Linguistics (Halliday & Matthiessen, 2004). Two themes emerged which 

indicated either employment of generic or mathematical reference chains. Participants 

employing mathematical reference chains did more than merely mention something 

mathematical. Rather, they built up meaning from reference to students’ mathematics 

throughout their writing. Table 1 presents an example where one participant focused 

on a moment in which students were asked to use fraction strips to find an equivalent 

fraction to 3/8. They observed that because the strips only go to twelfths (i.e., “the 

numbers would be too big”), students noted they could not divide because 3 was a 

“prime number.” By contrast, the participant employing generic reference focused on 

the teacher’s classroom management (questioning & use of group work). Other 

participants employing generic reference chains may have included brief mentions of 

mathematics but did not build up meaning from such isolated references. 
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Table 1: Example excerpts of generic and mathematical references in noticing. 

Theme Excerpt from Prospective Teacher’s Writing. 

Generic  

Reference Chain 

[Teacher] asking questions that engaged the class, as well as 

using the white board. It’s important because students have 

to be engaged and feel that their answers are valued. Seeing 

other students answer questions will make students speak 

more. Group work is important also; using their minds 

together enhances learning. 

Mathematical 

Reference Chain 

They [students] could not make the [equivalent fraction] with 

the fraction strips because it [numerator for 3/8] was a prime 

number… 

One moment that I noticed…was when the students had to 

try to work out 3/8 with the strips. They [students] found out 

that they were not able to do so. This is valuable because they 

knew that the numbers would be too big. 

 

Following qualitative analysis, a dichotomous variable was created for whether 

participants employed mathematical reference chains in their written noticing (0 = no; 

1 = yes). A partial Spearman Rho correlation was also calculated to control for whether 

or not participants were preparing to be primary teachers (0 = not primary grades; 1 = 

primary grades). We hypothesized that the teaching context (primary grades 

mathematics) would affect primary grade mathematics teachers more than those, 

despite being prospective teachers, would not be teaching the content or grade level. 

Indeed, primary prospective teachers had lower HRVa scores (M = 29.21, SD = 15.14) 

than non-primary prospective teachers in our sample (M = 41.17, SD = 21.89). Results 

from the partial correlational analysis showed a positive and statistically significant 

relationship between participants’ HRVa and their use of mathematical reference in 

noticing (ρ = .492, p = .045).  

DISCUSSION 

Teachers’ professional noticing of children’s mathematics is influenced by a myriad of 

factors (Scheiner, 2021). These include psychological one such as professional 

knowledge, beliefs, and emotions (Cross Francis et al., in press; Jong et al., 2021; 

Simpson & Haltiwanger, 2016) and physiological ones such as where one looks at or 

moves about in the classroom (Buchbinder et al., 2021; Huang et al., 2021; Kosko et 

al., 2021). In this study, we examined whether one particular physiological factor (heart 

rate variability) was associated with how teachers notice. Specifically, prosepctive 

teachers watched a 360 video of mathematics instruction. After watching the video, 

they were asked to write about what they saw. Their reference chains were then 

correlated to heart rate variance scores calculated from heart tracking devices they were 
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wearing. The results showed a significant and positive correlation between HRVa and 

mathematical referencing.  

Interpretations of these results must be based on an understanding of HRVa scores. 

Variability in heart rate may indicate stress. However, stress is not always bad; it can, 

for instance, indicate times of attention, focus, or noticing (Laumann, Gärling, & 

Stormark, 2003; Yokoyama et al., 1987). As such, increases in heart rate may indicate 

a time when learners pay attention, notice, or are focused (Barsalou, 2020). Such heart 

rate would then return to normal when the tension or stress went away (i.e., between 

moments of pedagogical significance in the video), producing a higher HRVa. This 

form of HRVa was found to be associated with attending to children’s mathematics in 

the present study. Conversely, prospective teachers with low HRVa might either be 

chronically stressed or experienced little to no stress, tension, or focus during the study. 

Such participants tended to describe generic events when writing about what they 

noticed. Additional research is needed to further understand and extend these results. 

Following recommendations from Scheiner (2021), further work is needed to 

understand how embodied (physiological) and psychological factors (i.e., beliefs & 

knowledge) inform and are informed by teachers’ professional noticing. However, 

these preliminary results combined with past research suggests that HRVa may be a 

useful factor in better understanding the nature of teachers’ mathematics noticing. 
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The present study focuses on enlightening the interplay of emotions and decision-

making of mathematics teachers in pivotal teaching moments, where dealing with 

students’ mathematical confusion. Using Activity Theory, we study emotions and 

decision making in two cases of teachers to highlight their similarities and differences. 

Data from three lessons of each teacher as well as from four semi-structured interviews 

were analyzed. According to the results, teachers’ emotions and in the moment 

decision making are influenced by teachers’ valuation of goal achievement, students’ 

responses and social, anticipatory, moral and systemic dimensions. 

INTRODUCTION 

Lately, teacher emotions have been in research focus, however, very little research 

focuses on teachers' emotions during mathematics teaching. Studies in this area 

concern mainly pre-service and/or elementary mathematics teachers (Martínez-Sierra 

et al, 2019), adopting mostly quantitative research approaches. Trying to fill this gap, 

our study focuses on investigating in-service secondary mathematics teachers’ 

emotions during pivotal teaching moments (PTMs) (see Stockero & Van Zoest, 2013) 

where the teacher makes decisions. 

Teachers’ decision-making has not been studied much in mathematics education 

(Potari & Stouraitis, 2019), yet Schoenfeld (2011) thinks that studying teachers’ 

decision-making during teaching can help us even in forecasting it. While, teachers' 

emotions are related to the quality of teaching and are a key factor in teachers’ decision 

making (Di Martino et al., 2013), teachers’ emotions in relation to their decision 

making have not been the focus of mathematics education research. Through our study 

we try to enlighten this important gap. 

In our paper we attempt to address the complex relation between decision making and 

emotions during PTMs for two experienced secondary school mathematics teachers. 

In particular, we address the following research question: How do teachers’ emotions 

and decision-making interplay in PTMs?  

THEORETICAL BACKGROUNG 

Our study adopts a cultural-historical activity theory (CHAT) perspective, in which 

emotions “reflect the relationship between object/motives and the levels of success that 

are anticipated as the outcome of a set of actions that concretely realize the activity” 

(Roth & Radford, 2011, p. 21). For Leontyev (1978) emotions have a very important 

role in the development of the activity, as “they are not subordinated to the activity but 

seem to be the result and the 'mechanism' of its movement” (p. 167). Burkitt (2021) 
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considers emotions as integral components of social interactions, and “they function in 

complex ways, not only as internal signals to one’s self, but also as signals to others, 

which are frequently spontaneously expressed in the moment without full 

consciousness of our intention” (p.13). Shuman and Scherer (2014) see emotions to 

have multiple components: a subjective feeling component, a motor component, a 

physiological component, an action tendency component, and an appraisal component. 

Plutchik’s wheel of emotions (2001) is a tool for identifying and verbalizing complex 

emotions by illustrating the relationships between primary emotions and their intensity.  

CHAT places decision making in the context of object-oriented, collective and artifact-

mediated activity systems constantly undergoing developmental transformations 

(Engeström, 2001). According to Engeström (2001) “decisions are typically steps in a 

temporally distributed chain of interconnected events” (p.281), which are influenced 

by other participants of the activity, and they “shape the future of the broader activity 

system within which they are made” (p. 281). Thus, the subject (mathematics teacher) 

makes the “necessary” decisions to form the path of meeting the perceived object 

(students’ learning). These decisions are shaped by the subject's goals, by the social 

interaction and needs within the activity, while they are manifested through subject's 

actions. Roth and Radford (2011) see actions to be “mediated by emotional valuations 

that arise from, and reflect/refract the assessment of the current relations and mediate 

selection of goals and actions that move the activity further long” (p. 22). 

In-the-moment teachers’ decision making is usually triggered in a PTM, which is “an 

instance in a classroom lesson in which an interruption in the flow of the lesson 

provides the teacher an opportunity to modify instruction in order to extend or change 

the nature of students’ mathematical understanding” (Stockero & Van Zoest, 2013), p. 

127). There are five types of PTMs, one of which is mathematical confusion, as well 

as five teachers’ actions (e.g., ignores/dismisses, acknowledges but continues as 

planned, etc). Ellis, et al. (2019) use the construct of “teacher move” and provide a 

more elaborative framework to study how teachers attempt to foster an inquiry-oriented 

environment. Four main categories of teachers’ moves are described at this framework: 

Eliciting student reasoning, responding to student reasoning, facilitating student 

reasoning and extending student reasoning. Stouraitis (2016) examines how decision-

making is framed and develops considering social and systemic dimensions, using 

Engeström’s (2001) four dimensions of expansion: the social-spatial, the anticipatory-

temporal, the moral-ideological, and the systemic-developmental.   

METHODOLOGY 

A case study of two upper secondary school mathematics teachers, Gregory and Aris, 

in Greece, with 25-30 years teaching experience is reported in the context of a 

professional development program (PD) EDUCATE (http://www.ucy.ac.cy/educate/).  

The program aimed to support teachers to balance differentiated learning and 

mathematical challenge, a fertile ground for the emergence of PTMs and emotions.  

http://www.ucy.ac.cy/educate/)
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The data have been generated from three videotaped lessons of each teacher, seven PD 

sessions and four semi-structured interviews with each teacher. Initially, we analyzed 

the lessons to identify PTMs, teachers’ emotions and actions dealing with each PTM, 

drawing additional data from teachers’ reflections on their lessons during the PD 

sessions. The interviews were conducted by the first author. The first interview aimed 

to outline each teacher’s overall teaching goals. In the other three video-recall 

interviews, each teacher was asked to watch his videotaped lessons and identify 

moments that he considered important and/or that indicate emotions from his side. In 

the first part of each interview, we replayed the video-extracts and discussed the 

moments chosen by the teachers, while in the second part the moments chosen by the 

researchers.  

At first, we identified the PTMs in the lessons using Stockero and Van Zoest’s (2013) 

framework. Then, within each PTM we identified teachers’ decision points, teachers’ 

actions and emotions, and students’ involvement. For teachers’ decision points we 

were inspired by Schoenfeld (2011). For teachers’ actions we initially used grounded 

methods to identify and characterize them and then we contrasted them with the ones 

used by Ellis, et al (2019) in teachers’ moves framework and Stockero and Van Zoest 

(2013) and formed a final synthesis. Concerning teachers’ emotions from the lessons, 

we focused on identifying emotions’ motor component and the action tendency 

component, from the Shuman and Scherer’s (2014) framework. For students’ 

involvement we used grounded methods and open coding. Then we place the above in 

a chronological order to unfold each PTM. The interview data were analysed initially 

grounded to verify teacher’s emotions (subjective feeling, appraisal and action 

tendency components) and find relationships between the PTMs, decision-making and 

teacher’s emotion(s) using Engeström’s (2001) dimensions. Emotion characterization 

relied on Plutchik's (2001) wheel of emotions. 

We chose to analyze here one PTM on mathematical confusion (MC-PTM) from the 

lessons of each teacher managed between 29.40 and 33.50 minutes in Gregory’s 10th 

grade class and between 48.00-52.55 minutes in Aris’ 11th grade class. 

RESULTS  

Gregory’ MC-PTM  

The students, working in groups, have found the roots of several trinomials, using the 

formula and their factorization. Then, Gregory asks the students to observe their 

findings and try to see how they can relate the roots of a trinomial to its factorized 

form. The students do not answer, and one of them say that he is confused. Gregory 

writes the trinomial on board, and tells them “Here we have 𝑥2 − 3𝑥 + 2 = (𝑥 −
1)(𝑥 − 2) and you told me that its roots are 1 and 2. What is happening here?”. The 

students do not answer and they still seem confused, while discussing with each other. 

Gregory asks “What do you think that is happening here guys!”. The students do not 

answer and one of them says “but we found everything, what else? I am confused” 

(31.50). Gregory asks “what is the process of factorization?”. Gregory addresses to 
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Mary (a good student) who says “What process? It is confusing, sir. Maybe you want 

the form?”. Gregory asks “what form?”, and Mary comes on board and writes 𝑎(𝑥 −
𝑟1)(𝑥 − 𝑟2). Gregory says “Oh! Ok! Is this equal to the trinomial?” and then Mary says 

“what do you mean?” and Gregory tells her to write 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑎(𝑥 − 𝑟1)(𝑥 −
𝑟2). Then he says “so, I am telling you that this is right, is it verified by what you have 

found?”, the students answer positively and then Gregory asks them to prove it. Figure 

1 captures the chronological MC-PTM’s management.  

 

Figure 6: Gregory's MC-PTM 

During the third interview we discussed with Gregory about his emotions and his 

decision making in this MC-PTM:  

1 G: I got anxious that their work will be lost. They found everything and yet they don’t 
understand what I am asking for. I was wondering why and I wanted 
someone to give it to me, to describe the process.  

2 R: What else did you feel here? 

3 G: You see, the time was running out and there were much to do, we still had to make 
the claim and then prove it. 

4 R: And when Mary responded? 

5 G: I was glad, because finally someone gave me something, that was also correct, but 
it wasn’t what I was looking for.  

6 R: What do you mean? 

7 G: I asked them to make a connection, not to parrot me a form. I was afraid that she 
knew the form from private tutoring.  

8 R: Yet you chose to continue with it, despite the fact that you wanted the students to 
conclude that. 

9 G: Yes. They seemed really confused and she facilitated me to move on with the lesson. 
We had about five minutes for the ring to bell, so I wanted to show the other 
students the form, and continue with the proof, which is very important.  

Gregory’s emotions are negative and are triggered by his failure to promote students’ 

understanding [anxiety (1)], guilt, a secondary emotion being shaped by joy and fear 

(5,7)] and by time [anxiety (9)]. Dealing with these emotions, his decisions and actions 
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are driven by the goals he had set for teaching, while sticking at lesson planning, which 

is shown by addressing a good student when the rest of the students had reached an 

impasse (32.20), and by choosing to use the algebraic form Mary suggested (32.50), 

even though he believed that it did not demonstrate her understanding.  

Aris’ MC-PTM 

A student presented on board her group’s solution, answering on finding a polynomial 

which has for roots 2, 3 and 4, and Aris asks the students to evaluate it. Another student, 

Manos, agrees with the solution presented and proposes to take an extra condition, the 

polynomial’s constant term to be a multiple of twelve. Aris does not respond, and 

another student asks why. Aris continues to the next question, but Manos insists. Aris 

asks “can you tell us what you mean?”, and Manos explains his thought, which is based 

on the integer roots theorem. Aris says to the class “I don’t understand this. What do 

you think of what your classmate is saying?”. The students seem to be very confused, 

and a student, Giannis, starts arguing with Manos about his claim. Giannis explains to 

Manos that they have the polynomial in its factorized form, but Manos insists on using 

the distributive property in order for the constant term to appear. Aris says “What is it 

that you are saying? We have 𝑃(𝑥) = (𝑥 − 2)(𝑥 − 3)(𝑥 − 4). Has your group found 

another polynomial?”, Manos says “no” and Aris continues “So how are you discussing 

about the constant? Well, at this one 𝑃(𝑥) = (𝑥 − 2)(𝑥 − 3)(𝑥 − 4)(𝑥 − 5), you are 

saying that the constant term is a multiple of twelve, and it has five as a root. So, why 

do we care about it? About what the constant will be? Why do you discuss only about 

the constant and not for the x’s coefficient”? Students don’t answer, some of them are 

still confused, so the teacher asks for someone to sum up their understanding the task. 

Figure 2 captures second MC-PTM, in the way described in Gregory’s case. 

 

Figure 7: Aris' MC-PTM 

During the fourth interview we discussed with Aris about his emotions and his decision 

making in this MC-PTM: 
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10 A: This happens in class very often, a student to say something and the teacher to not 
fully understand it, so you have to make a choice. At first, I decided to 
continue because I thought that what Manos said was totally irrelevant, and 
because of the time of course. When I saw the video, I said to myself “what 
have you done?”. 

11 R: Well then thank for Manos’ persistence (laugh). 

12 A: (laugh) I understood that he was confused, probably trying to answer something 
else. 

13 R: There you are asking the other students to give ideas. Why? 

14 A: I was buying to myself some time. I was trying to understand what Manos’ claim 
was and get prepared to answer.  

15 R: What were you feeling then? 

16 A: Anxious at first, because I couldn’t understand what he was saying. 

17 R: When similar incidents happen in class, do you feel the same? 

18 A: Not always. It’s not about teaching experience, but about how safe the teacher feels 
in each class. And so, he acts. 

19 R: What about later on the incident? 

20 A: I was feeling anxious again (laugh). When I figured out what his claim was about, 
I tried to discuss it, but then I looked at my watch. We had no time, we had 
to move on, so I chose a short closure.  

Aris’ anxiety is triggered by different situations. At first, he feels anxious because he 

does not understand Manos’ claim (16) and later on, he gets anxious about time (20). 

While at first, he decides to continue as planned (48.30 and 48.55), then dealing with 

his anxiety, he decides to change his lesson plan (49.10), dealing with Manos’ claim 

and addressing it to other students for ideas, in order for him to gain some time to 

understand. While feeling anxious about time, he decides to shortly close the 

discussion (52.45) about Manos’ claim, but he is engaging the students in showing 

their understanding. 

While the two MC-PTMs, presented above, are similar in terms of the mathematical 

content and the pivotal teaching moments, teachers’ interplay of emotions and decision 

making indicate some similarities but also some significant differences. Below we try 

to address the influencing dimensions of these two interplays.  

The social-spatial dimension is found in the communities influencing the decisions. 

Time seems to be a decisive factor for both teachers, as it also affects their emotions. 

Both teachers felt anxious about the remaining time. Gregory at 33.20 decided to be 

caught by Mary’s answer and complete the solution. Aris at 51.35 and 52.45 decided 

to speed up the discussion around Manos’ claim in order to continue to the next task. 

The anticipatory-temporal dimension is found in the temporally distributed steps of 

decisions. Gregory’s plan was for the students to form the claim about the factorized 

form and the roots of the trinomial, and then to prove it. When Mary mentioned the 

form, probably knowing it from tutoring, Gregory decided to use it in order to continue 

in proving it. At these moments Gregory felt guilt, because from one hand someone 
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finally gave him the answer he was looking for, but on the other hand this answer did 

not indicate understanding.  

The moral-ideological dimension highlights teachers’ decisive focus on students’ 

involvement and understanding. Gregory was anxious that students’ effort and work 

would be lost, so he was continuously trying to elicit their understanding. Aris came in 

a difficult position trying to understand Manos’ claim. He was feeling anxious about 

his readiness to respond, so he decided to reach out to students for ideas. 

The systemic-developmental dimension is found in the possibilities for action-based 

decisions to shape the future of the broader activity. When Gregory’s students had 

reached an impasse, feeling anxious, he decided to address a good student, seeking for 

an acceptable answer, something that he usually does in similar cases. Aris, on the 

other hand, dealing with his struggling for understanding Manos’ claim, he decides to 

engage the other students and create a classroom discussion around it, while for him it 

is of great importance the students to be given opportunities for debating and develop 

mathematical understanding through discussing mathematics with their classmates.  

CONCLUSION 

This research contributes to the understanding of emotions and decision-making 

interplay that mathematics teachers experience in class. In both cases teachers’ 

decisions seem to be developing from students’ involvement in relation to their goals’ 

achievement valuation, and by social, anticipatory, moral and systemic dimensions 

(Engeström’s, 2001). Teachers’ emotions are triggered by students’ understanding 

(Martínez-Sierra et al, 2019), but also by teachers’ valuation of readiness to respond to 

students’ learning, and time management. The differences in the influencing 

dimensions of teachers’ emotions and management of the MC-PTMs, apart from those 

mentioned above, may also be due to other influential dimensions, such as teachers’ 

identity, so further research is necessary. As teachers’ emotions and decision-making 

are two intertwined forcing units of the activity of teaching, the extension of this study 

to other PTMs of the same and/or of different teachers, would give us insights for the 

understanding of this interplay in the context of mathematics teaching.  

The study reported has been partly funded by the Operational Programme «Human 

Resources Development, Education and Lifelong Learning» in the context of IKY 

Scholarship Programme for PhD candidates in the Greek Universities 
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Drawing on Gibson’s notion of affordances and Biesta’s notion of ‘action’ we 

document the developing relationship between learner and digital application while 

encountering a new, digital experience through what we call ‘emergent affordances’. 

We report on two elementary school students exploring TouchTimes, an open-ended 

multiplication application. We detail the students’ background and the changing way 

they take up the beginnings offered by the environment that develops and allows 

affordances to emerge. We suggest that emergent affordances is a helpful construct in 

thinking about opportunities for robust engagement with mathematical relations.  

INTRODUCTION  

Digital technology applications are becoming increasingly integrated into the 

mathematics classroom (Calder et al., 2018). The applications fulfil different purposes 

and therefore, their design differs with respect to the kind of mathematical activity they 

are supposed to afford. Design and usability features depend on specificities of the 

mathematical content, such as structural aspects the mathematical idea and didactic 

approaches guiding the design of accompanying tasks. However, in designing a digital 

learning experience, there seems to be a tenuous balance between guiding students 

towards viable conceptualization of a mathematical idea and, at the same time, 

enabling opportunities for playful and undirected exploration of the interface that 

allows them to observe mathematical structures and relations (Nilsson et al., 2018). 

Such explorations appear to be a fruitful phase in the working process as it helps 

students forge relations of the app’s functionality and affordances (Gibson, 1977). 

Marrying Gibson’s notion of affordances (1977) and Biesta’s (2022) notion of ‘action’ 

– that builds on a view of education that considers the subject-ness of the child (p. 47) 

– we describe the developing relationship between learner and digital application while 

encountering a new, digital experience through what we call ‘emergent affordances’. 

Understanding better the affordances of digital applications as dynamic relationship 

evolving from and with the engagement of the child with the digital environment will, 

we submit, allow us to better understand students’ learning with digital technology.  

In this paper, we will elaborate on the framework of emergent affordances. For this, 

we will be presenting a single case of two elementary school students exploring 

TouchTimes (TT) (Jackiw & Sinclair, 2019), an open-ended multiplication app that is 

designed to elicit multiplicative relationships through bi-manual touch-based 

interaction (see Chorney & Sinclair, 2021).  
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FRAMEWORK AND BACKGROUND 

A crucial feature of digital environments is the dynamic aspect of feedback (Joubert, 

2017) constantly changing the meaning possibilities of the environment in reaction to 

students’ interaction with the interface. The following sections will present a 

framework to capture the flexible nature of students’ enacted possibilities enabled by 

such an environment.  

Affordances and action 

Gibson’s (1977) idea of affordances considers the possibilities and meanings that link 

an agent – or organism – to their environment, describing a relationship between both. 

With this, the affordance is determined equally by the organism and the environment 

while not predetermined by either. At the same time, affordances in this sense 

determine what actions involving organism and environment are possible, based on the 

configuration and possibilities of both as well as the relationship between them. Gibson 

gives the example of water, which affords support for a water bug, but not for a person, 

the affordance of water hence depending on the organism. A chair affords sitting on 

for most people, with the relationship being based on habit, while other possibilities 

(standing, building a children’s fort, putting your glass down,…) are thinkable. At the 

same time, other surfaces afford sitting, depending on the background, habits and 

configurations of an individual. Affordances – in Gibson’s sense – are hence inherently 

relative; they are action possibilities (Norman, 1988). 

We furthermore draw on the notion of ‘action’ as suggested by Biesta (2022), building 

on Arendt (1958). Action here is always interactional: it includes a beginning – or 

initiative – as well as a response in which this initiative is taken up (which we will call 

‘follow-up’). It denotes “our beginnings plus the ways they are taken up by others” 

(Biesta, 2022, p. 48). Actions, with this, are never predetermined by beginnings – these 

beginnings merely provide ‘action possibilities’, similar to the affordances as described 

above, with the environment becoming subjectified. Importantly, others have the 

“freedom to take up our beginnings in their own way rather than how we may have 

wanted them to handle our beginnings” (p. 48). The follow-up then becomes a new 

beginning, providing new action possibilities.  

In the context of digital environments, actions as couples of [beginning – follow-up] 

have a two-fold nature: One concerns [designing – manipulating], the action 

possibilities guided by design characteristics. Another one is constituted by feedback 

and manipulation, with both of these alternating in their role as beginning and follow-

up. Action possibilities are then developing with the actions themselves, which is what 

we call emergent affordances. While the design features determining feedback and 

action possibilities are static in that they do not change in the process, it is the students’ 

background and the changing way they take up the beginnings offered by the 

environment that develops and allows affordances to emerge.  
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TouchTimes (TT) 

TT is a multi-touch iPad application, designed to develop children's relational 

understanding of multiplication. There are two sub-applications; the one we focus on 

in this report is Grasplify (TT-Grasplify). In TT-Grasplify, the iPad screen is split down 

the middle (Fig. 1a). Whichever side of the screen is touched first results in a set of 

coloured discs (named Pips, see Fig. 1b), which matches the number of fingers 

touching the screen. The set of Pips represents the multiplicand or unit. While keeping 

the Pip fingers in contact with the screen, touching the other side of the screen results 

in the creation of a Pod. A Pod matches the configuration, colour and number of Pips. 

The number of Pods will also depend on the number of fingers touching the screen. 

This number represents the multiplier. TT encircles them with a boundary containing 

a white background (Fig. 1c). (Information on TouchTimes and how to download it for 

free can be found here: https://touchcounts.ca/touchtimes/index.html) 

Pip fingers must remain touching the screen while Pod fingers can be lifted (Fig. 1d). 

The interface is dynamic so any interaction on the Pips will be replicated in each Pod. 

Pods can be dragged everywhere on the screen. As Pips and Pods are being created, 

the corresponding number of each side is displayed at the top of the screen and a 

multiplicative equation is visible (see Figs. 1c or 1d). 

One of the multiplicative relationships within the design of TT is the idea of spread 

based on the splitting notion articulated by Confrey (1994), realized in expanding and 

contrasting shape and size of the Pods based on the manipulation of Pips. 

 

Fig. 1: a) initial screen of TT; b) creating Pips; c) creating Pods; d) lifting Pod fingers 

Focus of this study 

In our study, we observe the kinds of patterns that result from the various ways that 

students interact with TT. These patterns are grounded in a multiplicative relationship 

within the design of the application, which is why they relate to the affordances offered 

by design; but they are also not reductive to the application or iPad, rather they result 

from the students’ (inter)actions in which further affordances can emerge. Our focus 

and attention is grounded in the multi-sensory affective dimensions of experiences 

children have of using TT – experiences that form the basis upon which multiplication 

is conceptualized. We expand our notion of experiences, however, not to be solely what 

students do on the screen but the taking up of what happens with their touching. In this 

paper, we will present the affective dimension of aesthetics that make certain 

affordances emerge. 

https://touchcounts.ca/touchtimes/index.html
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ANALYSES: EMERGENT AFFORDANCES IN STUDENTS’ 

EXPLORATION OF TOUCHTIMES 

The data we draw on is taken from a pool of data gathered in studies involving 

TouchTimes over the last couple of years, carried out by the TT groups at Simon Fraser 

University. It includes elementary school children between 7 and 9 years old. For this 

study, the authors viewed and discussed the video clips, attending to couples of 

[beginning – follow-up] as actions and the possibilities emerging within them. In 

particular, we were interested in the action of spreading and how it develops with 

affordances emerging in the students’ interaction with the environment. That is, we 

seek to identify the students’ ‘way to engage with spreading as an action’. We will 

present a case to illustrate how the framework of emerging affordances helps us to 

better understand how children’s mathematical activity is based in subject-ness (affect 

and social influences) as articulated by Biesta. The case excerpt is based on the 

interaction of two girls. 

Spreading as dancing – emerging affordances grounded in aesthetics 

Episode 1.1: From static affordances to affordances emerging through aesthetics 

This episode deals with two grade 2 girls exploring TT-Grasplify. In the initial stages 

of exploration, the girls are making Pips and Pods, not going beyond the action 

possibility provided by the design but seemingly exploring exactly these with respect 

to potential feedback. There was feedback within TT, but the girls lifted their hands off 

the screen after all instances of feedback, not taking up any of these newly offered 

beginnings. Such actions included, for example, dragging Pips across the boundary or 

placing Pips on tops of Pods.  

In making Pods of 5 on the left side of the screen and dragging them to the right side, 

one girl (left in Figs. 2) declared after 3:21 minutes: “I- let’s make a picture.” She starts 

organizing the Pods on the right side (see Fig. 2a). 

   

Fig. 2: a) making a ‘picture’; b) a purple Pip; c) changing the shape of the Pods 

They continue to make more Pods by tapping and dragging to the right side of the 

screen. After about another minute, the girl on the left touched the Pip side while still 

in the action of dragging Pods across the screen, and an additional sixth purple Pip 

appeared and – simultaneously – in all the Pods (Fig. 2b). As she started to drag the 

new Pip and the movement is replicated in all Pods, she says “What the...?;Whoa”. 

Holding the purple Pip, she drags it in large circular movements on the screen. The 

other girl made another Pip and drags it in smaller circular movements. The girl on the 



Krause & Chorney 

PME 46 – 2023 3 - 223 

left then says “Oh wait! I can change the shape!”, putting a finger down to create a new 

Pip and lifting the right hand, making the first five Pips disappear (Fig. 2c). 

Identifying emergent affordances in episode 1.1: 

The girls have identified through their interactions in the TT environment – their 

actions as taking up the design feature offering the creation of Pips and Pods – a new 

relation between Pips and Pods.  

The girls’ take up specific action possibilities offered by being able to drag the Pods 

making a ‘picture’. By wanting to draw a picture, and dragging the Pods into a 

configuration, this initiated an action pattern of tapping to make a new Pod, followed 

by dragging the Pod to the left side of the screen. This action continued until one of the 

girls inadvertently tapped a purple Pip, a new beginning for a potential new action. A 

follow-up manifested in the feedback was all the Pods growing in size since they now 

included the new Pip, together with moving the purple Pip in a circle. Both together 

shows not only the changing size but also the movement of the Pip in the Pods. Of 

significance is that in creating a picture of Pods, and establishing a pattern of action, 

the affordances emerge in the sequence of actions as action possibilities of beginnings, 

not predicted by the design of TT but afforded by the interest and enjoyment of the 

girls. This emergent affordance was created through exploration and produced a new 

kind of action giving the girls an interaction that they came back to many times in their 

further exploration. 

Episode 1.2: Elaborating Pips and Pods as subjects 

The first episode was followed by a new form of interaction in which the girls were 

mainly tapping rather than dragging for about 30 seconds. At 4:55, the girl on the left 

tells the other girl to “just press – a lot. Press your whole hand”, putting down five 

fingers to show her partner what she’d like her to do (Figs. 3a & 3b). She then makes 

six Pods sequentially on the right side of the screen (Fig. 3c). The girl holding the Pips 

lifts her fingers off and then placed her five fingers down again immediately. The girls 

laugh and the girl on the left says “They just turned into threes - Wait”. She lifts thumb 

and pinky finger of the other girls hand off the screen and directs her to do this herself: 

“Put those and then pick up your pinky and thumb”, modelling her fingers to do what 

she wants her to do. She creates two Pods on the left side and after the girl creating the 

Pips lifts thumb and pinky, she giggles “You changed it”. Subsequently, the girl on the 

right lifts and taps the middle finger alternatingly and the girl on the left creates two 

Pods. Recognizing the changes in the Pods, caused by the change of the Pips, the girl 

on the right recognized “they are dancing”. Giggling and humming melodies, the girls 

keep on changing the Pods by tapping the middle finger for Pips (right) and moving 

the Pods around each other (left) (Fig. 3d). Following this, the girls make further 

changes and observe their consequences, for example lifting different fingers for 

different configuration of Pips, saying “rock’n’roll” while observing the resulting 

‘dance’ in the Pods. 
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Fig. 3: a) models pressing whole hand; b) guiding partner’s hand; c) lifting and 

tapping fingers; d) dancing Pods 

Identifying emergent affordances in episode 1.2: 

The girls practice the action of spreading in different ways, making Pods and changing 

the number and configuration of Pips. Pressing the whole hand offers the possibility to 

create Pods of 5 on the right side of the screen. Lifting the Pods-hand in the way done 

by the girl on the right then offered an action possibility recognized by the girl on the 

left: turning the 5-er Pods into 3-er Pods, an exemplified action of manipulating the 

pods in size and shape, hence of spreading. As a beginning, this is followed up by an 

action pattern of manipulating the Pips and observing the changing Pods, subjectifying 

them in saying that they are ‘dancing’.  

The emergent affordance of seeing a relationship of spreading through the patterned 

activity of dancing was not predicted by the researchers, particularly in how it captured 

the interest of the girls who explored this action pattern further and used phrases as 

“They’re dancing again”, “rock'n'roll”, “Make a lot of dancing ones” as well they were 

humming and laughing. Through the actions of [manipulating – feedback] and 

[feedback – manipulating], which are not predetermined by the environment but 

emerge as enacted path of possibilities guided by establishing perceived aesthetics, 

spreading develops into the action pattern of dancing.   

SUMMARY, CONCLUSIONS AND OUTLOOK 

In this paper, we present the idea of ‘emergent affordances’ to capture the developing 

nature of action possibilities when working with digital learning environments in math 

education. Furthermore, we suggest these action possibilities to relate to Arendt’s 

(1958) notion of ‘action’ as elaborated by Biesta (2022), where action possibilities 

concern potential ways of following up a beginning/initiative. We illustrate the idea of 

‘emergent affordances’ through a case of two elementary school students exploring 

Grasplify in the TouchTimes application.  

In exploration, students stumble across situations that intrigue them, draw them in and 

from which patterns emerge. We call these emergent affordances because they are non-

reductive and they exemplify multiplication in certain ways. Spread is latently 

positioned within TT’s design but is drawn out through action. The students were 

guided partially by the static affordances of Pips and Pods which were colourful, easily 

created, interactive but it is the follow up that brings this multiplicative relation to the 

forefront of activity. The aesthetic development of rock’n’rolling is one example, from 

our case study, of a newly framed and constructed context that becomes a new 

beginning, providing new action possibilities. The significance of this follow-up, in 
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our theoretical framing, is that it shows that action is not just doing or acting, it is based 

in how beginnings are taken up. Following Biesta (2022), it grounds the subject-ness 

of the child, and that they come to see their role in multiplicative action. The affordance 

is the newly emerging follow-up of noticing one's own position in rock’n’rolling the 

Pods which ultimately exemplifies the multiplicative relation of spread. 

We based the idea of emergent affordances as action possibilities developing in the 

process on a notion of action as [beginning – follow-up]. The digital environment in 

this becomes an organism as its own, a subject involved in the action in both 

components. The students acknowledge that in that they assign an activity to the pods 

as if they were human – describing them as dancing. Furthermore, this understanding 

of action brings in the subject-ness of a child (Biesta, p. 47) as goal of education. This 

is about providing the opportunity for children to encounter a world “that which is not 

of our own making and that exists independent of us” (p. 48) and through which they 

establish their role and influence “in its materiality and its sociality” (p. 48). It allows 

to have them build experiences of this influence in the world of TT.  

We suggest that the construct of emergent affordances is helpful for thinking about 

opportunities for further actions created by an expression of freedom but yet also 

engages via design with multiplicative relations. The resulting relational interactions 

of the children show an openness as to what can be explored but also how affordances 

emerge as a combination of affect (laughing at dancing; singing) and interest, 

combined with a configuration in TT that can lead to further actions that exemplify 

multiplication as spreading. 

We note that students are excited about the result and repeating the result again and 

again. These patterns reflect the notion of spreading but are inspired by the way the 

students have organized the screen. The dancing emerges from the observation of 

several Pods ‘acting’ simultaneously, hence might not have emerged if there not have 

been several Pods made. It came up by the girls taking up beginnings offered in their 

interaction with the digital environment and guided by their orientation towards 

perceived aesthetics in the feedback given by the environment: The girls were acting 

on their own interests, they wanted to make a ‘picture’ with Pods. The (probably 

accidental) creation of an additional Pip invited further curiosity which then led to a 

follow-up of interactions that included tapping and dragging mirrored in the Pods. They 

called this dancing as the Pods pulsating with the addition and removal of a Pip, they 

reminded synchronized dancing where every Pod was doing the same dance move. 

We claim that the open-endedness of the application plays an important part in 

allowing certain affordances to emerge from students’ interactions rather than by 

design. To understand better the ways and circumstances of affordances to emerge as 

well as the quality of their affective and social dimensions, we encourage other scholars 

to contribute in research on emergent affordances in working with digital technology.     
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Outlook 

Further analysis of the video data aims to identify indicators for tracing emergent 

affordances in action couples of [beginning – follow-up]. So far, we encountered three 

potential such indicators: 

 repeating a pattern; that is, touching the screen in a specific way numerous 

times;  

 naming a relation and/or performing in a way to replicate this relation; 

 starting again only to return to a previous situation. 

In our ongoing research, we aim to build a bigger framework that captures these 

indicators from different theoretical perspectives to inform us to better understand the 

emergent affordances leading to action patterns.  
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In view of the variety of approaches to investigate diagnostic competence, it seems 

particularly interesting to consider precisely how the main outcome variables are 

measured. For instance, judgement accuracy can be assessed by various methods. 

Aiming to contrast two of these methods, 𝑁 = 62 pre-service teachers were asked to 

diagnose simulated 6th graders in an open report followed by a closed-choice rating. 

Results of this study indicate that both assessment formats yield different measures of 

judgement accuracy. Especially, participants’ content knowledge was related to the 

accuracy of closed ratings, but not to the accuracy of open reports. This indicates that 

the assessment format may affect what is measured under the term judgement 

accuracy, asking for further research to critically investigate effects of used methods.  

INTRODUCTION 

In view of the heterogeneity of the student population, teachers need diagnostic 

competence, allowing them to teach adaptively, identifying, and taking into account 

their students’ different needs. Several research projects (e.g., NeDiKo: Herppich et al. 

2018; DiaCoM: Loibl et al. 2020; COSIMA: Heitzmann et al. 2019) have investigated 

(pre-service) teachers’ diagnostic competence, aiming to systematize research and to 

derive recommendations for teacher education programs. Following Heitzmann et al. 

(2019), diagnosing refers to the purposeful accumulation and integration of evidence 

to arrive at accurate educational decisions, such as selecting tasks of appropriate 

difficulty based on an evaluation of a student’s understanding (Schreiter et al., 2021). 

The most frequent measure used as indicator for diagnostic competence is judgement 

accuracy, which in the past, has been primarily measured by asking teachers to rate 

student understanding in single subareas, or to estimate students’ test scores (Südkamp 

et al., 2012). Alternative assessment formats, such as open diagnostic reports, may 

more authentically reflect the way teachers deal with diagnostic information in schools, 

rather than ranking students or estimating their test scores. This contribution compares 

the judgement accuracy of written open reports and closed-choice ratings of student 

understanding in a simulated diagnostic interview, and relations to pre-service 

teachers’ professional knowledge.  

(Pre-service) teachers’ judgement accuracy 

Judgement accuracy is mostly referred as the match between teachers’ judgements 

about students’ understanding and the actual understanding as, for example, measured 

by an independent test (Südkamp et al., 2012). Based on their meta-analysis, Südkamp 

et al. (2012) report a moderate to large correlation between teachers’ judgement and 
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students’ actual performance on a test, concluding that teachers’ judgements are “[…] 

evidently far from perfect […]” (Südkamp et al., 2012). Other studies have shown 

interindividual variation in teachers’ judgement accuracy, which is related to their 

students’ learning gains (Behrmann & Souvignier, 2013). Research has also 

established a link between teachers’ professional knowledge and their judgement 

accuracy (e.g., Binder et al., 2018; Kron et al., 2022; Ostermann, 2018). 

However, Südkamp et al. (2012) point out that “[…] the different methods used to 

measure teachers’ judgements […] make a substantial contribution to the degree of 

accuracy observed”. A range of moderators referring to teacher, judgement, test or task, 

and student or class-level characteristics have been investigated in the past (Südkamp 

et al., 2012; Urhahne & Wijnia, 2021). In Südkamp et al.’s (2012) analysis, judgement 

accuracy was higher, if teachers were explicitly informed about the test content, and if 

the rating targeted the same knowledge domain as the test itself.  

How teachers report their judgements of student understanding may also influence 

judgement accuracy: Asking teachers to evaluate single, given subareas of student 

understanding might provide them with more information about what should be 

diagnosed, than just asking for a rank-order in a not further specified mathematics test, 

or an open report with only general directions for its content. Following Südkamp et 

al. (2012), providing this information could lead to more accurate judgements. 

Additionally, Santagata et al. (2021) point out that offering more or less guiding 

information for a diagnostic report may differently focus teachers’ attention and 

noticing processes while diagnosing. On the other hand, requiring teachers to give 

judgements also for subareas of student understanding that they are not sure to be able 

to diagnose correctly, might reduce judgement accuracy of closed answer ratings. In 

comparison to such closed ratings, open reports might bias judgement accuracy 

towards those subareas that teachers find more important, or that they are confident to 

have diagnosed correctly.  

Moreover, different assessment formats to report student understanding go along with 

different methodological implications. While closed ratings are efficient to survey and 

easy to code, they rely on precise descriptions of what needs to be judged. Open reports 

require a similarly precise description to ensure reliable coding but take more time to 

survey. On the other hand, they may provide additional information beyond judgement 

accuracy such as on teachers’ reasoning behind their judgements, or the implications 

they draw from them (Seidel & Stürmer, 2014). 

In prior research, closed ratings of single subareas of student understanding (including 

the option “cannot be decided based on the observed data”) were used in simulations 

of diagnostic situations in mathematics education (e.g., Kron et al., 2022; Sommerhoff 

et al., 2023). Other works have extracted teachers’ judgements from open reports of 

student understanding to study judgement accuracy (e.g., Codreanu et al., 2021). Even 

though a range of formats to measure judgement accuracy is discussed in the literature, 

methodological comparisons of such formats are scarce.  
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THE PRESENT STUDY 

In this contribution, we compared two different assessment formats (open, self-written 

report versus closed-choice rating) for pre-service teachers’ diagnostic judgements in 

terms of their accuracy, coverage of relevant subareas of student understanding, 

consistency of judgements between the two assessment methods, and relations of the 

observed judgements to pre-service teachers’ professional knowledge. In particular, we 

focused on the following questions: 

RQ1: To which extent do pre-service teachers cover a range of relevant subareas of 

student understanding in the two different assessment formats? 

RQ2: Do the assessment formats differ in terms of pre-service teachers’ average 

judgement accuracy? To which extent are the pre-service teachers’ diagnostic 

judgements consistent between the two different formats? 

RQ3: How does judgement accuracy in the two assessment formats relate to the 

number of subareas covered in the open report, and to pre-service teachers’ content 

knowledge (CK) and pedagogical content knowledge (PCK)?  

METHOD 

The diagnostic judgements analyzed in this contribution were collected using a 

simulated learning environment of diagnostic one-on-one interviews (Kron et al., 

2022). During the winter term 2019/2020 𝑁 = 62 pre-service secondary school 

mathematics teachers from a large university in Germany participated in two live 

simulated role-play interviews in the role of a teacher (𝑁 = 124 interviews in total). 

After the two simulations, each participant answered a professional knowledge test 

assessing CK and PCK on decimal fractions.  

Simulated diagnostic one-on-one interviews 

In each simulated diagnostic one-on-one interviews, the participants took over the role 

of a teacher, aiming to diagnose a simulated 6th grader’s understanding of decimal 

fractions. The 6th graders were played by trained research assistants. Four different 

student case profiles were designed and randomly chosen for each interview. Each 

participant diagnosed two different students consecutively. During the diagnostic 

interview, the participants were asked to select tasks out of a given set of diagnostic 

tasks and to derive assumptions about the student’s understanding, based on its 

solutions of the selected tasks. The “teachers” were allowed to ask any additional 

question. Each interview took up to 30 minutes. Directly after the interview, the 

participants were asked to diagnose the interviewed student in terms of its 

understanding of decimal fractions. For the diagnosis, we used two different 

assessment formats. The participants were asked to write an open report about the 

student’s competences and misconceptions regarding decimal fractions. Moreover, 

participants were asked to rate the student’s understanding in a closed rating. For this 

rating, nine subareas of decimal fractions (Place-value system: (1) place-value 

principle, (2) bundling principle, (3) comparison of decimals; Addition & subtraction: 
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(4) conceptual knowledge, (5) arithmetic abilities, (6) flexible use of strategies; 

Multiplication & division: (7) conceptual knowledge, (8) arithmetic abilities, (9) 

flexible use of strategies) were listed, with the response options “student mastered”, 

“student did not master”, and “diagnosis not possible”. Participants could switch back 

and forth between the two assessment formats freely. No further information about the 

expected content of the open report was provided. 

Instruments 

Diagnostic judgements: For each participant and each interview, two different kinds 

of diagnostic judgements were assessed. The answers of the closed rating were coded 

the following: answers of “student did not master” were coded -1, “student mastered” 

were coded 1, and “diagnosis not possible” were coded 0. Due to technical reasons, 

there are few missing ratings (𝑁 = 5 𝑜𝑓 𝑁 = 1116). The open reports were coded 

based on the statements about misconceptions or competences regarding the nine 

subareas. Answers regarding student’s misconceptions were coded -1, answers 

regarding student’s competences were coded 1, and statements containing contrary 

information regarding the same subarea were coded with 0. If the open report did not 

contain any statement regarding a specific subarea, this was treated as missing. 

Interrater agreement was moderate (𝜅𝑚𝑒𝑎𝑛 = 0.49; 𝜅𝑆𝐷 = 0.28). 

Professional knowledge: To assess participants’ professional knowledge, we designed 

a professional knowledge test (Kron et al., 2022), consisting of twelve items on CK 

and eight items on PCK, each item referring to the simulation’s topic of decimal 

fractions (EAP Reliability: CK: 0.60; PCK: 0.58).  

Statistical analyses: The dataset contains the participants’ answers of open reports and 

closed ratings of both interviews and for each of the nine subareas (𝑁 =
62𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 × 2𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤𝑠 × 9𝑠𝑢𝑏𝑎𝑟𝑒𝑎𝑠 = 1116 judgement pairs in total). An expert 

solution for each student case profile was used to calculate judgement accuracy for 

both types of judgements: The deviation between the participant judgement (-1, 0, or 

1) and the expert solution was averaged over all available judgements for the 

corresponding interview and judgement type. Similarly, the consistency between the 

two judgement types was calculated based on the absolute difference. Both measures 

were reversed and rescaled to values between 0 and 1, so that 0 indicates poorest and 

1 indicates perfect agreement. 

For all further analyses, we used linear mixed models (Bates et al., 2014), due to the 

dataset’s nested structure (two interviews per participant). All continuous measures 

(judgement accuracy, consistency, professional knowledge scores, number of subareas 

covered in the open report) were z-standardized for these analyses. The position of the 

interview (first or second) was included as fixed factor in all analyses. The participant 

and the diagnosed student case profile were integrated as random effects, if they 

contributed to variance explanation.  
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RESULTS 

Coverage of subareas of student understanding (RQ1) 

On average, participants covered a third of the subareas in the open reports and almost 

all subareas in the closed ratings (see Table 1). 

Judgement accuracy and consistency of different diagnostic judgements (RQ2) 

Table 1 shows descriptive data for judgement accuracy of open reports, closed ratings, 

and for the judgements’ consistency. On average, judgements in open reports were 

significantly more accurate (𝐵 = 0.15, 𝑝 < .001) than those in closed ratings. 

The average consistency of 0.77 indicates a substantial, though not perfect agreement 

between the two different diagnostic judgements. Only considering those subareas, that 

were covered in the open reports for each interview, the open reports were still 

significantly closer to the expert ratings than to the corresponding closed ratings (𝐵 =
0.06, 𝑝 < .05).  

 M (SD) min - max 

Number of subareas covered in open report 3.08 (1.43) 1.00 –  7.00 

Number of subareas covered in closed rating 8.96 (0.20) 8.00 –  9.00 

Judgement accuracy of open reports 0.83 (0.21) 0.00 –  1.00 

Judgement accuracy of closed rating 0.67 (0.15) 0.33 –  1.00 

Consistency of judgements 0.77 (0.23) 0.00 –  1.00 

Table 1: Descriptive data of outcome measures.  

Explaining differences in judgement accuracy (RQ3) 

The number of subareas covered in the open reports was negatively related to the 

judgement accuracy of the open reports (𝐵 = −0.18, 𝑝 < .01), but not significantly 

related to the judgement accuracy of the closed ratings (𝐵 = 0.03, 𝑝 = .601). 

Judgement accuracy in… open report closed rating 

 B B 

Content Knowledge (CK) −0.04   0.28∗∗ 

Pedagogical Content Knowledge (PCK) 0.10   0.06  

Number of subareas covered in open report −0.18∗∗ 0.03   

Table 2: Mixed models for the judgement accuracy of open reports and closed 

ratings,  ∗∗𝑝 < .01.  
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Regarding effects of professional knowledge (CK, PCK)1, the accuracy of the open 

reports was not significantly related to professional knowledge beyond the number of 

subareas covered in the open report (see Table 2). Higher CK went, however, along 

with significantly higher accuracy of closed ratings (𝑝 < .01). The corresponding 

relation for PCK was not significant (𝑝 = .516). 

DISCUSSION 

The aim of this contribution was to compare two different assessment formats to for 

the accuracy of diagnostic judgements and to investigate if the assessment format also 

affects the relations to professional knowledge. Overall, a range of differences between 

the two assessment methods occurred. 

Firstly, open reports contained less diagnostic information than closed ratings, since 

pre-service teachers only covered a limited range of subareas of student understanding 

in their reports. This raises doubts about the validity of open reports to provide a broad 

assessment of judgement accuracy regarding a specific topic of student understanding. 

Future research needs to investigate which person- and subarea-related factors 

influence, which judgements are taken up in an open report, and which are omitted. 

Taking this restricted amount of diagnostic information as given, the judgements 

contained in the open reports were, on average, more accurate than those from the 

closed ratings. These results indicate that participants have prioritized those subareas 

for the open reports in which they were more accurate, possibly because they were 

more confident in the corresponding judgements or because they considered them more 

important. This hypothesis is supported by the observation, that the more subareas a 

pre-service teacher covered in the open report, the lower was the judgement accuracy 

of the open report (but not of the closed rating). A selective judgement in open reports 

is desirable on the one hand, since this seems to provide access to the more accurate 

judgements of student understanding and indicates which subarea (pre-service) 

teachers consider more exact or important.  

Regarding consistency, differences in pre-service teachers’ judgements occurred 

between the two formats. The open judgement was, on average, even closer to the 

expert solution than to the closed rating. Even if participants focused on judgements of 

aspects that they were more confident in, it remains unclear why they would provide a 

different answer in the closed format. One possibility is that the judgements in the open 

reports were on a different, possibly more fine-grained level than in the closed format. 

Finally, only the accuracy of the closed ratings, but not of the open reports, was 

significantly related to pre-service teachers’ professional knowledge. Even participants 

with low professional knowledge might have achieved at least one or two accurate and 

confident judgements, which they included in their open report – leading to a relatively 

high accuracy, in spite of a narrow scope in their diagnoses. Thus, and since a relation 

                                                           

1 Similar relations to professional knowledge were observed when removing the number of subareas covered in the open 

report from the model. 
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to knowledge is expected from a theoretical perspective, this raises further doubt about 

the validity of open reports to measure judgement accuracy. It was participants’ CK, 

but not their PCK which was related to closed ratings’ judgement accuracy. This is 

unexpected, since the role of PCK in educational diagnosis is often pronounced (Binder 

et al., 2018). However, prior empirical work pointed to the role of CK for diagnosis 

(van den Kieboom et al., 2014). Evaluating the mathematical correctness of students’ 

understanding might primarily depend on school-related mathematical CK, while a 

deeper interpretation of misconceptions – which was not assessed in this study – might 

require PCK to a larger degree (Baumert & Kunter, 2013). 

Summarizing, our findings indicate that the method used to measure the accuracy of a 

diagnosis does matter, without necessarily pleading for one of the two presented 

methods. Closed ratings might be more beneficial to arrive at a valid and critical 

estimation of pre-service teachers’ judgement accuracy. Open reports seem to highlight 

those judgements that pre-service teachers would prioritize themselves and can 

possibly provide deeper insights into the noticing and reasoning mechanisms (Seidel 

& Stürmer, 2014) behind these judgements as well as potential conclusions drawn from 

them in terms of educational interventions. 
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INTERACTIONAL FORCES IN MULTILINGUAL DISCOURSES –  

A TEACHERS’ PERSPECTIVE ON LEARNERS’ AGENCY 

Taha Ertuğrul Kuzu  

WWU Münster University, Germany 

 

In multilingual interactions, ‘centrifugal’ as well as ‘centripetal’ forces have to be 

expected with regard to language form. A deficitary approach to multilingualism might 

lead to centripetal forces that make a teacher ‘interrupt’ the activation of multilingual 

learners’ language repertoires. Still, insights into teachers perceptions of multilingual 

learners’ language choices are not yet sufficient and further insights are needed. This 

study gives first insights into how a teacher perceives his multilingual students’ 

language choices and how subtle switches in his reactions lead to a change from more 

‘centripetal forces’ to ‘centripetal forces’ in the planning and videographing of an 

explanation video of the ‘Auxiliary Task’. 

STARTING POINTS AND THEORETICAL BACKGROUNDS  

In recent years, educational research in mathematics education has shown the necessity 

to change the view on multilingualism: It is not a ‘deficit’, but a different and highly 

creative way of processing languages and thinking-processes (see Barwell 2016; Kuzu 

& Prediger 2017; Planas 2021). Multilingualism does not only affect the language 

form, it also might bear nuanced differences in meanings, like the change of thinking-

directions, associations, different interpretations of relations etc. (see Kuzu & Prediger 

2017; Planas 2021). While there is still more research needed regarding this meaning-

related side of multilingual resources, even the possible existence of meaning-related 

differences in the ‘minds’ of multilinguals makes it important enough to demand an 

opening of mathematical learning discourses for all language resources (see Barwell 

2018; Planas & Chronaki 2021; Planas 2021). Educators thus should reflect their be-

liefs and practices with regard to multilingualism: A competence-oriented approach is 

not a mere recommendation but based on empirical insights being a result of many 

years of research in the psychology of mathematics education (see Planas 2021). 

These insights directly lead to another important facet: Interaction forces in multilin-

gual classroom situations emerging when teachers and students interact. Barwell 

(2016) refers to Bachtins theory of language to describe two main interaction forces: 

,Centrifugal forces’ versus ,centripetal forces’. In a Bachtinean sense, ,centrifugal 

forces’ refer to the production of ‘heteroglossia’, meaning  diverse, but legitimate and 

co-existant forms of language in one utterance or in one persons repertoire with regard 

to the requirements of a communicative situation, for example the usage of different 

linguistic forms – like dialects, varieties, mixed-utterances etc. – as well as of different 

socio-political forms – for example contextualized language in form of language regis-

ters, languages of social groups, multilingualism etc. (see Barwell 2016; 2018) In this 

sense, there is no ‘right’ or ‘false’ language form, rather “it always arises in particular 

https://orcid.org/0000-0001-7422-0231
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situations to accomplish particular social ends” (Barwell 2016, p. 106), thus a speaker 

aims at a functional inclusion of all of language forms he or she possesses. ‘Centripetal 

forces’ on the other side stand for the opposite: For a norming process, “a pressure 

towards uniformity in language” (Barwell 2016, p. 107). Being typical for school 

contexts, this means that mostly institutional people like teachers do ‘control’ how it 

has to be spoken through norms, rules, sanctioning etc. (see Barwell 2016), f.e. ‘to 

speak in full sentences’ or ‘to use complex the complex technical terms’. They go 

beyond looking at the ‘particular social ends’ but rather pretend (or really believe) that 

only specific linguistic and socio-political forms of language are legitimate. Typically, 

with regard to institutional ‘centripetal forces’, only high-status languages are allowed 

or wanted and these languages have to be used in the ’expected’ form, which is mostly 

the register of ‘academic language (proficiency)’ in school contexts, meaning a highly 

decontextualized, abstract and complex language form (see Wessel 2020). Yet, stu-

dents may express their mathematical thinking also in other languages than the class-

room language or high-status languges, in mixed forms, in the everyday register etc., 

meaning ‘centrifugal forces’. It might be a justifiable didactical goal to teach the 

academic language register, but in mathematics lessons, it rather becomes problematic 

when teachers do interrupt mathematical thinking processes of learners for the sake of 

a ‘good’ language use (see Planas & Setati 2014; Barwell 2016).  

Thus, these interaction forces influence teachers’ perception and intervention as well 

as students’ agency, which can be defined as a “dynamic capacity of humans to act 

independently and to make choices […] it lies in the actions people take in response to 

particular discourses” (Noren 2015, p. 173). Such choices can be ‘centrifugal’ or 

‘centripetal’, when students decide to use or not to use everyday language means, their 

multilingualism etc., and these choices are highly influenced by teachers – since they 

are being “in response to particular discourses” (see Noren 2015, p. 173) – , f.e. when 

they are sanctioned for using ‘other’ languages than the allowed ones. Sanctioning can 

happen in direct forms like prohibiting and leads to ‘marked’ linguistic practices – 

meaning “social ripples because participants [do not wish or] expect […] a choice” 

(Myers-Scotton 2006, p. 159) – or in indirect forms like ignoring, overhearing etc., 

which would be forms of micro-aggression (see Spanierman, Clark & Kim 2021). 

These interaction forces and their effects on students’ agency are integral to every 

language production, but there are still insights needed on how exactly students or 

teachers perceive these forces – if they perceive it (in most cases, it might be an implicit 

aspect) – and how they act when they perceive them (see Barwell 2018). This paper 

focusses on the teacher-side: How do teachers perceive these forces when they occur 

and how do they react, sanction or skip the occurences? In this study from the German 

context, a case study being part of a broader study about pre-algebraic thinking 

processes in the context of the ‘Auxiliary Task’ (see Kuzu 2022) is presented. 
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METHOD OF THE STUDY  

Research context and data corpus of the study. The broader research context is the 

analysis of pre-algebraic thinking when proceptually reflecting and generalizing the 

compensation rule behind the ‘Auxiliary Task’, a mental calculation strategy (see Kuzu 

2022). n = 18 learners from grade 3 to 6 (9- 12 years old) were fostered in a designed 

learning environment and after that, their pre-algebraic generalizations were focussed. 
In the analysed sequence of this paper, a pair of students in an age-mixed group (S6 is 

12 years old; S7 is 9 years old) were asked to make an explanation video about their 

understanding of the ‘Auxiliary Task’ (directly after the a proceptual reflection of the 

strategy). The teacher – the main research-subject in this paper (n = 6) – , was male, 35 

years old and had five years of teaching experience. He has the same multilingual back-

ground as the students (German-Turkish). After the video take, the teacher watched the 

videographed scene and stopped at scenes he wished to comment. The question he was 

asked was “Were there scenes where you felt that the students used language in a way 

that it diverged from your expectations? How and why did you react as you did?”. 

Research questions for this paper. Since the research interest of this study was to 

reconstruct ‘centrifugal’ and ‘centripetal forces’ with regard to the teachers’ perception 

of the learners’ languaguage production, the research question is two-folded: 

Q1: How does the teacher perceive the language production process of the learners? 

Q2: What might be possible reasons and effects of an intervention or passing over of 

the teacher, if he/ she perceives a for him marked language usage? 

Methods for qualitative data analysis. The transcripts were successively analysed by 

conducting a so-called interpretative ‘interaction analysis’ (see Schütte, Friesen & Jung 

2019) of the transcript sequences in between design-cycles (since the broader study 

was part of design-based research). In a turn-by-turn approach, possible interpretations, 

understood as hypotheses, were formulated with regard to the research interest (the 

reconstruction of centrifugal and centripetal forces). These turn-by-turn analyses were 

conducted with an interpretational ‘awareness’, meaning a careful formulation of hypo-

theses as assumptions. Later turns are not included into the interpretation of a prior 

turn, but an evaluation of emerged hypotheses is made with every turn so that ‘harder’ 

hypotheses are marked as ‘explaning hypotheses’ after some turns (see Kuzu 2022) 

EMPIRICAL INSIGHTS INTO THE INTERACTION FORCES 

In this short sequence, S6 is the ‘moderator’ of the video and S7 is the ‘cameraman’. 

Later, the roles are changed. It takes place between take one (being recorded in German 

priorly) and take two, which starts in turn 80 of this scene. In this scene, the students 

‘collect’ the language means in Turkish they think they need for the explanation video. 

On the table, right before the learners, the poster with the task 156 – 28 is visible from 

the first video take, with a +2 as rounding-up number being written over the number 

28 to round it up to 30 (thus, the ’Auxiliary Task’ the students generate is 156 – 30 = 

126). The task is visible in numerical form and with cardinal manipulatives, which are 
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placed right under the task and consist of ones-squares, tens-lines and hundreds-sqares. 

The German utterance parts are directly translated and underlined, the Turkish parts 

are visible in original as well as in transcripted form (in parentheses and in grey). 

60  S6 Well maybe I’ll write down the numbers and just read them. 

61  Tea Okay, you mean in Turkish, right? Then you have them directly. Yüz elli 
altı (hundert fifty six). 

62  S6 [puts the pen on his document with the language means] How is it written? 

63  Tea Yüz (hundred), zzz [emphasizes the z] – well you can write it as you hear 
it. Yüz elli altı (hundred fifty six) [S6 writes it down and repeats it silently 
for himself] – altı (six). Well, yüz elli altı (hundred fifty six), buda yirmi 
sekiz (and this is twenty eight) [again, S6 writes it down; the teacher points 
at the 28 on the poster]. Nice. İki (Two) [now the teacher points at the 2 
on the poster], sonra da yüz yirmi altı (, and after that hundred twenty six). 
Yüz yirmi altı (hundred twenty six) [emphasized]. Then we can – oh, the 
cameraman is already here [to S7, jovially] he is at the video take, nice. 

64  S6 Altı. (Six.) 

65  Tea Mhm. Yüz yirmi-? (hundred twenty -?) 

66  S6 And this is yüz yirmi sekiz? (hundred twenty eight?) 

67  Tea Precisely, look, you can do it! Bence çok güzel Türkçe konuşuyorsun bu 
arada (By the way, I think that you can speak Turkish nicely), don’t let 
yourself tell from nobody that you cannot speak Turkish well [S6 smirks]. 
S6 you too, right. Süpersiniz (You are great) [walks away]. 

