
 

 

 

 

 

 

 

 

PROCEEDINGS 
OF THE 

46th CONFERENCE 
of the International Group for the 

Psychology of Mathematics Education 

Haifa, Israel   |   July 16 – 21, 2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Editors: Michal Ayalon, Boris Koichu, Roza Leikin, Laurie Rubel and Michal Tabach 



 

 

 

 

 

 



 

 

 

 

 

PROCEEDINGS 
of the 

46th CONFERENCE 
of the International Group for the 

Psychology of Mathematics Education 
 

 

Haifa, Israel 

July 16 – 21, 2023 

 

Editors:  

Michal Ayalon, Boris Koichu, Roza Leikin, Laurie Rubel and Michal Tabach 

 

 

 

Volume 4 

Research Reports 

P – Z 

 



 

 

 

 

 

 

 

 

 

Cite as: 

Michal Ayalon, Boris Koichu, Roza Leikin, Laurie Rubel & Michal Tabach (Eds.). (2023) 

Proceeding of the 46th Conference of the International Group for the Psychology of 