[from turn 68- 78, further language means are collected (minus, plus, equal and thirty)] 

79  Tea Okay. Three, two, one and go- [take two of the video in Turkish starts] 

80  S6 Hoşbulduk bize(m) matematik video (Welcome to our(s) mathematics 
video), bugün göstercez nasıl (today we will show how the) Trick, bu (this 
here) our task [points at the poster], biz başlıyos yüz elli altı äh aksı(ğ), äh 
eksik yirmi sekiz (we now start hundred fifty six eh minus/ miss(ing), eh 
missing twenty eight), eh, ama bu çok ağır (but this is too difficult), şimdik 
biz yirmi sekize iki artı yapıyoz (now we make plus two to twenty eight), 
ehm, otuz oluyo (makes thirty), şimdi biz yüz elli- yüz elli altı, ähm aksı(ğ) 
otuz yapıyoz (now we make hundred fifty- hundred fifty six, ehm, minus/ 
miss(ing) thirty) [puts away three tens-lines] bu yüz yirmi altı yapıyo (this 
makes hundred twenty six) [now points at the other enactives being left on 
the poster] but bu yanlış (this is wrong), because we have to iki artı yapcaz 
(make/ add plus two), bu (this) äh, yüz yirmi sekiz yapıyo (makes hundred 
twenty eight). Teşkür- küm, teşkelüm- (Thank- Thank, thankes-) yeah. 

Turn 60 start with the idea of S6 to write down the Turkish language means. The idea 

to record a Turkish video was also his idea. Thus, it is not forced by the teacher. S6 

plans to write down the language means and wants to ‘just read them’ when the video 

take starts (which seems a bit ‘naive’ since that is not an easy task, even for adults; but 

S6 seems confident). In turn 61, the teacher reinforces S6s idea at first (“then you have 

them directly”) and starts to give the first number, presumably since S6 asked for num-

bers explicitely (“Yüz elli altı”). S6 then asks how it is written in turn 62, which indi-

cates that he might not be proficient in Turkish as written language. Both students had 
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no Turkish lessons and at the beginning of the intervention, they were highly surprised 

that it was not ‘forbidden’ since “their teachers always said that speaking Turkish is 

forbidden in school” (a ‘markedness’ which occurs frequently in German schools). 

Furthermore, the students were shy at the beginning of the intervention and did not 

dare to use Turkish, and they repeatedly said “that they cannot speak Turkish well, it 

is not nice, it is ugly how they speak”. Here, the teacher wrote down a first memo: 

Memo 1: “At first I thought S6 might be highly proficient in Turkish, but here I realized 

that he may not be as proficient as it seemed at first, at least in written Turkish. 

Honestly, I was curious at this point how he would write it because, you know, Turkish 

letters are highly different from German letters. Perhaps he had learned it at home?” 

The teacher thus identifies that the student might not be as proficient in written Turkish 

as it seemed at first, but he also speculates if S6 probably had Turkish lessons at home. 

The emphasis on the written language in the ‘right’ form, with Turkish letters, shows 

a typical ‘centripetal force’: The expectation of language means in its ‘right’ forms.  

Turn 63 then goes on with a repeated language mean offering, but with a specific em-

phasis: on the “z” of “yüz” (hundred). This might be because the phoneme “z” is 

written as “z” in Turkish and as a “s” in German (which might be because his assump-

tion that the student might not know the Turkish letters). But then, immediatly after 

emphasizing the phoneme, the teacher says “well, you can write it as you hear it” (see 

turn 63). Here, the teacher wrote down a second memo: 

Memo 2: “I emphasized the z because I wanted the student to write it down correctly, 

but then I realized how he looked a bit irritated and how the focus shifted to, well, 

‘writing correctly’, and in the end, if he wanted to read them, I thought, it might irritate 

him and that was not what I wanted. I wanted him to be able to use the language means 

and if writing them in his own words was faster, he might be able to use them better.” 

This memo is highly interesting. It shows a reflection process of the teacher, a moment 

of self-control, with regard to his prior expectations. He realizes that a shift into an 

unnecessary language discourse occurs, at least at this point and for a verbal expla-

nation, and thus he offers and accepts the possibility that the language means might not 

be ‘clean’. Here, the ‘centripetal forces’ seem to become more dominant, ,hetero-

glossia’ seems to emerge since the the discourse is opened up for individual forms of 

language. Turn 63 then goes on as indicated in the memo: The teacher only repeats the 

language mean (“Yüz elli altı”) multiple times, but does not emphasize specific pho-

nemes anymore. He gives the language means for the numbers 28 (the subtrahend), 2 

(the rounding-up number) and 126 (the interim result). All of these numbers are visible 

on the poster. A ‘teichoscopia’ of the words S6 noted down, in Turn 63 still being 

gathered, shows that he indeed wrote all of the Turkish numbers with German letters. 

In turn 64 then, S6 reads loudly “six” in Turkish – it is not clear if that was a question 

or a voicing for himself (later turns rather confirm the latter: S6 often speaks the words 

silently ‘into the room‘) – and in turn 65, the teacher asks back “hundred tewnty-?” in 

Turkish, probably because he cannot categorize S6s utterance in turn 64. In turn 66 
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then, interestingly, S6 constructs a new number, which the teacher did not prompt 

before: The number “yüz yirmi sekiz” (“hundred twenty eight”). That is the result of 

the Task, which is determined by adding + 2 to the interim result agin, thus by 

compensating the modification of the subtrahend. Here, something interesting happens 

with regard to the interaction: the ‘initiative’ switches, the teachers does not give the 

needed words anymore but S6 chooses to construct the necessary language mean him-

self. It is a moment, where S6’ agency, his capacity to make choices, becomes visible, 

and one might assume that this is partly because of the gradual shift of the interaction 

forces from more ‘centripetal forces’ when highly insisting on right ‘forms’ (see 

beginning of turn 63) to more ‘centrifugal forces’ when opening the process up for S6’ 

,heteroglossia’, thus opening the language form possibilities with regard to the diverse 

capabilities of S6. The teacher, seemingly content with S6’ self-directed process of 

constructing necessary language means in Turkish, reinforces S6 in turn 67 by praising 

him for being able to do it and by stating that the students “can speak Turkish nicely” 

(see turn 67). Here, the teacher wrote down a third memo: 

Memo 3: “I saw that he wrote the Turkish words with German letters, but that was 

okay – I thought that it was more important to give him the opportunity to formulate a 

multilingual video with his language means, which might have been risked when I 

intervened too much and gave him f.e. the feeling of being a ‘bad’ speaker. I instead 

praised him since I remembered how he thought that he spoke ‘bad’ Turkish etc. I 

experienced that too: Often, teachers forbid me to speak in ‘Turkish’ and elders told 

me to speak ‘nice’ Turkish and not ‘ugly’ or ‘mixed’ language, and that is a very 

depressing feeling, to be rebuked from both sides.”  

In this third memo, the teacher admits that he can anticipate how the students might 

feel when on the one side, teachers forbid the language usage and elders, on the other 

side, insist on speaking ‘clean’ Turkish, which he describes with being “rebuked from 

both sides” (see memo 3). Here, again more ‘centrifugal’ forces become visible: The 

teacher motivates S6 to speak Turkish – in non-mixed or mixed forms, which he de-

monstrates in his own utterances – and not to be obstructed by the ‘language form’ 

(which he does implicitely by not sanctioning the student for his Turkish words with 

German letters). This is interesting from a sociological perspective: In the sense of the 

standpoint-theory (see Bourdieu 2000), a presumably shared experience makes it pos-

sible to emphasize students’ possible feelings and obstructions, leading to a specific 

form of discourse-opening for diverse forms of language reportoirs of the learners – 

with the aim of using mathematical terms for a mathematical explanation rather than 

writing down ‘clean’ language means – and thus highly ‘centrifugal forces’ emerge. 

From turn 68-74, further language means are collected in a similar pattern as before 

(S6 asks for the words “minus”, “plus”, “equal” and “thirty” and the teacher answers) 

The sequence then goes on in turn 80 with the video take, which leads to a viable, 

mainly Turkish, but also mixed German-Turkish explanation of the ‘Auxiliary Task’ 

(see Kuzu 2022). In turn 80, the teacher makes a last note: 
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Memo 4: “I was suprised and proud at the same time that S6 could […] use both of 

his languages, especially Turkish – and I do not think that he read all of the words in 

the fast-paced video take. When he spoke of “aksı(ğ)”, I realized that he used a dialect 

and I remembered that the student came from the aegaen region of Turkey and that he 

had a slighly aegaen dialect. I found it really nice [..] and did not sanction it.” 

Here, again ‘centrifugal forces’ become more dominant: the possibility to use dialects 

– beside of Turkish words with German letters – without sanctioning it. As a result, S6 

can explain the ‘Auxiliary Task’ in turn 80 in a viable way and with his own language 

means, including ‘his’ words and spoken with his dialect. He seems to be empowered 

by the openness of the discourse – being influenced by the teachers decisions to skip 

sanctions and to reinforce the students’ own language production – and thus is able to 

use all of his multilingual resources, even though he did not think that he could do that 

at the beginning. At this point, it is a more procedural explanation, but later sequences 

also show proceptual explanations in both languages (see Kuzu 2022). This sequence, 

however, has to be regarded as the ‘ice breaking’ moment with regard to interaction 

forces and for a heteroglossic activation of multilingualism in mathematics education 

(see Barwell 2018), giving insights into important implementation conditions. 

DISCUSSION OF RESULTS AND LIMITATIONS 

With regard to the research question Q1, the analysis presented in this paper gave 

insights into a process, which normally would be implicit: A teachers' perception of 

learners’ language production process. These insights are important because they show 

– with regard to Q2 – how specific shifts from ‘centripetal forces’ to ‘centrifugal for-

ces’ by opening the discourse for diverse forms of language means and multilingual 

students’ individual repertoires might empower them to do something they might not 

believe to be able to do: For example, to produce an explanation video about the ‘Aux-

iliary Task’ in a heritage language – in this case Turkish – in combination with the 

school language – in this case German, thus combining all ‘sources of meaning’ (see 

Barwell 2018). Yet, these insights go beyond this specific multilingualism context 

since ‘centrifugal forces’ and ‘centripetal forces’ are universal interaction forces in-

fluencing every language production interaction, especially in institutions like schools 

(see Barwell 2016). An important factor in this shift of interaction forces was the 'self-

control' of the teacher with regard to an upcoming urge to intervene and correct lan-

guage forms directly according to a ‘clean’ form. His empathy-based self-restraint, 

being especially visible in memo 3 and 4, or rather his intention to support the students’ 

usage of own language means – in their preferred forms – , thus with regard to the 

requirements of the communicative situation, seems to have lead to more ‘centrifugal 

forces’ by focussing on content and learners agency rather than form. The standpoint-

theory seems to be an important aspect, but this does not mean, however, that only 

multilinguals do understand multilinguals, that would be a false inference. Yet, it 

shows how important shared experiences can be and herein lies a potential, for example 

for PD programs: Trainers could use methods to allow participants to understand the 

effects of contra-productive ‘centripetal forces’ by using role-playing methods, where 
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it is for example forbidden to think and articulate mathematical ideas in a preferred 

language. Limitations arise with regard to missing insights into students’ perceptions 

and furthermore, the sample group is too small to formulate more consolidated 

hypotheses, but still, the detailed analyses show that the teacher behaviour in 

multilingual discourses has to be reflected also.  
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Negotiating mathematical reasoning through small-group collaboration has potential 

to provide access and opportunity for all students to experience success in learning 

mathematics. Here, we demonstrate how Pāsifika students draw on core-cultural 

values of collectivism and communitarianism while working together on mathematical 

activity. We present data highlighting the students’ perspectives of how their ways of 

knowing and being shape their mathematical interactions. Results indicate that when 

mathematics classrooms are constructed in ways that recognise and support all 

students to draw on the strengths they bring, they can successfully engage in productive 

mathematical reasoning that leads to a deeper conceptual understanding of 

mathematics. 

INTRODUCTION AND BACKGROUND 

Collective collaboration in mathematical reasoning and dialogue holds possibilities for 

all students to have opportunities to engage meaningfully in sensemaking and learning 

mathematics. Nevertheless, how teachers are to enact mathematics classrooms in 

which all students are gaining such opportunities is challenging. Many researchers 

(e.g., Cobb et al., 1991; Fernández et al., 2001; Gorgorió & Planas, 2005; Yackel et al., 

1991) argue that if students are to learn mathematics in this way, classroom 

communication and participation patterns need to be specifically constructed. Over 

many decades, research has shown the effectiveness of teachers explicitly establishing 

classroom social and sociomathematical norms which promote deep student reasoning 

(Hunter, 2022). However, as Hunter argues this research has generally focused on 

supporting students who are from dominant cultural groups rather than being inclusive 

of all students. Less common is consideration given to how non-dominant students can 

be supported—not to learn how to communicate and participate in the same manner as 

their peers from dominant cultural groups—but rather, through drawing on strengths 

they bring into the mathematical setting as part of their social and cultural identity 

constructed in their home and community (Hunter, 2022). Our aim in this paper is to 

explore from the perspective of a small group of non-dominant learners, specifically 

Pāsifika students, how they engaged in collective mathematical dialogue. The question 

we explored was: What cultural factors shape how Pāsifika students successfully 

engage in collective mathematical reasoning? 

THEORETICAL PERSPECTIVE 

This research is situated in a sociocultural framework. Sociocultural theories of 

learning emphasise the dynamic nature of learning, with key components highlighting 

how students learn through interaction with others and their setting. Sociocultural 
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theories identify culture as a system of meaning making that is continually being 

formed and re-formed in local settings, activity, or cultural practices (Lave & Wenger, 

1991). Within mathematics classrooms, a sociocultural framing is characterised by 

students working collectively on mathematical activity and engaging in mathematical 

discourse to reason about important concepts (Boaler & Sengupta-Irving, 2016). This 

view of activity emphasises that how students participate in settings is shaped by how 

they view themselves as learners and is largely influenced by opportunities provided 

for them in settings such as schools (Hunter & Civil, 2021). Other studies (e.g., Cobb 

et al., 1991; Hunter & Hunter, 2018; Yackel, 1995) highlight that when students learn 

mathematics through collaborative sense-making, they can be supported to develop 

positive mathematical dispositions, and intellectual autonomy.  

Developing student collaboration 

Effective student collaboration on mathematical activity relies on the establishment of 

positive social norms that guide students to interact in mutually respectful ways (Cobb 

et al., 1991; Gorgorió & Planas, 2005). When social norms are utilised to support 

students to collectively deepen their mathematical understanding and engage in 

learning mathematics, they become sociomathematical in nature (Yackel & Cobb, 

1996). Sociomathematical norms form the foundation for how students can make sense 

of mathematical concepts while working collaboratively with others. These norms are 

developed and maintained when students’ attention is focused on the mathematics and 

negotiation of mathematical meaning as they engage in mathematical activity (Yackel, 

1995). Yackel et al.’s (1991) study involved 20 students 7 years old. It examined how 

classroom norms were developed and the multiple opportunities for learning that arose 

during student collaboration. During mathematics lessons, the students were expected 

to actively participate in collective sense-making and mathematical reasoning as 

opposed to expecting a more knowledgeable peer or the teacher to explain the 

mathematics to them. In this way, notions of any one individual holding the 

mathematical knowledge shifted to the collective mathematical strength of the group. 

Shared cognition was a gateway for the students to develop conceptual understanding 

of mathematics.   

Developing conceptual understanding requires students to seek and comprehend 

mathematical relationships, reconstruct prior understanding, and connect to new ideas 

(Hunter & Civil, 2021). Furthermore, when given the opportunity to reason 

collectively, students can make and justify mathematical claims, and attempt to prove 

these. To illustrate these ideas, Mueller (2009) conducted a study involving twenty-

four diverse students of African American and Latinx backgrounds, exploring how 

mathematical reasoning emerges. The students worked collaboratively in groups of 

four to solve open-ended mathematics problems. They co-constructed mathematical 

solutions and justifications and then explained these to the larger group. What Mueller 

(2009) noticed over time was that at first, many students merely repeated what others 

had stated. However, through consistent teacher expectations for deeper mathematical 

understanding, the students began to listen carefully and consider each other’s 
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mathematical ideas and eventually engage in collective mathematical argumentation 

and justification. 

Pāsifika learners in the New Zealand context 

Collectivism and communitarianism in the mathematics classroom context refers to 

ways of working together in mutually respectful ways. New Zealand is home to the 

indigenous Māori who are closely connected to their first cousins, Pacific nations 

peoples. Pāsifika is a homogenous label for peoples belonging to multi-ethnic groups 

with heritages deeply rooted in their island nations but more of whom currently live in 

New Zealand. Both Māori and Pāsifika peoples share many common values, including 

reciprocity, respect, service, inclusion, relationships, spirituality, leadership, love and 

belonging (Ministry for Pacific Peoples, 2018). Above all, family, communitarianism, 

and collective responsibility are central to daily life for both Māori and Pāsifika 

peoples.  

Pāsifika learners as non-dominant students in the New Zealand school setting have a 

long history of failure. Hunter and Hunter (2018) suggest that this can be directly 

attributed to expectations that these learners adopt the ways of knowing and being of 

dominant cultural groups, rather than drawing on their own strengths that they bring to 

the school setting. Through their lengthy and extensive research, these researchers 

illustrated how teachers could support Māori and Pāsifika students to learn 

mathematics by engaging in collective mathematical discourse. They showed how 

teachers modified their mathematics learning environments to respectfully draw on the 

core cultural values of Māori and Pāsifika students, including reciprocity, respect, 

service, inclusion, family, relationships, collectivism, and belonging. In collaboration 

with international colleagues, they drew parallels with non-dominant Hispanic students 

in the U.S.A. In this research Civil (Civil & Hunter, 2015; Hunter & Civil, 2021) 

worked with mathematics teachers to develop collaborative student discourse. Civil 

persistently drew on these students’ core cultural values of ‘familia’ (family), 

‘confianza’ (mutual trust), and relationships. In doing so, she forged strong 

relationships with these students and their families both in and outside of the school 

classroom. Like the New Zealand findings, developing these relationships gave the 

students a sense of belonging and inclusion in mathematics learning resulting in 

moments of “rich mathematical discussion and argumentation” (Civil & Hunter, 2015, 

p. 304). However, these studies are all focused on the teacher actions to draw on the 

non-dominant strengths. In this paper we aim to add to the literature, but from the 

perspective of the Pāsifika students of how their ways of knowing and being shape 

their mathematical interactions.    

RESEARCH DESIGN  

This research reports on a case study of one classroom at a high poverty, urban school 

in New Zealand, and was nested in a larger study focused on how teachers can teach 

mathematics reflecting the aims of equity in mathematics education. Mathematics 

lessons were characterised by students working in collaborative groups, on challenging 
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contextualised mathematical tasks. The students were grouped heterogeneously from 

a strength-base. The participants reported on in this paper were four students of 

Pāsifika descent aged 9-11 years old who participated in two open-ended group 

interviews. They were selected after extensive interrogation of the group interview data 

across the class set. Their responses were representative of the wider set of students. 

Open ended semi-structured interviews were conducted with all groups to explore their 

perspectives of their engagement in mathematical dialogue. Utilising this kind of 

interview structure facilitated students to freely describe their experiences of working 

in small mathematics groups and positioned them as experiential experts in classroom 

episodes (Smith & Osborn, 2015). Interviews were video-recorded and wholly 

transcribed. A grounded approach was utilised to analyse the data. Codes, categories, 

and themes were established through iterative and both individual and collegial 

analysis. For reliability of the findings, all members of the research team coded each 

of the interview data independently and then crosschecked for analysis until common 

themes were identified which were representative of the whole set.  

The findings are presented in the following sections. They aim to explore how 

collective reasoning embedded within cultural ways of knowing and being support the 

development of rich mathematical understandings. 

RESULTS AND DISCUSSION 

Reform classrooms place importance on the co-construction of mathematical reasoning 

through shared dialogue. Understanding that mathematical meaning can be constructed 

through dialogue is an important motivational tool for students to engage productively 

in mathematics talk. From the responses it was evident that these students readily 

acknowledged collective dialogue as their main source of constructing learning but 

working collectively in mathematical ways was positioned by the students within their 

own identity as Pāsifika learners. When questioned about how they perceived group 

work, they took this as common practice within their cultural ways of being and as one 

student stated: “we are good at working together”. Their further responses indicated 

deep understanding of the collective strength of what a group brought to mathematical 

activity, in contrast to what individuals could achieve alone. For example, one student 

stated: “I work with a buddy, taking turns of our ideas. When it’s a hard problem there’s 

only one of me and I might not be able to solve it”. Another described how they all 

supported each other and ended with: “if you are just by yourself…you will be 

struggling”. This illustrates what Hunter and Civil (2021) outlined as ways of learning 

that many non-dominant students, including those of Pāsifika ethnicity use in their 

home settings. In the home setting, these Pāsifika students think, work, and learn 

together almost as a single unit and often almost silently. It was clear that in this 

classroom, these students felt empowered to draw on their own home values and ways 

of being to work as one to progress their shared mathematical goals.  

Pāsifika ways of knowing and being underpinned these student’s perceptions of how 

they worked collectively. They described how core Pāsifika values were drawn on and 
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supported their interactions, as evidenced by a student who described the need for: 

“respecting all by taking turns in our group to share our ideas”. Respect as a core 

Pāsifika value was the basis of how they described all their mathematical interactions, 

and this was extended across the other Pāsifika values. For example, when describing 

who had strengths in mathematics, one of the students identified another student based 

on her ability to work in respectful and reciprocal ways to ensure all learned, 

describing: “she always wants to like, can I help with that, and she likes to help with 

things that makes it logical, and she makes stuff easy…”. Other descriptions implicitly 

described values embedded in reciprocity, service, and inclusion. It was evident that 

the cultural aspect of being respectful, keeping others safe and happy (relationship first) 

“tauhi va” and “ko ho’o me’a ko ‘eku me’a”- what is yours is mine and what is mine 

is yours (sharing with your friends and living with family members) were their lived 

values in their mathematical interactions.  

Relationships embedded within notions of family and working together as one in ways 

that were inclusive and supportive were key elements described by the students as 

productive ways of doing mathematics. As one student said: “I felt really good working 

in a team…and when Amanaki came in she made it kind of logical and there were all 

these ideas popping up, it was really good as we were working together”. Others 

described how they learned through listening to other’s explanations: “by listening to 

their (mathematical) reasoning”. Another student extended the response to 

acknowledge how they ensured that their collective dialogue provided space for 

reconstruction of their mathematical reasoning: “Like, give everyone a chance to 

change their thinking and actively listening…or I agree with you, or I disagree with 

you…helpfully”. Cobb and colleagues (1995) noted need for students to learn to work 

in mutually respectful ways and this was what these students described but they 

extended our understandings into their own cultural world. 

Clearly evident throughout the data was the way in which these Pāsifika students did 

not view themselves as individuals but rather as a collective—as a family—both 

responsive to and responsible for each other’s learning. This was illustrated when 

students were asked whether they considered themselves good at mathematics. One 

student was asked directly and rather than responding she dropped her head to her chest 

and remained silent. Other students smiled and then explained their reaction: “We are 

smiling because we know Hiva is good at maths, whenever she comes up with 

ideas…and like she can explain, she doesn’t, she’s not shy and keeps it in”. Of 

significance was the initial response of Hiva when asked if she thought she was good 

at mathematics and the way in which the other students responded. Within Pāsifika 

culture, stating one’s own importance is not acceptable, however, acknowledging 

strengths of others conforms to value placed on family, being of service, and belonging. 

It was evident that these students were prepared to describe the positive participatory 

actions others contributed and, if describing actions they took, it was in terms of 

promoting collective reasoning. For example, one student described: “If someone is 

stuck, I just help them. But not like give them the answer…help them think, like give 
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them the main points, or we can just re-read the question, we are all good at 

mathematics because we are equal”. The use of the word ‘we’ is important here and 

shows how they considered themselves as one interlinked family unit rather than 

individual parts of it.   

Importantly, the collective activity supported them to negotiate mathematical 

understandings through use of sociomathematical norms. They all described shared 

activity including asking questions about the mathematics, sharing their thinking about 

the solution or explanation, explaining things to help everyone understand, giving 

everyone a chance to change their thinking, and asking others to repeat something 

again, and agreeing or disagreeing with other’s solutions. For these students it was 

evident that engaging in mathematical argumentation conflicted with their own cultural 

norms related to respect and maintaining other’s mana (pride), but they had co-

constructed ways to overcome their reticence. This is illustrated by this exchange with 

the researcher: “When I work in a group sharing strategies with the group and 

explaining things sometimes it gets a bit difficult because we disagree with one 

problem, and we agree with the other”. When prompted by the researcher to explain 

what happened when the group disagreed the student said: “We have little fights, little 

mathematical fights about which maths is right. Like if someone doesn’t know one half 

is bigger than one fifth, they say like explain it…and the other person will say, it is 

right because one half is bigger than one fifth, look. Then they will show it, like on 

paper or something. Then we will think and oh yes, we agree, or no we don’t agree 

with that”. Hunter and Hunter (2018) explained how many Pāsifika students find 

engaging in mathematical argumentation difficult. However, the way in which these 

students described their activity they had shifted focus from the individual defending 

their reasoning to the use of mathematics as the vehicle of justifying and proving 

collective reasoning. This parallels what Civil (Civil & Hunter, 2015) described in her 

work with Hispanic students from similar non-dominant communities. A sense of 

family and mutual trust supported these students to engage in reasoned mathematical 

dialogue which included mathematical argumentation. These findings also reflect those 

of Mueller (2009) study where students were provided with multiple opportunities to 

work together on mathematical activity and in doing so, constructed important ways of 

learning rich and deeply connected mathematics.  

CONCLUSION AND IMPLICATIONS 

Of significance in these findings is the acknowledgement of the strength of the 

collaborative process of working on mathematical activity. The results demonstrate 

that while the students acknowledged individual strengths of their peers, they 

recognised that collaborative activity could support mathematical understanding by 

allowing them to re-examine their individual ideas and build new or additional forms 

of reasoning from the ideas of others. As other researchers (e.g., Cobb et al., 1991; 

Yackel et al., 1991) show, these students did not rely on a “more-knowledgeable” other 

to explain or show the mathematics to them, rather they recognised that working 

together provided access to learning mathematics. They did not express any reliance 
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on teacher expertise, nor on any one student. Rather, they recognised each other as 

essential components in engaging in mathematical activity and co-constructing shared 

reasoning. Within Pāsifika culture, participating and contributing actively to achieve a 

common goal is key to a community and these students readily applied their ways of 

knowing and being to the classroom mathematical setting.     

Collectivism and communitarianism are important and accepted ways of working and 

learning together in the daily home setting for many Pāsifika students. As Hunter and 

Hunter’s (2018) study demonstrated, when the experiences and core cultural beliefs 

and values of diverse students are drawn from, students can be supported to engage in 

productive mathematical dialogue. Furthermore, Civil and Hunter’s (2015) study 

emphasised that when the students’ idea of family, mutual trust, and relationships were 

firmly established, access to deep mathematical reasoning occurred. In this study it was 

evident that working together in mathematical groups created opportunities for these 

students to work as a community, which ultimately placed their identity at the heart of 

learning mathematics. As Civil and Hunter (2021) argue, these ways of learning 

together almost as one for many non-dominant students do not need to be constructed 

in artificial ways in classrooms because they already act in this way in their families 

and communities. Rather, teachers need to construct mathematical learning spaces 

which recognise and support diverse ways of knowing and being so that all students 

can draw on the strengths they bring. When this happens and such learning 

environments are created, equity in mathematics education can be fulfilled.  

REFERENCES 

Boaler, J., & Sengupta-Irving, T. (2016). The many colors of algebra: The impact of equity 

focused teaching upon student learning and engagement. Journal of Mathematical 

Behavior, 44, 179-190. 

Civil, M., & Hunter, R. (2015). Participation of non-dominant students in argumentation in 

the mathematics classroom. Intercultural Education, 26(4), 296-312. 

Civil, M. & Hunter, R. (2021). Reflections on participations in elementary school 

mathematics: Views from different contexts. In Jarmila Novotná & Hana Moraová (Eds.), 

Broadening experiences in elementary mathematics. (pp. 9 - 20). Charles University. 

Cobb, P., Wood, T., Yackel, E., Nicholls, J., Wheatley, G., Trigatti, B., & Perlwitz, M. (1991). 

Assessment of a problem-centred second-grade mathematics project. Journal for Research 

in Mathematics Education 22(1), 3-29. 

Fernández, M., Wegerif, R., Mercer, N., & Rojas-Drummond, S. (2001). Reconceptualizing 

“scaffolding” and the zone of proximal development in the context of symmetrical 

collaborative learning. Journal of Classroom Interaction, 36(2), 40-54.  

Gorgorió, N., & Planas, N. (2005). Reconstructing norms. In H. L. Chick & J. L. Vincent 

(Eds.). Proceedings of the 29th Conference of the International Group for the Psychology 

of Mathematics Education. Vol. 3, pp. 65-72. Melbourne: PME. 



Leach, Latu & Hunter 

3 - 250 PME 46 – 2023 

Hunter, R. (2022). Tracing the threads of research to establish equitable and culturally 

appropriate pedagogical practices within mathematical interactions and discourse for all 

learners. Theory Into Practice, 1-11. 

Hunter, R., & Civil, M. (2021). Collaboration in mathematics: Taking a sociocultural 

perspective. Avances de Investigación en Educación Matemática 19(7), 7-20. 

Hunter, R., & Hunter, J. (2018). Opening the space for all students to engage in mathematical 

practices within collaborative inquiry and argumentation. In R. Hunter, M. Civil, B. 

Herbel-Eisenmann, N. Planas, & D. Wagner (Eds.), Mathematical discourse that breaks 

barriers and creates space for marginalized learners (pp. 1-22). Sense. 

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. 

Cambridge University Press. 

Ministry for Pacific Peoples. (2018). Yavu: Foundations of Pacific engagement.  Ministry for 

Pacific Peoples.  

Mueller, M. F. (2009). The co-construction of arguments by middle-school students. The 

Journal of Mathematical Behavior, 28(2-3), 138-149. 

Smith, J.A., & Osborn, M. (2015). Interpretative phenomenological analysis. In J. A. Smith 

(Ed.), Qualitative psychology: A practical guide to research methods (pp. 25-52). SAGE. 

Yackel, E. (1995). Children’s talk in inquiry mathematics classrooms. In P. Cobb & H. 

Bauersfeld (Eds.), The emergence of mathematical meaning (pp. 131-162). Lawrence 

Erlbaum Associates. 

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in 

mathematics. Journal for Research in Mathematics Education, 27(4), 458-477. 

Yackel, E., Cobb, P., & Wood, T. (1991). Small-group interactions as a source of learning 

opportunities in second-grade mathematics. Journal for Research in Mathematics 

Education, 22(5), 390-408.



 

2023. In M. Ayalon, B. Koichu, R. Leikin, L. Rubel & M. Tabach (Eds.). Proceedings of the 46th Conference of 

the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 251-258). PME 46. 
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The importance of mathematical competencies in the western world is well known, both 

at the personal and the national level. Accordingly, many studies are dedicated to 

learning about the best conditions to learn and teach mathematics. These efforts 

appear to run almost in parallel in two fields: mathematics education and cognitive 

psychology. In this RR, I will bring one example, regarding the role of continuous 

magnitudes (e.g., area, surface, volume, density, etc) in learning the concept of 

(natural) numbers. I will highlight the similarities in the findings from the two fields, 

and how they complement each other. I hope to start a discussion about how to better 

connect the two fields, spark new questions and find new insights to pave the way to 

revolutionize how we think about early mathematics education in general.  

 

THE BUILDING BLOCKS OF MATHEMATICS – DISCRETE NUMBERS 

OR CONTINUOUS MAGNITUDES?  

Many studies, spanning decades, investigate how young children learn mathematics. 

The idea is that knowing how we acquire basic arithmetic skills, will allow us to teach 

mathematics more efficiently, more like the way we learn mathematics ‘naturally’.  

In mathematics education, some suggested that people are ‘born mathematical’ (e.g., 

pound, 2006) and that ‘the development of mathematical competencies begins at birth’ 

(Anthony & Walshaw, 2009, p. 1). The evidence came from behaviours such as 

detecting patterns, evaluating distance while trying to reach for objects, etc. In 

cognitive psychology, one of the dominant theories went further and suggested that 

humans are born with a dedicated system for ‘sensing’ the approximate number of 

items. According to the Approximate Number System (ANS) theory (e.g., Cantlon et 

al., 2009; Dehaene, 1997), we are born with a dedicated mechanism allowing us to 

approximate and discriminate the number of large quantities. Some suggested for 

example that we can sense ‘sixness’ similarly to the way we sense ‘redness’ (e.g. Burr 

& Ross, 2008). This system at first allows us to make only crude discriminations and 

refined with age and experience, and influence further math abilities (Halberda & 

Feigenson, 2008).  

Evidence for this theory comes from behavioural, neuroimaging, and 

neurophysiological studies. Such studies usually tested the ability of participants to 

compare the quantity of two groups of items, when the number of the items becomes 

closer and closer. For example, Xu and Spelke (2000) used the habituation paradigm 



Leibovich-Raveh 

3 - 252 PME 46 – 2023 

to test whether six-months old infants can discriminate between a different number of 

items. In a habituation paradigm, infants are repeatedly exposed to the same stimuli, in 

that case, the same number of dots. When the stimuli are no longer novel, the infant is 

no longer interested and stops looking at the screen. Then, the number of dots changes. 

If this change was registered, and for the infant, this is a novel stimulus, she will look 

at the screen again. The infants in the study were able to detect a difference of 8 vs 16 

but not 8 vs 12 dots.  

The ANS theory influences early mathematics curriculum. One example of such 

influence is via the triple code model of Dehaene et al (2003). This model assumes that 

the meaning of the number comes only from non-symbolic quantities (Leibovich-

Raveh & Greg, 2019). The ANS theory also influenced the way mathematics learning 

disabilities (i.e., dyscalculia) are perceived and diagnosed. Some view dyscalculia, or 

at least sub-types of dyscalculia as a specific problem with the number sense (e.g., 

Wilson & Dehaene, 2007). 

However, not everyone agrees with the ANS theory. Already in 2002 (Mix et al., 2002) 

and maybe even earlier, some doubts started to arise regarding the interpretation of 

evidence coming from studies supporting the ANS theory. The main concern was that 

when comparing two groups of items, the number is not the only thing that differs: the 

total area of the items, their density, their volume, etc., all change too. I will refer to 

these as continuous magnitudes, as opposed to discrete numbers. It is impossible to 

create two sets with a different number of items and identical continuous magnitudes 

(for a review see Leibovich et al., 2017). Therefore, the question is: what do we process 

when we process such sets? How do we extract the number of items?  

From such questions, my colleagues and I devised a theoretical model called the 

Approximate Magnitude System (AMS) theory (Leibovich et al., 2017). The main 

difference between the ANS and the AMS theories is that in the AMS theory, 

continuous magnitudes are more basic and automatic than the perception of numbers 

(see also Gebuis et al., 2016). The AMS model assumes that we are born with the 

ability to compare and manipulate continuous magnitudes. Then, with the development 

of language, and experience in our environment, we start to notice the correlation 

between continuous magnitudes and discrete numbers, e.g., usually, when the toy box 

is fuller, it has more toys than when it’s less full. Only later, when cognitive abilities 

such as the ability to ignore irrelevant information are developed, a child can 

understand the exceptions to the rule: e.g., maybe there are only two toys in the toy 

box, but they are big and take lots of space. At that point when the correlation can be 

used but also ignored, we can say that the child understands the discrete quality of a 

natural number.  

There is empirical evidence for parts of the AMS theory. For example, in a 

neuroimaging study, adult participants saw two groups of dots and chose the group 

containing more dots. The number of continuous magnitudes positively correlated with 

the number of dots ranged from 1-4 continuous magnitudes. The data revealed an area 
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in the brain that was more active when there were more continuous magnitudes that 

positively correlated with number. This area was previously found to integrate 

information from different sources (Leibovich & Ansari, 2017).  

Another demonstration of the AMS is Piaget’s number conservation task (Piaget, 

1952). In this task, children see two rows of the same number of coins, evenly spaced 

at first, and asked whether they contain the same number of coins or not. Then, the 

experimenter space out the coins in one of the rows in front of the child and repeats the 

question. This manipulation usually makes young children (at about the age of 5) claim 

that the more spaced-out row has more coins. An fMRI study repeated a similar task 

with adults and demonstrated that although adults responded correctly, in the spaced-

out condition, there was more activity in brain areas related to ignoring irrelevant 

information (Leroux et al., 2009). These results suggest that even adults are initially 

misled by continuous magnitudes but know to inhibit the irrelevant information and 

deliver the correct response.  

Importantly, studies investigating the role of continuous magnitudes in processing 

groups of items and extracting numbers are usually done in highly controlled 

conditions that are far from the learning environment of children. It also rarely 

considers the way children manipulate the magnitudes around them. Therefore, in the 

next section, I will bring some examples from educational approaches, that, in my 

opinion, manifest the spirit of AMS from an educational perspective.  

NUMBERS AND CONTINUOUS MAGNITUDES IN EARLY 

MATHEMATICS EDUCATION 

To demonstrate the usefulness of combining knowledge from mathematics education 

and cognitive psychology in general, I chose to focus on the AMS theory and the 

teaching of measurement as a case study. For this purpose, I will use mainly the study 

of Mellone, Baccaglini-Frank and Martignone (2020).  

This topic of measurements is of interest here because it goes to the question of how 

we teach numbers, and to what aim. Numbers are a tool for counting discrete countable 

objects, but they are also a tool for measurements. In western culture, in most cases, 

natural numbers are introduced to children as a tool for counting discrete objects before 

their role in measurement is introduced. For example, Sfard (1991) suggested that the 

mechanism of counting is the starting point for understanding the concept of a natural 

number.   

In contrast is the point-of-view depicted by the El’konin-Davydov curriculum 

(Venenciano et al., 2021). The El’konin-Davydov curriculum emphasizes that the 

learner should develop a general theoretical understanding of a phenomenon before 

she can master specific cases of the phenomenon. And to develop such an 

understanding, a learning activity is required. Accordingly, this approach suggests that 

the child must develop an understanding of numbers by experiencing and measuring 

continuous magnitudes. From there the child will later develop an understanding of 

numbers as a tool of measurement.  
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In the study of Mellone et al (2020), the authors seek to learn how children at the 

beginning of first-grade deal with rice as a substrate that can be treated as both 

countable and continuous. For that aim, an interviewer poured about 200 grains of rice 

into a pile in front of the child and asked him/her to do the same. Then, they asked 

whether their pile has ‘as much rice as’ the other pile. After the initial response, the 

children were offered some tools to use: a spoon, clear plastic glasses, a ruler, etc. The 

aim was to see which strategies children will use to solve the task.  

From a cognitive perspective, the ANS theory will predict that children will rely mostly 

on quantity and only a little on continuous magnitudes (depending on the ANS sub-

theory). On the other hand, the AMS theory will predict relying mainly on continuous 

magnitudes under these conditions. 

The results revealed that only 4/14 participants attempted to count the rice to complete 

the task. Out of them, only two were able to count technically (knew the number-

words). The others relied on different continuous magnitudes, like participants in 

laboratory cognitive experiments. For example, one strategy was to shape the piles into 

two, two-dimensional shapes and compare their area. Another way was to grasp each 

pile in one fist and compare how dense it feels. Another was to compare the heights of 

the piles.  

Using the tools, children used plastic cups to compare the height of the two piles. Some 

used a ruler, but as a divide between the piles and to compare the length but did not 

use the numbers on the ruler. When children used the word ‘measure’ they meant 

comparing.   

The study of Mellone et al (2020) is a great example of the added value of qualitative 

research to quantitative research. First, it demonstrated the same phenomenon 

predicted by the AMS theories, but in a more natural setup and completely different 

methodology, offering converging evidence from two different fields toward the role 

continuous magnitudes play in comparing numbers. Second, it elaborated beyond what 

studies in cognitive psychology have done so far, by an analysis of the interviews under 

a specific framework (i.e., theory of semiotic mediation). This resulted in identifying 

potential pivot signs – gestures or words children use that have the potential to be used 

to introduce new mathematical concepts in an activity organized by the teacher.  

A collaboration of cognitive research within the setup of the rice experiment will allow 

for example, to evaluate if factors such as the ability to ignore irrelevant information 

(i.e., inhibition), or how much information a child can hold in her mind at once to 

complete a task (i.e., working memory), are also a contributing factor to the strategy 

children chose. Another interesting avenue of research is to try and check for a 

relationship between future math achievements at school and the chosen strategy, or to 

try the same study with children (or adults) diagnosed with learning disabilities in 

mathematics. These require the collaboration of educators, math education and 

numerical cognition researchers. 
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COMBINING INSIGHTS FROM MATHEMATICS EDUCATION AND 

COGNITIVE PSYCHOLOGY – THE THE EL’KONIN-DAVYDOV 

CURRICULUM 

Earlier I introduced one way that the ANS theory influences early mathematics 

curriculum. The AMS theory, and more generally, the approach that continuous 

magnitudes and not numbers are the building blocks of mathematics, have developed 

independently from educational theories. However, I believe that the two share some 

commonalities that can be the source of mutual benefit to mathematics education and 

cognitive psychology. 

The El’konin-Davydov curriculum and the AMS share some similarities that are worth 

further exploration. For example, the importance of the child’s experience with the 

environment to develop their own general theories and understanding, corresponds to 

the AMS theory, suggesting that learning the correlation between discrete numbers and 

continuous magnitudes requires experiencing the environment. The current AMS 

theory is relevant to very young ages (from birth), and the El’konin-Davydov 

curriculum to older ages (from the age of about 4 years). Therefore, one interesting 

avenue of research is to see whether the AMS theory and the curriculum can be 

adjusted to discuss similar age groups. I will elaborate more about it in the last part. 

Another example for a potential cooperation between cognitive psychology and 

mathematics education is a curriculum that is based on the El’konin-Davydov 

curriculum, is the ‘Measure Up!” curriculum, designed for elementary grades (from 

age 4): 

“Where most contemporary curricula assume number as the most basic concept, MU uses 

children’s everyday knowledge of measurement as the context for exploring and 

developing mathematics. Concepts such as unit, iteration, equality, commutativity, and 

transitivity are first introduced through work with non-numeric quantities of length, area, 

volume, and mass. This leads to work with the number line, regrouping, place value, and 

rational numbers” (https://manoa.hawaii.edu/crdg) 

The El’konin-Davydov curriculum and the MU approach maybe even expand the AMS 

model. Recently, one study by Schenke et al (2020) reported that a computer game 

based on the ‘Measure Up!” curriculum with 4-5 year-olds found gains for children 

playing with this particular game relative to a control group. Namely, this curriculum 

can work also as an app with the guidance of a parent, since, as the paper claims, many 

teachers do not feel comfortable teaching the topic of measurements.  

A collaboration with a whole curriculum such as the ‘Measure Up!’ will allow us to 

get a more in-depth picture of other cognitive factors, that may be non-specific to 

mathematics that benefit from the curriculum and refine the MU activities even more 

or make them more ‘Taylor-made’ for every child. 

 

https://manoa.hawaii.edu/crdg
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LOOKING TO THE FUTURE   

The curriculum that I discussed here, as well as the ones I found, focuses on ages 4 and 

above. This is despite the perception that is taken almost as an axiom that humans are 

hard-wired to deal with mathematics. Although some suggestions are referring to 

earlier ages (see pound, 2006), to the best of my knowledge, there isn’t any formal 

state-level curriculum for earlier ages. Even in places such as Israel, where a large 

percentage of infants are in daycare facilities from the age of 3-4 months, no such 

curriculum exists.  

Therefore, my suggestion is to build on the El’konin-Davydov curriculum, and by an 

interdisciplinary effort and collaboration, to adapt it for younger ages from birth to the 

age of 3-4 years. These ages can be critical to the development of mathematical 

abilities. And yet, they are left to chance.  

We know from prior studies that the home numeracy environment highly influences 

children’s mathematics abilities (e.g., Mutaf-Yıldız et al., 2020). Creating a curriculum 

has the potential to benefit children that goes to daycares but also stay at home since 

the curriculum could be modified to fit the home environment and, as the Measure Up! 

curriculum demonstrated the elements of the curriculum can be used in an app or a 

computer game and be used as a source for parents.   

Starting to develop mathematical abilities as early as possible also fulfills an important 

social role in closing gaps between children from different SES. Many studies 

highlighted the importance of early mathematics curriculum, and demonstrated the 

success of curriculum interventions at an early age, especially in closing the gaps 

between children coming from low SES families and those from medium and high SES 

(e.g., Starkey et al., 2022). By starting early, we can give every child a fair chance in 

school, and maybe even in life. 
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Language-responsive instruction is thought to enhance mathematical learning, 

especially for students with low language proficiency. However, empirical evidence 

for the effectiveness of such kind of instruction in regular classrooms is scarce. We 

conducted an experimental intervention study with a pretest and a posttest in grade 7 

(N = 212). Students were randomly assigned to one of three instructional groups: 

fraction instruction with or without additional linguistic support, or a waiting control 

group. Results showed that both intervention groups had higher learning gains than 

the control group. In addition, language proficiency, fraction pre-knowledge, basic 

arithmetic competence, general cognitive abilities, and mathematical anxiety were 

found to predict fraction learning. 

THEORETICAL AND EMPIRICAL BACKGROUND 

Research shows that students with limited language aptitude benefit less from 

mathematics instruction (Barwell et al., 2016) and that especially the development of 

conceptual knowledge is related to learners’ language aptitude. In particular, previous 

research showed that students with lower language proficiency performed more poorly 

on tasks that required conceptual knowledge than on language-free computational tasks 

(Prediger et al., 2018). Given that mathematical discourse practices such as arguing 

and explaining meanings are fundamental for developing conceptual knowledge, this 

is not surprising: Learners with high language proficiency are able to verbalize their 

ideas and concepts more effectively to acquire conceptual knowledge. In contrast, 

learners with low language proficiency may lack the linguistic prerequisites to do so. 

Thus, instructional approaches are needed that aim to overcome language deficits 

especially with respect to develop conceptual knowledge (Erath et al., 2021).  

Previous research on language-responsive learning in mathematics 

Previous research on supporting students with low language proficiency in their 

mathematical learning has focused on the development and evaluation of language-

responsive instructional approaches, both in qualitative and quantitative research. 

Based on the analysis of the mathematical and language learning processes in 

qualitative case studies design principles for designing language-responsive 

instructional approaches were derived (Erath et al., 2021). Complementing these 

qualitative analyses of mathematics and language learning processes, there are also 

studies under laboratory conditions that provide empirical evidence for the 

effectiveness of language-responsive instructional approaches. For example, Prediger 
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and Wessel (2013) conducted a quasi-experimental intervention study in a laboratory 

small-group setting in the context of remedial instruction. A language-responsive 

intervention program fostering students’ conceptual fraction knowledge was developed 

for six lessons of 90 minutes in 2-to-1 sessions (two students with one teacher). The 

results of a pre-post intervention study demonstrated higher learning gains for the 

language-responsive instructional approach.  

So far, there are only few studies that have investigated language-responsive learning 

approaches in regular classrooms. Therefore, investigating the effectiveness of 

language-responsive instructional approaches in differentiated teaching contexts, 

where students work with different learning materials within the same classroom seems 

to be an appropriate step toward ecological validity. Moreover, given the wide range 

of heterogeneity in regular classrooms (Nusser & Gehrer, 2020), such an approach 

allows to take into account different aspects of heterogeneity with regard to learning 

outcomes (e.g., different levels of mathematical competence, language proficiency, 

general cognitive ability, mathematics anxiety). 

Fractions 

Fraction knowledge is a predictor of academic, occupational, and financial success and 

is key for the acquisition of later mathematical skills (Siegler et al, 2012). Despite their 

importance, fractions are notoriously difficult (Siegler & Lortie-Forgues, 2015). Thus, 

there is a need to improve understanding of the predictors of fraction learning, with the 

goal of providing theoretical insight into and practical guidance for remedying these 

problems. 

Research suggests that various individual factors predict the acquisition of fraction 

knowledge. In particular, previous studies have shown that fraction knowledge is 

predicted by a combination of domain-general competencies (e.g. general cognitive 

abilities, language proficiency) and specific numerical competencies (e.g. whole 

number computation) (Vukovic et al., 2014). In particular, mediation analyses showed 

that numerical competencies were direct predictors of fraction outcomes whereas 

domain-general competencies predict fraction knowledge directly and indirectly 

through related mathematical competencies (Hecht et al, 2003; Vukovic et al., 2014). 

Across several studies, language proficiency emerged as an important predictor of 

fraction knowledge (e. g. Hecht et al, 2003; Seethaler et al., 2011; Vukovic et al., 2014). 

Besides these cognitive factors, research also showed that fraction knowledge depends 

on affective individual characteristics such as mathematical anxiety (Starling-Alves et 

al., 2022).  

Moreover, studies suggest that conceptual knowledge of fractions play a key role in 

overall fraction competence (Siegler & Pyke, 2013; Siegler & Lortie-Forgues, 2015). 

While procedural knowledge refers to the ability of performing fraction operations, 

conceptual knowledge comprises knowledge of concepts and principles, as well as 

knowledge of why a mathematical procedure works (Crooks & Alibali, 2014; 

Kilpatrick et al., 2001). Conceptual knowledge of fractions involves knowing special 
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characteristics of fractions (e.g., relation of numerator and denominator, density of 

fractions) and different interpretation of fractions (e.g. part of a whole, quotient, ratio) 

(Behr et al., 1983). If students integrate conceptual knowledge about these 

interpretations when solving calculations with fractions, it seems plausible that they 

may recognize incorrect procedures. Therefore, conceptual knowledge is thought to 

guide correct algorithmic procedures (Siegler & Pyke, 2013). For example, students 

interpreting fractions as parts of a whole may better understand that adding fractions 

on a symbolic level requires that the denominators are equal as only parts of the same 

size can be combined. Therefore, it seems to be essential to enhance students’ 

conceptual fraction knowledge. 

RESEARCH AIM 

We evaluate the efficacy of a language-responsive instructional approach to conceptual 

knowledge of fractions with additional linguistic support in a pre-post-intervention 

study that is situated in regular classrooms. Furthermore, we are interested in how 

learning effects depend on individual learning prerequisites. In particular, we 

investigate the relations between individual variables (language proficiency, fraction 

pre-knowledge, basic arithmetic competence, general cognitive ability, mathematics 

anxiety) and fraction outcomes. 

In this paper, the two research questions are: 

(RQ1) Does an intervention on fractions with linguistic support lead to higher learning 

gains than an intervention without additional linguistic support? 

(RQ2) Which individual variables predict learning of fractions? 

RESEARCH DESIGN, SAMPLE AND METHODS 

Research design. The data was collected in an experimental field trial with a pre-post 

design and an additional waiting control group. Students in each class were randomly 

assigned to one of two intervention groups. The waiting control group comprises two 

classes that participated in the intervention after the posttest. The intervention included 

a repetition unit on fractions which focuses specifically on conceptual knowledge. It 

comprised three lessons on (1) the concept of fractions, (2) the equivalence of fractions, 

(3) the addition and subtraction of fractions. The unit was implemented using one of 

two intervention materials: The first material (M1) contained additional linguistic 

support while the second intervention material (M2) did not contain any additional 

linguistic support.  

Intervention material. The intervention materials were based on tasks which have 

been developed and evaluated in previous research (Prediger et al., 2014; Wessel et al., 

2018). Both treatments contained the same tasks, thus all students were taught with the 

same learning objectives. To specifically support oral and written language production 

one intervention material (M1) contained additional linguistic support while the second 

intervention material (M2) did. In particular, M1 included formulation aids and phrases 

(e.g., sentence starters, word lists, sentence patterns) which were offered in the form of 
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sentence modules. These sentence modules make required vocabulary available for 

explaining explorations and provide sentence structures without impairing the 

conceptual explorations relevant to the acquisition of conceptual knowledge. 

Sample. A total of N = 212 students in grade 7 participated in the study (M1: n = 79; 

M2: n = 87, control group: n = 45). These students were from 11 classes and either 

visited the middle or the lowest track of the three-tracked secondary school system in 

Germany.  

Test instruments 

 Fraction knowledge was assessed using a test instrument on fractions (Lenz et 

al, 2020). The test instrument had a satisfactory internal consistency, with 

Cronbach’s α = .92 for the pretest and α = .93 for the posttest (50 items, N = 

212). 

 German language proficiency was assessed using a C-Test, offering economical 

and highly reliable measures, with Cronbach’s a = .76 (N = 212). 

 Basic arithmetic competence was measured before the intervention by three 

subscales of the standardized test “HRT 1-4” (Haffner et al., 2005) with 

Cronbach’s α = .80 (3 scale, N = 212). 

 General cognitive abilities was assessed using the “Figural Analogies” subscale 

of the “KFT 4-12 + R” (Heller & Perleth, 2000), with Cronbach’s α = .88 (25 

items, N = 212). 

 Math anxiety was measured using the items of the Programme for International 

Student Assessment (Mang et al., 2018), with Cronbach’s α = .80 (5 items, N = 

212). 

 Age, gender, socioeconomic status, and multilingual background were surveyed 

by a self-report questionnaire. 

Data analysis. Repeated measures of analyses of variance (ANOVA) were used to test 

for the effects of the intervention. This allows comparisons of the significant 

differences in the mean scores between the intervention group with additional linguistic 

support, the intervention group without additional linguistic support and the waiting 

control group. Linear regression analysis was conducted to analyse potential predictor 

variables for learning outcomes in fraction knowledge. 

RESULTS 

At pretest there were no significant differences between the two intervention groups 

and the control group for fraction knowledge and the individual variables language 

proficiency, general cognitive abilities, basic arithmetic competence, and mathematical 

anxiety. There were also no significant differences in the distribution of gender, 

multilingual background, and socioeconomic status (p > .05 for all variables). 

Accordingly, we can assume that the groups were comparable before the intervention. 
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The first research question asks for differences in the learning outcomes between the 

three groups (M1, M2, control group. The results of the ANOVA show a main effect 

of time, suggesting that regardless of group, response accuracy increased significantly 

from pretest to posttest (Ftime (1, 211) = 168.97, p < .001, 𝜂² = .06). No main effect of 

group was found (Fgroup (2, 211) = 1,576, p = .209). However, the interaction effect of 

time  group was significant (Ftime x group (2, 211) = 14.48, p < .001, 𝜂² = .01) with a 

small effect, suggesting that the learning gains in fraction knowledge from pretest to 

posttest differed to some extent between the three groups. The descriptive data is 

presented in Table 1. As the mean differences show, both intervention groups achieved 

comparable learning gains, whereas there is no significant change in the mean 

difference from pretest to posttest in the control group. Thus, it seems that additional 

language support did not have a general effect on students’ fraction learning. However, 

this effect may depend on students’ individual variables. 

Table 1: Learning gains in fraction knowledge 

 Pretest M (SD) Posttest M (SD) mean differences 

Intervention group 

M1 
17.94 (9.91) 24.89 (11.28) 6.95*** 

Intervention group 

M2 
15.37 (9.17) 22.22 (10.01) 6.85*** 

Control group 18.87 (8.97) 20.71 (9.40) 1.84 

The second research question asks for predictors of learning outcomes in fraction 

knowledge. Table 2 presents the results of the linear regression analysis.  

Table 2: Results of the regression analysis 

 Β Std. Errors p 

Language proficiency  0.13 0.04 <.001 

Fraction pre-knowledge 0.71 0.05 <.001 

Basic arithmetic competence  0.09 0.03 .003 

General cognitive abilities  0.17 0.06 .004 

Mathematical anxiety  −1.15 0.57 0.045 

Treatment group  −1.86 0.47 <.001 

The R-squared value for the model was good 1 (adjusted R2 of 0.77). The regression 

analysis shows the anticipated result that language proficiency, fraction pre-

knowledge, basic arithmetic competence, and general cognitive abilities are significant 

predictors of fraction outcomes. Moreover, there was a main effect of the non-cognitive 

variable mathematical anxiety. When controlling for language proficiency, fraction 

pre-knowledge, basic arithmetic competence, mathematical anxiety and general 

cognitive abilities, group was a significant predictor.  
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DISCUSSION 

In this study, we investigated the effectiveness of language-responsive instruction of 

fractions in an experimental design under field conditions.  

The results of the ANOVA show significant learning gains in fraction knowledge in 

both intervention groups (with and without additional linguistic support) whereas no 

significant learning gains were found in the control group. This result confirms the 

quality of both intervention materials. That the effect sizes were small is not 

unexpected, given that (1) the intervention was a short-term intervention of three 

lessons, (2) the intervention was a repetition unit, hence the students had some pre-

knowledge of fractions, and (3) the intervention was conducted under field conditions 

in regular classrooms, which is why the prior knowledge was heterogeneous unlike in 

special courses for students with little prior knowledge. 

Moreover, the results provide further evidence for the effectiveness of language-

responsive instruction. We found that a language-responsive instructional approach 

with additional linguistic support fostering students’ fraction knowledge can be 

effectively implemented in regular mathematics classrooms. Furthermore, the research 

design used, extends previous research conducted under highly controlled laboratory 

conditions with specific subgroups of students (Prediger & Wessel, 2013). In this 

respect, the present study investigates language-responsive instructional approaches on 

fractions in a more ecologically valid setting than previous studies. Furthermore, our 

findings replicate the results of the field study by Prediger and Neugebauer (2021) 

showing the effectiveness of a language-responsive instructional approach to 

percentages, a closely related domain. 

Our analysis of individual predictors provides insights into the variables that affect 

learning outcomes in fraction knowledge. We found that language proficiency, fraction 

pre-knowledge, basic arithmetic competence, general cognitive abilities, and 

mathematical anxiety predict learning of fractions. These results confirm previous 

research on predictors of fraction knowledge, which suggest that fraction learning 

depends on domain-general, specific numerical competencies as well as non-cognitive 

variables (e.g. Vukovic et al., 2014; Starling-Alves et al., 2022). A notable contribution 

of this study is the finding that language proficiency emerged as a unique predictor of 

fraction learning, even in a short term intervention and when controlling for general 

cognitive abilities and prior mathematical knowledge. This result emphasizes the need 

for language-responsive instructional approaches to support learners with low 

language proficiency.  

Overall, the results of this study contribute to a deeper understanding of the sources of 

individual differences in fraction knowledge, which is key given the increasing 

heterogeneity of students in regular classrooms. Future research is needed to further 

specify the relations of these individual variables and learning fractions in order to 

derive corresponding instructional interventions, that take into account potentially 

different learning gains for learners with different learning abilities. 
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This study focuses on parents’ awareness of geometrical notions that can be promoted 

among young children before entering first grade. Fifty-two adults responded to an 

open questionnaire asking parents to list geometrical concepts they believed could be 

developed during early childhood and to describe situations where children raised 

geometrical ideas. Findings indicated that two-dimensional shapes were the most 

frequently cited concepts. Playtime was the most frequent context and composition was 

the most frequent activity. Workshops for parents may build on studies such as this to 

increase parents’ awareness to other geometrical concepts that can be promoted at a 

young age and to additional opportunities for developing geometrical knowledge. 

INTRODUCTION 

For the last 25 years, there has been growing emphasis on early childhood mathematics 

education and the promotion of children’s numerical and geometrical knowledge 

(Lewis Presser et al., 2015). Acknowledging the importance of these studies, 

mathematics educators (e.g., Cannon & Ginsburg et al., 2008) have become 

increasingly interested in how to foster mathematics knowledge during the preschool 

years. Towards this aim, several countries have instated mandatory mathematics 

curricula for preschools. However, many young children spend a considerable amount 

of time at home. Furthermore, studies suggest that for children to take advantage of the 

academic opportunities provided at preschool, some level of support from the home 

environment, such as toys that stimulate learning number and shapes, is necessary 

(Anders et al., 2012). Thus, if we aim to promote young children’s mathematical 

knowledge, the home environment should also be considered. This study is part of a 

larger project that focuses on adults’ knowledge and beliefs regarding the teaching of 

number and geometry concepts during the early years, and ways of supporting adults’ 

interactions with children and mathematics (e.g., Barkai et al., 2022). In this paper, we 

focus specifically on adults’ awareness of geometrical concepts that can be promoted 

in young children and their awareness of situations where young children engage with 

geometrical concepts. 

THEORETICAL BACKGROUND  

Recognizing the importance of supporting children’s geometrical knowledge and 

reasoning, several curricula have set standards for learning geometry in preschool. For 

example, state standards in the United States (National Governors Association Center 

for Best Practices & Council of Chief State School Officers, 2010), suggest that 

kindergarten children identify and describe shapes regardless of their orientation and 

size and to analyse, compare, and compose both two-dimensional (2D) and three-
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dimensional (3D) shapes. In Israel, the mandatory national mathematics preschool 

curriculum (INMPC, 2010) lists specific shapes that preschool children should be able 

to identify, such as triangles, circles, squares, cubes, cylinders, and pyramids. These 

curricula take into consideration that the acquisition of geometrical concepts includes 

both visual and attributional reasoning. Early on, children use visual reasoning, taking 

in the whole shape without considering that the shape is made up of separate com-

ponents (van Hiele & van Hiele, 1958). Children at this level can name shapes and 

distinguish between similar looking shapes. Next, children begin to notice that different 

shapes have different attributes, but the attributes are not perceived as being related. 

Later on, relationships between attributes are perceived and definitions are meaningful. 

Attributes may be critical or not-critical (Tsamir et al., 2008). For a triangle, for 

example, having three straight sides is critical, but the lengths of those sides is not 

critical, nor is the orientation of the triangle.  

Several researchers and educators have recommended various activities that could 

promote children’s geometrical reasoning. Sorting shapes, for example, has been 

suggested by several researchers (Levenson et al., 2011; Clements & Sarama, 2022) as 

a way of helping children differentiate between critical and non-critical attributes of 

shapes. Those researchers also suggested composing pictures from various shapes, and 

composing shapes from other shapes. As children must turn and flip shapes to compose 

their picture, they become familiar with shapes oriented in an a-typical way. With 

regard to 3D figures, Clements and Sarama (2022) recommended building with blocks 

as a way to foster children’s understanding of hierarchical relationships between the 

parts, and fostering their spatial skills. Educators also stress the importance of language 

in helping children express their geometrical reasoning.  

Recognizing that young children spend a significant amount of time at home, several 

studies have investigated parents’ beliefs and attitudes regarding the importance of 

promoting children’s number and geometry knowledge. For example, Missall, et al. 

(2015) found that most parents agree that mathematics should be and can be promoted 

in the years before first grade, while Sonnenschein, et al. (2020) found that most 

parents believe that enhancing early reading skills is more important than promoting 

early mathematics skills. Adults also believe that their involvement and intervention 

with children is important for both numerical and geometrical growth (Levenson et al., 

2021), although significantly less participants agreed that they needed to receive 

guidance to support their involvement.  

While holding positive attitudes is important, it is equally important that parents are 

knowledgeable in the ways of promoting early mathematics. In one study (Cannon & 

Ginsburg, 2008), parents claimed that they lacked knowledge regarding the goals of 

learning mathematics at a young age. Sonnenschein et al. (2020) found that many 

parents wish to receive information from their children’s preschool teachers regarding 

how to support their children’s mathematics, including ideas for carrying out fun 

mathematics activities at home with their children. Focusing on early numerical 

competencies, a recent study (Barkai et al., 2022) found that adults are mostly aware 
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of counting, but are not aware of specific skills such as counting backwards, and skip 

counting. Furthermore, when describing object counting activities with children, few 

adults described the ways objects were set up, or different sub-competencies, such as 

one-to-one correspondence and cardinality. In other words, there was a general 

awareness of numerical activities, but still a lack of knowledge regarding specifics.  

Regarding geometry, curricula and research have pointed out the importance of 

engaging young children with geometrical activities. Yet, studies have shown that 

parents are more likely to engage their children with numerical activities, than with 

geometrical activities (e.g., Zippert et al., 2020). Furthermore, it was found that when 

parents engage their children with block play, they offer little mathematical support, 

especially in comparison to the numerical support given when playing with card games 

(Zippert et al., 2020). When shown a list of geometrical activities and asked to report 

on the frequency of carrying out those activities at home, parents cited naming simple 

shapes and using position words as the most frequent activities (Missal et al., 2015). 

Copying shapes and using shapes to make a picture were among the least frequent. In 

the above studies, parents were given a list of mathematical activities to consider. In 

the current study, we phrased our questions in an open manner, to investigate what 

comes to the mind when parents are requested to think about geometrical concepts that 

can be promoted at a young age, and are asked to describe situations where children 

engage with geometrical concepts. 

The aim of the current study is to investigate parents’ awareness of geometrical 

concepts developed during early childhood. We adopt the following definition: To be 

aware is to have or show “realization, perception, or knowledge” (Merriam-Webster, 

https://www.merriam-webster.com/dictionary/aware). Specifically, we ask: Are adults 

aware of geometrical concepts that can be promoted among young children? Are adults 

aware of situations whereby children raise geometrical ideas on their own or with an 

adult’s intervention, and if so, what are the contexts, activities, and geometrical 

concepts detected in those situations?  

METHOD 

The current study was conducted in Israel with a convenience sample of 52 adults 

(labelled A1-A52), recruited by three researchers from acquaintances in their areas of 

residence (middle to high socio-economic neighbourhoods). Ethical approval was 

given by the Institutional Review Board of the researchers’ university and informed 

written consent to participate in the research was collected from all participants. 

Participants were between the ages of 20 and 40, 94% had an academic degree, and 

none were preschool teachers. All had children between the ages of three and six years. 

A researcher met with each participant personally and handed them the questionnaire. 

The questionnaire consisted of three open questions: 

Q1. In your opinion, which geometrical concepts can be promoted among young 

children (aged 3-6), before they begin first grade? 

https://www.merriam-webster.com/dictionary/aware
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Q2. Describe a situation, in which you observed young children (aged 3-6) raising 

geometrical ideas without adult involvement. 

Q3. Describe a situation, whereby during an interaction between a young child (aged 

3-6) and an adult, geometrical ideas were raised. 

The reason we requested participants to specify situations with and without adult 

interaction was to offer participants two different contexts for recollecting situations 

where children engaged in geometrical activities.  

Data analysis of responses began with directed content analysis of geometrical 

concepts mentioned in the mandatory Israel National Preschool Mathematics 

Curriculum (INMPC, 2010). These concepts included: 2D and 3D shapes, spatial 

orientation, and symmetry. The situations described by parents in response to the 

second and third questions were analysed inductively in terms of the context of the 

situation and the type of activity mentioned by the parent. For example, Nan (all names 

are pseudonyms) wrote, “The children looked at things around them and compared 

them to shapes that they recognized such as triangles and squares.” The context was 

coded as an everyday situation and the activity was coded as comparing shapes. Moran 

wrote, “Children play with magnets and make shapes.” The context was coded as play 

and the activity was coded as composing shapes. Additional examples are given in the 

findings (Tables 2 and 3). Two researchers independently coded all data, comparing 

codes and reaching full agreement.     

RESULTS 

We begin by reporting on geometrical concepts mentioned in response to all three 

questions. All participants responded to the first question by mentioning a least one 

geometrical concept, with some mentioning three concepts. For example, Sherry wrote: 

“triangles, squares, circles, different types of lines.” Thus, Sherry related to 2D figures 

and components of shapes. Table 1 summarizes the geometrical concepts raised by 

adults for each of the three questions, and the number of adults who related to each 

one. As can be seen, nearly all parents mentioned 2D shapes in response to the first 

question. The most frequently mentioned were triangles, circles, and squares with 

frequencies of 69%, 58%, and 58% respectively. Other 2D shapes mentioned (to a 

much lesser extent) were: rectangles, rhombuses, hexagons, trapezoids, ellipses, 

octagons, and parallelograms. 

Recall that for Q2 and Q3, participants were requested to describe situations where 

children, without and then with an adult, raised geometrical concepts. First, note that 

11 adults did not recall situations where children raised geometrical concepts on their 

own, and four did not recall a situation that included an adult and a child interacting 

with geometry (see last row of Table 1).  
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Table 1: Geometrical concepts mentioned in response to the three questions (N=52) 

Geometrical concept Examples / descriptions Q1 Q2 Q3 

2D figures Triangles, squares, circles 50 (96%) 19 (37%) 22 (42%) 

Shapes (non-specific) The term shape was used 

without specifying a 

particular shape. 

- 10 (19%) 13 (25%) 

Shape components Sides, lines, angles 12 (23%) 2 (4%) 2 (4%) 

“Fun” shapes Stars, hearts 7 (13%) - - 

3D figures Pyramids, cubes 4 (8%) 3 (6%) 1 (2%) 

Spatial relationships Behind, near, far 1 (2%) 1 (2%) - 

Other Length, parallelism  9 (17%) - - 

No concepts 

mentioned 

- - 9 (17%) 10 (19%) 

No answer - - 11 (21%) 4 (8%) 

Table 2 summarizes the contexts of the situations described by participants. The most 

frequent context was play, including doll play and building with magnets.  

Table 2: Contexts of situations that involved geometric ideas (N=52) 

Context Example  Without an adult With an adult 

Playing  Playing with playdough. 22 (42%) 24 (46%) 

Everyday 

context 

When we eat, we make all 

kinds of shapes. 

10 (19%) 11 (21%) 

Drawing  I sat with my son, and we 

drew lots of circles. 

6 (12%) 5 (10%) 

Reading  In the book I read to my 

daughter there were all sorts 

of shapes. 

1 (2%) 4 (8%) 

Unclear  2 (4%) 4 (8%) 

No response  11 (21%) 4 (8%) 

In addition, some parents described activities without mentioning a specific 

geometrical concept. For example, Natali wrote: “When eating pretzels with their 

father, the children described the shape of the pretzel.” This was coded as “shapes (non-

specific).” There were also parents who just related to the activity, such as “drawing 

with my child,” without relating to any geometrical concept. It might be that those 

parents were aware that children were engaging with geometry, but took less notice of 

the specific geometrical content.  
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Table 3 describes the frequencies of activities mentioned in parents’ descriptions of 

situations where geometrical concepts were raised, without and then with an adult. In 

general, there was little difference between the contexts (Table 2) and the types of 

activities (Table 3) parents described in both situations. The exception, perhaps, is for 

the activity of discussion, which was only noted in situations where an adult was 

involved. While this might seem reasonable, children do discuss geometrical ideas 

amongst themselves, without an adult present (Gejard & Melander, 2018).  

Table 3: Activities mentioned in situations that involved geometric ideas (N=52) 

Activity  Examples  Without an adult With an adult 

Composing We made an ice-cream cone 

from a triangle, 3 lines, and 

the ice-cream was made from 

circles, touching each other a 

little bit. 

18 (35%) 14 (27%) 

Identifying The children looked at a clock 

and said it was a circle. 

12 (23%) 13 (25%) 

Comparing The children looked around 

them and compared what they 

saw to shapes, like a triangle 

and a square. 

3 (6%) 2 (4%) 

Drawing We draw together in the 

afternoon. 

2 (4%) 6 (12%) 

Discussing My son pointed to an octagon 

and said 8 doesn’t have a 

name. We discussed this. 

- 6 (12%) 

Bodily 

movement 

Using their bodies. 1 (2%) - 

Unclear  5 (10%) 7 (13%) 

No response  11 (21%) 4 (8%) 

Looking further into situations described with adult involvement, we examined 

whether parents took a teaching stance or merely participated with the child’s activity. 

For example, Sarah took a teaching stance and responded to Q3, “When we passed by 

a stop sign, I asked my daughter what shape it is and she answered a hexagon.” Shawn, 

however, described a more indeterminate role, “We played a matching game with 

shapes.” Approximately one-third of the parents took a teaching role, with the rest 

taking a more indeterminate role. 

DISCUSSION  

Our first aim was to investigate parents’ awareness of geometrical concepts that can be 

promoted among young children. Responses to all three questions of the questionnaire 
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indicated that parents mostly mentioned 2D shapes. While many children play with 3D 

figures, such as blocks, parents hardly mentioned 3D shapes in their responses, nor the 

spatial relationships that can be learned when playing with blocks (Clements & 

Sarama, 2022). Considering that many young children call a cube a square (Nieuwoudt 

& van Niekerk, 1997), activities such as playing with blocks or making figures out of 

playdough, could offer opportunities for parents to discuss with children the difference 

between 2D and 3D shapes. Recall that in response to the second and third questions, 

some parents did not describe a specific geometrical concept. This might also indicate 

less of an awareness to the geometry involved in an activity. 

Regarding contexts, the second research question investigated adults’ awareness of 

situations whereby children raise geometrical concepts. The most prevalent context 

mentioned was playing, while only approximately 20% related to everyday contexts, 

such as walking around the neighbourhood, and setting the table. This is in line with 

Cannon and Ginsburg (2008) who found that in everyday contexts, parents helped their 

children learn language more than mathematics. Yet, everyday contexts are also 

opportunities for enriching children’s geometrical knowledge, opportunities that may 

be missed if adults are unaware of them.  

The activities mentioned in participants’ descriptions varied, but like adults’ 

descriptions of numerical activities (Barkai et al., 2022), they were lacking in detail of 

what exactly was being done. In the future, interviews might be conducted to learn 

more about the details of those activities. Still, the most frequently noted activity was 

composition, an activity supported by several researchers (Clements & Sarama, 2022). 

However, few participants specifically mentioned discussion as part of the activity. 

This is critical. Comparing shapes can lead children to notice and differentiate between 

critical and non-critical attributes (Tsamir et al., 2008), but without appropriate 

discussion, comparison may remain at the level of whole shape reasoning (van Hiele 

& van Hiele, 1958).  

To conclude, parents are interested in fostering children’s mathematical knowledge, 

but, as this study suggests, may not be aware of the variety of geometrical concepts 

that can be developed at this age, or the range of contexts and activities that may 

support geometrical development. Workshops for parents could raise parents’ 

awareness to additional geometrical concepts other than 2D shapes, and suggest more 

ways and activities for fostering geometry, both with adult intervention and without.  
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In this paper we analyze the developing discourse of high school students on the 

relations between two algebraic expressions. Using a commognitive perspective, we 

show in fine-grained detail how dynamic interactive mediators (DIMs) can help 

students with a history of low achievement find protagonists for their stories, fostering 

a first important step in the construction of an algebraic discourse. 

INTRODUCTION AND THEORETICAL BACKGROUND 

A great deal of research has documented students’ difficulties in solving equations and 

inequalities, and in giving meaning to algebraic symbols, unknown and variables (e.g., 

Kieran, 2022). Common difficulties are related to a procedural view of the equal sign 

and to the transition to the letter-symbolic form of equations (Carpenter et al., 2005; 

Radford, 2022). Based on this scenario, this study investigates the effects of a 

didactical approach for introducing students to equations and inequalities that is based 

on the presentation of multiple artifacts. These are designed for representing the 

relationships between two expressions depending on the same variable. We used the 

software GeoGebra to represent expressions as moving arrows and as weights of a 

balance (see the next section). We investigate the effects of such an approach taking a 

commognitive perspective (Sfard, 2008) and analyzing students’ discourse about the 

proposed dynamic interactive mediators (DIMs) (Antonini et al., 2020). Indeed, recent 

studies showed how learning to talk about well-designed DIMs can provide students 

with effective entry points into mathematical discourse (Baccaglini-Frank, 2021). 

In line with the commognitive lens, we embrace the idea that algebra is a discourse 

(Caspi & Sfard, 2012) and, as such, it is characterized by its specific words, visual 

mediators, narratives and routines (Sfard, 2008). Learning algebra can be then 

described as the process of becoming able to access and express such a discourse. The 

framework provides many tools to capture and describe this process in a fine-grained 

way. We now present some of them and their use in our specific case of interest. 

In this paper we investigate whether and how students accomplish a saming process 

between the two proposed DIMs, that we will call DIMA (the one with the arrows) and 

DIMB (the one with the balance), for short. Indeed, as expert mathematicians we are 

able to account for the fact that utterances about the reciprocal movements of two 

arrows realizing, for instance, 2x+1 and x+5, and corresponding utterances about the 

behavior of a balance with weights 2x+1 and x+5 seem to be saying “the same thing”. 

According to Sfard (2008), we rationalize the “sameness” by conjuring abstract objects 

and speaking about arrows and balance as realizations of the same relation between 

the two expressions. It follows that the equation 2x+1=x+5 can be described as either 
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a concrete object (e.g., a balanced off balance) or as a signifier of an abstract object. 

Until this equation has no realizations for a student, it is just a concrete object and can 

only be manipulated in well-defined ways. When a student begins to speak of abstract 

objects and their properties, the discourse has become objectified. The development of 

this form of discourse gives us information about the students’ learning process. In 

particular, the special property of the objectified discourse is that it subsumes the 

former independently existing discourses, in our case about DIMA and DIMB, making 

it possible to express in the new language almost everything that can be said in any of 

the original discourses with their own special signifiers (Sfard, 2008). 

Description of the DIM designed for this study 

For this study we designed a DIM realizing the relation between two expressions 

depending on the same variable, that we call DIM(A,B) because it embeds DIMA and 

DIMB (Fig.1). On the left part it shows a balance, with the plates described by algebraic 

expressions, dependent on the unknown weight x and written in a blue and a grey box. 

A label shows the relation between the plates: when their weight is equal, it is green; 

otherwise, it is yellow. On the right part there are three arrows moving like a dynagraph 

(Antonini et al., 2020). There are a red tick mark, realizing x, that is directly draggable 

bound to the positive x-axis, and a blue and a grey tick mark, realizing the two 

expressions depending on x, that move indirectly. These two tick marks correspond to 

the two plates of the balance, that also change simultaneously, with the dragging of x.  

    

   Figure 1: Two screenshots of the DIM(A,B) with the expressions ‘12’ and ‘2x’. 

We designed this DIM with the aim of promoting the process of saming between DIMA 

and DIMB. The hypothesis is that the interaction with DIM(A,B) can foster the emergence 

of new discourses that may lead to the birth of a subsuming discourse. We hypothesized 

this could happen once students had interacted separately with DIMA and DIMB and 

constructed an “A-discourse” and a “B-discourse”. These are discourses involving the 

DIMs; their main features are reported in Table 1. In line with the discussion in the 

previous section, we thought that a possible discourse subsuming A- and B- discourses 

could involve algebraic symbols (see the fourth column of Table 1). Hence, in the 

DIM(A,B) we introduced labels with algebraic expressions. The protagonists of this S-

discourse are objectified equations and inequalities, while the balance and dynagraph 

become possible realizations. In our previous examples with the two expressions, the 

narratives “the balance hangs to the left” in the B-discourse and “the blue arrow is to 

the right of the grey one” in the A-discourse find a counterpart in the S-discourse with 

“2x+1>x+5”.  
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Table 1: Features of discourses about DIMA, DIMB and of a possible subsuming. 

 A-discourse B-discourse S-discourse 

Words Tick mark, arrow, drag, 

right/left 

Balance, weight, plate, 

up/down 

Expression, equal, 

bigger/lower 

Visual 

Mediators 

Red, blue, and grey 

tick mark, ax+b and 

cx+d labels, gestures 

on DIMA 

Red, blue, and grey 

boxes, ax+b and cx+d 

labels, gestures on 

DIMB 

ax+b and cx+d 

Narratives “If the red tick mark is 

at 2, the other tick 

marks are aligned” 

“If the unknown weight 

is 2, the balance is 

balanced off” 

If x=2 then ax+b=cx+d 

Routines Drag to the right/left Put on/take off Algebraic manipulation 

Research questions 

This study is part of a greater funded research project exploring the impact of teaching 

interventions with second year high school students with a history of low achievement 

in mathematics who are asked to engage in a set of newly designed activities with DIMs 

in the context of algebra. In this paper, we focus on students' discourse about the 

relations between two expressions of the same variable. We conjecture that DIMs can 

play a key in students’ development of this discourse, by supporting the construction 

of abstract objects that may become the protagonists of the subsuming discourse. To 

investigate such a conjecture we designed the three DIMs above and in this study asked 

the following specific research questions: What characteristics (words, visual 

mediators, narratives and routines) of the discourses about DIMA and DIMB does the 

discourse developed by students in their interaction with the DIM(A,B) have? To what 

extent does this new emerging discourse subsume the former ones? 

METHOD 

Data collection occurred in an out-of-school learning center with twelve 10th grade low 

achieving students volunteering from three different Italian high schools. Participants 

attended four 2-hour-long sessions, during which DIMs-based activities were proposed 

by a researcher. Data were collected in the form of video recordings, students’ written 

productions, and screen recordings of the tablets used for the activities. 

This paper focuses on two pairs of students engaged in activities with DIM(A,B), during 

the 4th session. They are given explorative tasks aimed at fostering a discourse 

subsuming the previously constructed A- and B- discourses and the researcher’s 

questions seek to promote saming between DIMA and DIMB. We analyzed data 

focusing on three features that we operationalized through guiding questions and 

communicational indicators. We looked for such indicators to be identified in the 

transcripts and coded them with the typographic marks shown in Table 2. 
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Table 2: Analytic scheme. 

Feature Guiding questions Examples of indicators 

Type of 

discourse 

Does it have the characteristics of A-

, B- or S- discourse? 

See the description of A-

discourse, B-discourse and S-

discourse in Table 1 

Presence 

of abstract 

objects 

Are there references to an expression 

as signifier of an abstract object? 

“x+1 is bigger than”, “x+1 

equals”, … 

Instances 

of saming 

Are DIMA and DIMB described as 

realizations of the same signifier? 

“is the same”, “is equal”, 

“they make the same”, … 

DATA ANALYSIS 

We tell the story of Andrea (A) and Hugo (H) through the analysis of selected short 

episodes. Then, we present some episodes of Grazia (G) and Lucia (L) interacting with 

the same DIMs, for discussing similarities and differences in their emerging discourses. 

Andrea and Hugo  

When Andrea and Hugo first saw the DIM(A,B) in which the expressions 12 and 2x were 

defined (Fig. 1), they observed the presence of a “balance that is balanced off” and 

before interacting with it, they discussed with the researcher (R) as follows: 

1 H:  The two plates are both at the same level 

2 R: Ok, both the plates are at the same level and what is there on the plates? 

3 H:  Twelve and two x 

4 R:  Mm and why are they at the same level? 

5 H: Because they both have, we can say, the same weight 

6 A:  Value? The same value, let’s say  

7 H:  Because it also tells us that x equals six [He points at the red label x=6] so 
two x equals twelve  

8 R:  Ok, perfect and instead on this side [She points at DIMA]? 

9 H:  It indicates it with the tick marks [He does not make gestures] 

Through a B-discourse, Andrea and Hugo describe the equality between the two 

expressions for x=6. We highlight the first occurrence of the word “value” (turn 6) that 

can be seen as a seed of subsuming discourse, because it may refer to the “value of the 

expression”; however, it is used again by Andrea referring to DIMB as the “value of 

the weights”. At turn 3, ‘12’ and ‘2x’ are the objects of Hugo’s discourse, to which he 

seems to refer not yet as abstract, but as concrete objects. Differently, at turn 7, ‘2x’ is 

used without explicit references to the DIMs. The last sentence expressed by Hugo 

(turn 9) suggests a partial instance of saming. Indeed, an asymmetric relation emerges 

between the DIMs: the tick marks indicate what happens on the balance but not vice 
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versa. The student said that the tick marks indicate “it” referring to what has just been 

said for the balance, but what “it” means is missing.  

The researcher then asked the students describe what happens when dragging x in 

DIM(A,B). While Andrea was dragging Hugo stated: 

10 H:  It depends on the value of how much the red tick mark is [He simulates with 
the finger the movement of the red tick mark on the axis], because if it goes 
to the right the balance tends to, tends to hang... to the right, while if it is a 
number smaller than six, the balance tends to hang to the left 

This excerpt is characterized again by B-discourse, since it mainly concerns the 

behavior of the balance. However, there are also some A-discourse narratives and a 

seed of S-discourse in the utterance “if it is a number smaller than six” since it can refer 

to both DIMs because the subject is not made explicit by Hugo. There is another 

occurrence of the word “value”, used as before but this time referring to a tick mark. 

Therefore, “value” could constitute a word in these students’ emerging S-discourse. 

However, as evidenced by their writing at the end of the episode (Fig. 2a), the relations 

between the quantities are uniquely expressed in terms of balance’s swing, confirming 

the B-discourse to be the prevailing one so far. 

In the next activity, two new expressions were defined in DIM(A,B): x+5 and 2x+1, and 

students’ exploration took place, prompted as before. When asked to summarize what 

they observed, Andrea and Hugo again produced a B-discourse to describe the 

relationships between the two expressions (e.g., “if x equals four...the plates have the 

same weight. Then, instead, if x is greater than four it tends to dangle to the right”). 

This summary is accompanied by an inscription that is very similar to that of the 

previous episode. But “the scale is even” is replaced by “they have the same value” 

(Fig. 2). This difference suggests the students’ development of an S-discourse because 

in their narrative about the equality they lost the reference to the balance model by 

using the term “value”, which had previously been used within both A- and B-

discourses. The same expression could indeed refer to the position of the tick marks.  

 

Figure 2: Andrea and Hugo’s written production for the activity on the DIM(A,B) with 

the expressions (a) ‘12’ and ‘2x’, (b) ‘2x+1’ and ‘x+5’. 

In another similar activity, involving the expressions 2x+4 and 3x, Hugo related DIMA 

and DIMB by observing that the behavior of the balance depends on that of the arrows 

(“The balance tends to dangle to the left ... because the blue tick let's say has a greater 

value than the grey one”). Then, about the equality, Hugo stated: 

11 H:  All the lines are on the same number, they have the same value. 
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12 R:  Ok, right. And the balance?  

13 H:  Let’s say, it always gives the same value. 

The researcher’s intervention promoted Hugo’s move from an A-discourse (turn 11) to 

a B-discourse (turn 13). He used “the same value” both referring to the tick marks on 

the same number and to the balance plates weighing the same. This suggests the 

emergence of an S-discourse and a process of saming between the DIMs. 

We conclude the overview of Andrea and Hugo's story with a short episode, following 

the previous one, in which an interweaving of A-discourse and S-discourse appeared. 

14 H:  If the tick mark, if we want the blue tick mark greater than the grey one… 
The number, the x has to be smaller than four, while if we want that three x 
that the grey tick mark is greater it has to be a number greater than four  

15 A:  When it is at four 

16 H:  When it is at four the value is equal 

The episode begins with an A-discourse in which Hugo mentions the tick being 

“greater” (turn 14), probably referring to the value taken on. Interwoven with this 

discourse, however, there are endorsed narratives both in A- and B- discourses. The A-

discourse reappears in the next turns when they said “is at four” instead of “is four” 

suggesting the focus to be on the position of the red tick. This is accompanied, again, 

by the subsuming narrative involving “the value”. Moreover, we observe that in this 

episode for the first time there are possible instances of abstract objects (turn 14). For 

example, when Hugo used “grey tick mark” as a noun for the object “three x”.  

Grazia and Lucia 

In the first activity, after an initial exploration without having yet dragged the tick 

realizing x, Lucia described DIM(A,B) involving the expressions 12 and 2x as follows: 

1  L: Like the first 12 of the balance is indicated as, as it is the double of this x 
[She does not make gestures], and the same thing for the grey tick mark… 
So they correspond, that is, it is the representation of the balanced off 
balance made on the line 

Lucia initially produced a B-discourse which is then followed by an A-discourse 

introduced by the expression “the same thing”. The student seems to make explicit a 

saming between the two visual mediators, as also highlighted immediately afterwards 

by her narrative “it is the representation of the balanced off balance made on the line”.  

Now we share a short excerpt from the next activity, involving the expressions x+5 and 

2x+1, in which we find another instance of saming in Lucia’s discourse: 

2  L: That is, you also notice that the tick marks are not aligned anymore, as 
before, because the balance is not balanced off anymore, but they indicate 
exactly two different values, so the balance is not, is not in balanced off 
anymore  

Lucia, by mixing A- and B-discourse, refers to a cause-and-effect relationship between 

the two DIMs, which bound in both directions: “the tick marks (...) because the balance 

(...)” and then “[the ticks] indicate (...) so the balance (...)”. This highlights how DIMA 
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and DIMB played a mutual role in Lucia’s discourse, being both signifier and 

realization one for the other. 

Shortly after this excerpt, the description of the behavior of the balance occurred with 

an interweaving of S-discourse and B-discourse, in which the former was more present: 

3  L: If x would have been smaller than 4 ehm we expect the opposite situation, 
so that 2x plus one is, we say, it corresponds to a value smaller than x plus 
5… And instead the balance will be balanced off when x will be four. 

The reference to the DIMB appears only at the end of the turn. Except for this, the one 

produced by Lucia is a S-discourse, since it is an endorsed narrative to describe in the 

same terms the situation that both balance and arrows realize.  

We conclude by showing what Grazia and Lucia wrote to summarize their observations 

about the two pairs of expressions explored in the activities in focus (Fig. 3a-b). Note 

how this written discourse, unlike Andrea and Hugo’s, completely subsumes the A- 

and B-discourses constructed during the activities with the DIM(A,B). 

 
Figure 3: Grazia and Lucia’s written production for the activity on the DIM(A,B) with 

the expressions (a) ‘12’ and ‘2x’, (b) ‘2x+1’ and ‘x+5’. 

DISCUSSION AND CONCLUSIONS 

The analyses presented above confirm that DIMs can foster low achieving students’ 

participation in mathematical discourse. More specifically, activities with multiple 

DIMs, designed to be realizations of the same algebraic signifier, can promote the 

development of algebraic discourse as a form of subsuming discourse. The DIM we 

designed, embedding a balance (Otten et al., 2019) and a dynagraph (Antonini et al., 

2020) as realizations of the relations between two algebraic expressions, accomplishes 

this by creating the need for a common discourse. However, significant differences 

between the two pairs of students’ discourse emerge. On one hand, Grazia and Lucia 

accomplish saming between DIMA and DIMB, having at their disposal the ingredients 

for constructing a S-discourse: algebraic expressions, and their relations, as abstract 

objects of which the two DIMs are realizations. Andrea and Hugo, on the other hand, 

do not seem to develop this degree of objectification and this results in a lack of 

protagonists of a possible S-discourse. We see a partially successful attempt to 

construct a protagonist in their use of the term “value” bridging A- and B-discourses. 

Even if it is only a first step of the process, this is a success for them, considering the 

difficulties shown in the previous sessions. A longer intervention might have made a 

difference, but nevertheless there is a seed of subsuming discourse. 

We now discuss limitations and aspects not a priori expected. We thought that fostering 

saming between DIMA and DIMB, through activities asking to speak in different ways 
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and to look for similarities between the DIMs, could support the construction of a S-

discourse. However, we observed how the processes of saming and the process of 

constructing an S-discourse are closely intertwined, generating a kind of paradox that 

may be explained in discursive terms as follows: saming needs a subsuming discourse 

with which to talk about “the same thing” that the two DIMs realize, but, at the same 

time, the protagonists of subsuming discourses are the products of a saming process. 

The story of Andrea and Hugo shows how this circularity can be overcome through the 

use, within the same discourse, of words, visual mediators, narratives, or routines from 

different discourses; in their case, for example, the word “value”. 

In conclusion, in this paper we told the stories of two pairs of students, providing 

insights for both research and didactic reflections. Especially, the story of Andrea and 

Hugo can contribute to the literature on difficulties in working with the letter-symbolic 

form of equations and inequalities (e.g., Carpenter et al., 2005; Kieran, 2022). It also 

confirms the importance of designing didactical approaches aimed at fostering 

students’ learning to talk about multiple DIMs realizing the same object, because they 

can open new doors into mathematical discourse for students like Andrea and Hugo. 
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Based on process-object theories, knowledge about mathematical concepts can be 

viewed as having an operational and a structural aspect. Ideally, structural knowledge 

should build on operational knowledge. However, some students are not able to 

acquire enough operational knowledge and only acquire a pseudostructural 

conception of a mathematical concept (see Sfard, 1992). In this study with 144 grade 

10 students from Germany we examine the effects of different areas of prior knowledge 

on the acquisition of knowledge about the concept of derivative. We found evidence 

that substantial knowledge about the concept of function, the concept of slopes of linear 

functions, and mathematical symbols is necessary to acquire mathematical knowledge 

about the concept of derivative that goes beyond a pseudostructural conception. 

THEORETICAL BACKGROUND 

When considering the mental structure of mathematical knowledge, there are multiple 

theories differentiating between an operational (or process) and a structural (or object) 

aspect of knowledge about a mathematical concept. These theories include, for 

example, the APOS (action-process-object-schema) theory (Dubinsky, 1991) and the 

process-object framework by Sfard (1991, 1992). The common core of these process-

object frameworks is the idea that knowledge about a mathematical concept has an 

operational and a structural aspect, and a person should ideally acquire knowledge 

about both to understand said mathematical concept fully. The ideal-typical acquisition 

of mathematical knowledge would entail that a person first acquires knowledge about 

the operational aspect of a mathematical concept before proceeding to mentally form 

a new mathematical object that is structural in nature. Sfard (1991) calls this emergence 

of a new mental mathematical object reification. Once a person has acquired structural 

knowledge about a mathematical concept, it enables them to perform new processes 

with this mathematical object. This, in turn, can lead to operational knowledge about a 

new mathematical concept, eventually resulting in a new mathematical object.  

The common core of the process-object frameworks can, thus, be summarized into a 

hierarchy where the acquisition of operational knowledge about a mathematical 

concept precedes the acquisition of structural knowledge about the same mathematical 

concept. Furthermore, knowledge about one mathematical concept functions as a 

prerequisite for knowledge about a new mathematical concept.  

Sfard (1992) adds the idea of pseudostructural knowledge to this knowledge hierarchy. 

She proposes that many students are not able to fully integrate the operational and 
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structural aspects of a mathematical concept. Instead, students often have some 

understanding of a mathematical object without fully comprehending the underlying 

process that leads to the formation of this object. Zandieh (2000) characterizes the 

resulting pseudostructural conception as “an object with no internal structure” (p. 107) 

or a “whole without parts” (p. 108). Pseudostructural knowledge provides limited 

opportunities to operate with a mathematical object but enables students – without 

comprehensive knowledge about a certain mathematical concept – to acquire some 

(perhaps limited) knowledge about further concepts. 

In the present study, we investigate mathematical knowledge about the concept of 

derivative according to the process-object frameworks. The concept of derivative is 

typically introduced along three mathematical concepts that build on each other and 

can each be seen as operational and structural in nature (e.g., Zandieh, 2000): 

difference quotient, differential quotient, and derivative function.  

Therefore, Figure 1 summarizes the proposed model for acquiring knowledge about 

the concept of derivative according to the process-object frameworks, including 

Sfard’s (1992) idea of pseudostructural knowledge. 

 

Figure 1: Model for the acquisition of knowledge about the concept of derivative 

Understanding the concept of derivative: relevant prior knowledge 

Previous studies have shown that students tend to have considerable trouble with 

understanding the concept of derivative, while solely algebraic differentiation (e.g., 

derivation formula) seems to be substantially easier (e.g., Orhun, 2013; Orton, 1983). 

A possible cause of this might be that the concept of derivative builds on many 

elements of prior knowledge as proposed by the aforementioned knowledge hierarchy. 

Following previous research (e.g., Carlson et al., 2015; Thompson & Harel, 2021), we 

identified six areas of mathematical knowledge that could be considered relevant for 

acquiring knowledge about derivatives: functions, slopes of linear functions, limits and 

approximations, manipulation of fractions, algebraic manipulations and equations, and 

basic knowledge of mathematical symbols. In line with the aforementioned process-

object frameworks, there may be operational as well as structural aspects of knowledge 

about functions, slopes of linear functions, and limits and approximations. For the 

concept of function specifically, the aspects of knowledge about functions, i.e., 

mapping, covariation, and function as an object, can be seen as a progression from 
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operational to structural knowledge (Doorman et al., 2012). For knowledge of slopes 

of linear functions, an operational perspective is characterized by the use of a gradient 

triangle, while the structural aspect requires seeing the slope as a whole and, for 

example, comparing the slopes of different linear functions without having to calculate 

them specifically. Similarly, knowledge of limits and approximations may also be 

viewed as operational (dynamic) and structural (static) in nature (see Maharaj, 2010 

for a more detailed analysis). 

The next two areas of prior knowledge, fractions and algebraic manipulations/ 

equations, relate to students’ technical abilities to perform calculations with fractions 

(adding, subtracting, multiplying and dividing fractions that may include variables), 

manipulate algebraic expressions (including, e.g., binomial formulas), and transpose 

equations. The last area of prior knowledge is mathematical symbols, which includes 

the basic comprehension of mathematical symbols and terminology, such as intervals, 

sets, and different number ranges. 

Research questions 

Content from all six areas of prior knowledge could be relevant for learning the three 

sub-concepts of derivative (difference quotient, differential quotient, derivative 

function) (Carlson et al., 2015; Orton, 1983; Thompson & Harel, 2021). In our study, 

we explore whether this prior knowledge can predict the successful acquisition of 

knowledge about the concept of derivative beyond pseudostructural knowledge. 

Using a dedicated study, we aim at investigating the following research questions: 

1. To what extent does students’ prior knowledge in the aforementioned areas of prior 

knowledge predict the acquisition of knowledge about the concept of derivative? 

2. To what extent does students’ prior knowledge predict the acquisition of operational 

knowledge about the concept of derivative (as an indicator of whether students have 

acquired more than pseudostructural knowledge about the concept of derivative)? 

 

METHOD 

We developed two tests, in order to measure students’ knowledge in the six areas of 

prior mathematical knowledge and about the operational and structural aspects of 

knowledge about the concept of derivative.  

The prior knowledge test was broken up into six subtests each containing items on one 

area of prior knowledge. Each participant received the six subtests in the same order, 

however there were different versions of each subtest presenting the items in a different 

order. Each subtest was administered with a separate time limit (5 or 10 minutes). The 

knowledge about derivatives test contained items measuring operational as well as 

structural aspects of knowledge regarding each of the three sub-concepts difference 

quotient, differential quotient, and derivative function. 
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Both tests were administered within 45-minute regular mathematics lessons for the 

tenth grade in schools in Northern Germany. The data analysis in this research report 

is based on data of N = 144 students (data collection is ongoing). Students received the 

prior knowledge test before the teachers started the teaching unit on derivatives. 

Subsequently, teachers designed the lessons on the concept of derivate at their 

discretion, all teachers followed the same curriculum. After the conclusion of the 

teaching unit, the knowledge about derivatives test was administered. 

Students’ knowledge regarding each of the areas of prior knowledge and knowledge 

about the concept of derivative as a whole (operational and structural aspects included) 

was measured using a percentage to the available points for each scale. Students’ 

knowledge about the operational aspect of the concept of derivative was measured by 

using the corresponding items from the knowledge about derivatives test. This subtest 

indicates whether students have acquired knowledge about the concept of derivative 

that goes beyond a pseudostructural conception. Due to low reliabilities (Cronbach’s α) 

in two prior knowledge subtests, the subtests on fractions and algebraic 

expressions/equations were combined to a scale representing technical skills and the 

items from the limits and approximations scale were reassigned to one of the other 

scales that fitted the content of each item best. Consequently, all analyses presented in 

this report are based on four areas of prior knowledge (see Tab. 1). 

Multilinear regressions were estimated assessing the predictivity of the four areas of 

prior knowledge on knowledge about the concept of derivative as a whole and about 

the operational knowledge about derivatives separately. Subsequently, a cluster 

analysis was conducted based on the results of the prior knowledge test, grouping 

students based on their knowledge in the four areas of prior knowledge. For each of 

the resulting clusters of students, means for the knowledge about derivatives test and 

its operational subtest were calculated. The results should give an idea which area and 

which level of prior knowledge is necessary for the acquisition of knowledge about 

derivatives and especially operational knowledge about the concept of derivative 

which goes beyond pseudostructural knowledge. 

 

RESULTS 

Table 1 shows descriptive data for the administered scales. All scales except one 

showed an acceptable reliability. The scale for operational knowledge about the 

concept of derivative showed an almost acceptable reliability (α = .59). The mean 

values revealed that all tests were quite difficult for the students, although the tests 

addressed standard curriculum content (see below for limitations of the study). 

Scale (#items) Sample item α M (SD) 

Functions (16) 
Let 𝑓(𝑥)  =  2𝑥 + 1. Calculate        

𝑓(𝑥 + 1). 
.62 .34 (.16) 
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Slopes of linear 

functions (12) 

Indicate the slope of the function  

𝑔(𝑥)  =  −𝑥 +  2. 
.64 .33 (.19) 

Technical skills 

(fractions, algebraic 

expressions, equations) 

(23) 

Simplify as much as possible:  

2(𝑥 +  𝑥2) –  4𝑥 –  5𝑥2 +  𝑥 –  5𝑥2  = 
.71 .31 (.14) 

Mathematical symbols 

(12) 

Give a number 𝑥 for which holds: 

𝑥 ∈ ℝ and 𝑥 ∈ ℤ but 𝑥 ∉ ℕ. 
.77 .30 (.23) 

Knowledge derivative 

(16) 

Let 𝑓 be a function with 𝑓(𝑥) =  
1

3
𝑥2. 

At what point 𝑃 is the tangent to the 

graph of 𝑓 parallel to the straight line 𝑔 

with 𝑔(𝑥)  =  2𝑥 +  5? 

.69 .25 (.16) 

Operational 

knowledge derivative 

(9) 

Draw the graph of a function 𝑓 with the 

following three properties: slope 0.5 at 

(0,0), slope 1 at (2,3), slope 0 at (5,1) 

.59 .17 (.17) 

Table 1: Descriptive statistics and sample items for the administered scales 

The results of the multilinear regressions reveal a significant effect of prior knowledge 

about functions, slopes of linear functions, and mathematical symbols on knowledge 

about the concept of derivative (Tab. 2). Isolating the operational aspect of knowledge 

about the concept of derivative, only prior knowledge about functions had an effect. 

Predictor Knowledge derivative 
Operational knowledge 

derivative 

(Intercept) .02 -.04 

Functions .35*** .32*** 

Slopes of linear functions .21** .15# 

Technical skills (fractions, alg. 

expressions, equations) 
.01 .08 

Mathematical symbols .12* .11# 

R2 .36 .27 

# p < .10; * p < .05; ** p < .01; *** p < .001 

Table 2: Regression coefficients β and statistical significance 

The cluster analysis on the basis of the prior knowledge subtests revealed four clusters 

of students as the best solution (based on the dendrogram). Table 3 (top part) shows 

the mean scores on each of the prior knowledge scales for each of the four clusters of 
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students. It can be observed that, on average, students in Cluster 1 generally performed 

the best and students in cluster 4 performed the worst on the prior knowledge subtests. 

Scale 
Cluster 1 

(n = 24) 

Cluster 2 

(n = 30) 

Cluster 3 

(n = 29) 

Cluster 4 

(n = 61) 

Functions .56 (.10) .37 (.12) .30 (.14) .25 (.11) 

Slopes of linear functions .58 (.18) .35 (.13) .35 (.10) .21 (.14) 

Technical skills (fractions, alg. 

expressions, equations) 
.48 (.11) .39 (.07) .35 (.08) .18 (.08) 

Mathematical symbols .45 (.28) .54 (.13) .12 (.10) .22 (.15) 

Knowledge derivative .44 (.19) .27 (.13) .17 (.09) .20 (.15) 

Operational knowledge derivative .37 (.19) .19 (.14) .09 (.10) .13 (.14) 

Table 3: Means (SD) for prior knowledge as well as on knowledge on derivative and 

the subtest operational knowledge on derivative for each cluster 

Since the formation of the four clusters of students was solely based on students’ prior 

knowledge, it was of interest how well students in each of these clusters performed on 

the two scales from the knowledge about derivatives test (Tab. 3 bottom part). The 

pairwise comparison of the mean scores of the four clusters partly revealed significant 

differences (see Tab. 4 for the most interesting comparisons). Since we had small 

cluster sizes, we additionally provide effect sizes (Cohen’s d).   

Scale C1 vs. C2 C2 vs. C3 C2 vs. C4 C3 vs. C4 

Knowledge derivative 1.08*** 0.58* 0.40# 0.18 

Operational knowledge derivate 1.04*** 0.58* 0.34 0.24 

# p < .10; * p < .05; *** p < .001 

Table 4: Cohen's |d| for differences of cluster means for the outcome variables 

 

DISCUSSION 

The regression results show that knowledge about functions and slopes of linear 

functions as well as basic knowledge about mathematical symbols predict how much 

knowledge about the concept of derivative is acquired. As for operational knowledge, 

knowledge about functions occurs as a significant predictor, while knowledge about 

slopes of linear functions and basic knowledge about mathematical symbols show a 

tendency towards statistical significance. Students’ technical skills to manipulate 

fractions, algebraic expression, and equations do not have a significant impact on the 

outcome scales. These results, which are also reflected in the cluster means in Table 3, 

emphasize and confirm the importance of specific prior knowledge about functions and 

slopes of linear functions in acquiring knowledge about the concept of derivative 

(Carlson et al., 2015; Orton, 1983; Thompson & Harel, 2021). 
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The effect sizes of the mean differences for the four clusters of students in Table 4 

indicate a considerable contrast between Cluster 1 and the three remaining clusters with 

effect sizes of |d| > 1. The students in Cluster 1, who on average performed the best on 

the prior knowledge test, were able to achieve, on average, by far the best results on 

both scales from the knowledge about derivatives test. Notably, students in Cluster 1 

(n = 24, 17 % of all students) are the only ones to achieve a level of operational 

knowledge about the concept of derivative that goes beyond pseudostructural 

knowledge (last row in Tab. 3). Following the ideas of Sfard (1992) and Zandieh 

(2000), this is the only group of students that we can consider having sufficiently 

integrated operational and structural aspects of knowledge about the concept of 

derivative. Consequently, all remaining students in Clusters 2-4 (n = 120, 83 % of all 

students) mainly have acquired pseudostructural knowledge about the concept of 

derivative. When looking back at the results from the prior knowledge subtests (top 

part of Tab. 3), it is evident that the average scores of students in Cluster 1 for functions 

and slopes of linear functions are far above the average scores for all students (more 

than one SD above average). The differences between the four clusters in the prior 

knowledge subtests suggest that substantial knowledge about functions and slopes of 

linear functions is a necessary precondition for the acquisition of operational 

knowledge about the concept of derivative. Students from Cluster 1 scored 56% and 

58% on these subtests, respectively, while the 37% and 35% of students in Cluster 2 

were not sufficient to overcome the level of pseudostructural knowledge. 

Limitations 

Overall, students’ scores on all the administered scales were lower than expected, 

however, our results are generally in line with previous research in that students’ 

performance is low when measuring knowledge about the concept of derivative 

(e.g., Orhun, 2013; Orton 1983). It can reasonably be assumed that the main cause for 

the low prior knowledge are the lasting effects of the Covid pandemic. Nevertheless, 

we believe that this will have little effect on the findings regarding our research 

questions since we are interested in the effects of prior knowledge on knowledge about 

the concept of derivative. Another limitation is the low reliability of some scales which 

might influence the precision of the detected relations. Since the data collection will 

be continued, a larger sample might improve the reliability in the final analysis. 

CONCLUSION 

To summarize, our results indicate that knowledge about the concepts of function and 

slopes of linear functions as well as knowledge about mathematical symbols predict 

the acquisition of knowledge about the concept of derivative. Students’ technical skills 

to manipulate fractions, algebraic expressions, and equations seem to have no specific 

and additional impact.  Further, our findings suggest that in order to acquire knowledge 

about derivatives that goes beyond a pseudostructural conception, students specifically 

need substantial prior knowledge about functions and slopes of linear functions. 

Therefore, students’ level of knowledge about the concepts of function and slopes of 
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linear functions might predict whether students can only acquire pseudostructural 

knowledge or a more comprehensive understanding of the concept of derivative. 
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The transition from secondary to tertiary mathematics is recognised as being 

disruptive. Yet, international students enrolling at universities in a foreign social 

context face different challenges from those of local students, particularly when a 

change in the language of instruction occurs. Understanding these challenges is 

important if universities are to support international students in transition. In this study 

we focus on an international student from China to illustrate how her mathematical 

identity was shaped by both university structures and her personal experiences of 

school mathematics in another social context. In particular we demonstrate how her 

past experiences contributed to the resilience that facilitated a successful transition. 

INTRODUCTION 

Mathematics is a popular choice for international students attending universities 

abroad. This may, in part, result from the perception that mathematics is a language-

invariant subject (Wood et al., 2007). Yet curricular and other cultural differences 

between the education systems of different countries means that international students 

transition to university with different skills, beliefs and understandings about learning 

mathematics than those of their locally schooled peers. These differences signal the 

potential for different transitional experiences from those of local students.  

Understanding the transition from the perspectives of international students will 

contribute to knowledge of how different cultural contexts shape student experiences. 

Di Martino et al. (2022) call attention to a scarcity of research in this area as flagged 

in their recent systematic review of literature on the transition from secondary to 

tertiary mathematics (hereafter STT). The review also highlights the need for future 

research to pay closer attention to affective and sociocultural factors in the STT.  

In this paper we use mathematical identity to explore the experiences of an 

international student from mainland China enrolled in first-year mathematics at a New 

Zealand university. We aim to illustrate how social structures of tertiary mathematics 

in one social context and personal experiences of school mathematics in another 

context can contribute to students’ mathematical identity.  

RESEARCH BACKGROUND 

Transitioning from school to university mathematics as an international student 

The STT is widely recognised as a period of disruption. In addition to significant 

cognitive challenges, students must adapt to a new pedagogical culture (Hernandez-
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Martinez & Williams, 2013). Di Martino et al. (2022) suggest that how students 

experience the challenges of the STT depends on their educational context. They show 

how students from three different countries in Europe evidenced contrasting 

experiences of the STT.  

Language proficiency also plays a major part in the transitional experiences of students. 

Barton et al. (2005) showed that first-year students at a New Zealand university 

suffered at least a 10% disadvantage when their home language was not English. 

Student such as these may have difficulty following the academic language used in 

lectures and may thus find themselves heavily reliant on written texts and symbolic 

modes of working (Wood et al., 2007). Students who are not confident in the language 

of instruction may also encounter barriers to group work. Hwang et al. (2022) report 

that the discomfort experienced by a Chinese-speaking student when unable to 

successfully communicate her ideas to her English-speaking peers inclined her to 

silence in a groupwork task. While the failure to communicate successfully can be 

attributed to language difficulties, the discomfort experienced by the student may need 

further unpacking. Xu and Clarke (2019) suggest that actions disruptive to harmonious 

relationships may be avoided in Chinese classrooms. A failed communication attempt 

could be viewed in this light. Similarly, students from cultures with steeply hierarchical 

student-teacher relationships might perceive questioning the teacher to be 

disrespectful, despite this being an accepted practice in many Western settings 

(Lillyman & Bennett, 2014).  

How social structures and individual experiences shape mathematical identities 

The social structures that exist in educational settings suggest what is valued within the 

community. Literature shows how structures ranging from instructional practices 

within specific courses (Voigt et al., 2021) through to wider institutional policies such 

as assessment practices (Solomon, 2007) can shape the identities of learners in these 

spaces. The common understanding of success as being related to achievement or 

examination grades (Gutiérrez, 2013) is often induced by these institutional structures.  

On the other hand, literature also shows that experiences unique to the individual can 

inform mathematical identities. For example, perceptions of fixed ability, which were 

shown to negatively impact on the mathematical identities of students at a UK 

university (Ward-Penny et al., 2018), contrasts with the view of many Chinese students 

that mathematics is a skill that can be improved with practice (Mok, 2020). Research 

also shows how prior experiences of struggle might shape identities of resilience in 

some students (Hernandez-Martinez & Williams, 2013) and disaffection in others 

(Ward-Penny et al., 2018). As international students transition into university 

mathematics, it is likely that both unique experiences from their home countries, and 

the structures of their foreign host universities, will shape their identities as 

mathematics learners. 
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THEORISING MATHEMATICAL IDENTITY 

The concept of positioning plays an important role in the enactment of identity. 

Positioning theory (Van Langenhove & Harré, 1999) describes positioning as the way 

rights and duties are ascribed in interactions, offering a way to make sense of the 

interactional moves through which people clarify who they are and how they see 

others. Positioning involves inviting people to conform to a storyline which offers pre-

existing positions with incumbent rights and duties. The subject of positioning may 

accept or comply with the offered storyline, or reject it in favour of their own. 

In this paper we conceptualise identity as being enacted, within a specific context, 

through a multitude of positioning actions. We also adopt the ontological stance of 

O’Mahoney and Marks (2014) who view the social and subjective elements of identity 

as being distinct, but related to, one another. O’Mahoney and Marks (2014) 

characterise social identity as concerning “the actual embodiment of the roles and 

categories that are generated in social structures” (p. 72) while personal identity 

“emerges from the embodied, reflexive self, in part forged through the interests and 

actions of the individual” (p. 71). Consistently, we propose that students enact social 

mathematics identities when positioning themselves in response to recognisable roles 

offered by social structures in their mathematics learning context. Personal 

mathematics identities materialise when students draw on their individual experiences 

to position themselves as mathematics learners.  

Social and personal mathematics identities interact with one another through agency, 

or the actions undertaken by a student to steer learning towards their goals. Both forms 

of identity are reproduced and transformed by the student’s agentive actions. 

Accordingly, we define mathematical identity as a synergy of social and personal 

mathematics identities that interact through agency (see Figure 1). 

 

Figure 1: Mathematical Identity (adapted from O’Mahoney & Marks, 2014) 

In the context of this paper, social mathematics identity emerges from roles that the 

university, the mathematics department, lecturers, or tutors offer to mathematics 

students. Students inhabit these roles in unique ways, enacting recognisable social 

identities. For example, in describing the ease with which they are able to meet 

curriculum requirements, a student positions themself relative to a course structure. 

Personal mathematics identity is an outward expression of internal processes like 

preferences or feelings, that are based on individual experiences. To enact their 
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personal identities, students draw on storylines from their past experiences. For 

example, a prior experience of productive struggle might enable a student to describe 

themself as one who enjoys the challenge of mathematics. Viewing mathematical 

identity as a synergy of two distinct parts allows us to separately consider the 

individual’s response to opportunities offered by society and their own reflexive 

understanding of themself as a mathematics learner. 

RESEARCH QUESTION 

The overarching aim of our research is to explore the experiences of international 

students transitioning to university mathematics. Due to space limitations, in this paper 

we explore the case of one participant from China transitioning to an English-medium 

university. We ask how the structures of first-year mathematics, and the experience of 

learning school mathematics in China, shaped the mathematical identity of an 

international student? 

METHODOLOGY 

This study took place at a large New Zealand university where around a third of the 

students in first-year mathematics are international students. This paper presents the 

case of Sunny (pseudonym), a participant who had completed her schooling in China 

before enrolling in a Bachelor of Science programme in New Zealand, with majors in 

computer science and mathematics. Before this, she completed a foundation (or 

bridging) course in English, which included mathematics and other subjects. Her first 

university mathematics course covered standard topics in linear algebra and calculus.  

Sunny took part in an individual, semi-structured reflective interview with the first 

author, lasting 23 minutes. It was video-recorded and transcribed. At the time of 

interview, Sunny was enrolled in a postgraduate level honours programme specialising 

in computer science. Interview questions encouraged her to summarise her 

mathematics learning experiences, and to recount how she evaluated progress, and 

what challenges she faced, both prior to and during the STT. 

First-year mathematics incorporates an array of institutional structures which might 

suggest what is valued in this setting. For example, the language of instruction may 

suggest that mathematical communication in English is more highly valued than in 

other languages. Our analysis began by categorising positioning acts described by 

Sunny as being resourced by university structures or by individual experiences, thus as 

contributing to social or personal mathematics identities respectively. For example we 

viewed Sunny’s statement that she tried to complete mathematical problems “as fast as 

possible” as being resourced by the assessment structure of first-year mathematics, 

which includes time restricted tests and an examination. On the other hand, we 

categorised her declaration that “it’s okay to have some difficulties” as being resourced 

by individual experiences. We examined the stories Sunny told to understand what 

challenges she faced in first-year mathematics, and how she responded to these. 
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FINDINGS 

How structures of first-year mathematics shaped social mathematical identity 

The storyline within which Sunny viewed success as a mathematics learner was 

resourced by the structures of her course. She explained how she evaluated her progress 

in first-year mathematics. 

I think for me is like just, when each assignment counts, if I can do all the questions by 

myself, or maybe I'm not, but that is my goal – I would like to do a lot of questions by 

myself. And also like, try to be as fast as possible, I mean just take shorter time as that I 

can easily remember, I have already remember all those things. 

Her perception of success as being able to complete tasks both independently and 

quickly replicated the performance requirements of the mid-semester course test and 

the final exam.  

Sunny went on to describe the challenges standing between herself and success of this 

nature. While she found that the content in her first-year was “not that difficult,” she 

believed that “the biggest problem would be just the problem of learning English, and 

that is the hardest thing.” She explained that she could understand concepts and 

communicate using written mathematical symbols, but had difficulty communicating 

her understanding verbally. 

I can understand those things, like the  symbols. But if you asked me to explain it in English 

of how those symbols like you can explain to others, it will be a bit hard to do that part.  

Understanding course content was not entirely without challenge either. For instance, 

she shared her struggle to grasp “the definition part, with the, like epsilon all those 

things.” Sunny asked her course lecturer for help. 

I mean I asked them and I still don't understand. They want to help, but you know I just 

don't understand. I think it's the language along with the concept. The concept is also hard. 

In this reflection we see how cultural understandings of student-teacher relationships 

may have contributed to Sunny’s reluctance to persist until concepts were clear. But 

language also presented a barrier. In these, and other instances, Sunny enacted a social 

mathematics identity of a student proficient in meeting most mathematical 

requirements of her first-year course, but struggling to meet communication 

requirements in the English language. 

How individual experiences shaped personal mathematics identity 

Sunny also drew on her individual experiences of learning mathematics to enact her 

personal mathematics identity. She explained that she had completed high school in 

China before introducing a storyline that positioned “the content here [in New Zealand] 

is not that difficult comparing to the content learning in China.” Through such 

storylines we recognise Sunny as a first-year student with advanced prior knowledge 

and one accustomed to learning difficult mathematical concepts. She later described 

how “I quite enjoy learning math itself, but there’s still some difficulties there. But I 
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think it’s okay to have some difficulties.” This relayed her sense of enjoyment when 

learning first-year mathematics, and strengthened her position as a student who was 

not only accustomed to challenge, but one who embraced it.  

Agentive actions to overcome barriers to success 

Sunny’s identity as a mathematically competent student who was accustomed to 

challenge shaped her actions in first-year mathematics. She regarded language as her 

biggest challenge, indicating that for her the difficulty lay, not with learning 

mathematics, but with learning it in English. Through her reflections, we see this 

difficulty manifesting in three aspects: understanding the course lecturers, 

communicating mathematics verbally, and collaborating with peers. 

Sunny found lectures difficult to follow, saying that understanding was easier when 

verbal explanations were accompanied by symbolic notation. She explained how she 

would revise the lecture content “again and again by seeing, for me it’s more about 

seeing the lecture notes, and also maybe listening to the recording to help me 

understand.” She also sought external resources that offered visual explanations, such 

as YouTube videos where “they explain things in some animations, which is better.” 

These actions show how Sunny invested considerable  time and effort to overcome the 

challenge of accessing lecture content delivered in English. Communicating her 

mathematical understanding to others also presented a challenge. She told how she 

spent significantly more time completing assignment questions requiring verbal 

explanations than those requiring calculations. 

Collaborative sense-making is an important aspect of first-year mathematics at Sunny’s 

university. Students work together in problem-based tutorials. The mathematics 

department also offers ‘assistance rooms’ which are specific spaces where students can 

gather informally to work on mathematics in the company of others and a tutor. Sunny 

shared that in both tutorial sessions and the mathematics assistance room, she would 

“tend to find people speaking Chinese and discuss together about those questions.” So 

she took part in collaborative sense-making activities by seeking out Chinese speaking 

students with whom she could communicate fluently. 

DISCUSSION & IMPLICATIONS 

This paper proposes a novel way of conceptualising mathematical identity that proved 

useful, in Sunny’s case, for illuminating the effect of past experiences on more recent 

actions in a different social context. The same theoretical framework was applied to 

other participants in the study with similar outcomes. This leads us to suggest that a 

view of mathematical identity as the synergy of distinct parts may be more generally 

useful for understanding links between learner engagement across time and contexts. 

Sunny’s experience highlights some factors that contributed to her successful 

negotiation of the STT, and illuminates areas where additional support might have been 

helpful. The agentive actions described by Sunny evidence how her experience of 

productive struggle with mathematics in China supported practices that enabled her to 
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overcome the new, language-based challenges of learning mathematics at a foreign, 

English-medium university (Di Martino et al., 2022; Hernandez-Martinez & Williams, 

2013). Her actions reproduced the identity of one who was both accustomed to, and 

embraced challenge when learning mathematics, and reinforced her identity as a 

mathematically competent student in the new sociocultural context. Other studies (e.g. 

Hernandez-Martinez & Williams, 2013) have shown how prior experiences can 

contribute to resilience in the STT, but studies of international students in the STT are 

scarce. By exploring how the backgrounds of international students shape transitional 

experiences, this paper follows Di Martino et al.’s (2022) call for research that 

contributes to understanding of the STT in different cultural contexts. 

We acknowledge the idiosyncrasy of Sunny’s circumstances and recognise that not all 

students have such well-established storylines to draw on, where positions support 

success in the STT. However Sunny’s experience of language difficulties is certainly 

not unique. Sunny expressed a preference for “seeing” the lecture content by repeatedly 

re-reading the course notes after lectures. We also note that she did not rely entirely on 

symbolic representations (Wood et al., 2007). She referenced a range of conceptual 

representations, seeking animations online and listening to lecture recordings. We call 

attention to the efforts demanded of international students to overcome language 

barriers, and encourage host universities to take steps to support them. Providing 

lecture recordings and written course notes allow international students to access 

lecture content in ways that, though time consuming, are more suited to their needs. 

Indexing collections of appropriate resources, such as video animations that aid 

understanding of course concepts, should similarly be considered. 

Sunny’s strategy to overcome language barriers when working with other students 

(Hwang et al., 2022) was to join groups where others spoke her own language, making 

mathematical communication easier and communal sense-making more productive. 

Yet communicating with university lecturers remained challenging on two fronts. Both 

the academic English encountered in these interactions and cultural understandings of 

the student-teacher relationship (Lillyman & Bennett, 2014) raised barriers to 

understanding. Mathematics departments might mitigate these challenges by 

considering how first-year students can be introduced to graduate students, tutors, and 

lecturers who speak the language of international students in transition. 
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SHIFTS IN LOCAL NARRATIVE IDENTITIES:  

A CASE OF LOW ACHIEVING STUDENTS.  
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University of Pisa, Italy 

 

Narrative identities provide a powerful tool for investigating affective aspects of 

students learning mathematics. Through the case of Cora, a 10th grade student, I 

introduce a prototypical local narrative identity of a student with a history of persistent 

low achievement in mathematics. In this paper I also discuss how a sequence of 

activities based on the use of digital artifacts, open-ended and unfamiliar tasks, can 

affect such an identity.  

INTRODUCTION 

The project within which this study is situated aims at identifying characteristics of 

low achieving high school students’ discourse in the context of algebra, both within a 

mathematical dimension and from an affective dimension. Using a commognitive 

approach, we wish to study whether and how such characteristics (mathematizing 

discourse and identity) change during students’ work with appropriately designed 

activities involving digital artifacts. This paper addresses the case of Cora, focusing on 

her shift in identity at the end of her participation in the experimentation. In particular, 

we will analyze and discuss her interviews at the beginning and the end of the two 

months intervention. Such an intervention made use of digital mediation. Indeed, 

Baccaglini-Frank (2021) has shown in fine-grained detail how digital mediation is a 

way of granting struggling students the possibility of constructing meaningful (both to 

them and mathematically) narratives. In the research project of which this paper 

addresses a specific issue, students participated in 5 sessions with a researcher, during 

which they worked on activities with digital artifacts concerning the notion of equation 

or function. Cora was assigned to the sequence on functions.  

THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS  

The commognitive perspective defines identity as a “collection of stories”, constructed 

through the activity of subjectifying, that is communicating about the participants of 

the discourse (Sfard & Prusak, 2005). Utterances of subjectification can be classified 

into three main levels, based on how general the subjectification is. The first level 

concerns a specific performance (e.g., She forgot how to solve this equation); the 

second level a routine performance (e.g., I can’t solve equations); and the third level 

concerns a person’s inherent property (e.g., You are terrible at math) (Heyd-

Metzuyanim & Sfard 2012). Moreover, a set of subjectifying stories must be reifying, 

endorsable, and significant to constitute an identity. A story has reifying quality when 

it attributes stable characteristics to the participants (e.g., I’m good at math), a story is 

endorsable “if the identity-builder when asked, would say that it faithfully reflects the 

state of affairs in the world” and a story is significant “if any change in (the narrative) 
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is likely to affect the story teller’s feelings about the identified person.” (Sfard & 

Prusak, 2005, pp. 16–17). Hence, when studying identities, it is key to infer whether a 

subjectifying utterance is reified. The reified utterance can be attained with: 

 Third-level subjectification utterances (e.g., He doesn’t understand); 

 Recurring first-level and second-level subjectification utterances (e.g., I don’t 

know how to solve this equation…I can’t do this. Maybe… no, I don’t know 

it); 

 Second-level subjectification utterances followed by adverbs such as 

“always” and “never” (e.g., She has always had difficulties with equations) 

(Heyd-Metzuyanim & Sfard, 2012). 
 

In this paper, I will talk about first-person narrative local identities, which refer to 

stories told by students about themselves to the interviewer with whom they interacted 

for this study, in the specific context of the research center where the project took place. 

For the sake of brevity, we will speak of these simply as identities. 

In this frame, Wiener’s attribution theory appears to be a useful tool to gain insight into 

first-person identity and its possible changes (Wiener, 1985). Wiener classifies the 

individual’s attributions of failure considering three independent dimensions: the 

degree of stability (fixed versus variable), the locus of control (internal versus 

external), and the controllability (controllable by the subject or not). The attributions 

related to uncontrollable causes, preventing the student from being the protagonist of 

their learning (Zan & Di Martino, 2009), can affect students’ opportunities to develop 

richer mathematical discourse. For example, if a student is convinced that they are not 

capable of solving any mathematical equation because they are bad at math, they are 

likely to develop a failure identity in mathematics with a possible negative impact on 

their striving for higher achievement. Thus, we propose to include causal attribution as 

a characteristic of students that may provide evidence for delineating identities.  

In this paper, we explore the following research questions: What is Cora’s identity built 

at the beginning of the sessions and how does it change by the end? What aspects of 

the activities, according to Cora, might have contributed to the shift in her identity?  

METHODOLOGY 

The data collection to which Cora took part lasted two months (October-November 

2022), and it involved twelve 10th-grade students (ages 14-15) with a persistent history 

of low achievement in mathematics. All students participated in the project as 

volunteers, in the afternoons (not school hours), coming to a research center in central 

Italy. Each participant took an initial interview, then came for five two-hour meetings, 

and once again for a final interview. Both the interviews and the sequence of activities 

were conducted by researchers whom the students had never met before.   

The goal of the initial interview was to gain insight into students’ mathematizing 

discourse on the notions of equation and functions, and into the mathematical identities 

of participants. The interview was organized in two different parts: the first one 
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consisted of four questions focused on the relationship with mathematics, whereas the 

second one was a task-based interview. 

The final interview was developed for assessing possible variations in the participants' 

mathematical identity; it consisted of questions on the sequence of activities on 

functions. During the 5 sessions with the activities with digital artifacts, Cora worked 

with another student, a classmate from her school (since before the study). All activities 

were video and audio recorded through multiple cameras and screen captures. 

The activities with digital artifacts aimed at fostering students’ sense-making processes 

involving functions as mathematical objects. These activities were mostly open-ended 

and unfamiliar (different from typical “school tasks” on functions). Functions are 

usually presented as algebraic formulas at the beginning of high school in Italy, their 

covariational properties are not usually considered: on the other hand, literature in 

mathematics education shows the widespread students’ difficulties in managing 

variables and the Cartesian graph (e.g., Thompson & Carlson, 2017, Baccaglini-Frank 

et al., in press). Baccaglini-Frank (2021) shows how specific activities – where sense-

making is strongly stimulated – can contribute to make students’ mathematical 

discourse richer. We conjecture that those activities can also foster changes in students’ 

failure identities.  

During the two months of the project, at school the participants were learning how to 

solve and manipulate fractional equations, so participants were not working on 

functions at school during the project period. 

To gain insight into the participants’ identities, we adopted the analytic scheme in 

Table 1 (Heyd-Metzuyanim & Sfard 2012). 

Table 1: Analytic scheme used for the analysis of the data.  

Aspects to 

investigate 

Questions guiding the analysis Indicators 

Type of identity 

being developed 

(successful or 

failure). 

What direct identifying expressions 

does the student use in the initial 

interview? And in the final interview? 

Third level subjectifications. 

Second level subjectifications 

followed by adverbs such as 

“always” and “never”. 

 What non-direct identifying 

expressions does the student use in the 

initial interview? And in the final 

interview? 

Recurrent first and second level 

subjectifications.  

Attribution theory 

as features of 

identity. 

What elements of unsolicited 

attributional activity appear in the first 

interview? And in the final interview? 

Explicit reference to cause of 

success through expressions such 

as “it is the fault of…”, “maybe 

because of”. 
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DATA ANALYSIS  

To gain insight into Cora’s initial identity, I shall analyze Cora’s identifying utterances 

emerging from the initial interview. For brevity, from the first part of the interview, I 

included only the expressions where identifying is most present. From the second part 

of the interview, I included transcriptions from two tasks. I chose one because it 

concerns the equation Cora studied the previous year and is formulated as a typical 

"school task". I chose the other task, relating to the functions, because functions are the 

object of the following sequence of activities.  

Initially, Cora seems to have developed a failure identity that is not generalized to all 

the mathematical activity.   

1 C let's say that I'm a little savvier with some topics, while other topics I really 
don't… Maybe I even spend my days trying to understand it but then... it's 
also the book’s fault because basically, it doesn't explain very well, it’s the 
teacher's fault, I just can't do some things… 

Such an identity seems to be stable over time because Cora speaks of long-lasting 

difficulties she has had with mathematics since she was in 8th grade.  

While Cora is performing the first task in the interview (solve 13 - a = 13 + 11), her 

failure identity appears through a first recurrent level of subjectification. 

2 C So, here I wouldn’t know, I might think of… an equation? ...No, I really 
don’t know. No! Neither. I really wouldn’t know. I am thinking that if a is 
a monomial and the others, well they are integers, and at a first glance I 
would consider it an equation.  

Her identity leads Cora to describe herself as unable to perform the task: she decides 

to move on to the next question.  

3 C:  No, I prefer to skip this one because I really have no idea, I have no idea 
how to solve it, I really can’t come up with [how to do it]. 

She makes similar utterances for all the tasks, including the one on functions. [At first, 

only the Cartesian graph of y = - 2x + 1 is shown, without any explicit task]  

4  I: The first thing I ask you is the same as always: have you ever seen 
something like this before? 

5 C:  Yes, it should be a function. Now, me and functions, they are exactly one 
of the contents that…with which I have had most difficulties, among them 
all. Because really, I don’t…it’s the one I have had most difficulties with. 
Anyway, this here I think it’s a function. That, right, rule about the line in 
a …in a space… So, in this case, yes it’s a function, it should… 

The identifying expressions include a recurring first level of subjectification [5] and a 

second level [“I really never understood functions, also how ... how we worked on 

them to find the results, I really never understood them”]. Again, Cora describes herself 

as unable to perform the proposed task. Therefore, functions are one of the topics 

through which Cora has built her failure identity.  
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During the initial interview, Cora repeatedly highlights how the ability to succeed in 

mathematics is linked to her ability to “use logic” in mathematical activities. 

8 I: Is there something you like about math?  

9 C: So ehm surely when in the end I succeed in something, I mean the 
satisfaction in the end, maybe when you have to use logic… in the end, I 
succeed, and the result is right.   

This is also consistent with her rejection of memorized procedures. 

10 C: I really struggle with all the stuff to memorize, keep in mind, the formulas. 
So, it gets harder, maybe with logic, it's better. Instead, the things to keep 
in mind are just not.  

So, for Cora to be successful she seems to believe that it is necessary “to use logic” in 

mathematical discourse [9,10]. Instead, when she tries to rely on her memory, she 

recognizes that she finds it hard to succeed [10]. Struggling with memorization is not 

referred to a specific performance but it is described as a stable property of Cora’s, so 

I consider it part of her identity. Moreover, I expected to find these features in the 

identities of other low-achieving students.  

The attributional theory also provides elements to investigate Cora’s identity. Cora 

identifies external, uncontrollable causes such as the book and the teacher as the causes 

of her failure [1]. Such an attribution makes it impossible for Cora to become the 

protagonist of her own learning; indeed, she cannot be able to have full control over it. 

Even remembering when, up to 7th grade, she had no problems with math, Cora 

attributes that success to external and uncontrollable causes, such as good teachers. 

(“So, let's say until middle school…the first, the second year of middle school was still 

going well anyway, because the teachers were good, like in elementary school.”).   

From the final interview, it appears that Cora's identity has changed during the 

sequence of activities.  

11 I:  Between these activities, is there anything that particularly affects you? 

12 C:  Surely the ones about functions, because when I arrived here and saw that 
there were activities on functions… I thought that... that I wouldn't have 
succeeded, in any case, I wouldn't have understood what we were talking 
about, because [functions] were exactly a topic that I never understood. And 
instead, seeing that I was also able to reason about it, then being able to 
answer the questions... That is, I was quite amazed by the fact that I was 
able to do it, perhaps thinking about it calmly... but that I managed, in the 
end, to conclude…because I didn't think I could do it.  

Cora recognizes herself as “able” and seems "amazed" [12] suggesting how strong her 

previously constructed identity was. A subjectifying story is defined as significant if a 

change in one of its features affects the feelings of the identity builder; indeed, the 

change in Cora’s failure identity is not a matter of indifference for her (“I was quite 

amazed by the fact that I was able to do it”).  

Now Cora claims to "reason" about functions and "answer the questions" in the tasks 

she was assigned [12]. At the beginning of the activities, the failure identity could have 
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prevented Cora from seizing learning opportunities like the one she was being offered 

(“I thought that I wouldn’t have succeeded”) but (fortunately) this did not happen. The 

fact that she was allowed, and, actually, always asked to make sense of what she was 

saying and doing, is a feature she emphasizes as something she appreciated very much. 

It is also coherent with her previously described refusal to memorize. Cora not only 

says that she was able to answer the questions, but that she was able to do it by 

reasoning [12]. So, being able to make sense of a mathematical content that was so 

difficult for her seems to have led to a change in her identity.  

However, activities based on the use of digital artifacts, the open-ended and unfamiliar 

tasks, are not the aspects that Cora identifies as having the highest quality. 

13 I: In general, concerning this experience, is there anything you liked?  

14 C: So, I really enjoyed the experience because, compared to how mathematics 
is done at school, it is a very different approach… I mean, there is no 
pressure, there is no ... and I also understood several things that I did not 
understand before, especially with the work I've done, and … […] And so 
that is, I liked more than anything else the fact that there was no pressure, 
that it was possible to think calmly about things. […] 

15 I: Do you have any suggestions to improve the sequence of activities?  

16 C: I don't have any, because I was comfortable and had a good time. That is, 
in my opinion, also being able to reason a lot about things really helps.  

Reasoning “a lot” [16] and “calmly” [14] about the tasks, the absence of “pressure" 

[14] suggest that time is the factor that Cora identifies as the determining in her 

successful experience. This even seems to change her causal attribution of the previous 

failure.  

17 C: Yes, functions in general, for example, I've never understood them well, 
I've never really had them clear. Partly because we had studied them 
quickly, partly because... I just didn't understand them 

Now Cora points to time as the cause of her previous failure. The cause is still external: 

the context suggests that Cora means "we studied them too quickly in class" and not "I 

studied them too quickly", so whoever decides the time dedicated to functions is the 

teacher, not Cora. However, time is a much more circumscribed and precise causal 

attribution than the initial one.  

CONCLUDING REMARKS  

In light of the above findings, we show that the identity of Cora is a failure identity not 

generalized to all mathematical activities. Her identity is also characterized by a 

difficulty in memorizing and by her attribution of the failure to external and 

uncontrollable causes (such as the schoolbook and the teacher). Such a causal 

attribution shows how Cora is not able to have full control over her learning.  

We believe our data supports the conclusion that, after the sequence of activities, 

something about Cora's identity changed. Functions, one of the topics Cora believed 

she could not learn, finally becomes accessible. Believing that she is able to understand 
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mathematics is the first step in enabling her mathematical discourse; indeed, the 

literature shows how a failure identity can prevent a student from taking advantage of 

learning opportunities (Heyd-Metzuyanim & Sfard, 2012).  

In the broader project we hope to find shifts in identities during the implementation of 

the designed activities, like the one described in Cora. Our hypothesis was that such 

shifts could be favored by the activities proposed, where solution procedures are never 

given explicitly, digital artifacts are manipulated by the students as they engage in 

reasoning processes, and their sense-making is fostered through open-ended tasks. 

Cora, instead, identified having time to reflect as the higher-quality element. This is a 

relevant finding for two main reasons.  

First, thinking that one needs more time to understand math can be read as a deeper 

change in the student's identity than, for example, believing that one needs digital 

mediation. Indeed, taking more time to think calmly can be replicated in other learning 

circumstances.   

Secondly, it also affects the previous failure’s causal attribution. The previous failure 

is no longer attributable to the book or, in general, to the teacher but to the fact that the 

topic was covered in class too quickly. Although it is still an external and 

uncontrollable attribution, it becomes more specific and influenced: the student cannot 

change the teacher or the book, but she can certainly ask the teacher to repeat and deal 

with some topics more slowly. 

LIMITATIONS AND IMPLICATIONS FOR FUTURE DIRECTIONS 

This study has potential limitations. We have analyzed local identities closely linked 

to the context, but we do not know how this impacts the identities built at school.  In 

future research, we would like to explore the relationship between identities built at the 

research center and those built at school, and try to create bridges between these 

contexts. Another limitation is not having analyzed, due to lack of space, the 

relationship between shifts in identities and shifts in mathematizing discourse. Finally, 

the importance given to time by Cora provides a significant element for the future 

redesign of activities.   
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Literature about the way visually impaired students approach mathematics is still very 

scarce, especially in the case of algebra, despite the fact that mathematical content is 

known to be increasingly accessible thanks to assistive technologies. This report 

presents a case study aimed at describing the process of algebraic symbols 

manipulation by a blind subject. Results show how the hearing can substitute the eye 

in the development of structure sense. Data analysis reveals that screen readers and 

coding languages (as LaTeX) have interesting potentialities in the development of 

structure sense for blind students. 

INTRODUCTION 

Several authors in the field of mathematics education have been discussing about the 

importance of visualization within different mathematical activities (e.g., Presmeg, 

2006). The term ‘visualization’ itself refers to the sense of sight that may result as a 

way of accessing mathematical representations – including geometrical shapes, graphs, 

and formulas. According to Sfard (2008), the mathematical discourse itself is defined 

(among other features) by specific visual mediators, defined as “visible objects that are 

operated upon as a part of the process of communication” (p. 133). Radford (2010) 

describes the process of learning mathematics – particularly in the algebraic context – 

as a process of domestication of the eye, meaning “a lengthy process in the course of 

which we come to see and recognize things according to ‘efficient’ cultural means” 

(p.10). However, for some students, the sense of sight is not, totally or partially, 

suitable to access mathematical content because of visual impairments or complete 

blindness. 

The literature about the learning of mathematics for blind students is very scarce, but 

we know that they can access mathematical contents through other senses (e.g., 

Alajarmeh et al., 2011; Healy & Fernandes, 2011). Indeed, Radford (2010) recognizes 

that the same lengthy process of domestication could happen for other senses, and 

Sfard (2008) defines realizations of mathematical objects as “perceptually accessible 

things” (p. 154), without specifying the nature of such perception. Furthermore, she 

recognizes that gestures can realize mathematical objects (Sfard, 2008). Healy and 

Fernandes (2011) have, indeed, observed that blind subjects may involve gestures in 

their appropriation of mathematical meanings; these authors see the gestures used by a 

blind subject as re-enactions of previously experienced activities. Their arguments are 

convincing in the case of geometrical figures and solids: the gesture may correspond 

to past experiences of touching, moving a finger along physical artifacts. Similarly, the 

description of a graph of a continuous function (or even a discrete graph) can be based 

on the embodied experience of motion (Núñez et al., 1999). On the contrary, other 



Maffia, Manolino & Miragliotta 

3 - 308 PME 46 – 2023 

mathematical representations – like algebraic symbols – appear much more detached 

from the sensorial experience and we wonder how blind students can get access to this 

kind of representations. Assistive technologies and the braille alphabet may be suitable 

means (Alajarmeh et al., 2011; Armano et al., 2018; Bouck et al., 2016). 

To the best of our knowledge, there is no international literature in the field of 

mathematics education about algebraic symbol manipulation by blind students using 

screen readers. Hence, this study is a first step forward in filling this research gap by 

offering a thick description (Bell & Kissling, 2019) of the process of algebraic symbols 

manipulation performed by an experienced blind individual while solving an algebraic 

task. 

THEORETICAL FRAMEWORK 

The involvement of digital technologies within the process of teaching/learning 

mathematics has provided many new opportunities for visually impaired students who 

can rely on screen readers (and other assistive technologies) to access written text, 

including algebraic formulas (Alajarmeh et al., 2011; Armano et al., 2018). However, 

using algebraic symbols for mathematical problems solving does not only require 

reading the symbols, but being able to act upon them. While studies have focused on 

how digital textbooks can aid students’ algebraic activity (e.g., Bouck et al., 2016), 

there is a dearth of research about systems for enabling students to act productively on 

symbols (Alajarmeh et al., 2011). 

When we refer to algebraic symbol manipulation, we consider that it encompasses 

more than just the rote application of transformation rules. It involves a broader 

competence in using “equivalent structures of an expression flexibly and creatively” 

(Linchevsky & Livneh, 1999, p. 191), that is briefly named structure sense. According 

to Hoch and Dreyfus (2004), in the context of school algebra, structure sense can be 

described as composed of six abilities which are: (1) seeing an algebraic expression or 

sentence as an entity; (2) recognizing an algebraic expression or sentence as a 

previously met structure; (3) dividing an entity into sub-structures; (4) recognizing 

mutual connections between structures; (5) recognizing which manipulations it is 

possible to perform; (6) recognizing which manipulations it is useful to perform. 

While describing a specific case study (see Method section), we are here interested in 

understanding if and how blind subjects can rely on their structure sense while solving 

an algebraic task, the accessibility of which is provided through digital tools. Our 

research question is: How can a blind subject rely on his structure sense while solving 

equations if supported by assistive technology? 

METHODS 

Due to the nature of our research question and because of the paucity of research 

literature on the topic, we have chosen to conduct an exploratory case study. Such 

design is recommended when the aim of the research is “to portray ‘what it is like’ to 

be in a particular situation, to catch the close up reality and ‘thick description’ […] of 



Maffia, Manolino & Miragliotta 

PME 46 – 2023 3 - 309 

participants’ lived experiences of […] a situation” (Cohen et al., 2007). Aiming at 

describing how a subject draws upon his/her structure sense, we interviewed an adult 

person who has a strong education in mathematics, to whom we refer with the 

pseudonym of Antonio.  Antonio, who has a degree in Physics and has worked as a 

fellow researcher for 2 years, became blind four years ago due to a degenerative 

pathology. He learned to use LaTeX with speech synthesis as a visually impaired 

undergraduate student, 10 years ago. 

We opted for a task-based interview: the interviewee was asked to select two equations 

among those proposed by Hoch and Dreyfus (2004) and to solve them. Because of the 

space limit, we will present only some excerpts from the solution process of one 

equation (Figure 1b), about which the solver was particularly talkative. The task was 

presented through a PDF file (Figure 1) which was implemented with the Axessibility 

package for LaTeX (Armano et al., 2018). By adding a single line of code to the source 

LaTeX file (line 2, Figure 1a), this package automatically inserts a hidden alternative 

text in the PDF document at each formula which is then accessible to screen readers 

(e.g., Jaws, NVDA). On Antonio’s computer the screen reader NVDA was installed, 

allowing him to hear the read-aloud of LaTeX code. The LaTeX code for the equation 

in focus is shown in the box ‘a’ of Figure 1. In particular, the command \frac{}{} 

represents a fraction having as numerator the content of the first curly braces and as 

denominator the content of the following curly braces. 

 
Figure 1. Example of LaTeX code (box a) and corresponding compiled PDF (box b). 

Aiming at a thick description (Bell & Kissling, 2019) we collected several sources of 

data including “speech acts; non-verbal communication; descriptions in low-inference 

vocabulary; […] recording of the time and timing of events; the observer’s comments 

[…]; detailed contextual data” as prescribed by Cohen et al. (2007, p. 405). This was 

realized by recording the interview including in the audio- and video-recording of the 

interviewee (through a webcam) and capturing the interviewee’s computer screen. The 

second author of this report acted as interviewer and took personal notes during the 

interview. The video was transcribed verbatim by the first author integrating the 

transcription of ‘what is said’ with descriptions of ‘what is done’ (e.g., Table 1) – as 

recommended by Sfard (2008) – and with screenshots. Screenshots have been 

elaborated adding arrows representing the movements of the cursor (Figure 2); the final 

position of the cursor is represented by a vertical line. The three authors have analyzed 

this enriched transcript by coding each line with the six components of structure sense 
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described in previous section. The coding process was discussed and reviewed among 

the three researchers until consensus was achieved. 

RESULTS 

The first excerpt refers to the first reading of the proposed equation. Antonio uses the 

functionalities of the Axessibility package (Armano et al., 2018) to hear the reading of 

the LaTeX code behind the PDF that we provided to him. Then, he decides to 

copy/paste the LaTeX code on the Microsoft Notepad application. The NVDA 

software reads the code out loud while his cursor navigates through the Notepad, as 

captured in the video. 

Table 1. Enriched transcript of the first excerpt. 

Line What is said What is done 

1 Antonio: Let’s see the structure. One 

fourth. 

The cursor moves till the denominator of the first 

fraction and stops right before the closing curly 

brace. 

2 Interviewer: While you are 

understanding the structure, would 

you like to tell it?  

The cursor moves forward and stops after the 

minus sign. 

3 Antonio: One fourth, yes.  The cursor moves back, before the minus sign. 

4 Minus x over… Over x minus one. 

Minus x equals… Then there is the 

second member of the equation.  

The cursor moves forward and stops right before 

the equal sign.  

5 Five plus, open bracket. Then there is 

a bracket.  

The cursor reaches the opening bracket. 

6 One fourth inside the bracket.  The cursor moves back and forth over the \frac 

command.  

7  The cursor reaches the end of the last fraction 

8 Minus x over x minus one.  The cursor moves back and forth over the 

denominator of this fraction, then it goes back to 

the minus sign.  

9 Closed bracket and that’s it.  The cursor moves forward till the end of the 

equation. 

10 Here I would start by working on the 

brackets. 

 

 
Figure 2. Cursor’s movements during the first excerpt. Numbers are keyed to Table 1. 

Despite not being familiar with the theoretical framework of this paper, Antonio starts 

by expressing the intent to understand ‘the structure’ (line 1). Since this strategy 

corresponds to reading the different sub-structures (the fractions, the parenthesis) of 

the equation, he is relying on the third component of structure sense, which is “divide 

an entity into sub-structures”. Indeed, by analyzing the movements of his cursor, we 
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can see that his attention is initially caught by the first fraction (lines 1-2). Then he 

analyzes the second fraction and stops when the left side of the equation finishes (line 

4). The presence of the bracket is noticed (line 5) and then he goes back and forth over 

the two fractions within the brackets (lines 6-9). Then, we can notice that – even if the 

readers would normally force a left to right reading – Antonio analyses the structures 

of specific parts of the equation by realizing multiple readings of the identified sub-

structures. This is particularly true for the fractions; their presence is highlighted by 

the LaTeX commands and the curly braces identifying the numerator and the 

denominator. 

After this first excerpt, Antonio copies the whole equation on a second line in the 

Notepad. He recognizes that he can work inside the brackets first (component 5 of 

structure sense) and prepares the environment for doing so: he creates many blank 

spaces before the closing bracket (second line in Figure 3), then he states that he can 

calculated the least common multiple of the denominators (again component 5). He 

writes the denominator in the obtained blank space within braces (second line in Figure 

3) and then adds a couple of braces before (third line) – so preparing the space for the 

numerator. He performs his calculations for the numerator between these braces (fourth 

and fifth line in Figure 3) and when he is done, he adds the command \frac before the 

braces (sixth line). Finally, he replaces the content of the brackets with the calculated 

fraction (last line in Figure 3). Then, he recognizes which manipulation he can realize 

and uses the braces as containers for organizing the structure of the result of such 

manipulations. After these manipulations, Antonio decides to work on the fractions on 

the first side of the equation, as shown in the excerpt in Table 2. 

 
Figure 3. Different phases of Antonio’s manipulations of the fractions in brackets. 

Table 2. Enriched transcript of the second excerpt. 

Line  What is said What is done 

11 Antonio: Ok. Now let’s see what was here.  The cursor moves back to the beginning of the 

equation. 

12 There was one fourth.  The cursor moves till the end of the second 

fraction 

13 And then there was the same thing as in 

the brackets, but outside.  

Then the cursor moves back to the beginning 

of the equation. 

14 Thus… Thus, the result is the same of the 

other side because it’s equivalent.  

The cursor moves till the end of the left side 

of the equation. 

15 Then I can copy this.  The cursor moves to the fraction on the right 

side of the equation, which is then selected.  
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16  The fraction is copied in a new following line 

on the Notepad. 

17 Then I copy ‘minus x equals’. He types ‘-x=’. 

18 Well, I can copy and paste the second 

member. Yes, I copy and paste it.  

He selects, copies, and pastes the right side of 

the equation. 

19 Thus, since they are… the fractions are 

equal but opposite in sign… because if… 

then, I bring at the second member what is 

in the first member, they are equal and 

opposite. The result should be…  

The cursor goes back to the beginning of the 

equation and then moves till the end of the 

right side. 

20 x equals minus five.  He moves to a new line and write ‘x=-5’. 

21 Let me check… The cursor goes back to the previous line and 

moves through the whole line, from left to 

right. 

22 Yes, that should be the result.   

While reading the left side of the equation, Antonio recognizes the same structure of 

the expression within the brackets (line 13, component 2 of structure sense). Then, he 

understands that, instead of performing again all the manipulations shown in Figure 3, 

he can replace the fractions on the left side with the fraction calculated on the right side 

(lines 15-16, components 4 and 6), which was into the round brackets (Figure 1b). 

Having two identical sub-structures on the two sides of the equality, he decides to 

cancel them (lines 19-20, components 4 and 6). Hence, in this short excerpt we can 

notice many of the components of structure sense intervening and, considering the 

other parts of the transcript as well, we can observe all the six components of structure 

sense enacted. 

DISCUSSION AND CONCLUSION 

We can answer our research question by noticing that all the six components of 

structure sense have a role in Antonio’s solving of the equation using the Microsoft 

Notepad and NVDA reader for manipulating the equation represented in LaTeX code. 

In particular, Antonio uses the reader to read (and re-read) self-selected portions of the 

equation instead of simply reading from left to right. The notepad is used to manipulate 

the equation both within the same line (differently than what we are used to do with 

paper and pencil, Figure 3) or connecting different lines (e.g., lines 13-18).  

We have noticed that during the first reading (Table 1) the equation is divided into sub-

structures (component 3 of structure sense) and then Antonio recognizes which 

manipulations are possible (component 5) on these sub-structures. As observed for 

seeing subjects, brackets play a relevant role in structuring the equation (Hoch & 

Dreyfus, 2004). However, in this specific case, we can notice that also the use of the 

LaTeX code – allowed by the Axessibility package (Armano et al., 2018) – may play 

an important role in structuring the equation into sub-structures, since the \frac 

command is often a place where the cursor stops. Furthermore, the LaTeX code 

becomes not only a tool for reading mathematics, but a tool for doing mathematics as 

well (in the sense of Alajarmeh et al., 2011). This is visible when the curly braces are 
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used to organize the space of manipulation, distinguishing the numerator and the 

denominator of the algebraic fraction (Figure 3). 

Antonio provides a telling example of how the LaTeX code can serve as a tool for 

symbolic manipulation with the interesting ‘side effect’ of being transformable in a 

PDF file which can be then read both by seeing students and visually impaired ones. 

As noted by Ahmetovic et al. (2021), LaTeX is a writing system used in all STEM 

disciplines, then its learning is both useful for academic achievement and for 

inclusivity. The study presented in this report suggests that the learning and use of 

LaTeX could promote and support structure sense especially for visually impaired 

students, but potentially not only. 

We have also noticed that Antonio was able to recognize previously met (sub-) 

structures and use them to shortcut his manipulation (Table 1), so mobilizing many 

components (2-4-6) of structure sense. This recognition is realized after hearing the 

reading of the first part of the equation (line 13) by NVDA software; paraphrasing 

Radford’s (2010) words, Antonio’s ears have gone under a lengthy process of 

domestication through which they came to hear and recognize things according to an 

‘efficient’ cultural mean. The reading of the equation and the memorized ‘sound-track’ 

acted as realizations of the equation in the sense of Sfard (2008) – being anything but 

visual. This fact corroborates that other senses than sight can successfully help not only 

in the rote manipulations of algebraic symbols, but in developing structure sense as 

well. This suggests that verbalization of the structure of algebraic expression may be 

an important step in the development of structure sense for blind people, but this is true 

for all the other students as well (Maffei & Mariotti, 2011). This observation 

strengthens what has been noted before in the case of LaTeX: adopting inclusive 

approaches to algebra teaching may be fruitful not only for impaired students, but for 

the whole class-group as well. 

Surly, we must be cautious about the conclusion that we draw from a case study; in 

particular, we must consider that visual impairments are very different among them. 

For instance, Antonio was not completely blind during his high school studies and then 

he might rely on visual memories of algebraic expressions. Different results might be 

obtained in the case of students born blind and/or that are able to use Braille to read 

and write mathematical notations. Future developments of our research project will 

include subjects with different past histories about their disabilities and their learning 

of mathematics. Nevertheless, we hope that this report could offer a step forward in 

unveiling the (many) ways in which visual impaired solvers can successfully tackle 

algebraic equations. 
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In a previous study, we used the variation theory of learning to develop a multi-

dimensional model (MDM) through which teachers iteratively can modify their 

context-based mathematical problem-posing (CMPP) products. We now investigate 

how the MDM can promote teacher learning through iterative task co-design. In a case 

study, we analyze modifications that a teacher, Adi, embedded in her task during and 

after tutor-teacher CMPP redesign meetings. We show how tutor MDM-based 

interventions stimulated teacher learning: some suggestions were not just embraced 

by the teacher, but also led her to articulate dimensions of possible variation 

manifested in further modifications she inserted to her task. We suggest implications 

for future research related to teacher task-designer programs. 

INTRODUCTION AND THEORETICAL BACKGROUND 

Research has recognized the immense potential of teachers practicing problem posing 

(PP) and task design for enhancing their mathematical-pedagogical knowledge and 

their students’ performances in problem solving (e.g., Leavy & Hourigan, 2022; 

Rachamim et al., 2022). That is not to say PP is an easy enterprise for teachers – their 

initial attempts at PP are seldom of high quality (Crespo & Sinclair, 2008). Then how 

do teachers, usually novices in task design, “be supposed to formulate good problems?” 

(Kontorovich, 2020, p.390). Several studies report that tailored professional 

development can improve teachers’ ability to pose valuable problems (e.g., Cai et al., 

2020; Grundmeier, 2015). These studies emphasized the need for teachers to receive 

substantial scaffolding from mathematics education specialists for their PP products to 

be worthwhile (Rachamim et al., 2022). In this paper, we strive to contribute to our 

knowledge of teachers learning through PP and task design. A better understanding of 

what and how teachers learn when engaged in PP and task design can be a basis for 

developing suitable guiding principles for mathematics education specialists 

supporting teachers as task designers.  

For this purpose, we closely examine the process in which a developing teacher, Adi, 

modified a context-based mathematical problem that she posed. We focus on the part 

of her iterative design process that was accompanied by a tutor applying the multi-

dimensional model (MDM) – developed for guiding teachers’ context-based 

mathematical problem posing (CMPP) and task design (Marco & Palatnik, 2022). 

Before introducing the MDM and our research question, we briefly present the 

variation theory of learning, which we used to develop the MDM and in the current 

paper to conceptualize teacher learning.     
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Variation theory  

The variation theory of learning relies on the premise that learning is always directed 

at something (phenomenon, skills, or certain aspects of reality) and conceptualized as 

a qualitative shift in the way of perceiving this “something” (Marton & Booth, 2013). 

To see or experience an object of learning in a certain way requires the learner to be 

aware of its specific aspects and discern these aspects simultaneously. Lo and Marton 

(2012) emphasize that awareness is stimulated by experiencing difference (variation) 

between two values. When we become aware of a value by contrasting it with another 

value (e.g., large vs. small), the value is separated from the object of learning, and a 

dimension of variation is inferred (e.g., size). Then, the object is perceived with both 

its value and dimension of variation, and the learner can focus on the value alone, 

naming it and even changing it (Lo & Marton, 2012).  

The MDM and research question  

Figure 1 presents a visualization of dimensions of variation in teachers’ applied 

mathematics problem posing, that we developed in a previous study where we 

investigated modifications teachers incorporated into their tasks during an iterative task 

design (Marco & Palatnik, 2022). The dimensions we articulated using the variation 

theory are correctness, authenticity, task assortment (consisting of mathematical 

diversity, multiple data representations, question-answer format, precision-

approximation, and generalization), task flow, and student involvement.  

Figure 1: The multi-dimensional model (MDM) of teacher CMPP and task design  

Here we elaborate on three main dimensions: Task Assortment – an umbrella 

dimension that assesses how diverse a task is, containing items that vary along some 

subdimensions. Specifically, we say that a task has a high assortment if it (i) has items 

requiring specific case calculations side by side items necessitating generalization; (ii) 

uses multiple data representations; (iii) blends different mathematical content areas; 

(iv) has items with diverse question/answer formats; and (v) has both items that require 
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precise calculations and items that enable approximations. Task Flow – expresses the 

extent to which items are ordered in a way that evolves the task sensibly towards 

achieving its pedagogical goals. Student Involvement – the extent to which a task 

explicitly positions students as active agents in real-life situations (e.g., as consultants 

in decision-making) and provides human motivation for their mathematical activity. 

When we developed the MDM, we focused our investigation on teachers’ CMPP 

products, not their PP and task design processes (Marco & Palatnik, 2022). This study 

addresses the following research question (RQ): What can teachers learn during CMPP 

iterative task (re)design with a tutor using the MDM?   

METHODOLOGY  

Research context—PD for CMPP 

This paper’s data is from the third year of a three-year PD program in which secondary-

school teachers designed context-based mathematical tasks. The PD was conducted as 

a community of practice in which teachers, teacher educators, and researchers 

collaborate to achieve specific goals (Cooper & Koichu, 2021). We hypothesized that 

through posing and designing their context-based tasks, teachers would develop their 

capacity to use mathematics knowledge and skills in real-life challenges, gain 

ownership over the materials they develop, and have inner motivation to implement 

them in their classrooms (Koichu, 2020). 

This paper focuses on the case study investigating the development of the 

“Accessibility is not a Privilege” task (see Figure 2) composed by the teacher Adi, 

during her second year in the PD. We chose this case since Adi made many 

modifications to the problem she initially posed. The CMPP task design process 

included the following stages: (i) initial PP design, (ii) receiving feedback from the PD 

community and redesigning, (iii) first personal meeting with a tutor (the first author, 

then serving as a community leader), (iv) redesign, (v) second personal meeting with 

the tutor four weeks after the first meeting, (vi) redesign, (vii) receiving written 

feedback from the tutor and submitting the final version. From these stages, we report 

here on stages (iii-vii) focusing on three versions of Adi’s task: the first and second 

versions are the drafts Adi sent for the first and second personal meetings, respectively. 

The third one is the final version she submitted. Note that the MDM was not yet 

finalized when the meetings took place – the tutor used it to provide feedback and 

generate suggestions for task modifications without explicitly presenting its 

dimensions. 

Accessibility is not a Privilege 

In Israel, about 18% of the population suffers from physical disability [...] The Equal Rights Law 

for People with Disabilities (ERL) in Israel states that every person deserves the same rights to 

access every place and receive any service. The ERL determines all public and residential 

buildings should be accessible for people with disabilities and in wheelchairs in particular […] In 

buildings that are up a flight of stairs, there should be a ramp that allows reaching the entrance to 

that building.  
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ERL Guidelines for Planning a Ramp: 

● Maximum slope for the ramp: 8%. It is advisable to plan a ramp with a moderate slope of 5%. 

● Ramp minimum width - 1.3 meters. 

● If the slope exceeds 5%, its length shall not exceed 9 meters.  

First version (a)  Second version (b) Third version (c) 

(a1) In the figures below, 

there is a plan for an 

entrance to a public building 

and a side section of a 

stairway. Plan [single 

masculine form; SMF] a 

ramp for people with a 

physical disability that 

satisfies the ERL guidelines. 

Pay [SMF] attention to the 

heights and calculate [SMF] 

the ramp length according to 

the regulations. 

(a3) Consider [SMF] these 

right triangles. Data is given 

in cm. Determine if they 

satisfy the ERL guidelines. 

 

(b1) same as a1 

(b3) Consider [SMF] these 

right triangles, each 

representing a possible 

ramp for people with a 

physical disability. Data is 

given in cm. The upper 

ramp satisfies the ERL 

guidelines, and the middle 

one does not. Determine 

[SMF] if the ramp in the 

bottom satisfies the 

guidelines and justify your 

answer. 

 
(b4) Does a ramp whose 

height is 40 cm and length 

500 cm satisfy the 

guidelines? Justify [SMF] 

your answer.  

(b5) Why do you think the 

ERL recommends a 5%-

slope, even though the 

maximal slope permitted is 

8%? 

(b6) According to the 

guidelines, a mid-plateau 

that separates between two 

stairway slopes must be 

administered after a certain 

length of the ramp. State 

your reasons for this 

regulation.  

(c1) Rivka, a regular customer in David’s 

grocery, fell from a ladder when cleaning 

her house for the Passover Holiday and 

broke her leg. She will have to be in a 

wheelchair until her leg recovers. At the 

entrance to David’s grocery, there are a few 

stairs which makes it difficult for Rivka to 

shop. Consequently, David decided that it is 

time to make his grocery accessible to 

everyone. He needs to plan a ramp at the 

side of the stairs… The figure below shows 

a side section of the stairway to David’s 

grocery. Plan [plural genderless form; PGF] 

a ramp for people with physical disability 

that satisfies the ERL guidelines. In your 

plan, pay [PGF] attention to the heights and 

calculate the length of the ramp according to 

the regulations. Add the measurement the 

attached figure below. 

 
(c3) same as b3 

(c4) Consider [PGF] a ramp whose height is 

x cm and length y. Which of the following 

inequalities is correct according to the ERL 

guidelines?  

 
(i) x+y<0.08; (ii) x<0.08y; (iii) xy<0.08; (iv) 

y<0.08x  

(c5) and (c6) are the same as (b5) and (b6), 

respectively. 

Figure 2: “The Accessibility Task”, partial comparison between the three versions.  
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Data collection and data analysis 

To assess Adi’s learning, we collected data comprising the three versions of her task, 

video recordings of the two personal meetings, written email exchanges between the 

tutor and Adi concerning the task, and a video recording of a personal interview with 

Adi performed by the second author six months after the PD completion. 

To analyze the data, we created a three-layered document. The first layer included 

versions of the task submitted for feedback (i.e., CMPP products, see Figure 2), the 

second layer consisted of transcriptions of all the video recordings, the third layer 

contained corresponding screenshots capturing participant’s sketches, gestures, and 

facial expressions during the meetings. Adi’s modifications to her task during, 

between, and after the two personal meetings were categorized according to the MDM 

dimension(s). We then allocated the parts in the personal meetings where this 

modification was discussed between Adi and the tutor. Reading the document line-by-

line and checking the two other layers, we established who initiated the modification 

(tutor or teacher) and retrospectively traced verbal utterances, gestures, and sketches 

justifying the modification. Using the variation theory of learning (Lo & Marton, 2012) 

as an analytical tool, we discerned cases in which Adi’s modifications were 

accompanied by indicators of her becoming aware of a dimension of possible variation. 

We then searched for cases of transfer – where Adi used similar MDM consideration 

for changing other items in the task. Finally, we used the post-PD interview to assess 

long-term learning, juxtaposing the analysis results with indicators of Adi’s awareness 

of the MDM dimensions.  

RESULTS  

In this section, we bring empirical evidence to argue that Adi learned in the CMPP 

iterative design process by developing awareness of and applying task modification 

corresponding to three dimensions of the MDM: Task Flow, Task Assortment, and 

Student Involvement.  

In the first meeting, before presenting a3 to the tutor, Adi said: “Now, whoever did not 

apply the Pythagorean theorem yet, will have to use it here.” This utterance shows that 

Adi did not mind students applying the Pythagorean theorem to two different items of 

the same task. The tutor implied that a3 was unsolvable since there were no numbers 

to perform calculations. After Adi said she intended to add them: 

Tutor:  And what would happen if you won’t provide numbers here?  

Adi:  I will have to make the diagrams accurate (so that) they would have to use 

a straightedge (to measure). I don’t need to give all the sides. Only two 

numbers for each ramp, in some ramps–a side and a hypotenuse, and in 

others, two sides. 

In her answer, Adi gently rejects the tutor’s hinted suggestion not to provide numeric 

data. First, she doubts the item solvability (i.e., Correctness dimension: “they would 

have to use a straightedge”) and then specifies which pairs of numbers she will provide 
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(e.g., “a side and a hypotenuse”). So, at this point, she definitely intended her students 

to perform numeric calculations using the Pythagorean theorem in item a3. 

Tutor:  Say, I am thinking aloud here, what would happen if you gave a ‘soft 

question’ here, without numbers? And you’ll ask if it satisfies, may satisfy, 

or doesn’t satisfy the ERL guidelines. Three options for each ramp.  

Adi:  Only by way of their appearance?  

Tutor:  Exactly, through feeling. Intuition… 

Adi:  You say that when a student approaches this question, he must understand 

that he himself is going up this ramp sitting in a wheelchair and see if the 

wheelchair can go through safely.    

Here Adi articulates an advantage she sees in the tutor’s suggestion that she previously 

dismissed. She implies that not providing numbers requires students to “understand” –

imagining themselves in the realistic situation as a resource for solving. Adi’s 

conclusion demonstrates her awareness of the Student Involvement dimension and her 

acknowledgment of a certain way to apply it in the CMPP task. As the discussion 

continues, the tutor raises another argument supporting his suggestion:  

Tutor:  So, we will give them another Pythagorean (theorem)?  

Adi:  Perhaps they could avoid (using) it (in previous items), but I don’t mind. 

Tutor:  In a1 they could not avoid it. 

Adi:  Ah, right, a1 is (with) the Pythagorean (theorem). 

Tutor:  So OK, they already got it! They did the Pythagorean, they calculated 

(with) the Pythagorean, OK? We don’t want to exhaust them with seven 

Pythagoreans. Let’s give them more qualitative understanding now.  

Adi:  Ok. I love it, actually.  

Here the tutor uses questions and exaggeration (“seven Pythagoreans”) to claim that 

leaving a3 without numbers would increase Task Assortment by increasing the 

mathematical diversity and thus improve the Task Flow. Adi accepted the tutor’s 

reasoning (“Ok. I love it”) and later changed the task accordingly (b3, Figure 2). In the 

second meeting, while debating another modification to the task: 

Adi:  But they (students) already understand this (the dependence of the slope on 

the height) in item b2 because they did this calculation, do you understand? 

I want to do something else that is not based on something they understood 

in previous items. So that each item will have something special of its 

own... Because the goal is not to have seven items… Therefore b4, I am 

doubtful if I should keep it. It feels to me like [in a complaining student 

voice] “what? another calculation?”  

In this excerpt, Adi generalizes the tutor’s argument about the repeated use of the 

Pythagorean theorem and articulates general considerations that manifest awareness of 

the Task Assortment and Task Flow dimensions. She expresses it as her desire (“I want 
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to do something else…”) and applies it reflectively to another new item she composed, 

b4, that was not yet discussed in the second meeting. As the tutor in the first meeting, 

Adi also uses an exaggeration “the goal is not to have seven items” (c.f. “we don’t want 

to exhaust them with seven Pythagoreans”). Choosing the same number for the 

exaggeration (“seven”) is a slight linguistic hint connecting the two episodes.  

In the post-PD interview, when asked about the final version of her task, Adi reiterated 

reflective considerations related to Task Flow and Task Assortment, demonstrating that 

she remained aware of them six months after the PD: 

Adi:  (At first) I did it very banal: ‘let’s add another item cause it’s nice to have,’ 

and I made it very computational. And here (version c), I think it opens the 

mind and simultaneously adds another (mathematical) topic.  

We found that Adi applied various design techniques in the modifications accumulated 

in the final version of the task. Student Involvement was increased through telling a 

personal story (c1), using plural genderless pronouns (c1-c6) instead of single 

masculine form (e.g., a1), and explicitly asking for student opinions (“why do you 

think…” c5). the Task Assortment is enhanced through using graphs in c3 (Multiple 

Data Representations); adding inequalities in c4 (Mathematical Diversity); asking for 

verbal explanation in c5 and c6 or turning b4 to a multiple-choice item c4 (Question-

Answer Format); and asking for a generalizing relationship between two variables in 

c4 (Generality). The Task Flow can be seen in Adi’s decision to place c5 and c6 at the 

end of the task, as she explained in the post-PD interview:  

Adi:  After you experienced, understood, felt, applied, now, after all these, tell 

me why you think it is a serious matter (the ERL guidelines). If I would 

give it (c5 and c6) at the beginning, I’m sure the student would say ‘what 

does she want from me?’  

DISCUSSION  

The answer to our RQ is that, during CMPP iterative task design supported by a tutor 

using the MDM, teachers can (i) become aware of MDM dimensions and (ii) develop 

various techniques for diversifying task items across these dimensions. In accordance 

with the variation theory of learning (Lo & Marton, 2012), the MDM was used by the 

tutor to suggest variation in the task enabling the teacher to experience differences 

between item versions and become aware of some dimensions of variation (Task Flow, 

Task Assortment, and Student Involvement). Teacher awareness was manifested by 

changes she initiated in her task and retention of these dimensions half a year after 

completing the PD. In this respect, guiding CMPP with the MDM expands the 

educational toolkit for supporting teachers in PP and task design (Cai et al., 2020; 

Rachamim et al., 2022). 

The current study presents a case of teachers’ learning through a fruitful process 

resulting in a mathematically and socially sound CMPP product. However, our study 

also showed that experiencing differences and modifying a task does not always 

develop teacher’s awareness of MDM dimensions. Comparing multiple cases of other 
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teachers’ CMPP is necessary for understanding the conditions for such teacher learning 

in this context. Another promising direction for future research is tutor’s interventions. 

Under what conditions tutor’s suggestions of modifications will improve the quality of 

teachers’ PP products in the short-run and when significantly and sustainably enhance 

their task-design capacity.  
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Gestures, whether derived from teachers/lecturers or students in relation to 

mathematics education, are becoming more and more present in our field. Our focus 

here is on concept gesture, which can also be seen as a body metaphor, where (part 

of) the body attempts to enact or depict the mathematical concept dynamically, both 

somewhat idiosyncratically yet also, to some extent, generically. In this paper, we 

illustrate the notion of concept gesture by examining some of a lecturer’s pedagogic 

gestures in a first-year university analysis lecture, focusing specifically on those that 

relate to or engage with mathematical concepts. 

ON CONCEPT IMAGE AND CONCEPT GESTURE  

“To understand a gesture is to comprehend a gestalt” (Zwicky, 2019, p. 114) 

Forty-plus years ago, Tall and Vinner (1981) published an influential article in which 

they described the term concept image (“the total cognitive structure that is associated 

with the concept, which includes all the mental pictures and associated properties and 

processes”, p. 152), to account for differences between a concept’s formal definition 

and the process and manner in which it is conceived. Their construct emerged in a 

period dominated by cognitive theories of learning that aimed at explaining individual 

student mathematical constructions (Bingolbali & Monaghan, 2008). Acknowledging 

that learning theories have since developed additionally to account for the social, 

cultural, biological, and embodied dimensions of learning (Radford, 2014), we build 

on Tall and Vinner’s notion and, in this paper, make initial steps towards a 

conceptualisation of what we here refer to as concept gesture. 

While a gesture might initially be seen as merely a specific element of a concept image, 

we note significant distinctions between a concept image and what we call a concept 

gesture that make it valuable to consider them separately: (a) the notion of concept 

image is not necessarily visual (as it includes all associated processes and properties), 

whereas gestures decidedly are; (b) concept images focus on mental cognitive 

structures, whereas gestures are inherently physical and embodied; (c) the notion of 

concept image was conceived to examine individuals’ mathematical constructions, 

whereas gestures exist fundamentally in the social (and, frequently, pedagogical) 

domain; (d) concept image is private while the concept gesture is public, in the sense 

of customarily being explicitly visible to someone else present; (e) methodologically, 

concept images are often examined through students’ written work (e.g., Biza & 

Zachariades, 2010), which stays permanently on a page (unless actively erased), 

whereas gestures occur in real time and then instantly vanish (unless video-recorded). 
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In this paper, we present initial ideas about the meaning of concept gestures, as gestures 

that convey conceptual mathematical meaning (rather than ‘organisational’ gestures, 

such as a lecturer pointing to a place on the board to attract student attention), and could 

accordingly be used pedagogically to promote and support students’ learning of 

mathematical concepts. Similar to Tall and Vinner (1981) who used a single 

mathematics textbook as a primary data source to exemplify and develop their notion, 

we shall use a single undergraduate Real Analysis lecture as ours. 

ON GESTURES AND EMBODIED COGNITION 

Over the past fifteen years, there has been a considerable increase in attention to aspects 

of human gestures in relation to mathematics education, both by students and by 

teachers (e.g. see Edwards et al., 2009, for a special issue on gestures). However, the 

predominant emphasis has been on student gestures and gesturing, and relatively little 

research has attended to teacher/instructor gestures, particularly at the undergraduate 

level (Weinberg & Wiesner, 2015). Furthermore, studies that analyse undergraduate 

mathematics lecturers’ gestures often focus on organisational gestures such as pointing 

and touching (e.g. Hare & Sinclair, 2015), rather than on what we term pedagogic 

conceptual gestures, namely specific gestures deliberately intended by the teacher to 

convey some aspect of the mathematical notion under presentation and discussion. 

Theoretically, conceptual gestures can be regarded in the wider context of embodied 

cognition (e.g. Núñez et al., 1999). Whereas traditional cognitive learning theories 

treated gestures, and more generally, the body, as merely potential secondary and 

transitory steps towards ‘genuine thinking’, more recent education research considers 

cognition itself to be embodied (Radford, 2014). As argued by Radford (2009, p. 113): 

[Thinking] does not occur solely in the head but in and through language, body and tools. 

As a result and from this perspective, gestures, as a type of bodily action, are not 

considered as a kind of window that illuminates the events occurring in a “black box” – 

they are not clues for interpreting mental states. They are rather genuine constituents of 

thinking. 

A compelling illustration of the embodied nature of cognition can be found in a study 

by Healy and Fernandes (2011), which revealed that blind students, who are 

accordingly not ‘conditioned’ by social conventions of gestural communication, 

gesture with their body when engaged in mathematical sense-making activities. 

In relation to sequences and limits, discussed herein, we draw on Núñez’s (2006) 

notion of fictive motion, which is a “fundamental embodied cognitive mechanism 

through which we unconsciously (and effortlessly) conceptualize static entities in 

dynamic terms” (p. 171). In the formal limit definition, there is no motion nor dynamic 

entities. However, the commonly-heard sentence ‘𝑎𝑛 gets closer and closer to 𝐿 as 𝑛 

tends to infinity’ reveals a metaphorical conceptualisation involving movement and 

dynamic terms. In this paper, we examine how the fictive motion associated with the 

sequence limit definition is exhibited and conceptualised in the lecturer’s gestures. 
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ON METHODOLOGICAL CONSIDERATIONS 

The data with which we develop, exemplify, and justify the need for our suggested 

concept gesture construct is a video-recording of a Real Analysis lecture on the topic 

of the formal definition of a sequence limit. The recording is publicly available on the 

YouTube channel of the Technion – Israel Institute of Technology, and its spoken 

language is Hebrew. The first author (OM) had originally examined this lecturer’s 

recordings in relation to a wider research project that did not have a specific focus on 

gesturing. The lecture discussed here was chosen to examine how a lecturer deals with 

one of the most cognitive-challenging concepts in Calculus / Real Analysis – the formal 

sequence limit definition. However, it quickly became evident this cognitive-loaded 

lecture did not contain much written text on the boards, but rather long episodes of him 

only speaking and prominently gesturing – leading us to inquire into how he was using 

his body to communicate and conceptualise mathematical ideas. 

To be able to analyse the lecturer’s gestures meaningfully, we found that we had to 

‘retune’ our senses. Speech is for the ears, while gestures (and writing, albeit 

differently) are predominantly for the eyes (even though both actions may generate a 

small amount of sound). But when these communication components occur 

simultaneously, speech generally receives priority and predominance due to its carried 

semantic meaning. Accordingly, to attune our senses and perception to the gestures and 

their meanings, we first examined the entire recording with the sound off, forcing 

ourselves to engage with the gestures without any associated verbal meaning. We 

watched it this way separately, making notes individually, and then met together to talk 

about what we had noticed. Subsequently, we, again separately, engaged with the 

recording a second time, on this occasion with the video turned off, focusing solely on 

the acoustic track (and then met again to discuss). Considering that OM is a native 

Hebrew speaker and the second author (DP) is not, OM could attend directly to the 

speech semantics and syntax, while DP was able to hear other sounds more easily (e.g. 

the lecturer’s emphasis and cadence), by not being able to be seduced by the meaning. 

This stage also enabled us to be open to explore and conjecture about potential 

connections between the gestures observed in the earlier iteration and the speech/sound 

heard in this, though without being ‘locked’ on a single connection (which might have 

occurred had we simply examined the sound and vision together from the outset). 

Lastly, we both separately attended to the complete recording (vision and sound) and 

each made a third set of notes, before meeting for a discussion about its entirety 

(followed, unsurprisingly, by multiple further discussions). When both vision and 

sound were present, to a certain extent (albeit in different respects) we could encounter 

much of the experience the students present at the time had had. Also here, the benefit 

of DP’s utter lack of Hebrew comprehension was the marginalisation both of speech 

and of linguistic text (though not mathematical diagrams or notation), at least 

semantically. For both of us, the build-up of watching the lecture in three iterations, 

each time attuning to different senses, allowed us to notice aspects of the bodily 

mathematical communication, which otherwise we might have not noticed. 
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EXAMPLES OF CONCEPT GESTURES 

In the subsequent two examples of certain gestures, we begin by providing descriptions 

of the physical bodily movements as observed in the first iteration of viewing with the 

sound off, and only subsequently explain how we interpreted and inferred their 

associated mathematical meaning.  

Example 1 

A kind of gesture that had appeared early on and was then repeated multiple times 

throughout the lecture was what we here refer to as the ‘arm-sweeping’ gesture (see 

Figure 1). When enacting this gesture, the lecturer would typically begin with his arm 

close to his chest (and his hand in a relatively closed position), and then sweep his arm 

to the side in the direction away from his body (while his hand would open up as well). 

This gesture was manifested in what we regarded as two versions: a ‘continuous’ 

version, where the sweeping opening of the arm was done in a smooth movement (see 

Figure 1); and a ‘discrete’ version, where the opening of the arm involved ‘bouncy’ 

stops along the movement (no figure is shown due to space limitations, though the 

general motion could be understood from the following diagram ‘read’ from right to 

left: ⟵⤺⤺⤺⤺⤺⤺). 

 

Figure 1: An illustration of the ‘arm-sweeping’ gesture (‘continuous’ version) 

During the initial viewings of the video (each of us separately and then together), when 

the sound was still muted, we were attempting to endow the gesture with mathematical 

meaning. Though there was no sound, in the meaning-making of the gesture, we could 

draw on what was written on the board – which was intelligible also to DP, the non-

Hebrew speaker, as these were mathematical symbols. For example, in Figure 1 

(timestamp 5:50), two sequences had already been written on the board (𝑎𝑛 = 𝑛 and 

𝑎𝑛 =
1

𝑛
). The lecturer’s arm movement could then be understood as representing the 

process of the sequence progressing ‘towards infinity’. This interpretation was here 

emphasised by the lecture consecutively repeating the gesture four times in a row 

(5:50-5:55). Moreover, during the enactment of the gesture, not only did his arm move 

greatly, but also did his entire body, as if he were trying to reach further than what his 

body physically allowed (see Figure 1), potentially representing the idea of 

‘approaching infinity’ with this gesture. 

During the first sound-off viewing iteration, we had conjectured that the ‘arm-

sweeping’ gesture in its ‘continuous’ version was associated with the idea of a limit, 

whereas its ‘discrete’ version with the terms of the sequence itself, or perhaps its 

indices as they continued towards infinity. While, in reality, an arm’s movement is 
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always continuous and cannot be discrete, we interpreted the ‘bouncy steps’ in the 

lecturer’s second version of the gesture as a gestural metaphor for another gesture that 

could have been made had his body permitted – that of creating discrete points in space 

that move towards infinity. The later analysis stage that included listening (and 

understanding the semantic meaning for OM) revealed that there existed some 

semantic evidence to our original interpretation. For example, in the timeframe 5:50-

5:57, the lecturer said, “Regarding their limit behaviour, OK, what does it [𝑎𝑛 =
1

𝑛
] 

approach?” – where the gesture in its ‘continuous’ version was enacted during the 

words “limit behaviour”. Immediately afterwards, he continued and said (5:57-6:01): 

“The more I progress in the indices, the [sequence] elements become closer and closer 

to zero” – where here the lecturer was gesturing the ‘discrete’ version when saying, 

“The more I progress in the indices”. 

An interesting phenomenon we observed here is that both versions of the ‘arm-

sweeping’ gesture did not distinguish different sequences in terms of convergence and 

divergence (e.g. 𝑎𝑛 = 𝑛 and 𝑎𝑛 =
1

𝑛
; see Figure 1). However, upon further examination 

of the rest of this Real Analysis course recordings, we discovered that in this course, a 

sequence was considered to have a limit whether this limit was finite or infinite (where 

a separate formal definition was given in each case). Accordingly, we can interpret the 

lecturer’s unified gesture for both cases to represent the limit concept as regarded in 

this course; or in other words, as its concept gesture. 

Example 2 

Another kind of gesture that repeated multiple times in the lecture could perhaps be 

referred to as the ‘swinging’ gesture or the ‘oscillating’ gesture. This gesture was 

typically enacted with the entire right arm creating a ‘trail’ in an arch form, which 

oscillated back and forth while rhythmically accelerating as it got closer and closer to 

a single point (see Figure 2a). The first two appearances of the gesture followed the 

writing of the sequence 𝑎𝑛 =
(−1)𝑛+1

𝑛
 on the board, and we had initially interpreted this 

simply as a gestural ‘mimicking’ of the sequence. However, what became interesting 

for us is that the meaning of this severally repeated gesture seems to have developed 

in the continuation of the lecture, and evolved into that which we refer to as a concept 

gesture in relation to the definition of a limit. 

Focusing on analysing the mathematical meaning conveyed beyond the spoken and 

written words, we noted several episodes in the lecture where no text was added to the 

board for substantial periods of time. Such episodes significantly drew our attention, 

particularly in the first round of the data analysis, which involved the viewing of the 

lecture without any sound. In particular, we identified a 5-minute episode (25:49-

30:42) in which the lecturer did not write anything on the board other than drawing 

three diagrams. What struck us here was that one of these was a diagrammatic 

actualisation of the ‘swinging’ gesture that had been introduced earlier in the lecture, 

though now realised in written graphic form (see the middle diagram in Figure 2b). 
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Furthermore, this gesture received further attention in this episode, as the subsequent 

diagram (bottom diagram in Figure 2b) was an extended variation on the gesture, which 

was followed by the lecturer enacting the ‘swinging’ gesture once more (29:37-29:38). 

 

Figure 2: (a) Illustration of the ‘swinging’ gesture; (b) subsequent gestural diagrams 

In the initial viewing-without-sound stage, we had attributed potential meaning to the 

diagrams and associated ‘oscillating’ gesture, which was later confirmed when 

watching the video with the sound on. The diagrams served as illustrations of different 

ways in which a sequence may approach its limit – allowing oscillations around a limit 

in addition to monotonously approaching it (compare middle to top diagram in Figure 

2b); as well as permitting ‘random’ values at the beginning of a sequence prior to an 

oscillation behaviour (bottom diagram in Figure 2b). We further note these diagrams 

were generic in nature (as gestures generally are), pointing to general ways of 

approaching a limit, while containing no reference to a specific sequence. Accordingly, 

we suggest that through the creation of a link between these diagrams and the earlier 

gesture, the ‘swinging’/‘oscillating’ gesture was endowed with more general meaning; 

it was no longer a mere ‘mimicking’ of a particular sequence, but rather representative 

of the conceptual idea of how a sequence may approach its limit from both directions. 

Interestingly, the ontological coupling of the gesture and diagram created here was also 

exhibited through the temporal nature of a gesture being ‘implemented’ on the diagram. 

Soon after the drawing of all three diagrams (Figure 2b), the lecturer erased them, 

rather than moving to the next available board. As such, we suggest that the written 

diagram was not treated as more significant than the fleeting gesture, but rather merely 

as a temporal transfixing of the gesture, highlighting its associated conveyed ideas. 

The deletion of the diagrams was soon followed by that part of the lecture in which the 

lecturer’s gestures seemed to have played the most significant role. At this stage, the 

lecturer wrote the formal limit definition on the board – after which he laid his notes, 

which he had almost continuously been holding in his hands, on the table, and 

embarked on a 7.5-minute oral and gestural explanation (32:09-39:45) in which only 

very few clarifying notes were added to the board. During this part, the lecturer created 

combinations of the various gestures which had been used earlier on – one of which 

was the ‘swinging’ gesture, which was now enacted frequently and repeatedly. In 

combination with other gestures depicting a hypothetical limit 𝐿 = 1 and an 𝜖-

neighbourhood around it, the ‘swinging’ gesture was used to refer to the elements of 

the sequence 𝑎𝑛 being outside or within the 𝜖-neighbourhood. Similar to its first 

appearance (see above), we identified a rhythmical accelerando in the gesture. Initially, 
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when the sequence elements were still outside the 𝜖-neighbourhood, the movement of 

the right arm was grand and slow. However, when the sequence entered the 𝜖-

neighbourhood, the gesture became bouncier and quicker as the elements approached 

the limit. In other words, this gesture, which had initially appeared as a ‘mimicking’ of 

a particular sequence and later developed into a general idea of how to approach a limit, 

was here fully realised into a conceptual gesture depicting a central aspect of the limit 

definition – the relation between the elements of the sequence and the definition 

statement “for every 𝑛 > 𝑁, we have |𝑎𝑛 − 𝐿| < 𝜖”. 

DISCUSSION 

Reflecting on the lecture exemplified above, the aspect that stood out for us most was 

how the lecturer was communicating mathematically through his gestures (and not just 

‘organisationally’). He repeatedly embodied and modified mathematical concepts, 

where, through a cognitive mechanism of ‘fictive motion’ (Núñez, 2006), he ‘brought 

concepts to life’ from static objects (e.g. sequence and limit) to dynamic entities (by 

his body physically ‘sequence-ing’ and ‘limit-ing’). Through repeated and developed 

use of the same gestures in different contexts – from specific example ‘mimicking’ to 

representing the general idea of a limit – he created an accumulative mathematical 

narrative whereby, towards the end of the lecture, different gestures came together and 

seemed to have formed a combined meaning. Furthermore, his gestures were 

distinctive in the sense that they involved large-scale movements not only with his 

fingers and hands, but also using his whole arm and body (see Figures 1 and 2). In 

relation to potential pedagogical implications, we note Gerofsky’s (2011) findings that 

students who use whole-body engagement to gesture mathematical concepts seem to 

be more conceptually flexible and imaginative in their mathematics learning than 

students whose gestures involve small movements of a finger, hand, or arm. 

More generally, we view this lecturer’s pedagogical gestures as illustration of what we 

refer to as concept gestures. We regard concept gestures as gestures that convey 

conceptual mathematical meaning, and can also be seen as body metaphors, where (a 

part of) the body attempts to enact or depict the mathematical concept dynamically, 

both somewhat idiosyncratically yet also, to some extent, generically. Linking this 

notion back to Tall and Vinner (1981)’s constructs, we suggest that, while concept 

definition is formal and public, and concept image (as representing mental pictures, 

associated properties and processes) is private and individual, concept gesture (by a 

lecturer) is public and individual. In this regard, while ‘concept image’ emerged in a 

constructivist era in mathematics education, attempting to describe how individual 

students learn formal concept definitions via mental constructions, ‘concept gesture’ 

as enacted by a lecturer is befitting the more recent socio-constructivist approaches that 

examine the social, cultural, and biological roots of learning. This also leads to new 

questions, such as how do concept gestures feed or shape concept images and concept 

definitions? Or can some concept gestures support concept definitions better than 

general concept images? Naturally, future development of this construct would need 
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to inquire further into the different possible interrelationships among concept gesture, 

concept image, and concept definition. 
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This study uses Action-Process-Object-Schema theory (APOS) to examine students’ 

understanding of optimization of two-variable functions. We propose a genetic 

decomposition (GD) model of Schema components and relations between components, 

that students may construct to understand the optimization of these functions. The GD 

was tested by performing semi-structured interviews with 22 students. The results 

suggest that students’ struggles are mainly related to the topology of domain sets and 

those relations which help to understand the scope and limitations of some of the 

theorems commonly applied to solve optimization problems. The study also contributes 

to a better understanding of the APOS notions of Schema and types of relations 

between Schema components and their use to model students’ mental constructions. 

INTRODUCTION  

A growing body of research deals with teaching and learning multivariable calculus, 

including its definition, geometric representation, and differential and integral calculus. 

Martínez-Planell and Trigueros (2021) discuss this in a survey article. However, very 

little research deals with the optimization of two-variable functions (López, 2020; 

Martínez-Planell & Trigueros, 2021). Given the importance of optimization in 

applications of two-variable functions to science, technology, engineering, 

mathematics, and economics, this study addresses this significant gap.  

The few existing studies consider topics such as Lagrange multipliers (Xhonneux, 

2011), the use of digital software for the identification and classification of extrema of 

two-variable functions (Alves, 2012; Ingar, 2014), the relation between second-order 

Taylor polynomials, quadratic forms, and the classification of critical points (López, 

2020), and two-variable function optimization in contextual situations (Ingar, 2014; 

Mkhatswa, 2021). Here, we focus on the role of topology in students’ understanding 

of two-variable function optimization. 

THEORETICAL FRAMEWORK 

We use the notion of Schema in Action-Process-Object-Schema (APOS) theory 

(Arnon et al., 2014). Since APOS is a well-known theory, we only describe Schemas. 

A Schema is a coherent collection of mental structures (Actions, Processes, Objects, 

and other previously constructed Schemas) that are interconnected in a way that allows 

the individual to recognize when a problem situation falls under the scope of the 

Schema. Thus, to study Schemas, one may start by specifying what component 

structures will be considered and what types of relations interconnect these 
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components. Trigueros (2019) proposed that relations between components can be 

classified as correspondence, transformation, and conservation relations. 

Correspondence relations are the result of superficial comparison of some Schema 

components in terms of similarities or differences. They may be constructed through 

the observation of the repeated use of certain structures, but the individual cannot 

justify the relation. When an individual explains or justifies a relation between Schema 

components in terms of other structures, or when the individual can group some 

components, the relation can be considered as a transformation relation. The 

construction of conservation relations is evidenced when one component can be 

interchanged or fluently used for or with another in different problem situations. 

Determining the construction of the different types of relations implies that researchers 

should consider the student's work in different problem situations related to the Schema 

studied to distinguish between them.  

A Schema is a dynamic structure. It is constantly changing. Its development can be 

described as a triad consisting of three stages. A Schema is said to be at the Intra- stage 

of development when different components are unrelated or mostly related by 

correspondence relations. The Schema is at the Inter- stage of development when 

transformation relations have started to form, and most components are interconnected 

by some type of relation. At the Trans- stage, all components are interrelated mostly 

by conservation relations. When the student is able to determine the particularities of 

problems related to the Schema, it attains coherence.  

GENETIC DECOMPOSITION FOR THE TWO-VARIABLE FUNCTION 

OPTIMIZATION (TVFO) SCHEMA 

An important idea in APOS is that of a genetic decomposition (GD). This is a model 

of how students may construct a particular mathematical notion. In the case of 

Schemas, a GD is expressed as a list of component structures and types of relations 

between them. Due to space constraints, we list the components we focus on without 

much description, and we only describe the specific relations we will use in this paper.  

Components 

 Set topology (s) as a Schema including open and closed sets, continuity, and 

boundary of sets as Processes 

 One variable function (1f) as a Schema, including one-variable optimization 

 Two-variable function (2f) as a Process or Object 

 Partial derivatives (∂f) as a Process 

 Critical Points (cp) of two-variable functions and extrema as Processes 

 Second partial derivatives (2∂f) for two-variable functions as Processes 

Important relations between components 

 Partial derivatives and critical points (cp-∂f) evidenced by identifying points in 

the domain of the function when it is an open set or at the interior of a closed 

set, where both partial derivatives are zero; identifying points where one of the 
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partial derivatives does not exist, and by showing awareness that critical points 

provide candidates for local extrema. 

 Critical points and second partial derivatives (cp-2∂f) evidenced by the 

application of the second derivatives test (Stewart, 2012) to classify extrema 

using the Hessian determinant H when H ≠ 0 and by showing awareness that 

other methods must be used to classify extrema in case H = 0.  

 Set, critical point, and two-variable function (s-2f-cp) evidenced by the 

recognition of the role of continuity and the topology of the domain set in regard 

to critical points for different domain sets.  

 Sets and two-variable function (s-2f) evidenced by the recognition of the 

topology of the domain of the function.  

 Sets, function, and partial derivatives (s-2f-∂f) evidenced by the recognition of 

the topology of the domain and the possibility to compute a partial derivative. 

 Sets, two variable functions, and one variable function (s-2f-1f) evidenced by 

the awareness of the need to separate the domain into its interior and its boundary 

and the kind of derivative to be used. 

 Sets, one-variable function, and critical points (s-1f-cp) evidenced by its use in 

finding the extrema on the boundary. 

 Two-variable function and critical points (cp-2f) evidenced by the use of ad-hoc 

methods. 

METHODOLOGY 

Two groups of students from different introductory multivariable calculus sections 

were chosen to participate. The instructors of both sections were experienced in 

teaching two-variable function calculus. Eleven students from each section were 

chosen so that three of them were over-average, five were average, and three were 

under-average, as determined by their professor. This selection was determined in 

order to enable us to deduce from observations a wide range of different mental 

constructions and types of relations. The students participated in semi-structured 

interviews about one week after the course had ended; each interview lasted 

approximately one hour. During the interview, the students solved problems, 

explaining what they were thinking as they went along. The interviewer could ask 

questions for clarification. The interviews were audio and video recorded, transcribed, 

translated into English, individually analysed, and discussed as a group by the 

researchers. Differences were negotiated until a consensus was reached. For the 

analysis, a matrix was constructed with student names as rows and interview problems 

as columns. Codes that reflect the proposed relations in the GD were used. Here we 

only have space to show three of the 17 interview tasks.  

1. Let 𝑓(𝑥, 𝑦) = 𝑥2 − 2𝑥 + 𝑦2 + 2𝑦, 𝑆1 = {(𝑥, 𝑦): 𝑥2 + 𝑦2 ≤ 9}, and 𝑆2 =
{(𝑥, 𝑦): 𝑥2 + 𝑦2 < 0}. Discuss the strategy (but do not carry it out!) you would use to 

find the maximum and minimum values of 𝑓 on each of these sets.  
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2f. Let 𝑓(𝑥, 𝑦) = 𝑥3 + 𝑦2 be defined on 𝑆 = {(𝑥, 𝑦): 𝑥2 + 𝑦2 ≤ 1}. How do you find 

the maximum and minimum values of 𝑓 on the boundary of 𝑆? Find them. 

3a. True or false? The function 𝑓(𝑥, 𝑦) = 𝑥𝑦 attains a global maximum, a global 

minimum, and has a saddle point on the set 𝑆 = {(𝑥, 𝑦): 2 ≤ 𝑥 ≤ 4 and − 3 ≤ 𝑦 ≤ 1}. 

RESULTS 

We show evidence and discuss a representative sample of students, questions, and the 

relations they show to have constructed. We organize the information in terms of 

results from students who showed the construction of the same Schema level. 

Intra-TVFO stage of Schema development and the construction of 

correspondence relations 

Twelve of the twenty-two students had constructed mostly correspondence relations 

between Schema components. We present student C as an example. In question 1: 

Student C: I first need to find the critical points of 𝑓 inside 𝑆1 then I should use the 

second derivatives test to see if the critical points are max or min for 𝑓 

inside 𝑆1, then I need to find the critical points 𝑓(𝑥, 𝑦) on the boundary… 

Interviewer: How do you find the critical points of 𝑓 on the boundary of 𝑆1? 

Student C:  Like the way for the inside of the circle, umm if I solve the equations 𝑓𝑥 =
0 and 𝑓𝑦 = 0, then they will be the critical points, now we should check 

which of them are inside 𝑆1 … and which of them are on the boundary of 

𝑆1 … now we need to use again the second derivatives test for the critical 

points which are on the boundary of 𝑆1… 

Observe that student C relates partial derivatives and critical points (cp-∂f): “for the 

inside of the circle, umm if I solve the equations 𝑓𝑥 = 0 and 𝑓𝑦 = 0, then they will be 

the critical points.” He also proposes that after setting both partials equal to zero “now 

we should check which of them are inside 𝑆1 … and which of them are on the boundary 

of 𝑆1.” Student C considers that there is no difference in the method for finding extrema 

in the interior and in the boundary of the disk 𝑆1 which suggests that, in this problem, 

the constructed relation cp-∂f is a correspondence since the student’s arguments seem 

to be the result of repeated use. Student C also established a relation between critical 

points and second partial derivatives (cp-2∂f): “I should use the second derivatives test 

to see if the critical points are max or min for 𝑓 inside 𝑆1” and later “we need to use 

again the second derivatives test for the critical points which are on the boundary of 

𝑆1”. Student C again gives evidence of a correspondence relation. He considers using 

the second derivative test to classify critical points, independently of the points being 

on the boundary; that is, he considers similarities in the use of the method even though 

they do not apply in this case. We note that in Question 3a, he correctly found critical 

points: 

Student C: Let me find the critical points umm finding the partial derivatives and 

solving them for zero I will have the critical points of 𝑓 … so, the only 

critical point is (0,0). 



Martínez-Planell, Trigueros & Borji 

PME 46 – 2023 3 - 335 

Also, when set topology did not play a role, he used the second derivative test correctly: 

Student C: I think I need to use the second derivative test to see whether the critical 

point (0,0) is a saddle point or not …, okay, we have 𝐷(0,0) = −1 so this 

point is a saddle point 

The student shows the construction of correspondence relations mainly due to repeated 

use. He seemed to use memorized procedures without considering if they did or not 

apply. He also confused necessary and sufficient conditions on theorems; when asked 

if the following assertion is a theorem or not “if 𝑓 has a maximum or a minimum value 

at (𝑎, 𝑏), then the partial derivatives of 𝑓 exist at (𝑎, 𝑏) and 𝑓𝑥(𝑎, 𝑏) = 𝑓𝑦(𝑎, 𝑏) = 0”, 

he said: 

Student C: This is true, umm because when based on the second derivatives test a 

function has a min or max at a point like (𝑎, 𝑏) so I expect the point (𝑎, 𝑏)  

be a critical point, and so both 𝑓𝑥 and 𝑓𝑦 are zero at (𝑎, 𝑏). 

To summarize, student C showed throughout the interview that all the relations he had 

constructed were correspondence relations.  

Inter-TVFO stage of Schema development and the construction of transformation 

relations 

We classified four students at the Inter-TVFO stage of Schema development. They had 

interrelated most Schema components and had constructed transformation relations. 

Student B is an example. In question 1: 

Student B: I first solve 𝑆2, umm we just need to find the critical points 𝑓(𝑥, 𝑦) which 

are in the interior of 𝑆2, then we can compute the values of 𝐷(𝑥, 𝑦) and 𝑓𝑥𝑥 

for each of the critical points to see if they are min, max or a saddle point. 

Interviewer:  And 𝑆1? 

Student B:  Since the interior of 𝑆1 and 𝑆2 are the same so we have also the critical 

points inside the circle for 𝑆1, then we need to evaluate 𝑓(𝑥, 𝑦) on the 

boundary of 𝑆1 using the method of Lagrange multipliers or changing the 

function 𝑓(𝑥, 𝑦) to a one-variable function, umm in the next step we can 

find 𝐷(𝑥, 𝑦) and 𝑓𝑥𝑥 for them, but I don’t think if we need to use the second 

derivatives test because now I’m finding the min and max of 𝑓 on the 

closed and bounded set 𝑆1, so I need to just evaluate the values of 𝑓(𝑥, 𝑦) 

in all the critical points and candidate points on the boundary, then its 

biggest value will be max and the smallest value will be min. 

Student B’s awareness that there is no need to classify critical points on a compact set 

(“I don’t think if we need to use the second derivatives test because now I’m finding 

the min and max of 𝑓 on the closed and bounded set 𝑆1”) gives evidence of her 

construction of the relation s-2f-cp. Also, in question 2f:  

Student B: The function 𝑓 is 𝑥3 + 𝑦2 which is continuous everywhere, umm when we 

have limitations on the values of 𝑥 and 𝑦 in the form of the ordered points 

(𝑥, 𝑦) umm like 𝑥2 + 𝑦2 ≤ 1 which is a bounded and closed set then the 



Martínez-Planell, Trigueros & Borji 

3 - 336 PME 46 – 2023 

values of the function 𝑓 on 𝑆 will have its global maximum and also its 

global minimum. 

When asked if a continuous function on a closed set must attain maximum and 

minimum values: 

Student B:  I think this is false because the set should be closed and bounded. 

Interviewer:  Can you give a counterexample? 

Student B: If I consider the function 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦 on a closed and unbounded such 

that the values of 𝑥 or 𝑦 can be everything from −∞ to +∞, then the 

function 𝑓 doesn’t attain its max and min on 𝑅2. 

These examples suggest that student B had constructed a transformation relation for 

the relation s-2f-cp. However, she did not show the construction of conservation 

relations. For example, when asked if the function 𝑓(𝑥, 𝑦) = |𝑥| attains a global 

maximum and minimum on 𝑆 = {(𝑥, 𝑦)|𝑥2 + 𝑦2 ≤ 4}, she did not recognize it is a 

continuous function on a closed and bounded set. A student showing a conservation 

relation of s-2f-cp would have immediately recognised the existence of extrema in 

those conditions. She had also constructed some correspondence relations. When asked 

if the following assertion is a theorem or not, “if 𝑓 has a maximum or a minimum value 

at (𝑎, 𝑏), then the partial derivatives of 𝑓 exist at (𝑎, 𝑏)  and 𝑓𝑥(𝑎, 𝑏) = 𝑓𝑦(𝑎, 𝑏) = 0”, 

she confused necessary and sufficient conditions and said: 

Student B: This one is also true because at the max point the tangent lines are 

horizontal and their slopes are zero, and I know that the values of 𝑓
𝑥
(𝑎, 𝑏) 

and 𝑓
𝑦
(𝑎, 𝑏) are the values of the slopes of the tangent lines to the function 

f at the point (𝑎, 𝑏).   

Trans-TVFO stage of Schema development  

Seven of the twenty-two interviewed students were classified in the Trans-TVFO stage 

of Schema development. Student A is an example. Due to space constraints, we only 

show partial results, concentrating on the relation s-2f-cp. 

Interviewer:  [Question 1] Do you need to use the second derivatives test for 𝑆1? 

 Student A: No, I don’t need, umm because we evaluated the min and max of 𝑓 on the 

boundary of 𝑆1 and in the interior of 𝑆1, umm and this question asked us to 

find only the absolute extremes of 𝑓 on 𝑆1 which is closed and bounded. 

The last citation suggests the construction of the s-2f-cp relation. The construction of 

this relation was also suggested in every available opportunity, for example: 

 Student A: [Question2f] The function 𝑓 is continuous on 𝑆, and the set 𝑆 is closed and 

bounded so we can limit both 𝑥 and 𝑦 to have their min and max, I mean 

both 𝑥 and 𝑦 are from -1 to 1, umm the expression of 𝑓 is 𝑥3 + 𝑦2 so 𝑓 has 

its global max on 𝑆 for sure. 

 Student A: [Question 3a] Now I need to look for the global max and global min, since 

the set of the rectangle 𝑆 is closed and bounded and the function 𝑓(𝑥, 𝑦) =
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𝑥𝑦 is continuous on this set [a closed rectangle] therefore it has the global 

max and global min, umm so the statement is true, umm I can find the value 

of max and min. 

 Student A: [When asked if 𝑓(𝑥, 𝑦) = |𝑥| attains a global maximum and minimum on  

𝑆 = {(𝑥, 𝑦)|𝑥2 + 𝑦2 ≤ 4}] The set 𝑆 is closed and bounded and the 

function 𝑓(𝑥, 𝑦) = |𝑥| is continuous on this set so we can say that the 

function 𝑓 attains its global max and its global min on this set. The global 

min is 0 when we have 𝑥 = 0 and the global max is 2 when 𝑥 = −2 or 𝑥 =
2. 

 Student A:  [When asked if a continuous function defined on a closed set must attain 

maximum and minimum values] It’s false, umm because the theorem 

should be a continuous function defined on a closed and bounded set. 

Interviewer: Can you find a counterexample? 

 Student A: So, I should design a set which is closed but not bounded, umm like 𝑅2 

which is a closed subset of itself but of course unbounded, umm and the 

function can be for example 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 and in this case we can see 

𝑓 does not attain its global max and min on 𝑅2. 

 Student A: [When asked if a function defined on a closed and bounded set must attain 

maximum and minimum values] The function must be a continuous 

function. I am thinking for a situation like umm the value of a function like 

𝑓 at the point (𝑎, 𝑏) of a closed and bounded set, let say set 𝑆, is for example 

number 𝑐 I mean 𝑓(𝑎, 𝑏) = 𝑐 but the function is not continuous at (𝑎, 𝑏) 

umm and the limit of 𝑓 at (𝑎, 𝑏) be +∞ or −∞, in this case the function 𝑓 

doesn’t attain its max and min on the closed and bounded set 𝑆, because for 

some points of 𝑆 which are very close to (𝑎, 𝑏) the value of the function 

can be as much as big we want. 

In all the above examples,  student A explained his response with a counterexample, 

calculation, or argument. The fact that he consistently seemed to think of “continuous 

on a closed and bounded domain” as interchangeable with “attains its extrema” 

suggests that s-2f-cp was constructed as a conservation relation. Overall,  student A 

gave evidence of each of the proposed relations in the GD; he frequently explained or 

justified his reasoning and consistently applied the needed relations throughout the 

interview. He seemed to interrelate all components with conservation relations. 

DISCUSSION AND CONCLUSIONS 

We found that when attempting to solve optimization problems, students frequently 

applied procedures seemingly due to habit or repetition without considering the 

topology of the domain set. Students' work suggests paying attention during instruction 

to the topology of domain sets, its relation to extrema, and to necessary and sufficient 

conditions of theorems. This last suggestion is consistent with the observation of 

Xhonneux (2011) regarding students’ difficulties with the nature of implication and 

necessary and sufficient conditions and with that of Mkhatswa (2021), who observed 

that verifying or justifying the extrema was problematic for most students in his study.  
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On the theoretical side, given that there are few studies about Schema development and 

even fewer that use the types of relations between Schema components, our study 

contributes to a better understanding of these notions, particularly in the context of 

two-variable function optimization.  
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We describe the process we used to analyze anonymized responses to “reading 

questions” embedded in an interactive linear algebra textbook, in a team that involved 

a textbook author, an experienced instructor, and a researcher. Reading questions are 

a textbook feature meant to entice students to read the textbook before attending the 

class where such ideas will be discussed; as students provide responses, the instructors 

can learn about how students are thinking about the content before a lesson. We 

generated a categorization of the responses to reading questions on spanning sets and 

linear independence based on the reasoning and the language in the responses as a 

first step towards understanding individual student conceptions on span, spanning sets, 

and linear independence.  

There is growing evidence in post-secondary education that user interaction with 

learning resources (apps, videos, assessment systems) facilitate learning (Heflin et al., 

2017). The expansion of the field of interactive textbooks, thanks to the evolution and 

accessibility of production tools, has significantly facilitated basic research on these 

resources and as a consequence, the field has been able to advance both theories and 

methods to investigate the use of these resources using real time data (Trouche et al., 

2020). The inclusion of interactive features in textbooks opens a question for 

researchers about what we gain by having access to the students’ responses as they 

interact with those features, and for designers, who may want to offer additional 

instructional supports for teachers and students rooted in student learning needs. In our 

project (Beezer et al., 2018), the interactive feature, reading questions, was added to 

three undergraduate mathematics textbooks written in PreTeXt 

(https://pretextbook.org/) to entice students into reading the material in the textbooks 

prior to coming to class. The feature collects students’ responses directly in the 

textbooks and delivers them to teachers in real time; perusing the responses allow 

teachers to make decisions to alter plans for their lessons. Our goal is to explore 

whether de-identified student responses reading questions in these textbooks can be 

useful to identify students’ conceptions about mathematical notions. As a first step 

towards this goal, and in collaboration with an experienced instructor (the third author) 

and a textbook author, who is also an experienced instructor (the second author), we 

endeavoured to produce a categorization that would go beyond a value judgment of 

student responses as “right” or “wrong,” and instead push us into unpacking how 

students were using the ideas to answer the questions. This information will be used in 

a later analysis to identify the conceptions elicited by individual students. As 

interactive textbooks become more widely used, finding ways to capitalize on the 
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information available from student responses could support research efforts to advance 

understanding of conception development and design processes that capitalize on the 

responses. As such, this paper presents a proof-of-concept about a process and a tool 

to undertake this analysis with a larger set of responses and possibly automatizing the 

categorization.  

CONCEPTUAL BACKGROUND 

Textbook features fulfill curricular and conceptual functions through organizational 

devices such as “exposition, explanation, questioning, exercises, examples, and tests… 

[to] achieve a more active reader of the text and to manifest the aims of the 

mathematical and cognitive progression” (Love & Pimm, 1996, p. 386). Any type of 

question (e.g., rhetorical in the text, in exercises) are “the principal means by which 

the student is encouraged to be an active reader of the text” (Love & Pimm, p. 387). 

Questions embedded in explanatory text tend to prompt the reader “to complete some 

task before the narrative can proceed or… inspire the student-reader to explore 

mathematics further” (p. 386). Using the instrumental approach (Rabardel, 2002) we 

have documented that students and instructors use this particular feature in more ways 

than those envisioned by the designers: the students answer the questions after reading 

the textbook and before class in order to get acquainted with the material and bring 

questions, but they also use them to verify their own knowledge of the material, or to 

study for examinations. Teachers, likewise, use the student responses to modify their 

upcoming lessons but they also use the questions themselves to test their self-

knowledge, assign them in class for small and large group discussion, and assign them 

for a grade after the material has been covered in class. We have also found that 

students will use the feature, independently of whether their instructors use it, but are 

likely to use it in consistent ways as their instructors demand it (Mesa et al., 2022; 

Mesa & The UTMOST 3.0 Team, 2022). This implies that there is a good reason to 

make use of the responses collected, because it is quite likely that students and 

instructors will take advantage of those. In the context of interactive textbooks, the 

availability of such responses suggests that the curricular and pedagogical functions of 

the textbook can be supplemented through a collective process that involves the 

practitioners and the textbook authors more intentionally to reflect on how textbook 

features added can indeed be educational for teachers, students, designers, and authors.  

METHODS 

We used a grounded approach to analyse 303 responses students provided to five 

reading questions in two sections of the linear algebra textbook used in the project 

(Beezer, 2021). The project involved 50 instructors and their students in the United 

States. We gathered all the responses to reading questions on Spanning Sets (see  

Figure 8a) and Linear Independence and Spanning Sets from 76 different students 

across 6 instructors at different institutions. Sample responses to the first reading 

question in the Spanning Sets section can be seen in  

Figure 8b.  
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Figure 8: Reading questions for (a) Spanning Sets; (b) two student responses. 

Analysis 

We report here the five steps used to develop a categorization of the responses, what 

we termed placing the responses into “buckets,” which eventually evolved into “math 

buckets” for the reasoning elicited and the “language buckets” for various aspects of 

communication.  

Spanning Sets starts by defining the span of a set of vectors and giving examples that highlight 

the mathematical meaning of belonging or not belonging to a set and illustrate that to determine 

whether a vector is an element of the span of a set of vectors, one needs to find the solution of a 

linear system of equations with an augmented matrix that includes the vector in question. If the 

system is consistent, then it is possible to say that there is a solution; once this is established it will 

be possible to find an actual set of scalars to write the given vector as a linear combination of the 

vectors in the set. If the system is inconsistent, there will be no solution and the vector will not 

belong to the span of a given set of vectors. The discussion of spanning sets of null spaces makes 

the connection that with a trivial null space, a matrix is non-singular and therefore, such a matrix 

will create a system with a unique solution. Throughout the presentation, the textbook uses Sage 

cells2 to illustrate the same processes.  

                                                           

2 A Sage cell is a box that can execute Sage command. Sage is an open-source mathematics software 

system. https://www.sagemath.org/  

 
(a) 

 When the augmented matrix is put into 

row-reduced echelon form, we get: `[[1, 0, 

1,0], [0, 1, 1, 0], [0, 0, 0, 1]]`. The bottom 

row of this matrix tells us there is no 

solution, thus the given vector is not in the 

span of S. 

 Yes, the vector given is in W. Finding the 

rref of S augmented with the given vector 

results in a consistent system with 

equations S1=-S3+S2, S2=-S3-1, and 

S3=S3 (a free variable). Choosing 1 for S3 

gives S1=1 and S2=-2. We show that the 

vector is in fact a linear combination of S, 

and therefore in W, by 

n[1] [3 ] [4 ] [-1] 

n[2]-2[-4]+[-2]=[8 ] 

 n[1] [2 ] [1 ] [-4] 

(b) 
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Figure 9: Summary of textbook content for Spanning Sets. 

First, and to orient our analysis, we studied the textbook content to anticipate the 

expected answers. Figure 9 shows a summary of our description of the content for the 

Spanning Sets section. 

Third, we randomized the responses within questions to eliminate possible associations 

to students across questions; in this way each response to each question was our unit 

of analysis and it was not possible to know whether the first response to the first 

question was provided by the same student across the set. Fourth, we engaged in cycles 

of reading a response, describing what was stating, putting it in an existing bucket or 

create a new one, and discussing the inclusion. This constant comparative method was 

done for each of the answers provided. The third author, a mathematician familiar with 

the content and with substantial teaching experience, created an initial categorization 

using the responses to the first reading question in the Spanning Sets section focusing 

on the reasoning reported. The three authors met every other week to revise discuss the 

categorization and analyse responses that did not seem to fit the categories created. As 

new responses to other questions were added, we realized that it was important to 

differentiate mathematical reasoning (“math buckets”) from the way in which the 

answer was communicated (“language buckets”). A response could be assigned to only 

one math bucket but to more than one language bucket. The system worked for five of 

the reading questions in the two sets. Fifth, we performed a calibration with two 

advanced undergraduate students (former graders in a proof-oriented linear algebra 

course taught at the first author’s institution) who received the set of responses and the 

categorization system and were asked to independently assign the responses to the first 

question in Spanning Sets to each and meet to discuss their coding process. Once this 

was done, we all met to discuss their categorization, resolve discrepancies, and contrast 

with our own categorization. This process led to further revisions of the categories and 

their meaning. Once we all agreed with the category system, the two coders recoded 

the all the responses. The labels for each bucket emerged during the discussions and 

clarification of the responses. There were nine math buckets, three of which are given 

in Figure 10 (not shown for space reasons: Sage, Solution with no reasoning, Generic-

valid, A method not in the textbook, Argument does not Apply, and non-codable), and 

six language buckets, three of which are given in Figure 10 (not shown: All clear, 

LaTeX solution, Cites a theorem).  

Math Buckets  

Name Definition and Example 

Detailed valid 

argument connected 

to the problem 

Valid reasoning that is related to the problem at hand (i.e., 

the answer has the specific details, numbers, or information 

provided in the problem) and provides specific details about 

the process. Response may or may not include checking the 

work. 
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“Technical difficulties” Valid reasoning given and there is an error when students 

relate the answer to the problem at hand.  

 

Invalid Invalid reasoning OR uninterpretable and no relation to the 

problem at hand.  

Language Buckets 

“Object naming error” Answer has language that confounds the objects used—possibly 

because of naming or misapplication of terminology—but 

otherwise expressing the right idea. 

 
“Object use error” Answer has language that confounds the objects used: there is an 

evident confusion in the objects used, incorrect naming, or 

misapplication of terminology  

 
Unclear Portions of the text suggest more than one possible way the student is 

thinking about the problem; the meaning is ambiguous 

 

Figure 10: Final coding system  

FINDINGS 

The frequency and percent of the 303 responses coded from the 76 students are given 

in Table 2. We found that the responses were almost equally divided into those that 

included reasoning leading to a valid argument and those that did not. As the questions 

were posed with the goal of having students attempt them after reading the material 

before the ideas are discussed in class, this proportion would suggest that in any given 

classroom about half of the students would be using the concepts they read in the 

section reasonably well to answer the proposed questions. For about a quarter of the 

responses (23%) it will be difficult to identify the reasoning, as the solution is not 

accompanied by details. In about one fifth of the responses there are issues with the 

reasoning that could be traced to typos or to inappropriate reasoning. Less than half of 

the responses (45%) were categorized as exhibiting problems naming or using the 

objects or had language that was ambiguous. 
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 Table 2: Frequency and percent of the responses coded for the reasoning and 

language categories. 

Math Bucket n %a  Language Bucket nb %a 

Detailed valid argument 

connected to the problem 

96 32% All clear 169 57% 

Solution with no reasoning 69 23% Cites a theorem 19 6% 

Sage 3 1% LaTeX solution 27 9% 

Other valid methods 2 1% Object naming errors 85 29% 

Generic valid 63 21% Object use errors 10 3% 

Technical difficulties 33 11% Unclear 35 12% 

Invalid 30 10%  

Argument does not apply 1 1% 

Non-codable 6 2% 

Total 303 100% 

Notes: a. Excludes non-codable responses. 

 b. A response could be in more than one language bucket.  

Note that a very small number of responses are non-codable (these corresponded to 

submissions that were written out on paper and handed out to teachers; possibly 

because of internet connections) or took advantage of Sage. That Sage is not frequently 

used is not surprising, as we know that only a handful of instructors used it. It is 

interesting that students of those teachers chose not to write Sage code. We think that 

perhaps the presentation is such that students feel compelled to replicate the processes 

outlined—using Sage might be considered cheating. A cross analysis of the two 

dimensions, shows that most of the answers had both reasoning supporting a valid 

argument and using appropriate language (62%). This suggests to us, that in general, 

the questions are at a good level for the students, after reading the text on their own, 

they can answer the questions give. But we also found a sizable proportion of responses 

for which this was not the case, and of these, about half were categorized as having 

language problems with a valid argument. Consider for example the following 

response coded as “generic valid” and “object naming errors:” 

The vector [-1, 8, -4] is in W with the x1 and x2 being equations of the first two 

vectors. (#16, SSRQ1) 

The response might be alluding that the third coefficient is a free variable, or it could 

be that x1 and x2 are the names of the scalars, rather than equations. The reference to 

“two vectors” is unclear as well. The following response illustrates a case categorized 

as “technical difficulties:” 
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the vector is not in W because if we take the RREF of the S, then plug our 

findings into a linear combination the values dont (sic) equal the vector [-1,8,-4] 

(#29, SSRQ1) 

The student seems to be following the process described in the textbook, but we 

surmise that something might have gone wrong with the calculations that led them to 

say that the vector was not in W, the span of S. However, the reference to “RREF of 

the S,” signals Object use error, as the RREF is not applied to a set but to a matrix.  

DISCUSSION AND NEXT STEPS 

The impetus of this work was to work with practitioners to investigate what could be 

said about the responses to reading questions in a specific section of a linear algebra 

textbook that would be more nuanced that being a “good” or a “bad” answer. The 

reading questions are given as an incentive for students to read, but they are also there 

as an incentive for teachers to reflect on what could be done differently in the 

classrooms. A “good/bad” categorization is not very productive, as it leads to an 

assumption that it is important to fix a problem (or not) without a clear focus for the 

fix. With this work we demonstrate that much more can be said about these responses, 

in particular the process involving the practitioner and the author generated two 

dimensions, one related to the reasoning, and the other to the language used, and within 

each of those several components were distinguished. As the collaboration advanced, 

our discussions led to greater understanding of the complexity of the ideas embedded 

in the processes. A system that can take the responses and categorize them could be 

useful for making decisions about what other questions or activities might be 

productive to use in the classroom. We believe that the responses that suggest object 

misuse or mislabelling are ripe for proposing activities that could help clarify the nature 

of the objects. At this point in the work, we know that the categorization taking each 

response as a unit of analysis is useful in thinking about classroom work and that it 

could be automatized when a large number of responses are obtained, for example in a 

large subscription course. But an analysis of the set of responses per student can build 

better models of how students are thinking about the ideas. This is our next step and 

we are exploring frameworks that allow us to investigate conceptions and their 

development (e.g., cKc, Balacheff & Gaudin, 2010; APOS, Dubinsky & McDonald, 

2001; commognition, Sfard, 2020) and capitalize on the extensive literature on student 

thinking about these ideas. A second exploration, that we have started already, relates 

to finding out how instructors using the textbooks might use the responses and their 

categorization in teaching.  
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The lexicons documented for the International Classroom Lexicon Project captured 

pedagogical practices of middle school mathematics classrooms in the original 

language of ten communities. To better facilitate mutual understanding of local 

professional languages we sought to develop an international lexicon. We began this 

research study by focussing on the clusters of words related to the language of 

assessment and the language of mathematics. In this paper we extend the international 

work by focussing on the language of interaction present in the Australian, Chilean, 

Czech and French Lexicons. Studies and theories related to networking strategies and 

dialogic interactions were used to support a comprehensive comparison of the lexical 

items related to interaction, and to reveal connections amongst the four lexicons. 

BACKGROUND AND RATIONALE 

The International Classroom Lexicon Project 

In the field of language and mathematics education, research has tended to focus on 

the language of the student, the teacher language used in the classroom and language 

appearing in the practice of mathematics (Austin & Howson, 1979; Planas et al., 2018). 

These areas of research appear to exclude studies of the professional language of 

teachers, that is, the language about the phenomena of the mathematics classroom. In 

response, the central goal of the International Classroom Lexicon Project was to 

document the professional vocabulary that teachers use to describe the objects and 

events that constitute their professional activity in middle school mathematics 

classrooms (Mesiti et al., 2021). At the core of the research project is the importance 

of teacher knowledge, and a commitment to share this knowledge with the mathematics 

education community to improve the reflective practice of teachers. 

The professional vocabulary of teachers 

The teaching profession, in most contexts, lacks a technical or professional language 

normally characteristic of established professions such as medicine and law. For 

example, with respect to the English language, researchers agree that a language for 

description and analysis remains underdeveloped (Grossman et al., 2009; Lampert, 

2000; Lortie, 1975). Similarly, Chilean participants reported that they were unfamiliar 

with the notion of creating communities with the explicit purpose of engaging in 

discussions about the problems of practice (Grau et al., 2017). Likewise, Czech 

teachers tend to use everyday language rather than pedagogical terminology 
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corresponding to the Czech education tradition influenced by its rich pedagogical 

history including the ideas of Comenius (1907). To a lesser extent, this is also the case 

in France despite the influence of didactic research on the professional language of 

mathematics teachers visible in the French lexicon. The four lexicons examined for 

study in this paper reflect differences in pedagogical history, educational culture, 

context, and community (Mesiti et al., 2021). Three of these communities use the 

world’s most spoken languages. English is spoken by 1.131 billion people, Spanish 

(Chile’s official language) is spoken by 534 million people, and French is spoken by 

280 million people (Ang, 2020). 

In this paper we progress towards an international lexicon, with a focus on the language 

of interaction. We examine the Australian, Chilean, Czech and French lexicons, 

benefitting from the authors’ involvement in their documentation. The results that 

follow are analysed in consideration of the following research question: Given the 

national lexicons from Australia, Chile, the Czech Republic, and France what is the 

nature of the connections amongst the cluster of terms that focus on interaction? 

THEORETICAL FRAMEWORK 

Linguistic relativity 

Researchers agree that linguistic and semantic differences amongst languages have an 

impact on our experience of the world (Boroditsky, 2001; Levinson, 2003). This 

theoretical position, characterised as linguistic relativity, is a weaker interpretation of 

the much-debated Sapir-Whorf hypothesis that ‘language shapes thought’ (Sapir, 

1949). The theoretical position adopted for the International Classroom Lexicon 

Project is in line with the notion of linguistic relativity; namely, that the differences in 

vocabulary, from one community to the next, are meaningful, and may indicate a 

diversity of teacher’s perception of the classroom.  

Networking studies 

The researchers involved in the International Classroom Lexicon Project consider that 

diversity, and the reflection it supports, is a source of richness in our field. This position 

is shared by researchers in the networking of theories, who have developed specific 

tools to address this diversity, especially the Scale of Networking Strategies (Prediger, 

Bikner-Ahsbahs & Arzarello, 2008). A critical notion from this research is the diversity 

of networking strategies expressed along a continuum. We adapted the strategies 

combining/coordinating, and synthesizing/integrating locally to our specific purpose. 

RESEARCH METHODOLOGY 

The national lexicons 

National research teams enacted a ‘negotiative’ methodology (Mesiti et al., 2021). This 

approach prioritised teachers as the authority for identification of language used by 

teachers when in conversation with their colleagues about the practice and phenomena 

of the middle school mathematics classroom. All items included in the lexicons were 
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validated locally and nationally as a reasonable representation of the professional 

lexicon of middle school mathematics teachers in the respective communities. 

The lexicons consist of terms in their original language, a closest English translation, 

a description from the classroom, illustrated with examples (see Table 1 for a selection 

from each lexicon).  

Table 1: Example of lexical items from the four lexicons (Mesiti et al., 2021) 

Lexicon Term Description Example 

Australian reflecting An activity in which 

students consider the 

effectiveness or 

progress of their 

learning (i.e., their 

developing knowledge, 

skills and 

understandings). 

The teacher asks students to 

identify and describe three new 

skills they have learnt during a unit 

of work. 

The teacher asks students to 

identify and describe an aspect of 

their current study that they do not 

understand. 

Chilean redondear 

ideas 

(rounding up 

ideas) 

The teacher synthesises 

ideas that emerged 

from dialogue. 

The teacher states, after a question-

and-answer sequence: "Some of the 

methods you have explained that 

are used to determine the sample 

space are very similar, because they 

all involve drawing the possible 

combinations. These drawings are 

called diagrams." 

Czech shrnutí 
(summarisation) 

 

Teacher/pupils 

recapitulate and sum up 

verbally. 

Teacher recapitulates steps of the 

solution of the problem. 

Teacher formulates remarks about 

metacognition. 

French bilan, synthèse 

(summary, 

synthesis) 

Phase to identify the 

important points to 

remember from the 

mathematical activity 

carried out. 

Teacher finishes a sequence about 

the Pythagorean theorem and its 

applications by an overall 

summary. 

Clusters as a unit of comparison 

Earlier comparative studies between lexicons were limited to identifying terms that are 

similarly expressed, or differently expressed but referring to similar phenomena, and 

those that are entirely absent (Mesiti et al., 2022). Terms were more likely to be inter-

related, that is, belonging to similar categories and holding properties in common but 

not identical. In response to this limitation and inspired by the approaches outlined by 
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the Scale of Networking Strategies (Prediger, Bikner-Ahsbahs & Arzarello 2008) we 

decided to work with clusters of neighbouring terms. Our first attempt involved 

working with clusters related to assessment and mathematics (Mesiti et al., 2022). 

The Scheme of Educational Dialogue Analysis (SEDA) 
Terms related to interaction were of interest to all the researchers. Recognition that the 

classroom is built on such exchanges prompted our decision to work with interaction 

as a cluster in a move towards internationalisation. The Scheme of Educational 

Dialogue Analysis (SEDA) (Hennessy et al. 2016) is an analytic framework for making 

sense of form and function of dialogic interactions in educational contexts. It is based 

on sociocultural theory which supports the notion that learning and development are 

cultural processes enacted through interactions with others (Fernández et al., 2001; 

Howe, 2010). SEDA was developed to represent productive forms of educational 

dialogues. It has been used in different settings, disciplines, and school levels. It is 

important to highlight that SEDA is a coding scheme for communicative acts from 

dialogic interactions; its unit of analysis is a turn of speech. 

Although we did not have ‘codable’ data, we used SEDA because it is a validated tool 

to observe productive classroom interactions. There is also data available regarding the 

types of dialogic teaching that could better influence school-age children (Howe et al. 

2019).  As we were aiming to compare lexicons in terms of their interactional codes, 

we started by selecting terms related to interaction. Most of these terms were inspired 

by classrooms activities which meant that almost everything could be interactive in 

nature implying different types of talk. By utilising SEDA we were able to build on a 

framework already developed, with clear and observable examples, and investigate the 

way in which synchronous classroom interactions were covered in each lexicon.  

Classifying the terms within the interaction-related clusters 

A condensed version of SEDA has eight categories: invite elaboration or reasoning; 

positioning and coordination; reflect on dialogue or activity; make reasoning explicit; 

build on ideas; connect; guide direction of dialogue and activity; and, express or invite 

ideas. Each category includes sub-categories that operationalise the grouping. As we 

could not consider a turn of speech the unit of analysis, we decided to use the main 

categories more than the specificities of each sub-category. The terms within each 

cluster were independently classified with SEDA by the author from the respective 

national team. This was followed by a whole group negotiation involving the four 

authors whereby each classification was scrutinised. 

RESULTS AND FINDINGS 

Some lexicons were more easily classified than others. Certainly, there were 

differences in detail of the interactional terms in the lexicons. However, SEDA worked 

as a referent to talk about each lexicon, its framework worked as a tool for thinking 

about our own interaction-related clusters. Figure 1 represents the interaction-related 

cluster for each lexicon (by column) and each term has been coded with the SEDA 

categories (by row). The terms in italics appear in more than one category. 
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Figure 1: Interaction-related clusters in each lexicon coded by SEDA categories 

AUSTRALIA CHILE CZECH 

REPUBLIC

FRANCE

INVITE elicit understanding;

questioning; 

reasoning.

asking for help; 

student notices teacher's 

mistake; 

counter-asking; 

asking for help;

elaboration question; 

information question.

oral exam; 

revision and practice of 

knowledge and skills.

asking mathematical 

questions; 

launching an activity; 

re-asking a question; 

scientific debate;

stimulating ideas or 

strategies.

POSITION facilitating learning;

lesson closure; 

putting in common; 

rounding up ideas;

simplification of a 

problem;  

solving a mathematical 

task together; 

systematisation.

summarization. comparing, ranking 

productions; 

correction; 

demonstrating; 

summary, synthesis; 

validating/ invalidating 

productions.

REFLECT recapping; 

reflecting; 

reviewing; 

summarising.

metacognitive exercise; 

metacognitive question.

interactive 

explanation.

commenting;

drawing the attention on, 

stressing a mathematical 

point; 

institutionalisation.

REASONING clarifying; 

defining; 

elaborating; 

explaining;   

justifying;    

modelling;

reasoning.

arguing; 

providing justifications;   

teacher makes his/her 

reasoning explicit.

correction of the 

didactical test; 

institutionalisation.

arguing; 

explaining; 

justifying; 

kneading-up;

scientific debate ; 

situation of validation.

BUILD elaborating; 

peer support; 

prompting.

building on a student's 

contribution; 

developing contents 

within a problem; 

paraphrasing what a 

student says to clarify; 

mathematical translation 

of a student's reasoning.

peer-assessment. commenting; 

kneading-up.

CONNECT recalling; 

recapping; 

rephrasing; 

re-teaching; 

summarising.

individual consultation 

with pupils.

institutionalisation; 

recalling.

GUIDE assigning homework; 

demonstrating; 

feedback; 

guiding; 

modelling;       

posing problems; 

scaffolding;

wait time; 

worked example.

promoting peer support;      

facilitating learning.

talk of the teacher with 

pupils.

conceptual help;

constructive/procedural help; 

dealing with errors;     

demonstrating; 

dialogic teaching; 

help with materials;     

helping, scaffolding;

instrumental help; 

methodological help; 

skills help.

EXPRESS answering questions; 

group discussion; 

student responses; 

whole class discussion.

spontaneous student 

contribution.

clarification; 

cooperative teaching.

answering a question; 

formulating;

making explicit;

reformulating; 

situation of formulation. 
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Figure 2: Interaction-related cluster terms unable to be coded with SEDA 

 

Figure 3: Summary - Interaction-related cluster terms 

Content of the interaction-related clusters 

Thinking about our understanding of interaction, about terms from our lexicon that 

might belong to such a cluster, alongside the SEDA coding scheme, enabled us to 

usefully identify a set of terms from each of the lexicons. The number of terms ranged 

from 11 to 42: a small subset for the Czech cluster (11 out of 57; 19%), a slightly larger 

Chilean cluster (27 out of 74; 36%), a significant cluster from the Australian lexicon 

(41 out of 61; 67%) and the largest number from the French lexicon (42 out of 116; 

36%). Of these terms most could be classified with the SEDA coding scheme (76% 

Australia; 79% France, 93% Chile) if not all (100% Czech) (see Figure 3). 

A significant number of interaction-related terms for the Australian cluster belonged 

to the SEDA categories of Guide (9), Reasoning (7), and Connect (9). For the French 

lexicon a sizable number of terms belonged to Guide (10), Reasoning (6), Invite (5), 

Position (5) and Express (5). This contrasted with the terms in the Chilean cluster. 

There were more terms in the categories of Invite (6), Position (7), and Build (4) than 

Reasoning (3), Reflect (2), Guide (2) and Express (1) (see Figure 1). One explanation 

is that the Chilean Lexicon relates more to simpler discursive exchanges than complex 

AUSTRALIA CHILE CZECH REPUBLIC FRANCE

appropriate 

code 

absent

disciplining;

encouraging;

giving praise;

(use of a) hook;

motivating;

positive reinforcement;

reciting.

reciting;

use of humor.

encouraging;

engaging;

disciplining;

valuing.

term too 

general

question-and-answer 

sequence.

dealing with an  incident 

(didactical/ non-didactical);

asking general questions.

term identifies 

form only

group work;

pair work;

raising hands.

whole class work;

half-class work;

autonomous/ 

guided group work.

INTERACTION-RELATED cluster terms unable to be coded with SEDA

terms in 

lexicon 

terms in 

interaction 

cluster

terms that were 

able to be 

classified

appropriate 

code absent

term too 

general 

term identifies 

form only

(no.) (no.) (%) (%) (%) (%)

AUSTRALIA 61 41 76% 17% 7%

CHILE 74 27 93% 4% 4%

CZECH REPUBLIC 57 11 100%

FRANCE 116 42 79% 10% 5% 7%

SUMMARY - INTERACTION-RELATED CLUSTERS (coded and unable to code with SEDA)

unable to code
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interactional sequences; it tends to be less about students’ language and participation 

and more about teachers' language and pedagogical approach. 

When the Czech Lexicon was undergoing documentation descriptions of activities 

were condensed into more general terms. The consequence of this is that one term often 

covered a set of events that can be classified by different SEDA categories. When 

classifying them using SEDA, the most preferred meaning was chosen; however, it 

was felt that all terms could be included in several SEDA categories. 

Integration of terms in the cluster  

An interesting point is the convergence observed in the terms we were unable to code: 

they were either too general to be associated with one or two categories, or there was 

no category for them, such as terms denoting more affective interactions (see Figure 

2). These terms in the Australian, Chilean, and French clusters related to building 

connections with students through praise and encouragement. Worth noting is that the 

term use of humour relates to the social character of Chilean classrooms in which such 

expressions are important. On the other hand, convergence is not strong regarding 

terms coded. The distribution of terms amongst categories shows discrepancies. For 

instance, Position is empty for the Australian Lexicon, and contains only one term in 

the Czech Lexicon, while it is the largest (7) for the Chilean cluster. A similar 

discrepancy is observed with Guide. Similar terms are not necessarily coded in the 

same way. For instance, summarising is in Reflect (Australian) whilst rounding up 

ideas (Chilean), summarization (Czech) and summary, synthesis (French) are in 

Position. The Australian term does not explicitly invite alternative or challenging 

viewpoints which was a central characteristic of the Position category.  

CONCLUSION 

In a move towards internationalisation, we adopted the notion of clusters. Treating a 

collection of neighbouring terms as the unit of analysis supported us in the creation of 

valid and meaningful connections amongst the lexicons with the intention of potential 

enrichment of local professional terminologies. The research confirmed both the 

challenge of comparison, namely, that analysis engages more than the label and 

published description of the term. The findings revealed differences and absences 

amongst the clusters in relation to particular categories of dialogic interaction. It is not 

clear whether these lexical differences are attributable to an absence of 

conventionalised practice, however, the extension of language offered by the 

comparison could be used to deepen understanding of teacher practice and help build 

meaningful connections amongst the lexicons. 
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Data-based modeling is about representing the relationship between two variables in 

a data set with a suitable function. It can be assumed to depend on individual 

knowledge about functions, as well as collaborators’ knowledge when engaging in 

collaborative modeling activities. We investigate upper secondary school students’ 

(N = 369) data-based modeling skills in a collaborative student laboratory. We find 

that data-based modeling skills can be reliably assessed based on a holistic approach 

by aggregating a range of skill facets. We also find that differences in these skills can 

be explained by participants’ knowledge about functions as well as their collaborators’ 

knowledge. Beyond individual differences, the scores carry substantial information 

about the group performance, even when controlling for collaborators’ knowledge. 

INTRODUCTION 

There is a consensus that data science is becoming increasingly important (e.g., 

Schreiter et al., 2022). Data science includes, on the one hand, drawing conclusions 

from data, but also using data to solve problems (Carmichael & Marron, 2018; Donoho, 

2017). Engel (2017), among others, calls for a stronger focus on data science in school 

education. However, even methods to describe, for example, the relation of two 

variables in a dataset with functions are mostly absent in German curricula, even for 

upper secondary school students. It remains an open question, to which extent students 

can acquire such skills, and how this relates to their knowledge about functions. 

Moreover, assessment instruments for data-based modeling skills are required. To 

investigate these questions, a student laboratory for data-based modeling with 

functions has been established at the LMU Munich. Its main goal is to convey the basic 

ideas of least square regression techniques to describe the relationship between two 

variables using a suitable function. The student laboratory is a collaborative learning 

setting that encourages direct participation in authentic scientific practice, and in which 

the students can work in small groups on current research topics using (in this case 

basic) scientific methods in a self-determined manner.  

This contribution has three goals: (1) Investigate how data-based modeling skills can 

be measured within a student laboratory setting. (2) Describe which facets of data-

based modeling skills are more respective less difficult to acquire for students in our 

learning setting. (3) Investigate to which extent interindividual difference in students’ 

acquired data-based modeling skills can be attributed to their own individual 

knowledge about functions or their group members’ knowledge about functions. 
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Data-based Modeling with Functions 

Data-based modeling with functions means that the relationship between two 

numerical variables is represented by a model function (Vogel, 2014). The determined 

function can be used for the purpose of prediction (interpolation or extrapolation) and 

allows to visualize structural characteristic of the context (Engel, 2018). The choice of 

potential function types (linear, exponential, …) is usually based on knowledge about 

the relation between the variables in the given context. Parameter estimation yields an 

optimal function to describe this relationship numerically. Methods to estimate a 

suitable function may range from informal processes (such as visually fitting a graph 

to the data) to more sophisticated modeling techniques (such as least square 

techniques). From a didactical perspective, limits are set by students’ prior knowledge. 

Least square techniques arrive at an optimal function by choosing parameters by 

minimizing the sum of squared differences between values predicted by the function 

and the values in the data (Engel, 2018). Since upper secondary school students have 

scarce knowledge of programming or statistics, a conveying focus on the basic idea of 

least-square techniques may be considered an appropriate goal. 

Data-based modeling processes 

The modeling cycle represents a framework to modeling processes (Blum & Leiß, 

2007; Greefrath, 2020). Eichler and Vogel (2013) transferred this cycle to data-based 

modeling, describing the following facets: Clarifying the phenomenological 

background, considering the data in different representations, choosing a function type, 

and estimating parameters for a specific function, as well as validating and 

interpretating the model by checking its predictions against prior assumptions, and 

drawing conclusions.  

In their framework based on a substantive survey from a sample of data scientists, Lee 

et al. (2022) describe facets of data-based modeling: This includes framing a real-world 

problem, considering or gathering data, structuring and visualizing data, identifying 

and analyzing models that address the initial problem, and finally communicating 

results and proposing actions. 

Both frameworks highlight the search a pattern in a dataset that is to be represented by 

a model function. This starts by selecting a specific function as a model for the context 

(model selection). In many situations, a structural analysis of the context, physical, 

biological, economic laws may suggest or help to exclude a specific function type. This 

requires substantial knowledge either about characteristic properties of a function type 

(e.g., that constant absolute changes of the independent variable go along with constant 

relative changes of the dependent variable for exponential functions) or at least about 

prototypical contexts, that could be described with a function type (e.g., biological 

growth for exponential functions). Fitting a function graph to a data set and 

understanding how changing a parameter of the function relates to a change in its 

graph, and thus to its (e.g., sum-of-squares) deviation from the data, is most likely also 

dependent on students’ knowledge about functions (model fitting). Finally, both 
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frameworks focus on applying the model to make statements about the specific 

problem or context (model application). Depending on the problem and question at 

hand, this will most likely also require knowledge about the chosen function type, for 

example the meaning of the parameters in the chosen function (e.g., a slope in a linear 

function may relate to a velocity), or the global behavior of the function type (e.g., 

monotonicity, positivity, behavior for very high values). 

Measuring data-based modeling skills 

There are hardly any established instruments to measure data-based modeling skills. In 

their review, Cevikbas et al. (2022) describe that covering the various facets in the 

modeling cycle is decisive to assess mathematical modeling skills. Usually, a 

distinction is made here as to whether the complete modeling cycle (holistic approach) 

is assessed as a whole process, or if only facets (atomistic approach) are evaluated in 

separate parts of the instrument (Blomhøj & Jensen, 2003). Assessing the whole 

process in one task is considered more valid than the atomistic approach, since it also 

digs into the coordination of the different facets (e.g., Schukajlow et al., 2015). The 

atomistic approach, on the other hand, provides independent observations for different 

facets, and allows to study them separately from each other. Hankeln et al. (2019), for 

example, constructed a measuring instrument for different facets in the modeling cycle. 

They concluded that these skill facets measured can be understood as different 

components of a (holistic) modeling competence. However, this approach may lead to 

overloading participants with too many tasks on the instrument. In qualitative works, 

often one complex task is used to study the different skill facets as well as their 

coordination (e.g., Borromeo Ferri, 2006). In this sense, a third measurement approach 

is to ask students to work on one complex modeling task, that requires facets, but to 

code the quality of the different skill facets with independent indicators. This approach 

requires the coordination of all facets, but also yields separate data on each skill facet.  

A further complexity arises, when data-based modeling skills are assessed in 

collaborative settings: The resulting scores of each participant may partly reflect 

individual modeling skills, partly skills to collaborate in data-based modeling, and 

partly the collaborators’ skills. The first two may be seen as valid parts of data-based 

modeling skills, and the second can only be assessed in collaborative settings. 

However, this raises the question how much the collaborators’ skills contribute to the 

individual scores in data-based modeling, and how this effect can be controlled. 

Knowledge about functions as prerequisite of data-based modeling 

As argued above, knowledge about functions may play a central role in the acquisition 

of data-based modeling, including model development, selection, and application. 

Current works distinguish knowledge about functions into the assignment, covariance, 

and object aspect (e.g., Weigand & Günster, 2022). Using the model to make specific 

predictions, e.g. about specific times in the future, requires to determine the value of a 

function, which falls under the assignment aspect. Prior research has pointed to 

considerable deficits in students’ understanding of functions, especially regarding the 
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covariance aspect (e.g., Nemirovsky, 1996). This aspect refers to describing how a 

change in the independent variable relates to a corresponding change in the dependent 

variable. For example, some function types can be excluded in the model selection, if 

the covariance properties of a function type do not fit the context (cf. above for 

exponential functions). Model fitting and application require knowledge about the 

functions’ parameters how they relate to the form of the graph and further function 

properties. This touches on the object aspect of functions. In summary, it can be 

assumed that good prior knowledge about functions, and in particular of the covariance 

aspect, supports the development of skills in data-based modeling. 

QUESTIONS 

We addressed the following questions in the context of a student laboratory for data-

based modeling: 

1. Does the combined approach of measuring facets of data-based modeling 

within one complex task provide an objective and reliable measurement of 

data-based modeling skills? 

2. To which extent do students acquire the different skill facets of data-based 

modeling in the student laboratory? 

3. To which extent can the individual knowledge about functions, or the 

collaborators’ knowledge explain interindividual differences in the 

development of data-based modeling skills? 

METHOD 

As part of a student laboratory, which comprised three two-hour online sessions within 

one week, N = 369 secondary school students (17 classes from 11 schools; Mage = 16.4; 

SD = 0.89; 180 male; 185 female; 4 diverse) worked in small groups on learning tasks 

conveying the principles of data-based modeling in the context of authentic problems. 

We implemented a simple model fitting process using the least squares method 

interactively via sliders with dynamic geometry software. Each small group was 

supervised by one pre-service teacher, who participated for course credit. In a first 

phase, students worked on existing data sets throughout a sequence of activities that 

presented the main principles of data-based modeling with least-square methods. The 

students did not have to collect, process, or visualize the data sets themselves. Students 

were asked to select, fit, and apply different models for the provided datasets. In a 

second phase, students applied these principles regarding model selection, fitting, and 

application in a new rich data-based modeling task. This task was also solved in small 

groups, without support of the pre-service teachers. Each student wrote an individual 

solution to this last task. 

The solution from this second phase was used to measure students’ data-based 

modeling skills. We coded a total of 13 indicators at different levels for the skill facets 

(Eichler & Vogel, 2013) of data-based modeling from each student solution. For 

example, for model selection (two indicators), we asked students to argue why certain 

models are better or less appropriate for the context at hand. For model fitting (two 
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indicators), we evaluated the fit of the students’ model to the dataset. We also 

considered how students use the least squares method to compare different models. For 

model application (four indicators), students were asked to answer two contextual 

questions based on their model. Finally, the students were asked to describe the least 

squares method in their own words (five indicators). 

To measure students’ knowledge about functions, we adapted items from existing 

instruments (eight closed answer items; Klinger, 2020; Lichti & Roth, 2018). 

Scores for each measure were aggregated using a partial credit Item Response Theory 

model. Linear mixed models were estimated to investigate the relation of group 

composition and knowledge about functions with data-based modeling skills. In the 

null model, only the (random) effect of the collaboration group was examined. 

Afterwards, the individual scores for knowledge about functions and the average scores 

from the rest of the group were added as predictors. 

RESULTS 

The partial credit scales showed acceptable item fit indices. The WLE reliabilities 

(data-based modeling: .65; prior knowledge: .67) were acceptable. The interrater 

reliability for data-based modeling was satisfactory (Cohen’s κ=.78). 

In model selection, 42 % of the students reasonably argued why the selected function 

type can map the context, while 48 % can exclude other models based on context. 25 % 

provided both types of argument.  

During model fitting 14 % of the students could not show a strategic approach using 

the least squares method in the second task, after the initial learning phase. 41 % of the 

students adjusted their function visually to find a model, but did not find the least 

possible sum of squares. The remaining 45 % indeed identified a model that realizes 

the smallest possible sum of squared distances. 93 % of the students successfully 

compared models based on least squares. 

For model application, 72 % of the students used their model to make a prediction for 

the future. However, only 55 % interpreted their result in a meaningful way. 31 % of 

the students used their model to correctly comment on a statement about the covariance 

aspect of the corresponding context. 

The null model showed that 47 % of the variance in students’ data-based modeling 

skills is explained by group membership, indicating a substantial role of collaborative 

processes. The individual score in knowledge about functions significantly related 

(𝛽 = .32, 𝑝 < .001) to data-based modeling skills, and also the average score of 

collaborators (𝛽 = .16, 𝑝 < .05) explained interindividual differences. The fixed 

effects explained 17.4 % of the variance. The group-level explained variance dropped 

substantially, but still 33 % of the variance were explained by group membership. 
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DISCUSSION 

We draw the following main findings from our study: (1) Addressing the facets of data-

based modeling represents an objective and reliable measurement of data-based 

modeling skills. (2) Different skill facets of data-based modeling are acquired to 

different extent in the student laboratory. (3) Interindividual differences in the 

demonstrated skills in data-based modeling in a collaborative setting are predicted by 

individual knowledge about functions and the knowledge of the collaboration partners. 

To assess skills in data-based modeling, we implemented a holistic approach, following 

the results of Cevikbas et al. (2022) by measuring a range of different skill facets of 

data-based modeling within a single task. This led to satisfactory results in terms of 

objectivity and reliability. However, future research should investigate to which extent 

the results are influenced by the specific data-based modeling task in the assessment. 

Moreover, not all facets of data-based modeling could be implemented in our task. In 

particular, representing data, specially using digital representations, might be 

considered as an additional facet in the future (Eichler & Vogel, 2013; Lee et al., 2022). 

However, this facet could already be introduced in the lower secondary level 

(Podworny et al., 2022). 

Central principles of data-based modeling can be learned by the students within the 

student laboratory to a certain extent. Especially the model fitting based on the least 

squares method is a skill that was shown by the students with high solution rates after 

participating in the laboratory. Providing arguments for or against a function type 

during the model selection and application, which mainly build on the covariance 

aspect of functions posed substantial problems to participants. Deficits regarding the 

covariance aspect, that were shown in prior research, probably have an effect on task 

processing (Nemirovsky, 1996). On the other hand, parts of the model application, that 

require the calculation of values of a function to make a prediction for the future, were 

solved at higher rates. However, not all students can then interpret or validate their 

mathematical result obtained in the context, which is in line with similar general results 

on mathematical modeling (Schneider et al., 2021). This indicates that facets, that 

depend on the covariance aspect of functions, or which touch on interpretation or 

validation, require specific focus when designing learning opportunities on data-based 

modeling. 

Our results indicate, that differences in individual data-based modeling skills can 

possibly be explained by varying individual prior knowledge about functions. This 

underpins the role of knowledge about functions for learning data-based modeling. 

Another possible factor in our collaborative setting is the knowledge about functions 

of the collaboration partners. We found that individual scores are substantially 

influenced by group membership. Controlling for participants’ and their collaborators’ 

knowledge about functions showed that both contribute to explaining interindividual 

differences in students’ scores. Therefore, also the knowledge of the collaboration 

partners in group work processes on data-based modeling seems to contribute to the 
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development of data-based modeling skills in a collaborative setting. In particular, 

variance explained by group membership was reduced when including collaborators’ 

knowledge. This indicates that the group effects can be controlled when measuring 

data-based modeling skills in a collaborative context to a certain extent, by taking 

collaborators’ knowledge into account. However, a substantial contribution of group 

membership remains. Further studies are necessary to clarify to which extent this stems 

from collaborative learning in the first phase, or from the collaborative modeling 

processes in the second phase of the laboratory. 

In summary, we provide a proof-of-concept study of introducing and measuring data-

based modeling based on a simplified least-squared method in higher secondary school 

students in a collaborative setting. We provide evidence that the acquired data-based 

modeling skills are related to participants’ as well as the collaborators’ knowledge 

about functions. 
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From their initial training, teachers must acquire a series of competencies, including 

self-regulation, allowing both the teacher and the student to reflect, control and modify 

the various aspects involved in the teaching and learning process. This study analyzes 

the Master's dissertations of a group of future mathematics teachers to describe the 

self-regulation actions they claim to promote in the classes carried out during their 

internship. The results show that these teachers promote practices related mainly to 

the cognitive, interactional, and epistemic suitability and to a lesser extent, aspects 

related to the affective, ecological, and mediational suitability. 

Previous scientific literature shows that there is a relationship between self-regulation 

and the academic performance. Pintrich (2000) and Zimmerman (2000) have shown 

evidence suggesting that self-regulated students are good metacognitive strategy users. 

They know how to plan, set goals, organize, self-evaluate, and monitor their progress. 

All this has a positive impact on their learning. The more autonomous and independent 

they are in self-regulating, the better academic and learning results they obtain. Various 

authors have highlighted the relevant role of the "development of self-regulation 

competence" as one of the competencies that future teachers must learn in teacher 

training programs (Kramarski & Revach, 2009). In the case of the teaching of 

mathematics, there is also the debate on how to guide future teachers so that their 

students can develop their self-regulation learning (SRL) competencies. Some studies 

indicate that future teachers lack knowledge and skills regarding what strategies to use, 

when to use them, and how, to support their students in developing SRL (Putnam & 

Borko, 2000). Pintrich has proposed a list of indicators that we have already used to 

analyze how pre-service mathematics teachers include SRL in their teaching 

programming (Hidalgo-Moncada et al., 2021). This paper aims to analyze the actions 

that future mathematics teachers design in their teaching proposals carried out during 

their internship in a Master's degree program addressed to secondary teachers in 

Catalonia (Spain), in order to promote students’ self-regulation. 

THEORETICAL FRAMEWORK 

Many authors have highlighted the importance of teachers knowing effective strategies 

so that they know how to promote SRL in their students. According to Timperley 

(2008), “reflection on one's own teaching practice” is one of the critical competencies 

that contributes to pre-service teachers being able to identify whether they can (or 

cannot) promote SRL among their students. Different authors have highlighted the 

importance of teacher reflection (Godino et al., 2016; Perrenoud, 2007), claiming that 

it is a tool to assess the efficiency of the teaching processes carried out (Font et al., 
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2018). A reflective nature in the design of the teaching work makes it possible to 

analyze the quality of the mathematics developed in the classroom. It can also help the 

teacher to promote self-regulated learning more often (Hidalgo-Moncada et al., 2021). 

According to Pintrich (2000), SRL is an active process in which students monitor and 

regulate their own learning, considering cognitive aspects related to their own learning 

process and aspects related to motivation and behavior according to a series of set goals 

in their context. De Corte et al. (2000) suggest that self-regulation positively impacts 

on students’ academic performance. However, there is evidence that many teachers 

need to promote SRL (Darmawan et al., 2020). Previous studies have identified 

teaching practices that successfully promote SRL among students. In this paper, we 

start from this evidence to analyze what kind of practices pre-service teachers use to 

promote SRL among their students. 

METODOLOGY 

We analyzed and described the self-regulation actions 20 pre-service mathematics 

teachers claim to promote in their classes taught during their internship. These teachers 

participated in a Master's degree program addressed to mathematics teachers (middle 

and high school) in a Catalan university (2021-2022). The internship lasted two months 

(approx.), during which the teachers observed the mathematics sessions in a classroom 

(secondary education level). They had to design and implement a didactic unit for their 

assignments. At the end of the internship, the teachers carried out a Final Master's 

Project (dissertation), in which they presented the designed and implemented didactic 

unit, reflecting on how they had developed it and those aspects they missed. This 

reflection was carried out based on the Didactic Suitability Criteria (DSC) of the Onto-

semiotic Approach (Godino et al., 2016). In this study, a content analysis of the Master 

dissertations is carried out. For this analysis, a previous instrument was used, consisting 

of 23 actions that promote self-regulated learning in the mathematics lesson, which are 

classified according to the six didactic suitability criteria (Hidalgo-Moncada et al., 

2021). An example of this characterization is shown in Table 1. 

Table 1. Characterization of self-regulation practices according to the criteria of 

didactic suitability 

Suitability Criteria Self-regulation actions 

Epistemic suitability  Promote argumentation and explanation of procedures used. 

Cognitive suitability  Promote processes of high cognitive demand, such as 

generalization, intra-mathematical connections, representation, 

conjectures, etc. 

Interactional suitability  Organize forms of cooperative work. 

Mediational suitability Implement different teaching means that promote the search, 

processing, and obtaining of information that the student must 

assimilate. 
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To analyze the Master dissertations in-depth, Atlas.ti has been used, which has made it 

possible to identify the self-regulation actions that the teachers claim to promote and 

those that they have not promoted during the internship. 

RESULTS 

Analysis of SRL Practices Promoted by Pre-Service Mathematics Teachers 

According to the data collected, the pre-service mathematics teachers who participated 

in the Master's Program for Secondary Teachers of some of the Catalan universities 

during the 2021-2022 academic year, especially promoted practices related to cognitive 

(22.3 %), interactional (20.1%) and epistemic (19.3%) suitability. These practices 

include aspects such as teaching strategies that allow students to: solve problems, 

promote reflection strategies among students, teach them to check their answers, 

generalize, compare different solutions for the same activity, argue and explain how 

they solved an exercise, etc. Table 2 presents the results obtained in the analysis of the 

didactic proposals of each of the twenty pre-service teachers who were part of the 

sample of the Master Dissertations (MDs) analyzed. 

Table 2. Analysis of the Master Dissertations (MDs) by  

Didactic Suitability Criteria (DSC) (percent). 

 
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

A. suitability 0,0 10,7 7,1 0,0 5,9 7,7 7,1 7,1 5,3 0,0 

C. suitability 22,2 17,9 14,3 24,1 17,6 38,5 7,1 35,7 31,6 12,5 

E. suitability 5,6 21,4 21,4 20,7 23,5 15,4 35,7 0,0 10,5 12,5 

Ep. suitability 44,4 14,3 14,3 17,2 11,8 0,0 0,0 35,7 15,8 25,0 

I. suitability 16,7 17,9 25,0 13,8 23,5 23,1 21,4 14,3 21,1 37,5 

M. suitability 11,1 17,9 17,9 24,1 17,6 15,4 28,6 7,1 15,8 12,5 

Total 100 100 100 100 100 100 100 100 100 100 

 

 
P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 Total 

A. suitability 5,3 10,5 0,0 0,0 0,0 0,0 3,4 0,0 4,3 5,9 4,5 

C. suitability 21,1 21,1 33,3 31,3 33,3 16,7 27,6 11,1 21,7 23,5 23,3 

E. suitability 10,5 10,5 13,3 6,3 13,3 16,7 13,8 33,3 8,7 11,8 15,2 

Affective suitability Consider the interests of the students, their family and social 

context, to generate activities for purposes with their interests. 

Ecological suitability  Implement different forms of evaluation for the same content.  
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P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 Total 

A. suitability 5,3 10,5 0,0 0,0 0,0 0,0 3,4 0,0 4,3 5,9 4,5 

Ep. suitability 26,3 31,6 33,3 25,0 13,3 33,3 20,7 11,1 26,1 11,8 20,2 

I. suitability 21,1 21,1 20,0 18,8 13,3 16,7 20,7 44,4 21,7 29,4 21,1 

M. suitability 15,8 5,3 0,0 18,8 26,7 16,7 13,8 0,0 17,4 17,6 15,7 

Total 100 100 100 100 100 100 100 100 100 100 100 

* A=Affective, C=Cognitive, E=Ecological, Ep=Epistemic, I=Interactional, M=mediational; Pn means the 

person from the sample 

On the contrary, if we examine the practices that teachers do not include in their 

teaching proposals, we find that they tend to be either affective or ecological. 

Specifically, 23.5% affirm that they do not consider the interests of the students, nor 

their family or social context, to generate activities related to their interests, promoting 

a better emotional, motivational, and attitudinal feeling. Something similar occurs in 

the case of ecological suitability: 17.6% did not include any practice where the study 

of mathematical content can be linked with the environment and daily life. Intra-

disciplinary connections are rarely included in the practices promoted in the didactic 

proposals elaborated by the pre-service teachers of the selected sample. On the other 

hand, it is rarer that teachers do not consider practices from other facets, such as 

cognitive, such as "promoting argumentation and explanation of the procedures used 

in the proposed activities" in the didactic proposals; only in the case of 11.3% did this 

happen. This occurs similarly with other "cognitive" practices (such as teaching 

strategies to solve problems or generalization). Table 3 shows that the percentage of 

teachers who do not include this type of practice is negligible (5.9 %). 

Table 3. Analysis of the Master Dissertations (MDs) by type of practice (percent). 

NA20 NA21 NC5 NC9 NC10 NEC22 NEP2 NEP3 NI12 NI14 NI15 Total 

5.9 23.5 5.9 5.9 5.9 17.6 5.9 11.8 5.9 5.9 5.9 100 

Often, pre-service teachers propose teaching activities integrating different SLR 

practices. That is the six domains to which the DSCs refer usually appear in groups 

(with each other). Table 4 shows us that these groupings are not "random" but that we 

can observe some trends. For example, in the most usual practices (cognitive ones, 

which appear 83%, that is, 23.3% of the time), on 14 occasions, they were raised in 

activities where practices related to the epistemic criterion were also proposed, and on 

ten occasions appear together with the interactional ones. In the case of practices where 

the interactional aspect is considered (n=75, representing 21.1% of the total), they 

appear together with the epistemic ones on 20 occasions and with the cognitive ones 

in 10 cases. That is, the data suggest a tendency to approach SLR through activities 

that include cognitive, interactional, and epistemic practices. On the other hand, aspects 
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related to the affective criterion, for example, are hardly considered (at least, from the 

SLR point of view). 

Table 4. Co-occurrence of practices among the Masters’ dissertations (n=20) 

  A (n=16) C (n=83) E (n=54) Ep (n=72) I (n=75) M (n=56) 

A (n=16) 0 0 4 0 1 1 

C (n=83) 0 0 6 14 10 6 

E (n=54) 4 6 0 1 2 6 

Ep (n=72) 0 14 1 0 20 1 

I (n=75) 1 10 2 20 0 7 

M (n=56) 1 6 6 1 7 0 

* A=Affective, C=Cognitive, E=Ecological, Ep=Epistemic, I=Interactional, M=mediational; Pn means the 

person from the sample; n is the number of quotes 

Cognitive, Interactional, and Epistemic Suitability 

These three elements are the ones that appear the most in the way in which the teachers 

in this study propose to work the SLR. However, what exactly do they do? How do 

they do that? What are the reasons why they propose the practices they propose in their 

teaching proposals? The following table (Table 5) groups examples of the type of 

proposals and justifications provided by the teachers who participated in this study in 

their Master dissertations.  

Table 5. Examples of activities or strategies that teachers use to promote SLR in their 

didactic proposals. 

What they do “When I defined the unit, I took into account that in the activities the processes of 

communication, experimentation, contextualization, formulation, argumentation, 

conceptualization, algorithmizing, problem-solving, representation, 

generalization, and modeling were worked on.” (P1, Cognitive & Epistemic 

suitability) 

“Promote inclusive and participatory ways of working, such as working in pairs 

or small (heterogeneous) groups so that it was the same colleagues who helped 

each other.” (P14, Interactional suitability)  

How do they 

do that 

“… when solving equations is considered, I ask them what they can do to solve 

the system without doing mentally, if they could find a method. Then they 

themselves give ideas, explain their conclusions, debate how to make a 

colleague's proposal and finally reach a conclusion.” (P3, Cognitive, Epistemic & 

Interactional suitability) 

“When two students had opposing ideas or when a student explained his own 

reasoning to his classmates, the students argued their conclusions, results or 

reflections in order to give them validity and credibility in front of their peers.” 

(P14, Interactional & Epistemic suitability). 
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“Usually, when faced with an answer from a student, I would ask the rest of the 

class what they thought. If they agreed or disagreed. In many cases, when a 

dynamic debate was generated, some student answered, and we could jointly find 

a solution to the question or doubt that arose.” (P20, Interactional suitability). 

“It was tried that once one or two members of the group had understood in depth 

the concept that was asked of them, they tried to explain it to their group mates.” 

(P8, Interactional & epistemic suitability) 

Why do they 

do it 

“These questions force students to first conjecture hypotheses and possible 

outcomes and then prove or disprove them, demonstrating the use of 

exploration.” (P8, Cognitive suitability) 

“Among the more theoretical or "file" activities, I have interspersed others with 

games from different learning platforms to continue to maintain the students' 

interest in the didactic unit.” (P15 Interactional & Affective suitability) 

“Cooperative work is highly recommended when learning, even more so than 

individual work. It is for this reason that healthy and consensual group work was 

always advocated.” (P17, Interactional suitability). 

The arguments used by teachers regarding how they promote SLR are grouped into 

three types. On the one hand, those aspects in which teachers point out what they do in 

relation to practices related to cognitive, epistemic, or interactional suitability. 

Generally, it is usual to focus on promoting practices such as problem-solving, 

reflection on the strategies used, generalization, and promoting inclusive and 

participatory ways of working, in heterogeneous groups. 

On the other hand, teachers also explain in their teaching proposals how they intend to 

achieve everything they say. They propose strategies such as promoting teamwork in 

a collaborative way (interactional suitability), encouraging practices such as 

argumentation, explanation, sharing the reasoning elaborated, seeking to give 

credibility to the results obtained in front of the rest of the classmates, etc. The crucial 

role played by (self)-assessment is also emphasized: both, the evaluation of one's own 

work by oneself and the scrutiny of what one has done by the rest of the group. In this 

sense, the proposals made by teachers usually combine the cognitive part of learning 

with an emphasis on interaction (collaboration) between students. In some specific 

cases, reference is also made to the role of the teacher as the "initiator" of the learning 

process, proposing questions that can lead to connecting mathematical content as the 

starting point of the didactic sequence. 

Finally, we find a third type of practices related to the reasons teachers say to justify 

their decisions about the practices they propose to use to promote SRL among their 

students. They highlight aspects such as that the proposed practices "force" students to 

develop (use, implement) cognitive processes such as conjecturing hypotheses, testing, 

checking, and different potential responses to the proposed activities. Another 

frequently cited reason refers to the aspect of interaction: the teachers in the sample for 

this study generally agree that collaboration between students (sharing, explaining to 

each other, etc.) greatly contributes to students developing these SRL competencies. 
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DISCUSSION AND CONCLUSIONS 

The change towards student-centered mathematics teaching models has meant that 

aspects such as the SRL occupy a place of interest in the research agenda in 

professional development programs (Kramarski & Revach, 2009). Previous research 

has already indicated that self-regulation is a key competence for learning (De Corte et 

al., 2000). Studies by authors such as those reported by Robson, Allen, and Howard 

(2020) show that students who use more self-regulation strategies tend to obtain better 

scores in their grades. In the same way, Guo, Lau, and Wei (2019) state that self-

regulation is related both to improving learning and to obtaining better learning results 

(more robust learning with understanding). However, despite all this plethora of 

evidence on the positive impact of using self-regulation strategies, there needs to be 

more research in the field of mathematics education that explores what practices (how) 

teachers use to integrate (encourage) self-regulation in their teaching proposals. In the 

study we report here, some regularities suggest a "perception" shared by the teachers 

in the sample who participated in the study on how to include self-regulation in their 

teaching proposals and to encourage what things can be used in self-regulation 

practices. Above all, according to the results of the analysis of the data collected in the 

fieldwork, what we see is that these teachers relate self-regulation practices with 

learning strategies (cognitive suitability criteria) with the forms of interaction in the 

classroom (international suitability criteria), and with the mathematical content to be 

learned (epistemic suitability criteria). Teachers include practices related to aspects 

such as argumentation, the formulation of conjectures, the exchange of explanations, 

and the verification of results, as habitual practices that help their students develop 

their self-regulation competence to acquire autonomy in their learning process. An 

aspect that also appears in some of the Master dissertations is the importance that these 

teachers give to the heterogeneous student work groups. The heterogeneity in terms of 

ability level in the composition of a workgroup has been highlighted as a key aspect of 

learning (Díez-Palomar et al., 2020). Suppose there are no different ability levels when 

a classroom activity is shared. In that case, students cannot help each other (there are 

no scaffolding processes nor Proximal Zones of Development as Bruner and Vysgotsky 

claimed, respectively). The use of the DSC has allowed us to focus our analysis on 

highlighting behaviors, and regularities, in the didactic proposals made by the teachers 

in the sample, using those six suitability criteria that arise from consensus with the 

research and practitioner community and which have been validated by previous 

research (Breda et al., 2018; Font et al., 2018). 
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LESSON STUDY AND IMPROVISATION: 

CAN TWO WALK TOGETHER, EXCEPT THEY BE AGREED? [1] 

Galit Nagari-Haddif, Ronnie Karsenty & Abraham Arcavi 

Weizmann Institute of Science, Israel 

This study reports on one main challenge faced when implementing Lesson Study (LS) 

in a cultural context different from its Japanese origin: the detailed planning of a 

lesson in opposition to improvisation during its teaching. We present different ways in 

which LS and improvisation coexisted for different teacher communities and 

individuals, and draw some conclusions and implications. 

INTRODUCTION 

A main component of Lesson Study (LS) is the collective research and planning of a 

lesson. This includes scrutinizing mathematical ideas, establishing mathematical and 

pedagogical goals for the lesson, selecting appropriate tasks and problems to realize 

these goals, deciding on and specifying the teaching moves, thoroughly considering 

the anticipated responses, proposals and difficulties of students and planning how these 

may be addressed (e.g., Fujii, 2018). Resources such as the participants’ previous 

teaching experiences, available documented instructional practices and others, nurture 

the detailed planning process, which aims at leaving almost no room for unexpected 

events in such a way that there is little need for the teacher to make unforeseen 

decisions. In contrast, in other instructional scenarios, for example as described by 

Chazan and Ball (1999), teachers may want to employ “teacher moves [that are] the 

product of subtle improvisation in response to the dynamics and substance of student 

discussion” (p. 7), which implies a deliberate action that goes beyond planning. For 

some teachers, independently of their teaching traditions, improvisation may be 

considered as an essential part of the spirit of their profession, especially if they are 

experts (e.g., Borko & Livingston, 1989; Pinto, 2017). Thus, detailed planning and 

improvisations can be seen as two opposing attitudes to teaching, a contrast that may 

become a serious hurdle when trying to adapt LS outside of its culture of origin. This 

was one of the challenges we faced in implementing LS within school-based PLCs 

(Professional Learning Communities) in Israel, and which is the subject of this report. 

ON IMPROVISATION - A BRIEF THEORETICAL BACKGROUND  

Crossan and Sorrenti (2002) define improvisation as “intuition guiding action in a 

spontaneous way” (p. 27). Some of the dictionary definitions of improvisation are “the 

art or act of composing, uttering, executing, or arranging anything without previous 

preparation” [2]; and “the act of making or doing something with whatever is available 

at the time” [3]. The words “intuition”, “art”, and “with whatever is available” imply 

that improvisation may not necessarily be a random or arbitrary action. Moreover, in 

the literature on domains such as jazz or theatre, in which improvisation is pervasive, 

we even find established “techniques” of improvisation (e.g., Coker, 1980).  
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In the context of teaching, improvisation is triggered by unplanned classroom 

situations that require in-the-moment decisions and actions. Improvised moves may be 

rooted in previous experiences, which even when unconscious or implicit, emerge to 

shape and drive action. Drawing on Fischbein’s (1987) seminal work on primary and 

secondary intuitions, we propose to distinguish between primary and secondary 

experiences: whereas primary experiences accumulate unconsciously during the 

natural development of a person from childhood to adulthood, or from a novice to an 

established professional, secondary experiences accrue as a result of explicit reflection 

and its subsequent internalized “packaged” morals, as may be the case for experienced 

teachers. Spontaneous actions are driven by both types of experiences, but while 

actions based on primary experiences resemble a knee-jerk reflex, constructed from 

lived-in ‘natural’ events, actions propelled by secondary experiences are formed in 

more systematic ways, after these experiences were reflected upon, and ‘stored’ in a 

repertoire of automatic or semi-automatic reactions to unexpected situations.   

Improvisation in teaching was described by Borko and Livingston (1989) with the 

metaphor of improvisational performance, where rather than working with a detailed 

written script, an actor enters the stage with a general description of a situation and a 

set of performing guidelines, and from that point onwards is continually responsive to 

new situations. When improvising scenes, performers draw upon extensive repertoires 

of routines or patterns of action that may be based, as we suggest, on primary and 

secondary experiences. Similarly, Borko and Livingston suggest that expert teachers 

may have mental scripts that consist of general outlines of their lessons, and that they 

fill in the outlines during the lesson according to students’ reactions.  

In this paper, we report on preliminary results from a study on the Israeli LS project 

named Math-VALUE (Video Analysis and Lesson-study to Upgrade Expertise). In this 

project, school-based PLCs were established, with academic support and guidance, to 

learn about and to locally enact the stages of LS. We focused on teachers’ perceptions 

of improvisation during lesson planning, posing the following research question: In 

what ways do teachers enact the delicate balance between implementing a lesson 

planned through LS and the need, or inclination, to improvise?   

METHODOLOGY 

Settings. As of October 2020, eight Math-VALUE school-based PLCs have been 

operating across Israel, each including 8-12 middle and high school mathematics 

teachers (76 in total), with an average teaching experience of 14 years. Each PLC met 

for a total of 60 hours per school year, either face-to-face, virtually or in a hybrid mode. 

The schools in which these PLCs were formed represent different sectors of the Israeli 

society: Jewish and Arab, rural and urban, religious and secular. The facilitators of 

these PLCs are school-based leaders, each selected from among the local mathematics 

team. Prior to facilitation, they underwent a year-long preparation course, set as a PLC 

for leaders in an academic institution, during which they participated in a full cycle of 

LS and became acquainted with leadership practices and tools to run their PLCs.     
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Data collection. This study is a small part of a larger research project to investigate the 

implementation of LS in school-based communities in Israel. Data for the study was 

gathered from semi-structured individual interviews with 13 randomly selected 

teachers (1-2 teachers from each PLC), and with three PLC leaders. The interviews 

were conducted online (about one hour each, on average) and focused on personal and 

group experiences. All interviews were recorded and transcribed. Due to space 

limitations, in this report the data is reduced to 4 teachers from 4 different PLCs: Ori, 

Lili, Naor and Sigal (pseudonyms), with a teaching experience of 20, 8, 4 and 7 years 

respectively, and Niki, a leader of another PLC with 35 years of teaching experience, 

who participated in the leaders’ LS cycle.      

Data analysis. The thematic analysis included reading all transcripts and selecting 

utterances regarding each of the lesson study stages (planning, implementing and post-

hoc reflection). The utterances were classified into emerging themes in order to identify 

perspectives and phenomena related to improvisation. In this report, we present only 

selected quotes to illustrate the points made.  

FINDINGS 

We identified four different ways by which teachers choose to balance (or not) between 

a detailed lesson plan resulting from LS, and an inclination to improvise, if such exists. 

In the following, we describe and demonstrate the four types of improvisation found.   

Type 1: Planning alongside purposeful built-in improvisation 

Ori is an experienced and highly-regarded teacher in a well-known and reputed school 

located in a large Israeli city. The PLC he participated in worked for several intensive 

sessions on a collaborative planning of a lesson, which Ori eventually taught in his 

tenth-grade advanced-level class. The group decided to choose the topic of 

introduction to extreme  value problems. Much of the lesson planning time was devoted 

to designing the task and preparing a student worksheet around it, a stage which 

involved several rounds of thorough revisions. The task consisted of exploring areas 

of triangles with a given perimeter, in an attempt to find the one with the largest area. 

The final product of this LS group was a worksheet consisting of six items. Despite the 

explicit agreement among group members that the lesson is to be highly interactive, 

the lesson plan did not include foreseen student questions, proposals or difficulties, nor 

did it specify ways for the teacher to address students’ reactions.   

Ori’s teaching of the lesson was considered exemplary by both his peers and several 

mathematics educators who watched the videotaped lesson. The students' responses, 

including unanticipated reactions, were all encouraged by the teacher and incorporated 

into the classroom discussions, while linking them to different topics and terms learned 

throughout the year. Overall, it seemed that the students have led the flow of the lesson. 

In the interview, Ori described this practice as typical of his teaching and expressed his 

belief that students should set the pace of the lesson and lead the discussion:  
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“I am very associative, and it takes me to all sorts of different and weird places, apropos a 

lesson plan [...]. The lessons and the discussions are built mostly according to where the 

students lead them [...]. The tasks often develop from of the questions the students ask.” 

Ori stated that this central role of students, as well as the quality of the discussion, are 

more important to him than the number of exercises solved during the lesson. When 

relating specifically to the lesson planned in the LS activity, he said: 

“The only thing that was special about this lesson was that I had this basic structure in 

mind. I mean I had a problem with clear sub-problems that I planned to do with them in a 

particular order. I knew at what point I wanted to start and where I wanted to end, but I 

did not know how the lesson would develop in the middle. [...] I do not have such a set of 

lesson plans and exercises. I mostly build my lessons based on my experience and from 

what comes up in class […]. This lesson was relatively meticulous in the way it was 

planned because that was the goal of the LS project, but I didn’t know what the students 

would bring to my doorstep. So in that sense there was a very neat and organized frame,  

and I had the goals I wanted to achieve, but I was hoping, and I know it works for me, to 

achieve these points […]. In retrospect, planning the lesson in more detail would have been 

meaningless. I think the lesson is built on trusting my intuition and hoping the students 

will not disappoint and get to very interesting points. Of course, I could not anticipate 

everything that happened there. But because the students are so good and curious, I could 

count on them to take the lesson in interesting directions.”  

Ori demonstrates a possible way to compatibilize planning and improvisation: the LS 

activity provided, on the one hand, a structured plan resulting from careful successive 

revisions of the tasks, as well as a clear vision that unpacked the lesson’s goals. Yet, 

on the other hand, it left the flow of student reactions, questions and proposals open 

and unanticipated. Ori attributed the lesson’s success to the coexistence of these two 

aspects. In addition, it appears that his profile as an expert teacher, skillful in handling 

students’ reactions and in steering successful discussions, was part of this success. 

Type 2: Tight adherence to the planning 

Niki is an experienced teacher and head of the mathematics department in a secondary 

orthodox Jewish school for girls. She participated in the leaders’ PLC, and her LS 

group meticulously planned a geometry lesson, which Niki taught in her ninth-grade 

advanced-level class. In the lesson, students were given “physical” line segments 

drawn on transparencies, to be treated as diagonals of quadrilaterals, and were asked 

to position the segments in various ways to construct different quadrilaterals, then sort 

them into groups. The detailed lesson plan included anticipated students' responses and 

explicit suggestions for ensuing teacher reactions. Niki followed the original plan, but 

despite the careful pre-consideration of possible answers, she faced some surprises. For 

example, students sorted the quadrilaterals into familiar vs. nameless shapes, instead 

of focusing on the diagonals' geometrical properties (e.g., equal, perpendicular, 

bisecting each other). Niki chose to merely re-direct these students’ attention to the 

diagonals, yet in her post-hoc reflection she pointed to an alternative which she would 
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have preferred: stating specific classification criteria. In the interview, she connected 

this decision to her commitment to the joint lesson plan: 

“It's very different from a lesson I plan by myself, where I feel completely free to make 

changes while teaching wherever I find it appropriate, and here I had to be pretty close to 

what we had planned, so that it would really be a ‘lesson study’ and not my specific lesson.  

Things that had not been planned or anticipated suddenly arose. Of course, I had to apply 

my own judgment about what I thought my [LS] team would want me to do. […]  I think 

what I did in the lesson was pretty much what I was expected to do.” 

Another dilemma Niki faced was when students were asked to construct quadrilaterals 

with equal diagonals, and all of them drew only rectangles. She decided not to intervene 

by asking about other quadrilaterals with that property, and to bring this up only in the 

later plenary discussion. In retrospect, Niki said that, although she favored a teaching 

move that would result in everyone constructing other quadrilaterals with equal 

diagonals, she had no regrets for not following this option:  

“I still think there will be other opportunities to do this […] I would not change the lesson. 

Its structure was natural and right. We cannot always predict students’ reactions.” 

Niki’s case demonstrates a teacher’s choice to set aside her habitual flexibility, and 

stick to the lesson plan as a deference to the LS group work, which is considered as 

overriding in-the-moment unplanned action. Thus the extent to which she improvised 

was minimal. However, minimal improvisation may result from a less cognizant 

choice, as demonstrated in Lili’s case below.    

Lili teaches in an urban school serving mostly students of low socioeconomic status.  

She taught a lesson on target functions in extrema problems, tightly planned by her LS 

group. Though a lot of original thought was put into the planning, the main task created 

was a worksheet for students to tackle individually. Lili described the lesson as follows:  

The lesson was so [firmly] planned that there was nothing for me to do but to teach it as 

planned. There was not much room for digressions here [...]. The students did not need 

me, and most of the time I just walked around [in class]. I was bored. They did not need 

me.  

In both Niki’s and Lili’s cases, the detailed lesson plan did not leave much room for 

improvisation. However, there is a difference between these cases: whereas Niki 

intentionally decided not to deviate from the plan (even if she would have liked to), 

Lili followed a plan that purposefully minimized teacher-student interactions, thus 

exempting the teacher from unexpected situations and diminishing opportunities for 

improvising. Therefore, reducing the improvisation space may be ascribed either to a 

conscious teacher choice or to a built-in feature of the lesson. 

Type 3: Modifying the original plan by adding or omitting parts 

Naor teaches in a large rural school, and was part of a group planning a lesson on 

graphic and algebraic representations of extremum points, built around two problems. 
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When teaching the lesson, he decided to add a third and more advanced problem that 

he pre-prepared and was not part of the original plan. In retrospect, he said: 

“The lesson was fine and overall went as planned. There were almost no situations where 

I had to improvise, only minor things here and there. […] But with the third question, I 

went over the top, jumped straight to some story of graphs and here I realized I had failed. 

I should have stopped after the two simple problems and give them time to practice. I went 

beyond the [students’] ‘focus’ time, and instead of slowing down pace and intensity, I 

accelerated. The truth is that it wasn’t according to the original plan, but I told myself I 

would do what we planned and if there was more time left, I’ll do another problem, I’ll 

improvise. [...] Overall it was very interesting to see what happened in the class. […] one  

group lost touch, while another group was very much intrigued. During the break, about 

15 students stayed and insisted on finishing the third question […]. But during the lesson 

I felt I had overdone it.”  

Although Naor called his deviation from the collective plan “an improvisation”, it was 

a pre-prepared alternative that he purposefully designed as a more challenging item. 

He started by following the collective plan, then presented his alternative. Naor did not 

regard this deviation from the original plan as unfaithfulness to the group but rather as 

an expression of autonomy, that allows him to add to the plan. For him, improvisation 

was not necessarily an in-the-moment spontaneous decision but a modification to the 

collective plan decided individually, and perceived as a teacher’s legitimate right, even 

when in retrospect he admitted that his decision was misguided.  

Type 4: Improvisation that reverses the entire lesson plan 

Sigal is a mathematics and biology teacher in a highly-esteemed and selective school 

in a large city. She participated in an intensive collaborative planning of a lesson on 

arithmetic series, that she was meant to teach in her tenth-grade advanced-level class. 

Her LS group worked hard to plan an innovative lesson and a lot of thought was put 

into the details. However, the video of the lesson Sigal eventually taught showed that 

it was hardly related to the plan. Tali, the facilitator of this PLC, described it as follows:   

“[Sigal] did what she happened to feel like doing, as if there was no lesson plan. That’s 

not improvisation, it's not right [...]. She did agree to the lesson plan [...] she had a [printed] 

lesson plan and she kept looking at it. One of the comments she received from Avi [another 

PLC member], was ‘what’s this thing of looking at the prints all the time? Like, what, you 

haven’t studied the lesson?’ Now, not only she kept looking at these prints, but she also 

did not do what was written there! She did not prepare, did not invest any thought. Avi 

said to her bluntly, ‘listen, before I go to class, the night before, I study the lesson, I 

memorize it […] Maybe you should do the same?’” 

We lack data to explain why Sigal decided to ignore the original plan in which she was 

involved. We speculate that this extreme case, whatever its underlying reasons may be, 

exemplifies a case of improvisation that completely overturns any planning, and relies 

solely on in-the-moment alternative decisions, even while keeping an eye on the 

original plan - perhaps in order to maintain some resemblance to it.  
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DISCUSSION 

Several educational systems worked and still work to “import” LS into their teacher  

professional development programs (e.g., Quaresma et al., 2018). Many challenges 

were documented when adopting and adapting LS into a culture different from the one 

in which it has originated and flourished (e.g., Stigler & Hiebert, 2016; Skott & Møller, 

2020). Israel is no exemption. In this report, we focused on one implementation hurdle: 

planning vs. improvisation. Sharkansky and Zalmanovitch (2000) see improvisation as 

a cultural artifact, noting that “people and cultures differ in the relative values they 

place on planning and improvisation” (p. 322). In the case of Israel, they maintain that 

the intractability of the unique problems faced by the country imposed a flexible way 

of coping, as opposed to enacting clear-cut, planned solutions. Thus, in the Israeli 

culture improvisation is pervasive in all facets of life, and education does not escape 

it. Our findings show that, although the LS PLCs were involved in meticulous 

planning, in most cases improvisation did take place. Perhaps this is inevitable not only 

because of the local culture, but since improvisation is deeply rooted in the profession 

of teaching: it is “what teachers do, regularly and routinely, differently every time, as 

they improvise, adjust and adapt the routine” (Mathewson & Reid, 2016, p. 43).  

However, we have also shown that balancing improvisation and planning may take 

different forms. Of the four types of improvisation found in this study, two align with 

dimensions already identified by Mælanda and Espeland (2017): the communication 

and dialogues dimension, referring to how teachers conduct learning-focused 

dialogues with students based on spontaneous input, was reflected in Ori’s purposeful 

built-in improvisation (Type 1); the structure and design dimension, referring to 

teachers’ altering the content of the lesson based on reassessing progress, and often 

relying on a preprepared ‘plan B’, was illustrated in Naor’s modification of the original 

LS plan (Type 3). The other two types found mark the extreme ends of the 

improvisation spectrum: tight adherence to the plan while avoiding any improvising 

(Type 2) at the one end, and complete abandoning of the plan at the other end (Type 

4). In between these extremes, it appears that the LS plan served as a boundary that 

sets the limits within which a certain degree of improvisation can take place.   

As possible implications from this study, we suggest that (1) the repertoire of 

secondary experiences should be increased by explicit reflection in all phases of 

teachers’ learning, including within LS communities, as the basis for informed 

improvisation; (2) improvisation does not necessarily need to be an in-the-moment 

decision, and can be incorporated as a preplanned set of alternative tasks, serving a 

cognizant choice to improvise, if needed; and (3) teachers’ inclination to improvise 

should be taken into account by the LS facilitator in monitoring the PLC work.   

In conclusion, our local adaptation of LS showed possible ways of coexistence between 

LS and improvisation. In further studies, we intend to explore in depth why different  

teachers enact different ways of improvisation, and whether there is a link between 

such enactments and teachers’ experience and level of expertise.  
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NOTES 

[1] Book of Amos (3:3)  – King James English version from the original Hebrew Bible. 

[2] https://www.dictionary.com/browse/improvisation. 

[3] https://dictionary.cambridge.org/us/dictionary/english/improvisation 
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This study comprises a part of a larger study focusing on secondary school pre-service 

mathematics teachers’ (PSMTs) and secondary school in-service mathematics 

teachers’ (ISMTs) noticing of argumentation. Thirty-five PSMTs and 32 ISMTs 

engaged in analyzing argumentation classroom situations (ACSs) using an ACS-report 

format. In this paper, we focus on PSMTs’ and ISMTs’ attention to argumentation. 

Analysis of the participants’ ACS reports revealed similarities and differences between 

the two research groups. The findings are interpreted in light of both theory and 

practice. 

INTRODUCTION  

Students' engagement in argumentation in the mathematics classroom has been widely 

acknowledged as being important. Participating in argumentation requires students to 

explore alternative positions while confronting, and evaluating them; to articulate their 

support or opposition to such positions; and to defend different hypotheses and ideas, 

thus fostering meaningful insights and deep thinking (e.g., Asterhan & Schwarz, 2016). 

Previous research findings have shown that teachers tend to encounter difficulties in 

incorporating argumentation into their classroom practice (Ayalon & Even., 2016) and 

that argumentation in the mathematics classroom has not yet become commonplace 

(Umland & Sriraman, 2020).  

Teachers' noticing skills – i.e., attending, interpreting, and responding (Jacobs et al., 

2010) – are deemed crucial in determining their proficiency and are central to the 

development of quality teaching (Jacobs et al., 2010). We speculate that teachers who 

are better able to notice argumentation will possess better skills required to promote 

argumentation in the mathematics classroom. A number of studies have focused on 

comparisons between the noticing skills of pre-service mathematics teachers (PSMTs) 

and in-service mathematics teachers (ISMTs), related, for example, to student's 

mathematical thinking (e.g., Jacobs et al., 2010). These studies' findings indicate 

certain differences. For example, PSMTs, in contrast to ISMTs, tend to struggle with 

attending to, interpreting, and responding to certain facets of student's mathematical 

thinking (Ibid.). According to the literature, classroom experience influences how and 

to what extent teachers notice classroom events (e.g., Yang et al., 2021). Yet, no 

research to date has focused on comparisons between PSMTs’ and ISMTs’ noticing of 

argumentation. Such knowledge would enable us to draw appropriate conclusions for 

professional training programs, for PSMTs and ISMTs alike, aimed at developing their 

noticing of argumentation and, thus making argumentation in the mathematics 
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classroom a more common practice. This study seeks to address this lacuna. In this 

paper, we focus on PSMTs’ and ISMTs’ similarities and differences specifically in one 

key component of noticing, namely attending to argumentation.  

THEORETICAL PERSPECTIVE  

A commonly accepted definition of argumentation is that of van Eemeren and 

Grootendorst (2004), who maintained that argumentation is “a verbal, social, and 

rational activity aimed at convincing a reasonable critic of the acceptability of a 

standpoint by putting forward a constellation of propositions justifying or refuting the 

proposition expressed in the standpoint” (p. 1). Following this definition, our study 

regards argumentation as having two important and interrelated aspects – structural 

and dialogic (González‐Howard & McNeill, 2020). The structural aspect focuses on 

discourse in which a claim is supported by an appropriate justification, whereas the 

dialogic aspect focuses on the interactions between students, including co-constructing 

of arguments, critiquing arguments, mutual respect, and working toward consensus-

building (Ibid.). Following Jacobs et al. (2010), and based on the educational literature 

on argumentation, we conceptualize the noticing of argumentation as a set of three 

interrelated skills: attending, interpreting, and deciding how to respond. This paper 

focuses on attending skills. Attending relates to identifying salient characteristics, 

structural and dialogic, of the argumentation in a classroom situation (González‐

Howard & McNeill, 2020). We ask: What are the similarities and differences between 

PSMTs' and ISMTs' attending to argumentation?  

RESEARCH CONTEXT AND PARTICIPANTS 

A cohort of 35 secondary PSMTs and 32 secondary ISMTs participated in this study, 

which was conducted in Israel in two separate courses. The PSMTs' course focused on 

argumentation in mathematics teaching as part of their teacher training. The ISMTs' 

course focused on argumentation in mathematics teaching as part of their fulfilment of 

a Master's degree in mathematics education. All participants of both groups possessed 

either a B.Ed. in math education or a B.Sc. degree with a major in math or in a 

mathematics-related subject. The ISMTs’ years of experience ranged from 1–27 years, 

averaging 6 years. In both courses, the study was conducted during the fourth session 

of the course. The earlier sessions focused on discussing theoretical issues related to 

structural and dialogic aspects of argumentation. Both groups had not been exposed to 

argumentation formally or explicitly in their academic education. 

RESEARCH TOOLS 

The research tools included (a) a written Argumentation Classroom Situation (ACS) 

focusing on the issue of “Abbreviated multiplication formulas” in a 9th grade class; (b) 

an ACS report format (adapted from Jacobs et al., 2010) that includes prompts related 

to the three noticing-of-argumentation skills. In this paper, we focus on the skills 

associated with attending to argumentation. The participants were asked: Describe in 

detail those ACS sections which you deem important for argumentation, with specific 

reference to (1) structural aspects, i.e., the arguments (the claim, and justification for 
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the claim, if such exists) that emerged in the ACS, and the type of justification, and (2) 

dialogic aspects, i.e., the interactions between participants relating to collaborating on 

constructing arguments, critiquing arguments, mutual respect, and working toward 

consensus building. Provide a detailed description of how each aspect is manifested in 

the ACS, cite examples, and note the specific line numbers. 

The ACS: “Abbreviated multiplication formulas” 

The following situation took place in a 9th grade mathematics classroom with 20 

students. The lesson topic was “abbreviated multiplication formulas.” This was the 

third lesson on this topic. After the students had learned and practiced the first two 

abbreviated multiplication formulas: (x+y)2= x2+2xy+y2
;
 (x-y)2= x2-2xy+y2

, they were 

asked to write "correct" / "incorrect" for the claim: (𝑎 − 𝑏)2 = (𝑏 − 𝑎)2 and explain 

their answer. Note: The participants received the ACS without the right-hand [Coding] 

column.  

Teacher:        Solve the task and explain your answer. Coding 

Students:    Those two expressions are clearly different; it 

doesn’t take a lot of thought!       

Argument 1 Claim: 

Expressions are 

different; Justification: 

counterexample 
Teacher Who wants to explain to us why these two 

expressions aren’t equal? 

Ahmed: Because if we substitute 10 into a and 5 into b, 

we get 10-5=5, 5-10=-5. 5 is not equal to -5. 

So, there's no need to keep checking. 

Sareen: Not true, Ahmed. If we substitute the same 

value into a and b, then we get two  equal 

expressions, because 0=0. So then it is possible 

for the two to be equal!   

 

Argument 2 Claim: 

Expressions can be both 

equal or different; 

Justification: 

counterexample 

(Critiquing argument) 

Zayid: So, can we sum up by saying that sometimes 

they are equal, and sometimes they are not? 

(Attempt to reach 

consensus) 

Teacher: Students, you are saying a lot of nice things. 

Take a few minutes. Try to substitute different 

numbers in the two expressions, and see what 

you get. … 

(Mutual respect) 

 

Teacher: … Who wants to share their work?  

Ahmed: I substitute 5 into a and 3 into b and got 4 on 

both sides. That means that the two 

expressions are equal. 

Argument 3 Claim: 

Expressions are equal; 

Justification: empirical 
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Teacher: Nice! Ahmed, did you manage to figure out the 

mistake you made earlier? 

(Mutual respect) 

 

Ahmed: Yes, yes! … I went back over the substitution I 

used earlier…            

(Concession) 

Teacher: Nice work, Ahmed! Now I want you to use the 

abbreviated multiplication formulas that we 

learned and try to prove the claim. Take 

another five minutes and try to prove it.  

(Mutual respect) 

 

Teacher: Who wants to share their justification?  

May:  Can I write my solution on the board? Argument 4 

Claim: Expressions are 

equal; Justification: 

algebraic 

 

 

(Co-constructing 

arguments and mutual 

respect) 

Teacher:  Yes, May, please do! 

May: May copied her work from her notebook onto 

the board.   

  And then she said: I see that it has identical 

elements, but I can’t figure out how to prove 

that the expressions are identical.        

Teacher: Very nice May, you did very good work! There 

is one more small thing left to do… 

Teacher: Who wants to help May? 

Samir: I did exactly what May did, and then I found 

that the places of a squared and b squared can 

be switched because it’s addition. [He 

approaches the board:]   

May: Ooof, why didn’t I manage to do it myself? I 

get it now … 

Teacher: May and Samir, good job! Together you 

reached the right solution.  

   DATA COLLECTION AND ANALYSIS 

The data included 35 PSMTs' and 32 ISMTs' ACS-reports (total of 77) focused on 

analysis of the ACS. The reports served as the main data source for characterizing the 

similarities and differences between PSMTs' and ISMTs' attending to argumentation. 

The analysis comprised three main stages. In Stage 1, for each ACS-report, we 

classified the participant’s responses according to the two aspects of argumentation: 

structural and dialogic. Responses classified as attention to structural aspects included 

attending to the elements of arguments which contain claims, justifications and 
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identifying the types of the justifications. Responses classified as attention to dialogic 

aspects included attending to the co-constructing of arguments, critiquing arguments, 

mutual respect, and working toward consensus-building. In Stage 2, we coded the 

participants’ attention to structural aspects as follows: A participant who attended 

adequately, i.e., identified the claim and the justification and its type, to four, three, 
two, or one out of the four arguments raised in the ACS, received a score of 4, 3, 2, or 

1, respectively. We then counted how many PSMTs and how many ISMTs received 

Score 1, 2, 3, and 4. To compare the scores of attending to the structural aspect between 

the two groups, a Wilcoxon Signed-Rank test was performed. In Stage 3, for each 

participant, for each of the four dialogic aspects argumentation, we coded the 

participants’ attention as Score 1 in case we found evidence for attending to the specific 

aspect; otherwise, Score 0. We then counted how many PSMTs (out of 35) and how 

many ISMTs (out of 32) received Score 0 and Score 1 regarding each of the four 

dialogic aspects. To compare the scores of attending to dialogic aspects between the 

two groups, a Chi-square test was applied. 

FINDINGS 

PSMTs' and ISMTs' attending to structural aspects of argumentation 

We used a Wilcoxon Signed-Rank test to compare the PSMTs' and ISMTs' scores of 

attending to structural aspects of argumentation. The results, displayed in Table 1, 

indicate no statistically significant difference between the two groups regarding the 

structural aspect of argumentation (Z = 0.42, P = .68). 

Table 1: Distribution of scoring of PSMTs' and ISMTs' attending to the structural 

aspects of argumentation (scale 1-4), and Wilcoxon Signed-Rank test. 

Group N Score of Attending to structural aspects of argumentation Wilcoxon test 

Z P 

  1 2 3 4 0.42 .68 

PSMTs 35 3% (1) 14% (5) 31% (11) 51% (18) 

ISMTs 32 0 9% (3) 38% (12) 53% (17) 

As shown in Table 1, roughly half of the PSMTs (51%) and ISMTs (53%) received 

scores of 4 (i.e., they identified the claim and the justification and its type, for all four 

arguments raised in the ACS), while most of the remaining PSMTs (31%) and ISMTs 

(38%) received Score 3 (i.e., they identified the claim and the justification and its type, 

for three arguments raised in the ACS).  

PSMTs' and ISMTs' attending to dialogic aspects of argumentation 

A Chi-square test was applied to compare the PSMTs' and ISMTs' scores for attending 

to dialogic aspects of argumentation.  
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Table 2: ISMTs' and PSMTs' attending to the dialogic aspects of argumentation.  

Chi-square test ISMTs % 

(count) 

N=32 

PSMTs % 

(count) 

N=35 

Dialogic aspects 

P 2(1) 

.106 2.61 88% (28) 71% (25) Co-constructing of 

arguments 

< . 001 27.97 100% (32) 40% (14) Critiquing of arguments 

.908 0.01 91% (29) 91% (32) Mutual respect 

< . 001 17.24 84% (27) %34  (12) Working toward consensus 

building 

As shown in Table 2, a significant difference between the two groups was found 

regarding attending to two dialogic aspects: ‘critiquing of arguments’ and ‘working 

toward consensus building’.  No significant difference between the two groups was 

found regarding attending to ‘mutual respect’ and ‘co-constructing of arguments.’ 

Focusing on each group, it is notable that among ISMTs, a high level of attention was 

paid to all the four aspects. Among the PSMTs, a high level of attention was paid 

particularly to ‘mutual respect’ and ‘co-constructing of arguments’. ‘Critiquing of 

arguments’ and ‘working toward consensus-building’ received less attention. 

DISCUSSION  

Previous studies, not focusing on argumentation, identified differences between pre-

service and in-service teachers’ attention to noteworthy features of instruction (e.g., 

Sherin & van Es, 2005). To some extent, our findings are consistent with these studies 

in terms of differences between the ISMTs’ and PSMTs’ attending to dialogic aspects 

of argumentation: The ISMTs statistically significantly outperform PSMTs in terms of 

attending to critiquing of arguments and working toward consensus building.  

Critique and consensus building are two important components of argumentation that 

distinguish it from consensual co-construction dialogue (Henderson et al., 2015), 

where ideas may be elaborated upon but are not challenged or criticized. Critique in 

the classroom enables differences to be made explicit and is essential for assessing 

which idea is correct using mathematical criteria accepted by the teacher and the 

students (e.g., Staples, 2007). Therefore, teachers’ attention (or lack thereof in the case 

of the PSMTs) to critique and consensus is important for avoiding missed opportunities 

to capitalize on classroom situations for engaging students in argumentation. In our 

case, for example, the teacher’s recognizing the interaction between Sareen and Ahmed 

allowed students to discuss the correctness of their individual claims, to come up with 

ideas on how to evaluate each of the arguments, and to build on these ideas in an effort 

to reach the correct solution. Teachers’ attending to critique is also important because 

of the emotional aspects involved. Questioning each other’s ideas, being critiqued, and 

modifying their own claims on the basis of peers’ suggestions, are familiar challenges 

to many students (Kuhn et al., 2011). Thus, teachers’ attentiveness to these aspects is 

vital for conveying to their students that critique is an acceptable and expected action. 
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Therefore, the differences found in attention to argumentation between the two groups 

are notable. 

Still, the results of our study show some similarities in the PSMTs’ and ISMTs’ 

attention to argumentation. In the structural aspects of argumentation, both groups 

were able to identify all, or almost all, of the arguments raised in the ACS. In the 

dialogic aspects, participants of both groups paid relatively high attention to aspects of 

co-constructing arguments and mutual respect. Existing research that focused on 

PSMTs’ perspectives of argumentation found that they tend to discuss argumentation 

from the structural perspective only (Park & Magiera, 2019). A possible explanation 

for the PSMTs in our case attending also to some dialogic aspects could be that they 

had had some prior experience in discussing issues related to both structural and 

dialogic aspects of argumentation. Moreover, the ACS report format used in the study 

included explicit prompts related to attending dialogic aspects. Whatever the reason, 

the fact that certain dialogic aspects were addressed by the PSMTs is encouraging.  

Taking into account the small sample of teachers and the specific research conditions 

in the present study, the findings allow us to cautiously raise a number of questions. 

One question is: why did the PSMTs attend only to certain aspects and not to others, 

and why did the teachers refer to all aspects? Researchers point out the possibility that 

humans’ cognition is structured in such a way that critique may be more difficult than 

construction and that people are biased toward confirmation rather than falsification 

(Henderson et al., 2015). Is this bias reflected in the case of the ACS analysis by the 

PSMTs? Another, related question concerns the possibility of a development in 

teachers’ noticing of argumentation, reflected in the expansion of attention to dialogic 

aspects over the years of teaching. Further exploration of these questions may allow us 

as teacher educators to plan our teaching accordingly.  

Another question is related to possible connections between the participants’ attention 

to argumentation and their additional noticing skills, i.e., interpreting and responding 

to argumentation. Several studies have shown that interpreting and responding are 

dependent on attending (e.g., Jacobs et al., 2010). An important question, then, is what 

characterize the PSMTs’ interpreting and responding to the argumentation included in 

the ACS. For example, does their interpretation refer to the interaction between Sareen 

and Ahmed? Do the alternatives they offer to the teaching strategies of the teacher in 

the ACS refer to handling critique? We are currently working on analyzing these 

additional aspects of the participants' noticing of argumentation to address these 

questions. An additional question relates to possible connections between teachers’ 

attention to argumentation and their actual teaching practice. Will different attention 

to argumentation be reflected in different instruction related to argumentation in the 

classroom? Further research is needed to clarify the links between teachers’ noticing 

of argumentation and their teaching for argumentation in practice. To summarize, the 

research findings contribute to the literature on professional learning, specifically on 

developing PSMTs’ and ISMTs’ noticing of argumentation, by providing a snapshot 
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of their attending to argumentation. Learning more about the similarities and 

differences between PSMTs’ and ISMTs’ noticing of argumentation may contribute to 

teacher educators creating dedicated activities that gradually engage teachers in more 

complex and challenging processes of noticing that are aligned with a pre-determined 
sequence (e.g., Santagata et al., 2021). It is our opinion that it may be worthwhile in 
future research, and in varied contexts, to invite PSMTs and ISMTs to analyze 

additional ACSs. 
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A CARTESIAN GRAPH IS “A THING OF MOVEMENT” 

Bernardo Nannini1 and Giulia Lisarelli 2  

1University of Florence, Italy, 2University of Pisa, Italy 

 

Adopting a multimodal semiotic perspective, we present the case study of Bea, a 10th 

grade low-achieving student with a story of difficulties with functions. We focus on a 

task designed within a Dynamic Geometry Environment (DGE) artefact involving 

graphs of functions. The analysis of her speech, inscriptions, gestures, and actions on 

the artefact highlights her productive struggle in coping with the dynamism of the 

proposed representation, which resulted in an evolution of her semiotic production 

culminating in a drawing of the Cartesian graph. Results highlight the potentials of 

DGE activities, fostering the use of multimodal resources for low-achieving students.  

INTRODUCTION 

Research shows that the study of signs can highlight crucial processes in the teaching-

learning of mathematics. In the last decades different semiotic perspectives opened to 

a multimodal approach, focusing on a wide spectrum of signs, as gestures, sketches, 

manipulations of artefacts, etc. (Presmeg et al., 2016). This approach has enriched 

research in many areas of mathematics education, including the studies on teaching-

learning of calculus with digital artefacts (Arzarello et al., 2009; Ng, 2016). The study 

reported in this paper aims to contribute to this stream of research, by adopting a 

multimodal perspective to analyse students’ processes during DGE-designed activities 

involving the construction of the Cartesian graphs of functions. The study is part of a 

wider research project investigating the impact of digital-integrated artefacts on the 

learning of high school students with a story of persistent difficulties in mathematics. 

Expert mathematicians are able to interpret the Cartesian graph of a function as 

incorporating the functional relation between the two variables. They are also able to 

construct them starting from local and global properties of the function. Differently, 

for many students a Cartesian graph is a mute mark of ink on the paper, being them not 

able to recognise the two covarying variables and the functional relationship between 

them. Wide literature highlights the students’ need of opportunities to engage in 

activities on functions that emphasise the covariational aspects and give meaning to 

the graphical representation (e.g., Antonini et al., 2020; Thompson & Carlson, 2017).  

THEORETICAL FRAMEWORK 

This study is framed in a multimodal semiotic perspective. We use the notion of 

‘semiotic bundle’ theorised by Arzarello (2006) to analyse a wide spectrum of signs 

simultaneously involved in thinking and learning processes. Arzarello (2006) firstly 

defines a semiotic set as triplet composed by (a) a set of signs which can be produced 

by intentional actions (speaking, drawing, gesturing, handling an artefact, etc.), (b) a 

set of modes for producing and transforming signs, and (c) a set of relationships 
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between these signs and their meanings. A semiotic bundle is defined as a couple made 

of a collection of semiotic sets and of relationships between them. A semiotic bundle 

is a dynamic structure since, during the semiotic activity of a subject, new signs can 

arise, and new relationships between semiotic sets can be created. Arzarello observes 

that semiotic sets may transform each other, when new signs in a semiotic set are 

formed as genetic conversions of signs belonging to other sets. A semiotic bundle can 

be analysed synchronically, focusing on the simultaneous relation between the semiotic 

sets, and diachronically, focusing on the development of the bundle over time. 

In this study we will consider the semiotic bundle composed by four semiotic sets: 

speech, written inscriptions, gestures, and what we will call DGE signs, i.e. those signs 

produced by intentional actions on the artefact, as the construction or modification of 

a geometrical object, the dragging of a point, the zooming actions, etc. Our choice to 

introduce a specific semiotic set for DGE signs requires some remarks. Firstly, we 

observe that this set of signs fits in the definition of semiotic set, encompassing the (a-

c) features presented above. For example, we can consider the dragging of a base point 

that causes the indirect motion of other objects, thus, modifying the system of signs 

already present on the screen and producing the dynamic sign corresponding to the 

observed movements. The activation of the trace tool allows to highlight these 

movements, however, as gestures are signs even without leaving a mark in the air, the 

dragging produces signs even if the trace is not activated. The choice of including the 

set of DGE signs allows us to consider dragging actions within the semiotic bundle, in 

addition to speaking, gesturing, and drawing. Research shows how dragging plays key 

roles in teaching-learning functions as covariation between two variables (e.g., Falcade 

et al., 2007). Ng, in a discursive perspective, defines the term dragsturing to refer to 

an “action subsuming both dragging and gesturing characteristics” (Ng, 2016, p. 130), 

showing how it can effectively foster an evolution of students’ discourse on functions. 

In our perspective, we can interpret dragsturing as an action allowing the subject to 

produce a gesture (the finger moving on the screen) and DGE signs (the direct/indirect 

movements caused by dragging). Moreover, the introduction of DGE signs is prompted 

by one of the objectives of the research project, in which this study is embedded, that 

is to provide insights into the impact of digital-integrated activities on students’ 

learning. By including this set we can contribute to the aim from a semiotic perspective, 

focusing on the roles of DGE signs for the evolution of students’ semiotic bundle.  

In this paper our goal is to investigate whether, and how, the semiotic bundle evolves 

in the students of the project when coping with a particular digital-integrated activity 

involving the construction of the Cartesian graph of a function. 

METHODS AND TASK DESIGN 

Data for this study were collected during an educational path focusing on functions and 

involving 12 students of 10th grade from three Italian high schools. Five sessions, 

lasting 120’ each, took place in an out-of-school learning centre and they were 
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conducted by a researcher. Students worked with touch-screen tablets. Data consist of 

audio-video recordings of the sessions and screen recordings of the tablets.  

In this paper we focus on an activity with a DGE artefact, called dynagraph, involving 

a dynamic representation of a function (for more detail, see Lisarelli, 2023). In this 

dynagraph two tick marks, labelled A and B, are bound to move on the Cartesian axes. 

A, representing the independent variable, can be directly dragged, whereas B, 

representing the dependent variable, moves only indirectly under the dragging of A in 

accordance with the involved function. The Cartesian graph of the function can be 

obtained by constructing the point (A,B), activating its trace, and dragging A (Fig. 1b). 

However, this feature of the dynagraph was hidden to students who could only see the 

tick marks A, B (Fig. 1a). The given task was: “While dragging the tick mark A, can 

you imagine the trajectory of the point (A,B) on the Cartesian plane? Try to draw it”.   

 

Figure 1: a) The given dynagraph; b) The trajectory of the point (A,B) obtained 

dragging A – not visible on the screen for students. 

The task design involved also an a priori analysis, that allowed us to identify at least 

two aspects in this task that could generate complexities from cognitive and didactic 

points of view. The first one concerns the term ‘trajectory’ that has a twofold meaning 

(Falcade et al., 2007): either as a set of positions reached by the point (A,B), or as a 

static object that is the trace of the entire path taken by (A,B). The second one concerns 

the presence of different levels of dependency involving the elements of the dynagraph, 

and their movements. Indeed, since B is uniquely determined by A, the point (A,B) can 

be seen as uniquely dependent on A. However, the movement of (A,B) on the plane 

depends on both the direct movement of A, and the indirect movement of B. 

CASE ANALYSIS 

We present the case of Bea. In a preliminary interview, in front of the Cartesian graph 

of 𝑦 = −2𝑥 + 1, she stated to have difficulties with functions (“To me they are a bit 

like the meanest topic”), without succeeding in working on the given graph. In this 

section we analyse four episodes from the fourth session. In the transcripts, ‘I’ stands 

for ‘interviewer’, and words in (italics) describe actions in the moment they are made. 

Episode I. 

In the first ten minutes, Bea explored the file (Fig. 1a) by dragging A, initially, on 

positive numbers and then focusing on the position of B when A is between 0 and 6, 

which she described by writing “0<A<6→0<B<3”. When asked by the interviewer, 

Bea has correctly constructed a blue point corresponding to (A,B) for A=6 and B=3. 

Then Bea is asked to describe “where this point is when A varies between 0 and 6”. 
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 1  Bea: The blue point follows the direction of A. (With the right hand she drags A 
from 6 to 3, and, at the same time, she moves her left index finger 
horizontally on the screen from the blue point toward left). However, it 
always remains at the same height. Except, indeed, until it arrives to the 
point three. (She stops dragging and remains still). Where not only… I 
mean the point does not only follow the trajectory of A, so it is not only 
parallel to A, but also to B, so it goes down, it goes down. (She drags A 
from 3 to 0, consequently B moves from 3 to 0. At the same time, she moves 
her left index finger on the screen diagonally toward the origin, Fig.2). 

 

Figure 2: DGE signs and gesture of turn 1. A is dragged from 6 to 3 and then from 3 

to 0 (bold arrows). B moves from 3 to 0 (outlined arrow). The blue point remains 

still. The dotted arrows show the path of Bea’s left index finger on the screen. 

In this short excerpt, Bea describes the movement of the point (A,B) for the first time, 

having until now only referred to the movements of A and B. Bea’s description 

employs a series of multimodal semiotic resources. With her right hand she drags A, 

while B moves indirectly. With her left index finger she indicates the trajectory of the 

blue point corresponding to (A,B). Note that this point does not move while A is 

dragged, however Bea manages to represent this movement in a gesture embedded in 

the screen and co-timed with the movements of A and B. This dragsturing action allows 

Bea to represent the trajectory dynamically, as a series of positions reached by (A,B). 

Finally, in her speech, Bea refers to the dependency of the movement of (A,B) on the 

ones of A (“[it] follows the direction of A”) and of B (“it is not only parallel to A, but 

also to B”), the latter when B is not constant. However, in her gesture the dependency 

on B is always present. In other terms, dragsturing adds semantic elements to Bea’s 

speech. The bundle of speech, dragging, and gesturing allows Bea to represent the 

trajectory of (A,B) and the dependencies between the movements of A, B, and (A,B). 

Episode II. 

Right after the previous episode, the interviewer asks Bea to “try to draw it”.  

2  Bea: Eh…. [with concerned tone] 

3 I:  You already did it! 

4 Bea:  Yes, but the problem is to put it here (she points to the white page of the 
tablet), how do I do? Because it is a thing of movement.  

Encouraged by the interviewer, Bea draws a Cartesian plane on which she marks the 

values 3 and 6 on the x-axis and the value 3 on the y-axis (Fig. 3a). Then she continues: 

5  Bea: Like…from here to here (she draws an arrow between 3 and 6 on the x-
axis, Fig. 3b), the point… it remains unchanged and so it remains always 
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here. (She indicates over the just drawn arrow). Wait I’ll try to draw it 
parallel. Here it is. (She draws a red point over the arrow at the same height 
of the line ‘3’ of the y-axis, Fig.3).  

At this point, Bea drags A between 3 and 0 in the two verses, then she adds: 

6  Bea: From three to zero, instead… that is, from zero until three (she draws an 
arrow from 0 to 3 on the x-axis, Fig. 3d), the point… it moves. So, it can 
go or towards down or towards up, but always on three. (She draws two red 
vertical arrows over the x-axis, and then a horizontal line, Fig. 3e).   

 

Figure 3: Inscriptions of turns 4-6. 

This episode shows Bea’s attempt to make a drawing of what she described in episode 

I. Initially, Bea makes explicit her difficulties in coping with this task (turns 2-4), which 

requires to represent with a written sign the “thing of movement” that she has 

previously described with other semiotic resources (the dragsturing of turn 1, Fig. 2). 

A genetic conversion to enrich the semiotic set of inscriptions is necessary and Bea 

obtains this by drawing a series of arrows. First, she focuses on 3<A<6, drawing an 

arrow representing the movement of A and a red point at height 3 (Fig. 3c). Then, 

focusing on 0<A<3, she draws one horizontal and two vertical arrows corresponding, 

respectively, to the movements of A and B (Fig. 3d-e). The bundle made by Bea’s 

speech and inscriptions, with the temporal order of the drawings (the arrows for A’s 

movement are followed by those for B’s movement), allows her to represent the 

dynamism experienced and described in episode I. However, the arrows still refer to A 

and B, whereas the trajectory of (A,B) is not represented with a written inscription yet.  

Episode III. 

Bea explores the dynagraph for A<0 and observes that A and B “are opposite”. When 

asked, she constructs (A,B) as a blue point (-6,6). Then the interviewer asks: 

7  I: What trajectory did the blue point do to go from zero?  

8 Bea:  It enlarged, like it started from here and then it did like this. (Gesture of 
Fig. 4). I mean, it made a diagonal. 

The interviewer invites Bea to “make a drawing of this”. Bea draws a Cartesian plane, 

writing ‘A’, ‘B’, and ‘A,B’ all in correspondence of the origin. Then she continues:  

9  Bea: Then, if I enlarge A B, I mean, if B goes here and A goes up (she draws a 
horizontal arrow from B and a vertical arrow from A, Fig. 5a) [omissis: 
Bea observes to have inverted A and B]. Basically, this moves in diagonal 
(she draws an arrow in diagonal starting from the origin, Fig. 5b). 

10 Bea:  If instead these lower (she draws a vertical arrow and a horizontal one, 
opposite to the ones of turn 9), this does like this (she draws a diagonal 
arrow toward the origin, Fig. 5c). 
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Figure 4: Gesture of turn 8. 

 

Figure 5: Inscriptions of turns 9-10. 

This episode shows the presence of new signs which enrich, firstly, the semiotic set of 

gestures and then that of inscriptions. The first one is Bea’s gesture of turn 8 

representing the trajectory of (A,B). This is the second time that she performs a gesture 

referring to it – the first one occurred in episode I (Fig. 2) – however now it is not 

embedded in the screen with a dragging action as before, but it is performed in the air, 

detached from the tablet. It is an iconic gesture that represents, by itself, the movement 

of (A,B). Then (turns 9-10) we can observe the presence of a new genetic conversion 

in the semiotic set of inscriptions. Bea initially draws the same arrows of episode II to 

refer to A’s and B’s movement, but then she enriches the drawing with two diagonal 

arrows corresponding to the trajectory of (A,B) (Fig. 5b-c). This is a crucial point, since 

it is the first inscription made by Bea referring to the movement of (A,B). These arrows, 

despite being the same written mark than the others, have a very different genesis. They 

do not represent the movement of something visibly present on the screen, rather they 

are the conversion into written signs of the gestures previously used by Bea.  

Episode IV. 

The interviewer constructs the point (A,B) as the intersection of the lines perpendicular 

to the axes and passing by A and B, so that it moves in dependence of A and B. Then 

she asks Bea to drag A and to describe what she sees. Bea does not seem surprised by 

the movement of (A,B) and, referring to (A,B) for positive A-values, says: 

11  Bea: It goes as a stair… I mean the shape is like this (she rapidly makes a trace 
on the screen, without marking, close to the point (A,B)). Wait I’ll try to… 
(Bea takes the other tablet and draws the inscription shown in Fig. 6a). 

 

Figure 6: (a) Bea’s inscription of turn 11 and (b) after turn 12. 

Bea is then asked to consider negative A-values but before dragging A she says: 

12  Bea: The point does…it follows the diagonal (similar gesture of Fig.4).  

After dragging A on negative values, she adds a new line to her drawing (Fig. 6b). 

This episode shows how, with the mediation of the point (A,B), Bea manages to 

produce an inscription that an expert would recognise as the Cartesian graph of the 

function defined in the dynagraph (Fig. 6b). In her drawing, “the shape” (turn 11) of 

the trajectory of (A,B) is represented by a series of lines without explicit reference to 
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the movements of A and B and to the verse of movement of (A,B), as previously 

happened. Bea’s speech also mirrors this aspect (turn 12), because the verb ‘to follow’ 

that in episode I was used to refer the dependency of (A,B) on A (“[it] follows the 

direction of A”), is instead used here to refer to the shape of the movement itself. 

DISCUSSION  

The synchronic analysis highlighted the fundamental role played by the bundle of 

different semiotic sets in Bea’s activity becoming a crucial resource for her to cope 

with the task. In all the four episodes, by using different signs, mostly personal and not 

mathematically coded, she effectively represented the trajectory of (A,B).  

The diachronic analysis highlights an evolution of the semiotic bundle in response to 

the task of drawing the trajectory of (A,B), characterised by an enrichment of signs in 

the semiotic set of inscriptions. Initially, no inscription is made by Bea who represents 

the movement of (A,B) with bundles of speech, gestures, and DGE signs (episode I). 

Then, drawings of arrows, coloured tick marks, and dots appear (episode II). This is 

Bea’s initial attempt to represent in the semiotic set of inscriptions the dynamism of 

the dynagraph. Then this semiotic set further evolves (episode III) when Bea adds to 

her drawing the arrows representing the movement of (A,B) which, until now, she has 

only referred to with gestures on the tablet (turn 1) or in the air (turn 8). This is a crucial 

genetic conversion which introduces the trajectory of (A,B) as a new character within 

the inscriptions. The evolution culminates when Bea’s drawing corresponds, for an 

expert, to the Cartesian graph (episode IV). In this inscription, mediated by the new 

constructed point (A,B), some elements of the previous ones are lost (the arrows for 

the movement of A and B), and others are transformed (the arrows for (A,B) become 

a straight line). We interpret this as a form of semiotic contraction, “the mechanism for 

reducing attention to those aspects that appear to be relevant […] We need to forget to 

be able to focus” (Radford, 2008, p. 94). Bea, in drawing the final inscription, ‘focuses’ 

on “the shape” of the trajectory of (A,B), ‘forgetting’ the directions of movements of 

A, B, and (A,B) and the role of time characterising the dragging actions. 

CONCLUDING REMARKS 

The multimodal approach and the theoretical lens of the semiotic bundle allowed us to 

observe, analyse, and describe the story of Bea dealing with a dynagraph. This story 

is, firstly, a story of struggle. Her question “How do I do it? Because it’s a thing of 

movement”, synthetises the core of the problem. The task of drawing the trajectory of 

(A,B) requires Bea to face a semiotic complexity (to represent with a static inscription 

the dynamic and co-timed movements of A, B, and (A,B)) and a logical complexity (to 

take into account the dependencies between these movements). The analysis conducted 

in this study enriches the literature on functions in relation to students’ difficulties with 

graphs (e.g., Thompson & Carlson, 2017), by allowing these complexities to come into 

focus and thus providing insights for further research. On the other side, this is also a 

story of productive struggle. At the end, after a rich intertwining of signs, genetic 

conversions and external mediations (as the interviewer’s requests to focus on (A,B), 
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or the construction of (A,B) as a dynamic point), Bea’s semiotic production converged 

towards the educational aim of the activity: the Cartesian graph. This is highly relevant 

from a didactic point of view, considering Bea’s initial difficulties. Her graph is not a 

mute trace of ink, as in the preliminary interview, but a sign echoing all her semiotic 

production and thus rich of personal significance. This result confirms the didactic 

potentials of dynagraphs, also for low-achieving students (Antonini et al., 2020).  

Lastly, our choice of extending the analysis of the semiotic bundle to the set of DGE 

signs enabled us to observe that many signs produced by Bea developed as genetic 

conversions of DGE signs. Therefore, our analysis provides an initial contribution to 

the issue of investigating the impact of digital-integrated activities on students’ 

learning by showing that such activities can have a genetic role, i.e. they foster 

students’ generation of new signs that enrich not only the set of DGE signs, but also 

other semiotic sets. These signs could be distant from mathematical ones, as in the case 

of Bea, nevertheless they can be effective didactic resources allowing the teacher to 

engage a semiotic game (Arzarello et al., 2009) bridging them with mathematical signs. 
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INSTRUCTIONAL SHORT VIDEOS IN CALCULUS: THE 

MATHEMATICAL DIDACTICAL STRUCTURES AND 

WATCHING PATTERNS 

Eli Netzer and Michal Tabach 

Tel Aviv University, Israel 

 

The current study aimed to understand what the structure and design features of an 

effective mathematical instructional video are. The study focus is the didactical 

perspective of videos devoted to the explanation of mathematical topics in Calculus. In 

this paper we present findings based on two case studies taken from a larger collection 

of 24 mathematical instructional short videos. The analysis of each video is based on 

a mathematical didactical analysis and on user watching pattern analysis. Our 

findings suggest four didactical features that might serve as a starting point for 

explaining the user analytic data: 1) the appearance of an incentive trigger early in 

the video, 2) examples relevance to the mathematical concept presented, 3) the use of 

representation, 4) graded progression of the mathematical ideas within the video. 

INTRODUCTION 

Instructional videos for education are highly utilized and their use is increasing rapidly 

in the last decade (de Koning, Hoogerheide & Boucheix, 2018). The researchers states 

that Videos for education are considered as one of the most used content formats for 

delivering instruction in online courses. In parallel to the increase use of instructional 

videos in education, the methods in which they are embedded in courses and classes 

are evolving. Yet, challenges related to video design, production, and the development 

of effective pedagogical methods for incorporating them within courses are yet 

unanswered (Hansch et al., 2015). Importantly, there is no consensus as to what makes 

an educational video effective and how should it be measured (Woolfitt, 2015). Our 

aim in this study is to increase our understanding on these two issues. 

In this paper we present findings based on two case studies taken from a larger 

collection of 24 mathematical instructional short videos. The analysis of each video is 

based on a mathematical didactical analysis and on user watching pattern analysis. 

THEORETICAL FRAMEWORK 

Two main approaches can be found in the literature concerning how to measure the 

effectiveness of instructional videos. First, an indirect method, which measures the 

indirect effect on the learner, such as: students’ course grades, course dropout-rate and 

students’ feedbacks. Second, a direct method, based on examining the actual way in 

which the video is used by the learners (Kim et al., 2014). This research uses the second 

method mentioned, by evaluating the videos’ watching patterns. 
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The context of the study 

Previous research focused on tutorial type videos concerning the quadratic function 

and its different representations, target for 9-th grade students (Netzer, 2019). The 

current research is an expansion of the previous one in two ways: (1) analysing a wider 

variety of instructional mathematical videos, and (2) further developing and refining 

the method used. Therefore, this research is focused on mathematical videos about 

Calculus, which is one of the main subjects in the Israeli High-school math curriculum 

for the highest-level students. Also, the Calculus videos are a major part of the 

instructional videos collection within a set that was developed by the ministry of 

education, the “Haetgar 5” project (shorturl.at/gksFG).  

Research questions 

In the context of instructional videos aimed at presenting mathematical ideas on 

calculus for high-school students, we ask: (a) What is the mathematical-didactical 

structure of the videos? (b) What can we learn from the user analytics data? (c) Can 

the identified mathematical-didactical structure explain the user analytics data?  

METHODOLOGY 

The research is based on Multiple-case study approach (Creswell, 2013). According to 

Creswell, a subject is selected, and several cases are reviewed in which the subject is 

investigated or demonstrated. In this research the focus is the didactical perspective of 

videos devoted to the explanation of mathematical subjects in Calculus. Hence, each 

video is considered a case study. For each video, we analyse two types of data: (a) the 

mathematical-didactical review of the video content, and (b) the video’s watching 

pattern. 

The research population are the video watchers. These videos are open and available 

for all over the internet. The research assumption is that vast majority of the videos 

watchers are students from 10th to 12th grades who are learning for their high-level 

mathematics in high school, for matriculation examination. This assumption is based 

on the fact that the videos are an integrated part of the “Haetgar 5” project, which was 

targeted for this population. 

Following the pre-processing stage of the research, 24 videos were selected. The videos 

were grouped according to three mathematical content categories: 1) Mathematical-

conceptualization, including videos that present a mathematical concept, feature, or 

definition. 2) Mathematical-procedure, including videos that present a certain 

mathematical algorithm or process. 3) Unfolding-problem, videos that show an 

evolving or progressing problem that builds up several mathematical ideas. In this 

paper we elaborate on the study of two videos. Both videos are under the category of 

mathematical-conceptualization videos which includes 10 videos overall. The two 

videos were selected to be presented here due to the variety of the findings in their 

analysis. 
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The videos content mathematical-didactical review included several stages. First, the 

segmentation of each video timeline according to the subject didactical ideas that were 

presented, such as: the introduction of a new mathematic definition, a demonstration 

of a mathematical feature, the presentation of a question, an example and its solution. 

Second, the analysis of each segment, reviewing aspects such as: The method used to 

present the segment mathematical idea; What type of visuals were used? How both 

visual and narration supported the communication of the mathematical ideas? Was 

there a call for action for the watcher? Third, a didactical analysis of how the different 

video segments interleave and relate to one another including issues such as: What is 

the method in which the mathematical ideas within the video were built up? How the 

examples supported the ideas discussed and what was their role in the video? What 

type of mathematical visuals and representations were used and how do they relate to 

each other? Was there any reference to known misconceptions concerning the 

mathematical subject? 

Each video’s watching pattern was built using google analytics platform. The platform 

provides several video usages attributes per each specific video. One of them, that was 

especially used in this study, is named the watching percentage. The watching 

percentage is a series of 100 data inputs which are calculated by the platform as 

following: the video timeline is divided to 100 parts (named moments), per each 

moment a ratio in percentage is provided in the series. The ratio presents the number 

of watching session per each specific video moment (watching session means the 

number of times the moment was included in any play session) in respect to the number 

of watching session of the video opening moment. Drawing the matrix data according 

to the video timeline provided us with the graph presenting the video’s watching 

pattern (Figure 11). In addition, per each of the three video categories an average 

watching pattern was calculated based on all watching pattern of the videos forming 

the category. For example, the black line in Figure 11 represents the average watching 

pattern of all 10 videos under the mathematical-conceptualization videos category.  

FINDINGS 

In this chapter we present the findings related to two videos, the Limit video and the 

Concave video. 

The mathematical content of the Limit video is about the limit value of certain 

functions at given domains. The video can be divided into two main parts, each has its 

own goal (Figure 1). The goal of the first part (sections B to F) is to demonstrate that 

different types of functions behave differently while approaching their limits 

boundaries. Three different functions are reviewed at three different domains. The 

functions are 𝑒𝑥, 𝑥2 and 𝑙𝑛(𝑥). The three domains are: a) when x increases to infinity, 

b) x positive and decreases to zero, c) when x decreases to minus infinity. A table 

format presentation is used to present the value changes of each function in each 

domain. The first part ends with a summary section in which the behavior of all three 

functions in each of the different three domains is summed up into a single table. 
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The second part of the video (section G to J) includes two examples, the goal of both 

examples is to demonstrate how to solve a conflicting situation when at a certain 

domain of 𝑥 the value of a function is determined by the product of two opposing 

values: one approaching the value of zero while the other reaching infinity. Both 

examples, in the second part of the video, are utilized to demonstrate interesting 

function situations. The functions are: 𝑦 = (1 − 𝑥)𝑒𝑥 and 𝑦 = 𝑥 ∙ 𝑒
1

𝑥, each feature 

quite a unique function behavior. The first has a horizontal asymptote only on the left 

side of the x axis while none on the right. The second includes an undefined domain 

value in which on one side the function has a vertical asymptote while on the other side 

the function approaches a hole point. 

 

Figure 11: Limit video watching pattern with section breakdown 

In Figure 11 we can review both, the video watching pattern and the prior didactical 

partitioning. We can observe that the first part of the video has a lower-than-average 

watch percentage, as opposed to the second part that is slightly above the average watch 

percentage. 

As for the first part of video, utilizing the didactical lens, we can suggest three possible 

didactical factors that might explain the low watch percentage of the first part. First, 

this part is missing a clear incentive or motivation. There is no clear connection of the 

discussion during this part to the video’s main goal. Questions such as: why were these 

three functions specifically selected for discussion? What is the need to display and 

compare their values in these specific domains? All remain unclear during this part. 
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Second, the presenter states that the exponential function is the dominant function of 

all three. The claim is clearly supported by the table presenting the function values at 

the first domain (positive increasing x values). Yet, it is not clear how this statement 

can be concluded in the other two domains in which each function approaches a 

different value in the additional tables. Third, there is extensive use of table form as 

representation during all this part, while lacking any graphical representation. The lack 

of utilizing multiple representation supporting the mathematical phenomenon 

discussed during this part might be one of the causes for the low watch percentage. 

In contrary to the first part, reviewing the second part we can suggest three possible 

didactical factors that might support the above average watch percentage value in the 

graph (Figure 11, sections G - J). First, both examples are highly relevant. Both clearly 

show the mathematical situations which are at the heart of the discussion in this video. 

Specifically, both present conflicting situations where at a certain domain of x the value 

of a function is ambiguous, because of two opposing values that their product is 

questionable. Second, the examples are gradual, the second is more challenging than 

the first, and both complement each other. The second example not only demonstrate 

an additional case to the first, but a different situation and a more complicated one. 

Third, use of good mathematical representation. Both examples include at their final 

stage a graphic representation of the result. Interestingly the peaks in the watch 

percentage graph at the end of sections H and J correspond to the moments in which 

the graphs are presented in the video. 

The mathematical content of the Concave video is an introduction to an additional 

function characteristic, concavity, mainly when it is concave up or down. Didactically, 

the video can be partitioned to five main parts (Figure 12). First, the introduction of 

two functions and the discussion concerning their similar and different characteristics. 

Second, the definition of concave up and down of a function. Third, a sample question 

is presented and explained. Fourth, the definition of the second derivative of a function 

and its relation to the function concave states. Fifth, a short summary including a 

presentation of a textual summary table. We focus our discussion here on three out of 

the five parts: the first, third and fourth part. 

The first part (section B and C) presents an interesting call for the viewers to analyze 

what are the similar and different characteristics of two given graphs. At first the 

similar function characteristics are reviewed (section B), such as: the positive domain 

of the function, function increase domain, positive slope, the absence of internal 

extremum. While the viewers of this video should be familiar with the characteristics 

suggested in the similar part discussion, the upcoming differences discussion in section 

C introduce new terminology of function characteristics. Three new definitions are 

used in the latter part: a) the position of a chord connecting two points on the graph; b) 

the position of a tangent line to a point on the graph; c) the function rate of change. All 

three allowing different visual approaches to measure what later will be defined as the 

function concave state. 
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The third part (section F and G) includes a short exercise. The question is presented in 

section F and immediately after, in section G, the solution is presented. The didactical 

goal of this part is to show an example that correspond to the mathematical ideas 

presented in the prior definition part (section D and E). The viewer is requested to 

identify which of the displayed four graphs is concave up? The solution presented 

utilizes the two visual reasoning methods that were presented in the first part: the chord 

and the tangent line positioning in respect to the graph, both are shown graphically. 

 

Figure 12: Concave video watching pattern with section breakdown 

In the Forth part two new mathematical definitions are introduced: The second 

derivative in section H and the inflection point in section I. A graphical representation 

of a function is presented demonstrating both concave states and an inflection point in 

between. We can suggest two didactical benefits in the decision to introduce both 

definitions at this stage: First, the second derivative builds up on the prior discussion 

concerning the rate of change of the function slope, which was presented in the first 

part of the video. Second, after introducing previously the two visual methods for 

defining the graph concave state, there is a need to introduce an accurate analytic 

method.  

Reviewing the video’s watching pattern (Figure 12) we can clearly note the above 

average watching percentage values during all video duration. Next, we suggest six 

possible didactical features within the video parts that might explain the high watching 

percentage. First, the open question presented at the beginning. Second, the function 
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characteristic review build-up – familiar features first, while new and interesting 

features later. Third, the introduction of a variety of methods for identifying function 

concavity supporting a wide overview of the subject, as opposed to presenting a single 

method. Fourth, a good didactical timing and presentation of the short tutorial example, 

in the third part, allowing further elaboration on prior mentioned mathematical 

definitions. Fifth, building up new mathematical terms while basing them on prior 

presented mathematical ideas. Sixth, expanding the reasoning from visual to analytic. 

DISCUSSION 

Following the above findings, we would like to suggest four didactical features that 

might serve as a starting point for explaining the user analytic data. First, the 

appearance of an incentive trigger early in the video, while the Limit video was missing 

a clear motivation in its first part, the Concave video utilized the open question at the 

beginning as an incentive for watching the video. Second, the examples relevance to 

the mathematical concept presented in the video, the examples in the Limit video are 

highly relevant both clearly show the mathematical situations which are at the heart of 

the discussion in the video. The example used in the Concave video also supports the 

prior mathematical ideas. Third, representation, the Limit video utilized a single 

representation during the whole first part, yet later in its second part an additional 

graphical representation of the result is included. The Concave video added the analytic 

reasoning to both visual methods that were presented earlier which can allow a broader 

understanding of the subject. Fourth, graded progression, the mathematical ideas 

within the two examples in the Limit video as elaborated previously as well as their 

order of appearance is a clear example of this factor. In the Concave video it can be 

viewed in the function characteristic build-up, which demonstrates well this feature, as 

well as the progress of the mathematical terms introduce during this video. 

Kay, in his study on developing a framework for creating effective instructional video 

podcasts (Kay, 2014), named four categories for design characteristics: establishing 

context, providing effective explanations, minimizing cognitive load and engaging 

students. Mapping the four didactical features mentioned in the previous paragraph to 

Kay’s categorization, we can conclude that the first two didactical features, incentive 

and relevance, can be related to the Kay’s first category, establishing context. While 

the last two didactical features, representation and graded progression, can be related 

to Kay’s second category, providing effective explanation. 

The didactical features raised in the findings of the current study, although yet to be 

further evaluated in the overall research, can contribute to the design and development 

of mathematical video learning pedagogy. 
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A common assumption is that proof construction can be learned through proof 

comprehension. To contribute to this idea, we conduct three different studies with over 

296 students. In each study, we ask students to comprehend a given, acceptable proof 

and afterwards to construct a similar proof. Based on the data, we analyse relations 

between proof comprehension and proof construction regarding proofs in Number 

Theory and Analysis. As some students comprehend a proof but are not able to 

construct a similar proof, we analyse inappropriate proof constructions. Possibly 

consequences for learning interventions are discussed.  

INTRODUCTION 

Undergraduate students often read written mathematical proofs, e.g., given by their 

lecturers or in textbooks (Mejía-Ramos et al., 2012). At least some of those proofs are 

given to the students as learning opportunities because proofs are “bearers of 

mathematical knowledge” (e. g. Hanna & Barbeau, 2010, p. 85; Rav, 1999, p. 20) and 

students should not only be able to comprehend proofs but learn new methods, tools, 

strategies, or concepts from them (Hanna & Barbeau, 2010). One underlying 

assumption is that students learn how to construct proofs by studying given (sometimes 

quite similar) proofs. Thus, if students are able to comprehend a mathematical proof, 

they should also be able to construct a similar mathematical proof on their own. This 

assumption is analysed regarding proofs in Number Theory and Analysis.  

THEORETICAL BACKGROUND 

Proofs are “the heart of mathematics” (Rav, 1999, p. 6) and thus learning how to prove 

is one of the most important goals when studying mathematics. The concept of proving 

can be divided in three broad activities (Mejía-Ramos & Inglis, 2008, 2009): proof 

reading, proof construction, and proof presentation.  

Reading a proof can be distinguished in proof evaluation and proof comprehension. 

Proof evaluation means that a given proof is evaluated by different criteria like 

correctness, comprehensibility, or beauty. In contrast to this, proof comprehension 

refers to reading a given, correct (acceptable) proof. The reader does not have to judge 

if the proof is wrong but can focus on comprehending the used methods and arguments. 

A model of how to assess proof comprehension was introduced by Mejía-Ramos et al. 

(2012). They divided proof comprehension in aspects that refer to local parts of the 

proof (like the meaning of terms and statements) and aspects where one must consider 

the whole proof (like giving a summary or getting to know how different parts of the 
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proof are connected to each other). Neuhaus-Eckhardt (2022) extended this model in 

combination with theories about general text comprehension and proposed three 

dimensions. In addition to local and global aspects of a proof, she explicitly separated 

the dimension “transferring the general ideas or methods” that refers to aspects beyond 

the given proof. This third dimension may be of particular importance if students learn 

from given proofs methods or ideas how to construct similar proofs.  

Proof construction refers to developing and writing one’s own proof. Three types of 

activities can be divided (Mejía-Ramos & Inglis 2008, 2009): exploration of a problem, 

estimation of truth of a conjecture, and the justification of a statement estimated to be 

true. In their assignments, students often have to prove a given statement and they can 

assume that this statement is true. As this refers to the third proof construction activity, 

we focus on this activity in our studies. 

It is well known that many students struggle when justifying a statement, especially at 

the beginning of university (e.g., Moore, 1994, Weber, 2001). Research put forward 

ideas to help students to overcome those difficulties, for example transition-to-proof 

courses (e.g., Kempen & Biehler, 2019), or provide supporting strategies to them (e.g., 

Weber, 2001). Another, quite common idea is that in many lectures very detailed 

proofs which use typical methods (e.g., proof by contradiction) and ideas how to prove 

certain statements (e.g., convergence of sequences) are presented to help students to 

get to know these methods and ideas and finally to construct proofs on their own 

(Liebendörfer, 2018). Some lecturers even show proofs that are very similar to the 

proofs that the students have to do themselves in their assignments. Therefore, an 

underlying assumption is that students are able to learn how to construct proofs by 

reading and comprehending given, acceptable proofs (Mejía-Ramos et al., 2012).  

Till now only a few studies give hints for this assumption and explicitly analyse the 

relation between proof comprehension and proof construction. To our knowledge, 

studies show small to medium correlations between proof comprehension and proof 

construction (e.g., Waluyo, 2021, 𝑟 = .265). Reasons for these small relations could 

be that the two proving activities differ more than assumed so that it is not so easy for 

students to transfer methods or ideas of one proof to construct another similar proof. 

When comprehending a given, acceptable proof, students can focus on understanding 

the text, symbols, and given information, whereas proof construction is likely to require 

different problem-solving strategies than proof comprehension, e. g., testing different 

proof methods. Other variables that are important for mathematical learning processes, 

such as prior knowledge (e.g., Ufer et al., 2008) or self-concept (e.g., Rach et al., 2019), 

could also influence both activities to different extent.  

Due to the small number of studies, it is yet not possible to evaluate how helpful proof 

comprehension is to construct proof. Especially when considering rather similar 

proofs, for example first reading a proof and then immediately constructing a proof 

using the same ideas as in the given proof, one would expect rather high relations 

between these two activities. Analysing exemplary solutions will give an additional 



Neuhaus-Eckhardt & Rach 

PME 46 – 2023 3 - 405 

insight what could be problems for students when trying to adapt the ideas of one proof 

to construct another. Therefore, our research questions are:  

RQ 1: To what extent is proof comprehension of one proof connected to proof 

construction of another similar proof? 

RQ 2: What are typical inappropriate solutions to the proof construction task and which 

reasons may lead to these solutions?  

SAMPLES AND METHODS 

We analysed the relation between proof construction and proof comprehension in three 

different studies with undergraduate students. In two studies, we used proofs from 

Number Theory and students in preparatory courses before the first semester 

(𝑁1 =  113, 𝑁2 =  119). In the third study, we analysed data from students at the 

beginning of their second semester (𝑁3 =  64) using proofs in Analysis. For answering 

RQ 2, we also include data of a pilot study of the third study with students at the end 

of their first Analysis course (𝑁𝑃 =  58) to enlarge the body of students’ proof 

constructions.  

Most of the students were enrolled in mathematics, economics mathematics, or teacher 

education programs. Each of the study took place in a lecture so that the students had 

a time restriction of 30 minutes to complete the proof comprehension test and to deal 

with the proof construction item.  

Proof comprehension was measured using a statement and proof in Number Theory 

(suppose that 𝑝 and 𝑝 + 2 are both primes with 𝑝 > 3. Then their sum 2𝑝 + 2 is 

divisible by 12, Adler & Coury 1995) resp. Analysis (mean-value theorem). To each 

proof a test with multiple-choice and open items based on the three dimensions of proof 

comprehension was constructed (Number Theory: 10 items, Analysis: 9 items). Due to 

reliability analyses two items of the Number Theory test and one item of the Analysis 

test were not included when calculating the sum of the tests. The reliabilities of the 

final tests were acceptable (table 1). 

We measured the performance of proof construction using a similar statement in 

Number Theory (suppose that 𝑝 is a prime with 𝑝 > 3. Then 𝑝2 + 1 is divided by 12) 

resp. Analysis (Rolle's theorem). Similar methods as in the given proofs can be used to 

prove those two statements. In Number Theory the students only had to construct a 

small part of the proof because they just started university. In the proof of the first 

statement is shown that 𝑝 + 1 is divided by 2 and we asked the students to show, that 

𝑝2 + 1 = (𝑝 − 1) ∙ (𝑝 + 1) is divided by 4, so they only had to show that 𝑝 − 1 is also 

divided by 2. In Analysis the students had to construct a full proof of Rolle’s theorem 

using similar ideas as in the given proof of the mean-value theorem. The students 

already knew the statements of the two theorems from their lectures in the first 

semester, but with slightly different proofs. In the given proof of the mean-value 

theorem an auxiliary function ℎ was used and two cases have been distinguished: ℎ is 
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constant and ℎ is not constant. The proof of Rolle’s theorem can be carried out similar 

by using an adapted auxiliary function ℎ. 

Students’ proof constructions for each study were coded by two different persons with 

two points if the proof was acceptable, one point when there were only minor mistakes, 

and zero points when the proof was wrong. When students wrote nothing at all and 

they worked on the items beforehand, we coded zero points instead of a missing value 

because we assume that the students had enough time to work on all items. The 

interrater reliability was satisfactory for each study (table 1).  

Table 1: Descriptive Analysis of proof comprehension and proof construction scales. 

Variable M (SD) Min Max Reliability N 

Proof comprehension 

Number theory 1 

Number theory 2 

Analysis 

 

3.91 (1.94) 

4.67 (1.95) 

3.12 (1.65) 

 

0 

1 

0 

 

8 

8 

8 

Cronbach’s 𝛼 

.60 

.61 

.52 

 

113 

119 

64 

Proof construction 

Number theory 1 

Number theory 2 

Analysis 

 

0.73 (0.83) 

1.24 (0.82) 

0.16 (0.48) 

 

0 

0 

0 

 

2 

2 

2 

Cohen’s 𝜅 

0.77 

1.00 

0.99 

 

113 

119 

64 

 

RESULTS  

RQ 1: To what extent is proof comprehension of one proof connected to proof 

construction of another similar proof? 

To answer this question, we measured Pearson’s correlation coefficient for each study 

using R and the package lavaan (Rosseel, 2012). Missing values were estimated using 

the Full-Information-Maximum-Likelihood method.  

In both studies referring to Number Theory the correlation was medium to high 

(study 1: 𝑟 = .51, 𝑝 < .01; study 2: 𝑟 = .49, 𝑝 < .01). In Analysis the correlation was 

medium (𝑟 = .38, 𝑝 < .01), but only 11 people wrote something on the proof 

construction item (table 2). Noticeable is that 51 students (21 in Number Theory 1, 13 

in Number Theory 2, 17 in Analysis) who did not construct an acceptable proof 

(0 points) show medium to good results (4-8 points) in the proof comprehension test. 

In the following, we identify typical inappropriate solutions and discuss reasons for 

this. 

Table 2:  Frequencies of proof construction. 
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Study 
Acceptable 

(2 points) 

Minor 

mistakes 

(1 point) 

Wrong  

(0 points) 

Nothing 

written  

(0 points) 

Total 

Number Theory 1 27 28 18 40 113 

Number Theory 2 58 32 12 17 119 

Analysis 3 4 4 53 64 

Pilot study Analysis 12 7 13 26 58 

Total 100 71 47 136 354 

 

RQ2: What are typical inappropriate solutions to the proof construction task and 

which reasons may lead to these solutions?  

Typical problems in inappropriate solutions were that students conducted only the first 

steps of a proof and did not finalise it or that the ideas of the given proof were only 

copied not adapted. To illustrate these students’ problems, we show two examples.  

In Number Theory, many students only showed, that 𝑝 + 1 is even like in the given 

proof, ignoring the fact that they had to prove that (𝑝 + 1) ∙ (𝑝 − 1) is divided by 4. 

One student even copied the given proof and did not adapt it to the new statement at 

all (fig. 1).  

Fig. 1:Translated proof construction item in Number Theory with a solution (in italics). 

Theorem: 

Suppose that p and p + 2 are both primes with p > 3. Then their sum 2p + 2 is 

divisible by 12. 

This statement can be proved using similar methods as in the first statement. The 

start of the proof is shown below. Complete line 2 of the proof in the same way as 

above. 

Proof: 

Since p2 − 1 = (p + 1)(p − 1), one shows that (p + 1)(p − 1) is divided by 3 and 

4. Because p is odd… 

𝑝2 − 1 is even and therefore divided by 2.  

Let 𝑘 ∈ ℕ. Then 𝑝 is of the form 3𝑘 + 1 or 3𝑘 + 2 

..and therefore divisible by 4.  

p2 − 1 is also …[do not add proof here]. 

This student did not explain why 𝑝2 − 1 is even which could be done by adapting an 

idea from the given proof. He continued the proof by starting to show that 𝑝2 − 1 is 

divided by 3 as in the given proof which is not required for this part of the proof. It 
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seems that this student only copied the given proof and did not adapt it to the new 

situation. This is not surprising because the student got only 3 points in proof 

comprehension. But students with a good proof comprehension also show similar 

problems. 

In Analysis most of the students showed only the first case (ℎ is constant) of the proof 

which can be proven straight forward, whereas case two (ℎ is not constant) is more 

complicated. An example is given in fig. 2. 

Fig 2: Translated proof construction item in Analysis with a solution (in italics). 

The following statement can be proved like the mean-value theorem above if the 

ideas are adapted. Prove the following statement, by (for example) first computing 

the auxiliary function h for g as above and then considering the cases “h constant” 

and “h not constant”. (You are not allowed to use the mean value theorem.) 

Rolle’s theorem 

Let the function g: [a, b] → ℝ, a < b be continuous and differentiable in (a, b) and 

g(a) = g(b). Then there exists ξ ∈ (a, b) with g′(ξ) = 0. 

Proof: 

The function ℎ is obviously continuous on the interval [𝑎, 𝑏] and differentiable in 

(𝑎, 𝑏). In addition, it holds – also obviously – that ℎ(𝑎) = ℎ(𝑏) since 𝑔(𝑎) = 𝑔(𝑏). 

If ℎ is constant, then ℎ′(𝑥) = 0 holds for all 𝑥 ∈ (𝑎, 𝑏). The assertion follows from 

this.  

This student had recognized beforehand that the auxiliary function ℎ for this statement 

equals 𝑔. The student then follows the given proof and even adapt it to the function 𝑔 

in Rolle’s theorem but he/she did not give a complete proof. The student only presented 

the first case (ℎ constant) even though both cases are mentioned in the item assignment. 

This student got 5 points in proof comprehension and zero points in proof construction. 

DISCUSSION 

Learning how to prove is an important learning outcome in mathematics university 

courses. However, many students have problems constructing a proof on their own 

(e.g., Moore, 1994, Weber, 2001). Lecturers present proofs to their students with the 

idea that students comprehend the proofs and learn how to construct proofs on their 

own. With this contribution, we analyse this idea. 

The results show that there are medium correlations between proof comprehension and 

proof construction of similar proofs, replicating already existing studies (e.g., Waluyo, 

2021). Still the results are somehow unexpected because we used proofs for 

comprehension and construction which are very similar to each other and thus, we had 

assumed that if students comprehend one proof quite well, they will also be able to 

prove the second similar statement. However, the results suggest a more complicated 

relationship between proof comprehension and construction. One reason could be that 

the processes of proof comprehension and proof construction differ too much and more 
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than comprehending the given proof is needed when using it to construct another 

similar proof. Thus, it is necessary in mathematics courses not only to present proofs 

but also to explicate strategies to students how to transfer ideas of one proof to another 

proof. 

The descriptive analysis indicates that only a few students constructed an acceptable 

proof even if they read a similar proof before and “only” had to adapt the used methods 

to the new statement. Especially in Analysis (study 3), many students were not able to 

construct a proof at all although they already knew the statements of the two theorems 

from their lectures. This could be surely due to time restriction in the study. In addition, 

a low self-concept regarding proof (Rach et al., 2019) could hinder proof constructions 

because students assume that they can not construct a proof on their own and thus won’t 

even start to try. In addition, the exemplary inappropriate proof constructions show that 

some students only copied the given proof and even students with a good proof 

comprehension did not or only slightly adapt the given ideas to the new statement. 

Missing prior knowledge or a lack of specific strategies (Weber, 2001) could be 

reasons for this so more research is needed. 

Limitation of our studies are the small sample sizes as well as the instruments which 

show only acceptable quality. Research concerning other proofs (of further 

mathematical fields) is needed to replicate the findings and identify more reasons why 

students could (not) transfer an idea from one proof to another. In addition, it could be 

analysed which strategies are helpful to teach students how to use given proofs to 

construct their own proofs because to comprehend proofs is a useful skill when 

studying mathematics but comprehending a proof does not mean to be able to construct 

a similar proof automatically. 
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Mathematical content knowledge, methodological knowledge, and problem-solving 

strategies are important prerequisites for constructing mathematical proofs. To 

optimally support students in proving, teachers need to assess their students’ proof 

skills. Teachers’ person characteristics, such as professional knowledge and 

motivation, are expected to influence their assessment quality, also regarding 

mathematical proof skills, which we empirically investigated with 150 future teachers. 

Results indicate that teachers’ professional knowledge supports the assessment of 

methodological knowledge. However, the assessment of problem-solving strategies 

was mostly independent of teachers’ characteristics and motivational characteristics 

only tentatively affected the assessment of mathematical content knowledge. 

INTRODUCTION  

Secondary school students are often overwhelmed by the complexity and variety of 

mathematical proofs (Stylianides, 2019). To tackle this issue, students’ learning of 

mathematical proof skills needs to be better supported. To do so, teachers need to know 

the prerequisites an individual student brings for successfully constructing 

mathematical proofs. In other words, teachers must be able to adequately assess 

relevant facets of mathematical proof skills.  

Mathematical Proof Skills 

The construction of a proof as a coherent and comprehensive line of arguments to 

validate a mathematical assumption requires various (sub-)skills. Prior research has 

already investigated possible facets of mathematical proof skills (Chinnappan et al., 

2012). Three facets can be seen as particularly important prerequisites of a student to 

construct a mathematical proof: mathematical content knowledge, methodological 

knowledge, and problem-solving strategies (Sommerhoff, 2017). Mathematical 

content knowledge refers to knowledge of the mathematical subject area of the proof, 

such as the definition of a parallelogram and congruence theorems (Chinnappan et al., 

2012). Methodological knowledge refers to knowledge about the concept of 

mathematical proof in general. It comprises knowing that mathematical proofs start 

with certain premises, followed by a rigid line of arguments to culminate in a 

conclusion. Methodological knowledge also comprises knowledge about what types of 

arguments are legitimate within a proof in a given context (Heinze & Reiss, 2003). 

Lastly, problem-solving strategies refer to heuristic strategies, which can be related to 

the mathematical subject area of the proof, but also refer to metacognitive strategies 

such as monitoring the proving process and adapting the proving strategy accordingly 
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(Chinnappan et al., 2012). Even though prior research provided evidence for the role 

of these facets for students’ proof construction, research focusing on the assessment of 

these facets from a teacher-centered perspective is scarce.  

Teachers’ Assessment Skills 

Generally, teachers’ assessment skills are seen as skills that teachers need to cope with 

various assessment situations and to assess student characteristics accurately (Urhahne 

& Wijnia, 2021). The most frequently used measure of teachers’ assessment skills is 

judgment accuracy. Unfortunately, according to prior research, teachers’ judgment 

accuracy leaves room for improvement. This led to a call to facilitate future teachers’ 

assessment skills already in university teacher education. To explore reasons for 

improvable judgment accuracy, the assessment process has been increasingly focused 

recently (Herppich et al., 2018). For example, to explain varying judgment accuracies 

regarding the assessment of students’ mathematical proof skills, teachers’ written notes 

taken during the assessment may provide insights whether and to what extent the 

above-mentioned three facets of mathematical proof skills have been considered.  

During the assessment process, the assessed students’ mathematical proof skills 

become evident in more or less salient cues regarding mathematical content 

knowledge, methodological knowledge, and problem-solving strategies. Teachers are 

then required to use their knowledge about the relation of these cues to the skills to be 

assessed to infer a final judgment (Brunswik, 1955). Typically, the more relevant cues 

are perceived and the more meaningfully they are interpreted, the more accurate is the 

final judgment. However, depending on the teacher, not all cues may be noticed. 

Moreover, cues can vary in the degree of inference, as some classroom events require 

more inferences to be identified as a relevant cue than other classroom events. For 

example, the student’s statement “I checked the book and found that I used the 

definition of a parallelogram incorrectly” is a salient and thus low inferential cue 

regarding the student’s mathematical content knowledge. However, it may also be a 

cue that the student has good monitoring strategies while working on a task. This, in 

turn, is less obvious and therefore a rather high inferential cue regarding the students’ 

problem-solving strategies. This also points towards different degrees of inference of 

cues, depending on the variable that is assessed. Regarding mathematical proof skills, 

Codreanu et al. (2021) investigated the degree of inference of cues regarding 

mathematical content knowledge, methodological knowledge, and problem-solving 

strategies. They hypothesized that cues for mathematical content knowledge are rather 

low inferential, whereas cues for methodological knowledge and problem-solving 

strategies are higher inferential. In their study, these different degrees of inference 

appeared to have affected their participants’ judgment accuracy, as mathematical 

content knowledge was assessed more accurately than methodological knowledge, 

which, in turn, was assessed more accurately than problem-solving strategies.  
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Role of Teachers’ Person Characteristics for Assessment Skills 

This research of Codreanu et al. (2021) suggests that the degrees of inference of cues 

can influence teachers’ judgment accuracy. To explain this, teachers’ person 

characteristics, such as motivation and knowledge, may come into play. A teacher with 

high motivation and high knowledge may more easily notice and interpret a high 

inferential cue than a teacher with low motivation and lacking knowledge, who may 

not even notice this cue. This underpins that teachers’ characteristics may influence 

their judgment accuracy. Recent theoretical conceptualizations of assessment skills 

highlight the role of the teachers’ characteristics for assessing students. Motivational 

characteristics and knowledge are seen as important characteristics of teachers for 

adequate assessment processes and high judgment accuracy (Herppich et al., 2018). 

Findings regarding the role of these teachers’ characteristics on the assessment of the 

different facets of mathematical proof skills enable teacher educators to adapt their 

support for the assessment of mathematical proof skills based on the teachers’ 

characteristics. Although the role of teachers’ characteristics for the assessment of 

mathematical proof skills has not been specifically investigated so far, there is some 

research on the role of teacher characteristics for teachers’ assessment skills in general. 

Regarding the teachers’ knowledge, content knowledge (CK) and pedagogical content 

knowledge (PCK) are seen as important. CK refers to mathematical knowledge about 

the mathematical subject itself. Regarding the assessment of mathematical proof skills, 

the teacher, for example, needs to be able to solve the proof task by himself/ herself to 

assess the students’ solution. Teachers’ PCK that is relevant for assessments refers, for 

instance, to knowledge about typical student misconceptions. For example, Ostermann 

et al. (2018) designed an intervention fostering future teachers’ PCK in the context of 

the assessment of functional thinking. Their intervention led to higher judgment 

accuracies of the future teachers. Whereas research has mostly focused on the role of 

teachers’ knowledge for student assessment, the role of motivational characteristics has 

been investigated to a smaller extent. For example, teachers’ self-efficacy regarding 

student assessment and motivational aspects of teachers’ self-regulation in general 

have been discussed (Holzberger et al., 2013). Furthermore, Kron et al. (2022) recently 

empirically found teachers’ interest in assessment skills to be relevant for the accuracy 

of their judgments in the context of decimal fractions. 

So far, prior research has investigated the role of teachers’ person characteristics for 

student assessment mainly from a variable-centered perspective. However, person-

centered approaches, such as a latent profile analyses (LPA), allow a particular focus 

on individuals and can pave the way for possible personalized support of individual 

subgroups (Tetzlaff et al., 2021). A LPA aims at identifying subgroups of participants 

with similar scores (“profiles”) across pre-specified indicators. Nickl et al. (2022) used 

a person-centered approach for investigating the role of teachers’ person characteristics 

for assessment skills. However, they focused on learning of assessment skills, used 

rather general measures regarding the assessment process (e.g., word count), and did 

not specifically consider the above-mentioned three facets of mathematical proof skills. 
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THE PRESENT STUDY 

The present study aims at investigating the role of knowledge (CK, PCK) and 

motivational characteristics of future teachers (interest, self-efficacy, and self-

regulation) for the assessment of mathematical proof skills from a person-centered 

perspective. To do so, we use profiles of teachers’ person characteristics identified by 

Nickl et al. (2022). To measure assessment skills, we draw on data from a video-based 

simulation as an approximation of practice that allows for a reliable and scalable 

measurement of assessment skills. Particularly, we ask the following RQs:  

RQ1: Does judgment accuracy regarding the three facets of mathematical proof skills 

(mathematical content knowledge, methodological knowledge, and problem-solving 

strategies) differ between the identified profiles?  

RQ2: Do the identified profiles consider the three facets of mathematical proof skills 

to a different extent during the assessment process? 

METHODS 

Sampling and Study Design 

N = 150 future teachers (f: 101, m: 47, NA: 2) participated in the study, which was 

conducted in teacher education seminars at different German universities in 2020 and 

2021. Participation was promoted as optional course content and was remunerated.  

The study was conducted in an online environment and lasted approximately 90 

minutes in total. Future teachers were first asked to self-report their interest for 

diagnosing, their self-efficacy, and their self-regulation. They were then asked to 

complete a test measuring their CK and PCK regarding proof in geometry (see Nickl 

et al., 2022, for details). Afterwards, we asked participants to complete a validated 

video-based simulation, in which we measured their assessment skills (Codreanu et al., 

2021). In the video-based simulation, participants were asked to assess two simulated 

7th grade students’ mathematical proof skills. Participants were first familiarized with 

the assessment situation and the facets of mathematical proof skills. Then, they 

gathered information by watching up to ten videos showing student-teacher 

interactions. In these videos, the two simulated students worked on the same proof task 

(“Prove that the opposite sides of a parallelogram are equal in length!”). The videos 

depicted different stages of the working process of the simulated students. During the 

videos, participants were asked to take notes for their assessment. When participants 

felt that they had gathered enough information, they rated both students’ mathematical 

proof skills on a four-point Likert scale (eight items per student; three items regarding 

the students’ mathematical content knowledge, three items regarding methodological 

knowledge, and two items regarding the problem-solving strategies). The participants’ 

Likert ratings were compared to an expert rating. A match with the expert solution was 

scored with one point; else, zero points were given. This measure of judgment accuracy 

was then standardized for better interpretability to the range from 0: no match with the 

expert solution to 1: all ratings matched. 
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Data Analysis 

To answer the research questions, we draw on teachers’ characteristics profiles from a 

LPA that have been identified in a prior publication using the same data set (Nickl et 

al., 2022). This LPA used CK, PCK, interest, self-efficacy, self-regulation as indicators 

and identified three profiles: One profile (called knowledgeable, containing N = 61) 

had above average CK and PCK scores and reported average scores on motivational 

characteristics (interest, self-efficacy, and self-regulation). The second profile 

(motivated, N = 37) had slightly below average CK scores and average PCK scores, 

but reported above average motivational characteristics. The third profile (potentially 

struggling, N = 52) was below average across all indicators. Furthermore, in 

preparation of answering RQ2, we coded future teachers’ notes from the video-based 

simulation. In the coding process, we separated notes into single text segments (e.g., 

sentences) and identified how many of these single segments referred to mathematical 

content knowledge, methodological knowledge, and problem-solving strategies, 

respectively. Interrater reliability was substantial (Cohen’s 𝜅 = .75). Finally, to answer 

both research questions, we used the BCH method and Wald’s 𝜒2 test to calculate and 

compare means of the three profiles regarding judgment accuracy (RQ1) and the 

number of notes regarding each of the facets of mathematical proof skills (RQ2).  

RESULTS 

Descriptive results regarding RQ1 and RQ2 can be found in Table 1. 

 Knowledgeable 

M [SD] 

Motivated  

M [SD] 

Potentially 

struggling  

M [SD] 

Judgment accuracy (0-1)    

 M. content knowledge .423 [.035] .364 [.051] .327 [.039] 

 Methodological knowledge .423 [.029]a,b .293 [.039]a .307 [.031]b 

 Problem-solving strategies .217 [.029] .328 [.046] .263 [.035] 

Number of text segments (in total) 

 M. content knowledge 3.69 [0.32]c 3.67 [0.57] 2.32 [0.35]c 

 Methodological knowledge 4.64 [0.40]d,e 2.81 [0.39]d 3.32 [0.43]e 

 Problem-solving strategies 5.73 [0.13] 4.57 [0.21] 5.33 [0.18] 

Table 1: Descriptive results regarding both RQs. Variables, in which the profiles 

differed significantly in bold. Significant post-hoc tests marked with matching letters. 

Regarding RQ1, descriptive differences of the profiles regarding judgment accuracies 

of mathematical content knowledge (𝜒2 = 3.61, p = .165) and problem-solving 

strategies (𝜒2 = 4.01, p = .135) did not reach statistical significance. Differences 

regarding judgment accuracy of methodological knowledge were significant 

(𝜒2 = 10.65, p = .005). Post-hoc tests showed that the knowledgeable profile had a 
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significant higher judgment accuracy than the motivated profile (𝜒2 = 6.23, p = .013) 

and the potentially struggling profile (𝜒2 = 7.73, p = .005), whereas the motivated and 

the potentially struggling profile did not differ significantly (𝜒2 = 0.06, p = .805).  

Regarding RQ2, the profiles did not differ significantly in the number of text segments 

in their notes regarding problem-solving strategies (𝜒2 = 1.19, p = .552). However, the 

profiles differed significantly in the number of text segments regarding mathematical 

content knowledge (𝜒2 = 9.00, p = .011) and methodological knowledge (𝜒2 = 10.44, 

p = .005). For both facets, the knowledgeable profile wrote more segments than the 

potentially struggling profile (each 𝜒2 > 4.97, p < .026). The knowledgeable profile 

also wrote significantly more segments regarding methodological knowledge than the 

motivated profile (𝜒2 = 9.22, p = .002), but differences were not significant regarding 

mathematical content knowledge (𝜒2 < 0.01, p = .980). The motivated profile and the 

potentially struggling one did not differ significantly regarding mathematical content 

knowledge (𝜒2 = 3.27, p = .070) and methodological knowledge (𝜒2 = 0.63, p = .429). 

DISCUSSION 

This study investigated the role of (future) teachers’ characteristics for their assessment 

of mathematical proof skills. For this, three different teacher profiles were used in a 

person-centered approach. Our results show significantly higher judgment accuracies 

of the knowledgeable profile regarding the assessment of methodological knowledge 

compared to both other profiles. One reason for this may be that the cues regarding 

methodological knowledge were higher inferential and the more advanced knowledge 

of the knowledgeable future teachers allowed them to better notice and faster process 

relevant cues (Brunswik, 1955; Codreanu et al., 2021). That the knowledgeable profile 

writes significantly more text segments than the other profiles about methodological 

knowledge in the assessment process substantiates this interpretation. This underpins 

the role of future teachers’ knowledge for the assessment of methodological knowledge 

and suggests that possible support for the motivated and the potentially struggling 

profile may consist in providing additional knowledge. To do so, prompts could be an 

effective means in the context of assessment skills (Amador et al., 2022).  

Surprisingly, results are different for problem-solving strategies. Regarding judgment 

accuracy, no profile has significant advantages. Descriptively, the accuracy of two of 

the profiles is even close to guessing probability, indicating low judgment quality, 

independently of teachers’ characteristics. Against this backdrop, the focus on 

problem-solving strategies in the assessment process is interesting (see Table 1): 

Across all profiles, participants write descriptively more text segments regarding 

problem-solving strategies compared to both other facets of mathematical proof skills. 

This may show that future teachers notice various cues connected to problem-solving 

strategies, but they fail to derive accurate judgments. This may have two reasons 

(Brunswik, 1955): It could be that they do not notice the relevant cues. This may reflect 

that there are low inferential cues pointing to problem-solving strategies (e.g., the 

student draws a sketch), which are noticed by future teachers, but that high inferential 
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cues are missed (e.g., student notices that he/ she used a wrong definition; see example 

in the introduction), which however might be relevant. It could also be that future 

teachers notice relevant cues but cannot process them sufficiently for an accurate 

judgment. This would be in line with prior research reporting problems of novices in 

interpreting noticed cues (Wolff et al., 2017). In that regard, further research is needed 

clarifying reasons for these deficits in the assessment of problem-solving strategies. 

Regarding mathematical content knowledge, profiles did not differ significantly in 

their judgment accuracy. However, to examine the role of motivation regarding the 

assessment of mathematical content knowledge some tentative finding are of interest: 

On the one hand, the motivated profile assesses mathematical content knowledge 

descriptively more accurate than both other facets of mathematical proof skills and 

descriptively more accurate than the potentially struggling profile. In addition, the 

motivated profile’s number of notes corresponding to mathematical content knowledge 

is descriptively on a par with the knowledgeable profile, which is not the case regarding 

both other two facets of mathematical proof skills. This might indicate that motivation 

plays a role for the assessment of mathematical content knowledge, which is assumed 

to require less prior knowledge than the other two facets due to lower inferential cues 

(Codreanu et al., 2021). Thus, the motivated profile may partially be able to 

compensate its lack of knowledge. Again, further research is necessary to substantiate 

this tentative finding regarding the assessment of mathematical content knowledge. 

Altogether, the results indicate that the extent to which teachers’ person characteristics 

can influence student assessment of mathematical proof skills varies over the three 

facets of mathematical proof skills. Thus, teacher educators may support teachers’ 

skills to assess mathematical proof skills by different approaches. They may provide 

cognitive (e.g., prompts for knowledge activation for supporting the assessment of 

methodological knowledge) or motivational support (e.g., utility value interventions 

for supporting the assessment of mathematical content knowledge) – depending on the 

specific facet they want to support. How effective ways of supporting teachers’ 

knowledge or motivation can be designed in particular is currently being investigated. 
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Identifying the zone of proximal development (ZPD) for individual learners has shown 

to be a key for providing students with adaptive help in their mathematical learning. 

For its high relevance for classroom practice, fostering ZPD-related noticing in pre-

service teachers (PSTs) appears as primordial. As empirical research on this aspect of 

teacher expertise is still scarce, this study examines PSTs’ ZPD noticing in an algebra 

context. The vignette-based design uses a specifically designed classroom situation in 

which a teacher reaction is not consistent with the ZPD in the learning of a group of 

students. The empirical findings from a sample of 26 PSTs indicate difficulties in ZPD 

noticing of the PSTs, among other insights. We conclude that specific vignette-based 

learning opportunities might be a pathway for strengthening PSTs’ ZPD noticing. 

INTRODUCTION 

The notion of zone of proximal development (ZPD) was suggested by Vygotsky (1978) 

and defined as “The distance between the actual development level as determined by 

independent problem solving and the level of potential development as determined 

through problem solving under adult guidance or in collaboration with more capable 

peers” (p.86). The ZPD can be considered as a theoretical tool to identify content-

related learning steps which are in reach of the learner, given her/his prior knowledge. 

According to the students’ identified ZPD, teachers should adapt the needed guidance 

and help, to support the learning processes of the students.  

Combining these considerations, which are mostly closely linked to specific 

mathematical content, with approaches to teachers’ noticing abilities promises a high 

added value for enabling pre-service teachers (PSTs) to react to learners’ needs in the 

classroom. Moreover, this combined perspective enables assessing whether teachers 

are able to detect potential mismatches between the learners’ needs and teacher 

reactions which do not lie within the student’s ZPD and hence are hardly useful for 

encouraging further learning. Despite these potentials, empirical research into ZPD 

noticing (i.e., noticing whether reactions to learners fall into their ZPD) is still scarce. 

Corresponding to this research need and using a vignette-based research design, we 

designed a vignette showing a situation in an algebra lesson which aligns with our goal 

to examine teachers’ ZPD noticing. The answers of 26 PSTs to the vignette provide 

insight into their ZPD noticing through the PSTs’ analyses (1) of the student’s prior 

thinking, (2) of the ZPD-inconsistent teacher’s reaction and (3) through whether the 

PSTs suggest alternative reactions which can be seen as consistent with the ZPD.  
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THEORETICAL BACKGROUND 

Noticing in the sense of knowledge-based reasoning on classroom situations (Sherin et 

al., 2011) is considered as a major aspect of mathematics teacher expertise, for its focus 

on connecting observations with relevant criteria rooted in the professional knowledge 

of mathematics teachers (e.g., Shulman, 1986). Kersting et al. (2012) emphasise the 

term of usable knowledge for expressing how aspects of classroom situations are 

interpreted against specific knowledge-based criteria – in contrast with rather inert 

professional knowledge, which is not used for situation interpretation. Making 

connections between situation aspects and professional knowledge is a common 

feature to a broad variety to approaches to teacher noticing in mathematics education 

(e.g., Fernández et al., 2018; Fernández, & Choy, 2020). A model for describing such 

noticing mechanisms and related processes uses the awareness construct: awareness of 

specific criteria drives a criterion-based analysis cycle between observations in the 

classroom situation and their knowledge-based interpretation (Kuntze & Friesen, 

2018). If, for example, a mathematics teacher is aware of the importance of the zone 

of proximal development (ZPD), s/he will be likely to interpret observations against 

the background of related professional knowledge. In this context, a teacher might 

notice more successfully the learners’ current development and possibilities of 

fostering their further learning, than it would be the case for a teacher who is not aware 

of ZPD-related criteria.  

This example already highlights the high practical relevance of the ZPD concept 

together with the focus on teachers’ noticing. By the short term ZPD noticing, we will 

in the following understand any components of teachers’ noticing related to the zone 

of proximal development (cf. Vygotsky, 1978) – among these,  

 noticing related to the students’ current state of development (i.e., their current 

knowledge, understanding and learning needs),  

 noticing whether teacher reactions to learners fall into the students’ ZPD, and  

 noticing of possible reaction alternatives adapted to the learners’ ZPD  

can be expected to play prominent roles (see also Fig. 1). Consequently, ZPD noticing 

emphasises an adaptive analysis of the learners’ needs and possibilities to promote 

learning steps accessible to the students (Hardy et al., 2019; cf. Kuntze et al., 2021).  

This study is focused on ZPD in the context of algebra learning. An extensive literature 

exists on learners’ development (e.g., Demonty, Vlassis & Fagnant, 2018; Kieran, 

1992), including the description of learners’ development in so-called learning 

trajectories (e.g., Gurbuz & Özdemir, 2020), which describe possible sequences of 

learning steps also in a long-term perspective. From early algebra learning in primary 

school grades up to more abstract and less number-based approaches in the secondary 

school grades (Demonty, Vlassis & Fagnant, 2018), the learning of algebra is described 

as a process consisting of a long chain of insights and challenges for the learners. While 

in this process, students are learning how to deal with patterns in number sequences, 

how to use the concept of variable and how to build up and use symbolic algebraic 

https://eric.ed.gov/?redir=http%3a%2f%2forcid.org%2f0000-0002-6449-7859
https://eric.ed.gov/?redir=http%3a%2f%2forcid.org%2f0000-0002-6449-7859
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expressions. These – also empirically well-grounded – theory elements can be used to 

identify the ZPD of students, also in ZPD noticing. A teacher who is aware of the 

learners’ ZPD in algebra learning can be expected to analyse where the students are in 

their learning related to dealing with variables, for instance. Also, they can analyse 

whether a possible teacher reaction could help the learners to progress on a learning 

trajectory in relation to their ZPD towards e.g., a flexible use of variables in algebraic 

terms. Three example outcomes of ZPD Noticing in this context are shown in Fig. 1. 

Figure 1: Model-like overview of key components of ZPD noticing in view of 

research needs and the corresponding purposefully designed vignette 

 

For investigating ZPD noticing, vignettes offer unique methodological possibilities: 

We understand vignettes as representations of practice (Buchbinder & Kuntze, 2018) 

which can purposefully be designed and used for eliciting noticing (e.g. Kuntze et al, 

2022; Skilling & Stylianides, 2020). In particular, ZPD noticing can be examined by 

designing vignettes representing situations in which the ZPD plays a key role. 

Using such a vignette-based approach, the study presented here aims to examine 

whether PSTs notice students’ current state of development, whether teacher reactions 

to learners fall into the students’ ZPD, and whether PSTs suggest alternative reactions 

which connect with the students’ ZPD. Accordingly, our research questions are: 

(1) Do the PSTs describe the ZPD as far as the side of the students’ understanding is 

concerned? 

(2) Do the PSTs notice the inconsistency between the vignette teacher’s reaction and 

the ZPD of the vignette students? 

(3) Do the PSTs suggest reaction alternatives which connect with the vignette 

students’ ZPD? 

DESIGN AND METHODS 

The study is based on the vignette shown in Figure 2, developed and designed by the 

third and the second authors of this paper and inspired by Palatnik & Koichu (2015).  

Figure 2: Vignette (inspired by Palatnik & Koichu, 2015) in English translation 
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The vignette presents a situation from an algebra classroom in a 7th grade class, where 

the students are asked to find a formula for the maximal number of pieces which can 

be obtained by cutting a pizza with n straight cuts. A vignette student explains his 

reasoning in an example-based numerical way. His difficulties in analysing a general, 

variable-based algebraic formula provide insight into his ZPD in algebra learning. The 
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teacher’s response is focused on the student’s “n+1” utterance. She relates to this as a 

suggestion of a solution formula and tries to disprove it by providing two substitutions. 

However, as the teacher’s reaction is outside of the students’ ZPD, and the student 

grasps the teacher’s answer as a misinterpretation of his answer and offers more 

explanation. One cannot conclude from the vignette that the teacher’s conjecture-

falsification approach is useful for the learners, in relationship to their thinking. 

26 pre-service teachers from a South-German university of education participated in 

this study, and were asked the following, regarding to the abovementioned vignette: 

(a) explain what the student(s) meant mathematically by their statements; (b) interprete 

the teacher’s intention behind her response; (c) judge on the helpfulness of the teachers’ 

answers for the students’ learning; and (d) describe how the PSTs would have reacted 

in the classroom situation. In all these sub-tasks, the PSTs were explicitly encouraged 

to justify their answers with their observations from the classroom dialogue presented 

in the vignette. All written answers were collected. 

Data analysis was done according to a criteria-based interpretive analysis (Mayring, 

2015). First, we analysed the vignette and created a basis for our coding. To answer 

the first research question, coding was focused first on the PSTs’ analysis of the 

students’ mathematical reasoning and whether they noticed that the students struggle 

to move from example-based numerical thinking to the use of variables and a more 

abstract algebraic thinking. For the second research question, we categorised the PSTs 

reasoning on the teacher’s reaction and coded the answers to see whether the PSTs 

identified her reaction’s inconsistency with the students’ ZPD. Regarding the third 

research question, the offered alternative strategies were categorised in accordance 

with their potential to connect with the vignette students’ ZPD. This analysis was of a 

bottom-up nature, combined with our proposed base coding.  

RESULTS 

Analysing the students’ thinking and noticing the ZPD 

Almost all the PSTs (24 out of 26) offered a mathematical analysis of the vignette 

students’ answer, based on the notebook drawing (see Figure 2 above) and the 

discussion with the vignette teacher. They explained what the students mean by “n+1” 

and indicated that the students have found a pattern for the number of pizza pieces. The 

PSTs used different representations in their analysis, such as verbal or algebraic 

expressions, tables, or sketches. One example is presented in Figure 3.  

 

Figure 3: Example of a mathematical analysis of the students’ answer, in a table 
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13 PSTs noticed that the students might have been on the right pathway and described 

their algebraic ZPD in the way that the vignette students still think of the pattern in a 

number-based recursive way and do not use variables in a correct way in the sense of 

a more general algebraic thinking. For example, one of these PSTs wrote:  

[…] The students do not realize that n should be added to the number of pizza pieces. […] 

They do not succeed in changing their representation to the recursive formula. The students 

have recognized that the previous step plays a role in the calculation of the maximum 

number in subsequent steps, […] but they have not yet found a recursive formula.  

We should mention that often, these PSTs made the mathematical analysis in their 

answer to question (a), and only later, usually in their answer to (c), they indicated that 

the students have not correctly completed the variable-based step of generalisation. 

Identifying the inconsistency 

10 of the PSTs interpreted the teacher’s response as an encouragement of the students 

to explain and reason their answer, and to further think of the expression “n+1” and 

whether it is the correct solution (sample PST answer: “I think the teacher intends for 

the student to explain his calculation and his chain of thought even more precisely”). 

In contrast, 12 PSTs indicated that in her response, the teacher tried to disprove the 

students’ formula by inserting numbers in the expression “n+1”: 

The teacher probably knows what the students mean by their results. The teacher takes up 

the formula and substitutes the numbers […]. With these statements she wants to convey 

to the students that it is important to clearly define what the variable n stands for. […] 

Using concrete numerical examples, she makes it clear to the two students that the formula 

is incorrect […] and needs to be revised. This means that the teacher wants to use concrete 

numerical examples to point out that the formula is wrong.  

4 PSTs gave other answers, like that the teacher did not understand the students’ idea. 

Regarding the helpfulness of the teacher’s response, 13 PSTs found the teacher’s 

response helpful, especially when considering the goal of reasoning the students’ 

answer. The other 13 PSTs were more critical and indicated the response did not lead 

the student into the generalisation of the recursive formula. In regard to the 

inconsistency between the teacher’ reaction and the students’ ZPD, 13 PSTs identified 

this inconsistency, such as in the following example: 

In her response, the teacher indirectly points out to the students that something in their 

formula is not right. […] However, the student does not seem to understand this hint. He 

seems to believe that the teacher has not yet fully understood their good suggestion and 

responds to the teacher's response by repeating his thoughts. In this respect, it seems the 

teacher's supposed goal is not fulfilled, since the response did not help the students to 

recognize their mistake and to think of an alternative solution. 

Offering alternative strategies 

7 PSTs offered alternatives which were coded as connected with the vignette students’ 

algebra learning ZPD. These answers combined offers to add another representation, 

such as a table or a sketch, from which the students can better understand the pattern 
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and how it can be generalised. In addition, some of these answers included questions 

the teacher should ask which can support this trajectory. Hereinafter, one PST wrote:  

[…] I would have encouraged the students to enter the relevant values in a table and 

examine them. To think about the formula, I would first ask what n is and ask them to use 

their [n+1] formula to calculate the number of parts in each column, so they will realize 

the formula is wrong and needs to be revised. Since the students have already understood 

the relevant information but cannot express their ideas symbolically, I would ask them to 

describe verbally how to determine the number of parts. […] I would clarify to the students 

that the description is correct, but they should now translate it into a formula. 

12 answers were coded as partially connected with the vignette students’ ZPD. In these 

answers, the PSTs offered that the teacher should ask the students to clarify what the 

variable n means or offered that the students would add a sketch or a table so they can 

conclude the formula, but with no further guiding questions. 5 PSTs offered general 

pedagogical strategies, such as that the students should work in groups so they can 

reflect on their solutions or that the teacher should clarify the problem further and 

discuss the solutions with the whole class. 3 PSTs thought that the students’ answer 

was wrong, as the lines should all pass through the centre of the circle. Therefore, their 

answers offered that the teacher should concentrate on correcting the students’ mistake.  

DISCUSSION AND CONCLUSIONS 

In this study, PSTs analysed a classroom situation, where an inconsistency exists 

between the students’ algebra learning ZPD and the teacher’s reaction. The findings 

suggest that the more than half of the PSTs did not fully achieve the ZPD noticing 

outcomes presented in Figure 1: (1) noticing the students’ ZPD, (2) the inconsistency 

between this ZPD and the vignette teacher’ reaction and (3) offering reaction 

alternatives which connect with the vignette students’ ZPD.  

ZPD Noticing in this sense is hence complex. It requires both mathematical content 

knowledge and mathematical pedagogical content knowledge. Moreover, awareness of 

ZPD-related criteria (Kuntze & Friesen, 2018) in the context of algebra is needed. As 

noticing is a knowledge-based process (Sherin, Jacobs, Philipp, 2011) one possible 

conclusion is that the PSTs’ professional knowledge should be fostered, together with 

ZPD-related awareness. As the questions which were given to the PSTs did not lead 

them directly to ZPD noticing, it does in particular not appear to be possible to 

substitute such awareness by providing PSTs with extensive analysis instructions. 

Against this background and the importance of ZPD noticing, we suggest that PSTs 

experience specific vignette-based learning opportunities, accompanied with guidance 

and instructions which aim to these goals, as well as exposure to diverse teaching 

strategies and practices which support teachers’ ZPD noticing in various contexts. 
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ON THE CONNECTION BETWEEN BASIC MENTAL MODELS 

AND THE UNDERSTANDING OF EQUATIONS  

Reinhard Oldenburg, Hans-Georg Weigand 

University of Augsburg, University of Würzburg, Germany 

 

Basic mental models (BMMs) of equations have been proposed as structures 

describing conceptual understanding of equations. Two of these BMMs are those of 

equations as relations and equations as objects. We are interested in the relation 

between these BMMs and special errors associated with working with equations. In 

this study we concentrate on very basic equations in the form of 𝑎 ∙ 𝑥 = 𝑏 and 𝑎 + 𝑥 =
𝑏. We are interested in obstacles, errors and misunderstandings concerning these 

prototypes of equations. An empirical investigation shows that two types of errors, the 

reversal error and the attribute error, are statistically related to the BMMs students 

have established.  

INTRODUCTION 

Equations are basic elements in all fields of mathematics and mathematics education. 

However, many studies have revealed that students have problems with the 

understanding of equations, especially with the equals sign, and the solving of 

equations. The equals sign is seen as an instruction “to work it out now” (Kieran, 1981) 

or “to do a calculation” (Arcavi et al. 2017, p. 55). While this perspective is important 

and correct in primary school, it is still present and becomes problematic in lower 

secondary school (see Borromeo Ferri & Blum 2011).  

“A limited conception for what the equals sign means is one of the major stumbling 

blocks in learning algebra. Virtually all manipulations on equations require 

understanding that the equals sign represents a relation.” (Carpenter et al. 2003, p. 22) 

Without this “relational view” students will have problems in interpreting expressions 

correctly and setting up equations properly. This paper concentrates on two particular 

types of errors, the reversal error and the attribute error, and investigates how they 

are linked with each other on the one side and with the two basic mental models of 

equations as objects and as relations on the other.  

The paper first describes the theory of basic mental models (BMMs) and the two error 

types in detail. Then an empirical investigation is presented which looks for relations 

between BMMs and these two types of errors.  

THEORY 

The equals sign 

The equals sign has different meanings or perspectives in mathematics and 

mathematics lessons. It can be seen as an operation sign, e.g., in 3 + 7 = 10 with the 

meaning of “results in”, it is a relational sign, e.g., in 29 + 36 = 30 + 35  or  3·x + 5 = 
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x – 1, it can express an identity or an equivalence, e.g., in 𝑎 · (𝑏 + 𝑐) = 𝑎 · 𝑏 + 𝑎 · 𝑐 

or it can give a functional relationship, e.g., 𝑉(𝑟) =
4

3
𝑟3𝜋 or 𝑓(𝑥) = 𝑥2. These 

different meanings result in different conceptions and perceptions connected with 

equations. 

Basic mental models of equation (BMMs) 

The concept of BMMs has a long tradition in German didactics where they are called 

“Grundvorstellungen” (vom Hofe & Blum, 2016). They describe, from a normative 

point of view, the conceptual mental models students should develop in order to grasp 

the meaning of concepts and apply them in an adequate and sensible way. Weigand et 

al. (2022) describe four BMMs of equations, based on mathematical aspects of 

equations. These are:  

 Operational BMM: An equation is understood as a calculation or transformation. 

The equals sign is seen as an operational sign, which indicates a reading direction of 

the equation in the sense of a “resulting-in” sign. 

 Relational BMM: An equation is understood as a task to determine numbers or 

quantities for the expressions on both sides of the equation to get the same value or 

quantity on both sides. The equals sign is seen as a relational sign. The variable here 

is understood as an unknown which has to be determined.3 

 Functional BMM: An equation T1(x) = T2(x) is a comparison of two expressions 

which are understood as functions with y = T1(x) and y = T2(x). Here, too, the equals 

sign is understood relationally, but the the variable is seen as varying over its 

domain.  

 Object-BMM: An equation is regarded as a mathematical object that has 

characteristic properties, such as the number of possible solutions, the definition 

range or special solution algorithms.  

Meanwhile, there are some empirical investigations concerning the structure and the 

independence of different BMMs of a concept, e.g., of the concepts of function, 

derivatives and integral (see Greefrath et al., 2021). However, there is a lack of research 

concerning the relevance of BMMs for solving problems in special fields of 

mathematics. The BMMs of equations are still a theoretical concept and it is not much 

known about their effect on solving problems. The present paper is a step in this 

direction. We especially emphasize the Relational BMM and the Object-BMM in 

analysing errors while formulating and interpreting equations.  

                                                           
3 We refer to the three central BMMs for variables without explaining their background (see e.g,. MacGregor and 

Stacey (1997) for details): The variable as a general number, the variable as an unknown number and the variable as 

changing number or quantity.  
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Basic difficulties while working with equations 

Students have problems while working with equations (see e.g., Arcavi et al., 2017, 

p. 95 ff.). In this study we concentrate on the very basic equations in the form of 𝑎 ∙
𝑥 = 𝑏 and 𝑎 + 𝑥 = 𝑏. We are interested in obstacles, errors and misunderstandings 

concerning these prototypes of equations. Without the competence of interpreting and 

operating with these kinds of equations, the understanding of more complex equations 

is not possible. Moreover, we concentrate on two errors in relation to these equations, 

the reversal error and the attribute error. In particular, these errors show 

misunderstandings when dealing with the equals sign as a relational sign.  

The prototype of the reversal error is provoked by the professor-and-students task 

(Clement, Lochhead, & Monk, 1981), that reads in its original version:  

Write an equation for the following statement: There are six times as many students as 

professors at this university. Use S for the number of students and P for the number of 

professors.  

While the correct solution is S = 6·P, many students write the reversed relation: P = 

6·S. A lot of explanations for this error have been proposed. Already Clement et al. 

(1981) investigated the possibility of a syntactical transformation of the sentence into 

an equation.  However, MacGregor & Stacey (1993) found that even relations 

presented in pictures can lead to the error.  The error also occurs with additive relations.  

We came up with another idea of an explanation of the reversal error within a test on 

this error.  Students should write down an equation that expresses that the river Rhine 

(length 𝑟 km) is 200 km longer than the river Elbe (which is 𝑒 km long). The reversal 

error, 𝑟 +  200 =  𝑒, can be explained if the expression 𝑟 +  200 is not interpreted as 

a summation, but as “r is 200 more than another quantity”. Moreover, this view 

explains a variant of the error that we observed in our studies: There was also the 

(wrong) answer “𝑒 − 200 = 𝑟 + 200”. While this error version resists explanations by 

syntactical translation or other approaches in the literature, it can be seen as an attribute 

error: The Elbe has the attribute (property) of being 200 km shorter (–) while (=) the 

Rhine has the property of being 200 km longer (+). This supports the thesis of 

MacGregror &Stacey (1993), according to which the equals sign is not necessarily 

understood as a numerical equality, but as a sign for a comparison of a different kind. 

Attributes are quite common in mathematics. E.g., arrows are attributes to declare that 

�⃗� is a vector, or the plus sign in ℝ+ denotes positive numbers. Confusion with 

operations is likely because some operations look very similar to attributes. E.g., the 

complex conjugate 𝑧 of a complex number 𝑧 is an operation that maps one number to 

another, yet it looks similar to the vector attribute. The absolute value |𝑥| is an 

operation that maps ℝ to ℝ0
+ , but it may be misunderstood as giving 𝑥 the attribute of 

being non-negative.  Similarly, in “−𝑥” the minus sign should be understood as an 

operation (namely the opposite of 𝑥) but may be misinterpreted as a negative number. 
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We name this type of error attribute error. Students may look at e.g., 𝑥 + 5 as a 

declaration that 𝑥 is 5 more than some reference quantity. This attitude is supported by 

textbooks that contain tasks like this: “Write in symbols: 𝑥 is increased by 5“. The 

students are then expected to write 𝑥 + 5 which might be understood as changing the 

value of 𝑥 by 5 or as statement that 𝑥 is larger by 5 than some reference.  

This discussion leads to the hypothesis that at least some reversal errors might result 

from an underlying attribute error and hence there should be a correlation between their 

occurrences. The attribute error was to the best of our knowledge first discussed in 

Oldenburg & Henz (2015). This present paper investigates the hypothesis that BMMs of 

equations, the reversal and the attribute error are correlated. We try to answer the 

following research questions: 

 Is there a relation between the attribute error and the reversal error? 

 Is there a relation between the Relational BMM and the Object-BMM?  

 Are there relations between these error types and the BMMs?  

THE TEST 

To answer the research question, we use data for a subset of the items of an algebra 

test. The whole test takes a broader view on algebraic competence and includes e.g., 

items on substitution and on simplifying expressions. In this subtest we analyse 

measures of four scales, two on basic mental models and two on the error types 

described above:  

 RevErr: 4 items about the reversal error 

 AtrErr: 5 items about the attribute error 

 RelBMM: 5 items about the Relational BMM 

 ObjBMM: 7 items about the Object-BMM  

The Relational BMM was measured e.g., by the following items (translated versions): 

 It is known that 𝑟 = 𝑠 + 𝑡 and 𝑟 + 𝑡 + 𝑠 = 30 + 2𝑥. Determine 𝑟. 

 In Phantasia you don't measure the temperature in Celsius. Our temperature 0°C 

corresponds to 10° and 100°C corresponds to 50°. Give a formula for the 

conversion from Celsius temperature T to fantasy temperature P. 

The items for the Object-BMM require to look at equations as a whole, e.g., 

 A solution of (𝑥 + 1)3 + 𝑥 = 349  is given by 𝑥 = 6. Use this knowledge to 

find a solution of (5𝑥 + 1)3 + 5𝑥 = 349. (from Küchemann, 1979) 

 Solve the equation 𝑥² + 2𝑥 + 1 = 0. 

Most items of these two scales haven been graded on partial credit scale with 0 points 

for a wrong answer, 1 point for a partially correct answer and 2 points for a fully correct 

answer. Some easier items have been graded only by 0 (wrong) or 1 point (correct).  
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To measure the reversal error four items have been used. For each item an equation 

had to be set up. Three of the equations are of additive type (such as the Rhine-Elbe-

example above), the last one is multiplicative: 

 At a school, there are 20 times as many students as teachers. Let 𝑠 stand for the 

number of teachers and 𝑠 for the number of students. Write this as an equation. 

For each of the four tasks a score was given to measure competence in avoiding the 

error: -1 for explicitly writing the erroneous version of the equation, 0 für writing 

nothing interpretable, 1 for writing almost the correct equation and 2 für the correct 

equation. The scale made of these 4 items is called RevErr. Note that the scale is 

oriented such that high values indicate a high competence in avoiding the error.  

The items to measure the competence to avoid the attribute error were all of the 

following form: An expression was given and students should judge whether a given 

verbal statement expresses the same information. Some examples: 

 𝑥 may be any real number. Is it true that −𝑥 is negative? 

 If 𝑥 is any real number.  Is |𝑥 − 1| the same as +𝑥 + 1? 

 Does |𝑥 − 1| mean that 𝑥 − 1 is not negative?  

As with RevErr the scale AtrErr is oriented so that high values indicate high 

performance, i.e., few errors of that type.  

The test has been completed by 123 teacher students from two second year courses. 

Participation was not mandatory and no further information (such as age, sex) has been 

recorded to avoid privacy issues. The students had not had lessons on algebra education 

before, but they had studied some mathematics at university level. This explains that 

the solution rate for many items is quite good. For example, only 51 reversal errors 

were committed (each of 123 students had 4 tasks, i.e., rate 10,3%). However, 42% 

marked falsely as correct that  |𝑥 − 1| means that 𝑥 − 1 is nonnegative.  

RESULTS AND FIRST INTERPRETATIONS 

The written test results were coded and analysed with the R statistical program. 

The internal consistency of the scales was assessed by means of the Cronbach alpha 

coefficient. Results show good values for all scales: RevErr: 0.74, AtrErr: 0.83, 

RelBMM: 0.79, ObjBMM: 0.86.  

The four scales all correlate positively, as shown in table 1. All coefficients are 

significant (correlation test with Kendall’s correlation). 
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Table 1: Correlation matrix of the four scales.   

Correlation RevErr AtrErr RelBMM ObjBMM 

RevErr 1 0.317** 0.213* 0.264** 

AtrErr  1 0.525*** 0.583*** 

RelBMM  1  0.686*** 

ObjBMM    1 

First, there is a strong correlation between the two BMM scales. Either of these BMMs 

correlates strongly and highly significantly with a higher attribute error avoidance 

competence. On the other hand, the reversal error avoidance competence only 

correlates moderately, although significantly with the BMMs.     

The strong correlations of the AtrErr scale with the other scales can also be confirmed 

by a linear regression model AtrErr~RelBMM+ObjBMM+RevErr. The standardized 

beta coefficients are AtrErr~0.135RelBMM+0.153ObjBMM+0.106RevErr and all 

three are significant, the coefficient of ObjBMM is even highly significant. Of interest 

is also a model that predicts AtrErr simply from the basic mental models, i.e., 

AtrErr~RelBMM+ObjBMM. Here the standardized coefficients are 

AtrErr~0.141RelBMM+0.168ObjBMM, and both are significant. 

However, in the other regression RevErr~RelBMM+ObjBMM+AtrErr only the last 

coefficient is significant: RevErr~0.002RelBMM+0.075ObjBMM+0.386AtrErr. 

Similarly, if one just wants to predict RevErr by means of the BMMs: The regression 

equation RevErr~RelBMM+ObjBMM is fitted to 

RevErr~0.056RelBMM+0.140ObjBMM and this is not significant (𝑝 ≈ 0.06).  

The fact that the two types of errors are connected can also be demonstrated by 

comparing the group consisting of those students that made no reversal error, and the 

remaining ones. The mean of AtrErr for the first group is 3.34. while for the second 

group is only 2.50, wich is a significant difference by the Wilcox test with p=0.017 and 

an effect size of Cohen d=0.33. In a complementary decomposition two groups were 

defined by scoring inAtrErr below resp.  above average. The RevErr score shows a 

highly significant group difference, with p=0.001 and an effect size of d=0.40. 

The relevance of the acquisition of BMMs for not committing errors can also been seen 

when looking at the sum scales BMM:=RelBMM+ObjBMM and Err:=AtrErr+RevErr. 

They correlate with 0.48.  

To shed further light on these relations a statistical implicative analysis (Gras et al., 

2008) gave the following implications sorted by implicative intensity 𝜑: 

1) ObjBMM  ➞  AtrErr 0.997 2) RelBMM  ➞  AtrErr 0.996 

3)   RelBMM  ➞  ObjBMM 0.992 4)  ObjBMM  ➞  RelBMM 0.98 

5)   AtrErr  ➞  ObjBMM 0.948 6)  ObjBMM  ➞  RevErr 0.943 
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7)   AtrErr  ➞  RevErr 0.941 8)  RelBMM  ➞  RevErr 0.909 

9)   AtrErr  ➞  RelBMM 0.902 10)  RevErr  ➞  AtrErr 0.744 

11) RevErr  ➞  ObjBMM 0.651 12)  RevErr  ➞  RelBMM 0.609 

First, look at 7) and 10). The difference of the implication weight shows that 7) is more 

important, so mastering the attribute obstacle predicts a good performance on reversal 

errors tasks but not vice versa. This gives support to the hypothesis that attribute error 

misconceptions may underly many occurrences of the reversal error. Implications 3) 

and 4) simply reflect the high correlation between ObjBMM and RelBMM and show 

that there is no particular direction on their mutual relation.  

Implications 1) and 2) show that high BMMs predict good performance in attribute 

error tasks. It is instructive to interpret this from the logical contraposition: The 

implication 𝐴 ⟹ 𝐵 is logically equivalent to ¬𝐵 ⟹ ¬𝐴. Hence, one may read 1) and 

2) as expressing that mastering attribute error tasks may be a necessary (in the statistical 

sense) requisite for high BMMs. However, the opposite implications 5) and 9) have 

high implicative intensities as well so that the directional effect is not very strong.   

INTERPRETATIONS 

Both basic mental models considered in this paper correlate highly but still can be 

clearly separated. Concerning the two error types, regressions, correlations, group 

comparisons and implications indicate that they are related so that the first research 

question can be answered affirmatively. Moreover, results show that having especially 

a distinct Object-BMM indicates a strong resistance against these errors. Overall, the 

test results indicate that putting more emphasis in developing BMMs may be beneficial 

for avoiding the reversal and the attribute errors. 

The statistical implicative analysis given above sheds some further light on directional 

effects between these scales. This may give hints (but not proofs) on possible causal 

connections. When interpreting the above numbers on the relevance of Object-BMM 

one should have in mind that this BMM is usually considered to be the most advanced 

form of understanding equations and this may explain its importance.   

CONCLUSIONS 

The study presented here underpins that BMMs of equations are an important part of 

understanding equations, which means here the ability of formulating and interpreting 

equations. They are positively correlated with the avoidance of the reversal error and 

the attribute error. This especially means that developing the BMMs of equations is a 

good strategy not only for understanding equations but also for avoiding errors like the 

reversal and attribute error. The fact that even teacher students at university show 

considerable difficulties with these tasks further supports the suggestion to address the 

semantics of equations more deeply by building up these BMMs. A first step is the 

early development of the relational view already in primary school, e.g., with examples 

like 39 + 17 = 40 + 16. Learning steps for this development can be found in Stacey 
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(2011). In the following years in lower secondary school the Relational BMM has to 

be developed on manifold representations especially on the enactive and iconic level, 

also integrating environmental situations. Moreover, the meaning of the Object-BMM 

has been underestimated in relation to understanding and interpreting equations already 

in lower algebra, starting with very basic types of equations. However, a learning 

strategy for the development of this BMM has still to be constructed.  
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MOTIVATIONAL AND EMOTIONAL ENGAGEMENT MEDIATES 

THE EFFECT OF FEATURES OF EDUCATIONAL 

TECHNOLOGY IN MATHEMATICS CLASSROOMS 
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Potentials of digital tools compared to paper-based learning environments are, e.g., 

using congruent gestures on realistic models—which can be beneficial for learning 

outcomes. We argue that this effect is mediated by an increase in motivational-

emotional engagement. To test this hypothesis, we conducted a randomized controlled 

trial with N=292 students (6th grade). In an experimental group, students developed 

the ‘part of many wholes’ concept in a digital learning environment which made use 

of congruent gestures; in a control group, students worked with the same material 

paper-based. We assessed students’ knowledge of the part-whole concept before and 

after the intervention, and asked about their motivational-emotional engagement 

during the lesson. The results of the mediation analysis are in line with our hypothesis. 

INTRODUCTION 

The demanding task of learning fraction concepts 

As learning fractions is challenging for students (Lortie-Forgues et al., 2015), but 

essential for mathematical thinking in general (Bailey et al., 2012; Siegler et al., 2012), 

it is a stated goal of mathematics education research to support students in developing 

a thorough grounding of fractions by building conceptual knowledge. In this context, 

the need for conceptual change plays a major role in the expansion of the number 

domain from natural numbers to rational numbers—here, fractions—as the concepts 

anchored in learners’ minds are for the most part no longer suitable and in some cases 

even hindering (Vamvakoussi & Vosniadou, 2004). These necessary conceptual 

changes can be supported by building new, plausible concepts (Reinhold et al., 2020). 

One key concept students have to acquire very early is the part-whole concept (Behr et 

al., 1983). In this concept, the idea of the ‘part of one whole’ and the ‘part of many 

wholes’ can be distinguished—where in the latter the new whole is formed from 

several wholes based on equal sharing (Streefland, 1991). To do this, several individual 

elements must first be grouped into a whole in order to structure this new whole into 

equal parts and to consider the required proportion of these parts. This is a relevant step 

in students’ development of fraction concepts, but one hurdle for learners is the 

realization that both subconcepts—the part of many wholes and the part of one whole—

do describe an equivalent fraction (e.g., 1/4 of 3 circles is the same as 3/4 of one circle). 

A relevant question is how students can be supported during learning. 
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Features of educational technology supporting cognition and motivation 

One approach that has proven successful to support students’ acquisition of 

mathematical concepts is utilizing specific features of educational technology 

(Hillmayr et al., 2020)—whereby the specific cause and effect mechanisms have not 

yet been fully clarified. 

On a cognitive side, particularly appropriate gestures, such as self-performed suitable 

hand movements, can serve to facilitate the learning of complex mathematical content, 

according to the embodied cognition theory (Wilson, 2002). More specifically, 

building up the ‘part of many wholes’ concept may be supported by fitting the gestures 

used to the to-be-developed mental model (here: equal sharing by cutting and 

distributing pizzas with fingers). This is one argument why the use of touchscreens in 

suitable simulation-based learning environments can be beneficial for learning. 

However, meta-analyses suggest that the use of digital media may not only positively 

influence cognitive but also non-cognitive aspects, such as attitudes towards the subject 

matter, or motivation, which, however, depends on their implementation (Higgins et 

al., 2019); this is especially true for learning fractions (Reinhold et al., 2021). In 

particular, a positive and learning-promoting effect of digital simulation-based learning 

environments through ‘representational scaffolding’ is assumed (Fischer et al., 2022). 

Theoretical modelling and empirical clarification of the relationship between cognitive 

and motivational-emotional effects of digital learning environments in mathematics is 

a central research desideratum, which this study aims to contribute to. 

The mediating role of student classroom engagement 

Based on these considerations and previous empirical results, we propose an 

explanatory approach in which features of digital learning environments first have a 

motivating effect in the specific learning situation, and this positively influences 

students’ utilization of the learning opportunities—which results in an indirect 

learning-promoting effect of digital tools.  

The theoretical foundation for this model (see Fig. 1) is a synthesis of (1) the general 

model for determinants and course of motivated action as product of person and 

situation (Heckhausen & Heckhausen, 2018), (2) the utilization-of-learning-

opportunities model (Seidel, 2014) and (3) the concept of student classroom 

engagement as a multifaceted process variable (Fredricks et al., 2004). 

By motivational-emotional engagement we refer to learners’ affective reactions in the 

classroom, such as interest, boredom, happiness, sadness, and fear (Pekrun, 2006; 

Fredricks et al., 2004). In the present study, we consider motivational-emotional 

engagement a latent construct consisting of situational interest (i.e., the interest in the 

learning object, Hidi & Renninger, 2006), contextualized motivation (i.e., the pure 

enjoyment of the learning object), and subjective effort (i.e., the extent to which 

learners consider themselves actively participating in the learning process, Krapp, 

2005; Ryan & Deci, 2000). 
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Figure 1. Effect of digitally supported mathematics teaching mediated by a change in 

motivated action—here with focus on motivational-emotional engagement. 

Although learning motivation is usually described as extrinsic, since it aims at specific 

learning outcomes, it can become intrinsic through learning out of interest, and thus 

results in higher learning performance, especially with regard to conceptual learning 

and depth-oriented learning strategies (Krapp, 2005) Moreover, it is assumed that when 

learners actively engage—i.e., show effort—with learning materials due to situational 

interest or intrinsic motivation, they are better able to coherently integrate them into 

mental representations (Moreno & Mayer, 2007), which shows a positive influence on 

learning outcomes (Pekrun, 2006). 

Regarding that, we suggest that higher motivational-emotional engagement (due to 

features in digital learning environments) can lead to higher behavioral and cognitive 

engagement (Fredricks et al., 2004), which then can cause higher learning outcomes.  

The present study  

In the present study, we investigated whether the relationship between the effect of 

features in digital learning environments on fractions and learning outcomes is 

mediated by an increase in motivation. We hypothesize that interactive manipulations 

in digital simulation-based learning environments (using congruent gestures on 

realistic models) in the exploratory phase of mathematics lessons positively affect 

contextualized motivation, situational interest, and subjective effort—and that these 

correlate positively with learning gains. The study design followed the explanatory 

approach for the effect of digitally supported mathematics teaching through a change 

in motivated action (Fig. 1), whereby the digital learning environment represents the 

situation in comparison to a paper-based learning environment, and the learning gain 

represents the outcome. 

METHOD 

To answer this, a 90-minute randomized controlled trial was conducted. In the present 

curriculum, fractions are covered for the first time in the sixth grade, which assumes 

that learners have not been exposed to fraction learning in school lessons before and 

have little to no substantial prior knowledge of fraction concepts. 

Angebotsnutzung als „Motivated Action“

Learning opportunities Utilization Gain

Person
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Motivation

Action
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Sample 

A total of N = 292 sixth graders from German schools in Baden-Württemberg 

participated in the study. For the intervention, the students from k = 13 classrooms 

were each randomly assigned to either the control condition (n = 141, paper-based 

learning environment) or the experimental condition (n = 151, digital simulation-based 

learning environment). 

Material and instruments 

As the digital simulation-based learning environment we used an electronic textbook 

on fractions that focuses on conceptual knowledge building and has already been 

shown to be effective in authentic learning scenarios in a large cluster randomized 

controlled trial (Reinhold et al., 2020). The learners approach the ‘part of many wholes’ 

concept vividly and realistically by means of ‘distributing pizzas’ in an exploration 

task with specific stimuli (Streefland, 1991). With reference to embodied cognition 

theory the intuitively designed tasks are to be worked on by means of finger 

movements: pizzas are cut by a dragging motion of the finger from the edge of the 

pizza, automatically presenting a knife. The distribution of the individual pizza pieces 

follows the same principle: a hand appears as soon as the finger is held on the respective 

piece and disappears as soon as it is moved away from the touch screen (Fig. 2). The 

students are asked to give a written statement on how they solved the task; they can 

switch to the next task in the exploration phase in their own pace. 

 

 

Figure 2. Cutting and distributing pieces of pizza in the digital simulation-based 

learning environment 

 

Motivational-emotional engagement was operationalized through contextualized 

motivation, situational interest, and subjective effort via self-reports in a questionnaire 

with five items each on four-point Likert scales. Actual self-assessment was ensured 

using inverted control variables: 

 Contextualized motivation: I found today's math lesson exciting. Today's math 

lesson was fun. Time flew by in today's math lesson. I was motivated to learn in 

today's math lesson. I found today's mats lesson boring. 

 Situational interest: I found today's math lesson interesting. Today's math lesson 

made me curious about fractions. Today's math lesson fascinated me.  I am not 
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interested in what I learned in today's math lesson. Now I really want to learn more 

about fractions. 

 Subjective Effort: In today's math lesson I tried very hard. In today's math lesson, I 

tried to shirk. In today's math lesson, my mind was elsewhere. In today's math lesson 

I didn't care about anything. In today's math lesson I participated a lot. 

To assess learning outcomes, relevant prior knowledge about fraction concepts was 

assessed before the intervention by means of a pretest, and content-specific fraction 

knowledge on the ‘part of many wholes’ concept was measured after the intervention 

with a posttest. All instruments were piloted in a pilot study with N = 43 students. 

Procedure 

Informed consent was obtained from school administration (Regional council of 

Freiburg, Department 7 ‘school and education’, reference number 7-6499.2), students, 

and parents prior to the study. 

In each classroom learners were randomly allocated to experimental and control 

condition through face-down card drawing. The experimental group worked with the 

digital simulation-based learning environment during the exploration phase and the 

control group worked with the same material in the form of a paper-based version: 

Both lessons were based on an identically developed workbook, which only differed 

in the experimental manipulation, i.e., the digitalization of the individual exploratory 

phase of the mathematics lesson on the ‘part of many wholes’ concept. In the control 

condition, the above-described task is given in paper-based format, requiring students 

to draw the results of their equal sharing process. In both conditions, (1) researchers 

conducted the lesson after this exploration phase, (2) results of the exploration phase 

were written down, and (3) individual practice tasks were administered paper-based. 

The time frame of the individual successive instructional phases was determined in 

advance between the study leaders to create reliability and prevent falsification of the 

measurement results. 

Statistical evaluation 

To compare the mean values of the two experimental conditions, we used independent 

samples t-tests. To test our mediation hypothesis, we estimated a structure equation 

model both without and with the relevant indirect effect in R with lavaan using Bollen-

Stine bootstrapping method with a sample of 1,000 and standardized coefficients. 

RESULTS 

Descriptive Results 

The results support our hypotheses. A significant difference in favor of the 

experimental group was found regarding Contextualized motivation, t(287) = -3.76, 

p < .001, Situational interest, t(286) = -2.75, p <0.01, and Subjective effort 

t(284) = -2.11, p < .01 (Tab. 2). 
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    Control  Experimental   

  α  M SD  M SD  t p d 

Pretest  0.76  5.73 3.99  6.17 3.79  0.97 0.33 0.11 

Contextualized Motivation  0.89  2.91 0.69  3.22 0.72  3.76 < 0.001 0.44 

Situational Interest  0.85  2.66 0.68  2.89 0.71  2.75 < 0.01 0.33 

Subjective Effort  0.56  3.01 0.55  3.14 0.52  2.11 < 0.01 0.25 

Posttest  0.75  5.76 4.75  6.55 4.90  1.40 0.16 0.16 

Table 1. Descriptive results and independent sample t-test. 

 

Mediation Analysis 

We asked whether the effect between features in digital learning environments on 

fractions and learning outcomes is mediated by motivational-emotional engagement. 

Posttest outcomes in the experimental group (working with the digital learning 

environment on iPads) should be higher than in the control group (working paper 

based) because of an increase in state motivation. Our mediation analysis supported 

this hypothesis. The hypothesized structure equation model (given in figure 2) showed 

a reasonably good fit to the data, X2(3) = 3.98, p = 0.26, CFI = 0.99, TLI = 0.99, 

RMSEA = 0.03, 90 % CI = [0.00, 0.11]. In this model, we estimated the latent variable 

Motivational-emotional engagement via Contextualized Motivation, Situational 

interest, β = 0.73, 95% CI = [0.44, 1.03], and Subjective effort, β = 0.74, 

95% CI = [0.38, 1.14]. 

 

Figure 3. Structure equation model to test the hypothesized mediation of the effect of 

the digital learning environment on the cognitive learning outcome regarding the part 

of the whole concept via the latent construct motivational-emotional engagement. 

 

For the posttest outcome on the ‘part of many wholes’ concept of fractions as 

dependent variable, and including the intervention group as independent variable, the 

mediator analysis showed no significant direct effect of features in digital learning 

environments (i.e., the intervention group) on posttest performance, β = 0.17, 

95% CI = [-0.72, 0.98]. The intervention group had a significant positive effect on the 

mediator motivational-emotional engagement, β = 0.41, 95% CI = [0.16, 0.61], and 

Prior

knowledge

Cognitive

learning

outcome
0.58***

Motivational-

emotional

engagement

0.02

Digital

learning

environment

0.07

0.02

0.23**

Contextualized

motivation

Situational

interest
0.56

Subjective

effort
-0.31

0.03

0.19***

0.87***

0.64*

0.65**



Oppmann & Reinhold 
 

PME 46 – 2023  4 - 441 

motivational-emotional engagement had a significant positive effect on posttest 

achievement, β = 1.05, 95% CI = [0.59, 1.38]. In line with our hypothesis, we found a 

significant indirect effect, β = 0.43, 95% CI = [0.15, 0.71]. For all other path estimates, 

consider Figure 3. 

DISCUSSION 

The goal of the present study was to find out whether interactive manipulations in 

digital simulation-based learning environments in the exploratory phase of 

mathematics lessons positively affect contextualized motivation, situational interest 

and subjective effort—and that these correlate positively with learning gains. 

Motivational-emotional engagement showed significantly better results on average 

across all scales in the experimental group with the digital simulation-based learning 

environment. On a descriptive level, the experimental group did show better posttest 

outcomes—yet, this effect was non-significant, which can be attributed to the fact that 

only the exploratory phase was instructed digital, and the practice phase was paper-

based, as in the control group. 

The results indicate that engagement plays a key role in learning performance and thus 

underline the importance of supportive features in digital learning environments, 

especially in learning domains that, like fractions, are a hurdle for students. 

It remains to be clarified how engagement affects learning. To this regard, we made 

the hypothesis that a higher motivational-emotional engagement leads to a higher 

cognitive and behavioral engagement (cf., Fig. 1), i.e., more utilized real learning time, 

and thus to greater learning success. For this purpose, we have already collected 

process data, such as students’ descriptions of their approaches, their problem-solving 

time, and their word count, which will be evaluated in a next step. 
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Research has become interested in the mathematical knowledge that undergraduate 

tutoring involves. This study introduces a mechanism that describes how this 

knowledge can develop through the work of tutoring. The mechanism emerged from an 

analysis of 24 reflections written by 10 novice tutors on noticeable incidents that took 

place in their tutorials. The tutors were undergraduate students at advanced stages of 

their mathematics degrees, and their teaching unfolded as part of an elective course in 

mathematics education. The mechanism proposes that tutors can find themselves in 

contingent situations, where their mathematical knowledge is insufficient. To fulfill the 

emerging pedagogical need, tutors initiated reflexive actions of mathematics learning 

to prepare for similar contingent situations in their future tutoring. 

RATIONALE AND BACKGROUND 

Over the last two decades, research in undergraduate mathematics education has 

become interested in tutors (also referred to as “teaching assistants” and “graduate 

student instructors”). In many colleges and universities worldwide, tutors are employed 

by the mathematics departments to contribute to their instruction. The scope of the 

tutor roles vary from one tertiary context to another, ranging from working in drop-in 

mathematics support centers to leading regular problem-solving sessions for smaller 

groups of students enrolled in a course (e.g., Speer et al., 2005). In many countries, 

tutor-student interactions play a key role in undergraduate mathematics education, 

meaning that the way in which the former teach can impact how the latter learn (e.g., 

Kontorovich & Ovadiya, accepted). This raises questions about what mathematical 

knowledge tutoring involves and how this knowledge develops. 

Research into these questions is in its infancy. The emerging findings indicate that 

undergraduate tutoring “requires mathematical knowledge beyond content knowledge 

of the course” (Johns & Burks, 2022, p. 2). John and Burks (2022) show that tutors 

employ variations of the types of knowledge that are familiar from research in teacher 

education (e.g., in the terms of Ball et al., 2008, knowledge of content, curriculum, and 

students). But, unlike school teachers, tutors have rarely completed extended 

educational programs to prepare for the work of teaching. Indeed, tutor training is 

typically confined to several workshops that are often independent of the disciplinary 

subject matter (e.g., Speer et al., 2005). Yet, John and Burks (2022) demonstrate that 

tutors with only a few years of experience can hold impressive mathematical 

knowledge for tutoring (MKTut hereafter). So, how does this knowledge come about?  
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One possible answer is that MKTut develops through the work of tutoring. Research 

provides evidence of school teachers and mathematics educators growing new insights 

and refining their mathematical knowledge via teaching (e.g., Leikin & Zazkis, 2010). 

Occasional references to learning through teaching feature in the self-reflections of 

experienced university lecturers (e.g., Kontorovich, 2021). By analogy, it is reasonable 

to propose that tutors can learn through teaching as well.  

We aim to explore how MKTut develops through the work of tutoring. In this study, 

we focus on a sub-domain of this knowledge: specialized content knowledge—not just 

“common” knowledge of mathematical facts, but knowledge that enables nimbleness 

of ideas and practices that are distinctive for mathematical teaching (Ball et al., 2008). 

To address the aim, we scrutinize written reflections composed by novice tutors about 

their tutoring of first-year mathematics courses. The use of systematic reflection to 

investigate and promote professional knowledge for teaching is consistent with 

research on tutors (e.g., Speer et al., 2005) and school teachers (e.g., Mason, 2002). 

THEORETICAL FRAMEWORK 

John and Burks (2022) argue that only some aspects of existing frameworks of 

mathematical knowledge for school teaching are relevant to undergraduate tutoring. 

Yet, given the developmental stage of this area, we build on the existing frameworks.  

Mason (2002) maintains that attention and noticing lie at the heart of all professional 

practice, teaching included. He conceives attention as a complicated human 

mechanism, in which noticing is responsible for distinguishing some things from their 

surroundings and getting them through to the level of awareness. Without this 

awareness, it is impossible to act on these things, that is, to react to them. 

Mason (2002) argues that people notice things insofar as they are unexpected, i.e. 

contingent. Contingency is a dimension in the Knowledge Quartet—a theory 

concerning the mathematical knowledge that teachers apply in a classroom (Rowland 

et al., 2015). The dimension concerns situations where a teacher encounters an 

unanticipated event and is challenged to deviate from their agenda. In Rowland et al.’s 

(2015) study on elementary classrooms, students’ contributions to the lesson 

constituted the majority of contingencies. These included instances where students 

provided surprising answers to a question and spontaneous reactions to an activity. The 

researchers show that the teacher’s response to the contingency can be of three kinds: 

to ignore, to acknowledge but put aside, and to acknowledge and incorporate. 

According to Leikin and Zazkis (2010), contingent situations in secondary-school 

classrooms can lead teachers to develop new mathematical ideas. Considering teaching 

as a partially improvised activity (Rowland et al., 2015), we propose that contingencies 

can take place in university tutorials as well. 

Noticing can stem from a disturbance, for instance, when a teacher experiences a need 

for a certain piece of professional knowledge. Harel (2008) uses intellectual need to 

refer to circumstances where “disciplinary knowledge [is] born out of people’s current 
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knowledge through engagement in problematic situations conceived as such by them” 

(p. 898). In these cases, one’s existing state of knowledge is insufficient or inadequate, 

and additional knowledge must be acquired to reach an equilibrium. 

Stylianides and Stylianides (2022) reframe the construct of intellectual need for the 

case of prospective teachers. In the context of proof teaching and learning, the 

researchers use a pedagogical need to capture teacher’s readiness to develop 

conceptualizations of proof that are new to them. We see no reason to confine this 

reframing to a particular mathematical topic. Accordingly, with a pedagogical need, 

we refer to a teacher’s openness to develop a new piece of mathematical knowledge 

for teaching. Indeed, Stylianides and Stylianides (2022) stress that pedagogical needs 

are linked to the teacher’s perceptions of how relevant the new piece of knowledge is 

to their teaching context. 

Noticing can be developed through disciplined reflection on professional experiences 

(Mason, 2002). Disciplined reflection should not be confused with Schön’s (1987) 

reflection-on-action—an umbrella term that includes “anything from vaguely thinking 

back over what happened, to […] calling upon theories to explain and justify [it]” 

(Mason, 2002, p. 15). We use the term reflexion to stress the disciplined aspect of one’s 

reflection. This includes careful documentation of an incident, while aspiring to avoid 

judgements and implicit assumptions, and successive introspection of the incident with 

a deep inward gaze. Mason argues that such monitoring of the incidents of the past can 

prepare teachers to reflect-through-action, that is, to become aware of, and prepared to, 

modify their practice in the midst of that practice. 

METHOD 

Our data came from “Mathematics learning through teaching”—a mathematics 

education course (MathEd hereafter) that was offered in the mathematics department 

at a New Zealand university. The course was not required by any particular program. 

It mostly attracted undergraduates in the last semesters of their mathematics majors, 

and who were interested in educational issues.  

The central activity of the MathEd course was tutoring in “bridging” (pre-academic) 

non-credit courses and first-year courses for non-mathematics majors. The MathEd 

students (tutors hereafter) were allocated to groups of up to 25 students, and they led, 

in pairs, ten one-hour tutorial sessions throughout a semester. The tutors were expected 

to assist the students with the course content, by supporting their autonomous work on 

sets of problems. The problems were provided by the course lecturers.  

After each tutorial, the tutors were expected to submit a written reflection-on-action, 

where they accounted for a specific incident that had drawn their attention in the 

tutorial. This was part of their MathEd coursework. The reflection guidelines asked the 

tutors to provide a detailed description of an incident they considered significant and 

encouraged critical questioning of their in-the-moment actions. The tutors were also 

encouraged to formulate inferences that would be useful for their further teaching. 

Every week, selected reflections were shared and discussed in the MathEd course. 
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Over three semesters, we collected hundreds of reflections that focused on myriad of 

issues. At the first stage, we reviewed each of them to identify those that referred to 

tutors’ learning of mathematics. The process converged to 24 reflections written by ten 

tutors. These reflections became our data corpus. 

The reflections underwent inductive analysis, driven by the question, “how did the 

incident that the tutors noticed spur the development of their specialized content 

knowledge for tutoring (SCKTut, hereafter)?” We iteratively compared between tutors’ 

reflections, while attending to the differences and similarities between the described 

incidents and tutors’ actions. These comparisons gave rise to initial elements of a 

mechanism that conceptually connects between the tutorial incidents, the follow-up 

activity, and tutors’ knowledge development. The emerging categories and 

conceptualizations were applied to the whole data corpus to ensure that they account 

for the key aspects that the tutors stressed in their reflections. 

FINDINGS 

We open with the presentation of the mechanism that emerged from the data analysis. 

Then, we illuminate some of its components with excerpts from a single reflection. 

SCKtut development through tutoring: An overview 

In accordance with our assumption, many tutors’ reflections described contingent 

incidents that unfolded in tutorial classrooms. Somewhat similarly to Rowland et al. 

(2015), tutorial contingencies included surprising questions that the students asked and 

mathematical challenges that they faced when working on the assigned problems. The 

former pertained to situations where students experienced some intellectual need and 

turned to tutors with a request to fulfill it. Not all contingencies of the latter type 

involved the tutors directly. For instance, one of the tutors wrote,  

I overheard a discussion in one of my groups where one of the students stated that “a line 

and a plane can be non-parallel and not intersect in 3 dimensions.” This caught my 

attention because as far as I know […] this was impossible. I was curious about this 

student’s “non-parallel non-intersecting line and plane” so I asked him if he could 

elaborate further. 

This quote illustrates that the tutors not only coped with contingencies that the students 

presented to them, but also chose to get involved in the contingencies that they noticed. 

All reflections in the data corpus described situations where tutors found themselves 

in a pedagogical need for a certain piece of content or specialized content knowledge. 

In these situations, the tutors’ state of mathematical knowledge was either insufficient 

or inadequate to handle the contingency “on their feet”. For instance, a tutor could 

explain the problem solution or justify a particular move, but only with advanced 

mathematics that went beyond the scope of the particular tutorial. Such situations 

entailed a particular type of reflection-on-action (or reflection on a struggle to execute 

an appropriate instructional action, in this case), where the tutors autonomously 

pursued the development of their mathematical knowledge. Examples of this pursuit 
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included re-solving the focal problems after the tutorial, consulting with the relevant 

literature and online resources, and seeking assistance from mathematically versed 

others (e.g., other tutors, course lecturers). The mathematics in the focus of these 

actions was the “piece of the puzzle” that the tutors were missing in the contingency. 

We refer to this activity of the tutors as reflexive actions of mathematics learning. In 

all collected reflections, the tutors maintained that the learning actions resulted in the 

successful development of the target mathematics. 

The learning actions exemplified above took place after the tutorials. However, some 

reflections referred to reflexive actions that the tutors managed to take “on the fly” to 

navigate the contingency as it unfolded. For instance, one tutor described his struggle 

to explain the transition from 
1

5𝑥−1

𝑥

 to 
𝑥

5𝑥−1
 in a first-semester course. The tutorial was 

dedicated to inverse functions, and the tutor assumed that the students will be fluent in 

fraction manipulation. When he “stopped to think”, one of the students suggested to 

represent the fraction as 1 ÷
5𝑥−1

𝑥
. The tutor acknowledged the idea and incorporated 

it in their solution to produce an elaborated explanation (cf. Rowland et al., 2015). In 

other reflections, the tutors described how they asked the second co-tutor to weigh in. 

In such cases, the peer tutor took charge and resolved the contingency. These 

reflections attest to a high level of reflection-through-action that the tutors 

demonstrated by being aware of classroom resources and using them in-the-moment to 

address their pedagogical needs. The reflections also depicted these reflexive actions 

as affording the tutors a chance to advance their mathematical knowledge. 

A reflection on one learning journey 

We use excerpts from a reflection of Ann (pseudonym), who tutored a “bridging” 

course. This reflection serves two purposes: (i) to show that a successful resolution of 

a contingency in a classroom can still entail reflexive development of SCKtut; and (ii) 

to introduce a new type of reflection that we discerned in tutors’ reflections. 

After the first tutorial on the concept of functions, Ann submitted a reflection that 

revolved around the following problem: “For 𝑓(𝑥) = 𝑥2 − 2 evaluate: (a) 𝑓(2); (b) 

𝑓(2 − 𝑥); (c) 𝑓(𝑥 + ℎ) − 𝑓(𝑥)”. This is how Annie described the focal incident: 

During the tutorial, I had more than three students ask me how to solve (b) and (c). I tried 

to explain this by telling them that function is like a factory. The variable 𝑥 is the input, 

and 𝑥2 − 2 is the machine. But they told me they didn’t understand it at all. So I added 

more content to my explanation and said that this is a factory that makes apple pies, 

whatever [is] in the brackets is the apple we need to put in the machine to make an apple 

pie. So to solve (b) we just use 2 − 𝑥 to replace 𝑥 that in the function.    

Ann wrote that “all students got it”, referring to her second explanation. The incident 

still made her reflect on the two explanations that she provided. In her words, 

After the tutorial I was thinking about what’s wrong with my first explanation. […] The 

key issue here is their failure to understand that ‘2 − 𝑥’ here is a variable. Why my second 
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explanation made them understood it, maybe, because I told them that whatever is in the 

brackets is an apple. You don’t need to think about how to deal with 2, just circle 

everything in the bracket and put them into formula and replace the 𝑥.  In fact, I told them 

‘2 − 𝑥’ is the input variable. 

Ann wrote that she searched for the notion of variable in the mathematics encyclopedia 

and found out that, 

‘In elementary mathematics, a variable is an alphabetic character representing a number, 

called the value of the variable, which is either arbitrary, not fully specified, or unknown.’ 

It means variable is not referring to 𝑥, 𝑦, 𝑧 it just means not fully specified or unknown.  

So I think next time if someone ask me about a similar problem. I will ask them to tell me 

what the meaning of variable. Is that mean 𝑥, 𝑦, 𝑧? Can 𝑎, 𝑏, 𝑐 be variable as well? I will 

ask them to think about this and refer back to the definition of function. And then I will 

use my weird apple pie example to help them understand the definition. And also I need 

to give them chance to tell me what they don’t understand about the question and refer 

their issue back to definition. 

In the MathEd lesson, Ann confirmed that the incident was contingent to her. Before 

the tutorial, she presumed that finding 𝑓(2) will prepare the students for the remaining 

parts of the problem. In spite the contingency, Ann succeeded in presenting a general 

approach to the problem solution. She even managed to elaborate on it when the 

students sought additional explanations. In other words, Ann successfully reflected-

through-action and satisfied the intellectual need that the students presented her with. 

Ann’s resolution of the contingency engendered a posteriori pedagogical need to 

understand “what’s wrong with my first explanation” and what in the second 

explanation made students “get it”. Drawing on her mathematical knowledge, Ann 

connected students’ intellectual need and her “apple” metaphor to the concept of 

variable. She followed with further reflexive action of turning to the literature to clarify 

a formal concept definition. We note a qualitative difference between a more 

conceptual approach to variables that Ann presented in her reflection-on-action 

compared to a rather procedural explanation that she described as providing to her 

students (i.e., “we just use 2 − 𝑥 to replace 𝑥”). This change illustrates how reflexive 

actions can lead a tutor to expand their mathematical knowledge. 

In the last part of her reflection, Ann generates a series of questions she may use “if 

someone asks me a similar problem”. Two observations can be made regarding these 

questions. First, they invite the asker to engage with the notions of variable and 

function on a conceptual level. Second, they initiate an exchange, providing the asker 

with opportunities to express, clarify, and reflect their current state of knowledge, while 

articulating their intellectual needs. The reflection suggested (and Ann later confirmed) 

that these aspects were not part of the incident that took place in her classroom.  

We propose that Ann put her expanded SCKtut in use to reflect-toward-action, i.e. to 

sketch instructional actions that she could undertake when faced with a similar 

mathematical problem. Broadly speaking, reflection-toward-action prepares tutors for 
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future contingencies in which they may experience similar pedagogical needs. What is 

interesting, in Ann’s case, is that there is no evidence to suggest that she experienced 

a pedagogical need in the classroom. Indeed, she described this need arising “after the 

tutorial”. This suggests that tutors’ reflection-toward-action can be aimed not “just” at 

coping with similar contingencies, but at becoming ready to react to them in a more 

aware manner that is faithful to their newly developed insights. Reflection-toward-

action featured in eleven reflections in our data corpus. 

SUMMARY AND DISCUSSION 

Figure 1 offers a visual summary of the proposed mechanism of SCKtut development 

through the work of tutoring. The mechanism suggests that contingencies that tutors 

face in their tutorials can engender a range of pedagogical needs. A sub-set of them 

may spur tutors to initiate reflexive actions of mathematics learning. Some actions are 

taken to address the contingency “on-the-fly”, while others unfold outside the tutorial 

walls. Notably, our data suggest that tutors can pursue learning-oriented actions even 

when they think that their reflection-through-action addressed the contingency 

successfully. Reflexive actions can include reflection-toward-action, in which tutors 

delineate instructional moves that they may take if similar situations arise in the future. 

 

Figure 1: Mechanism of SCKtut development through tutoring  

A reflexion-encouraging frame is a critical element that contextualizes the proposed 

mechanism. Indeed, we do not believe that the reflexions that our tutors composed 

were accidental. They emerged as a response to certain guidelines, and they were part 

of tutors’ coursework. The course attracted a particular student cohort that was led to 

conduct critical inquiry into mathematics and its education. Overall, the course posited 

that teaching is an endeavour through which tutors’ mathematical knowledge can 

develop. Within this multi-layered frame, tutors were expected to reflect-on-action in 

a disciplined manner, and deep introspective reflections were encouraged. 

The focal mechanism contributes to research on undergraduate tutoring. The study 

offers evidence to suggest that tutors can advance their mathematics knowledge 

through tutoring. In this sense, tutors emerge, not unlike school teachers and teacher 

educators (e.g., Leikin & Zazkis, 2010). Notably, our tutors were taking their first 

teaching steps. They tutored first-year and “bridging” (pre-academic) courses, which 

many tutors initially labelled as “basic” and “easy”. This may suggest that a multi-

layered reflection frame within which the tutors operated played a key role in their 

mathematics learning. That said, our findings emerged from self-reflections that the 

tutors produced as part of coursework. Thus, much more research is needed to 

understand the complexity of MKTut and its development in different contexts. 
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Let us consider the MathEd course where soon-to-be mathematics graduates turned 

into tutors. The course was led by scholars in the didactics of mathematics who were 

members of the mathematics department. This is not the only department where 

didacticians and mathematicians work side-by-side. Thus, we propose that MathEd 

courses offered as part of mathematics programs can provide a promising path for tutor 

training and for advancing the quality of undergraduate mathematics instruction. 
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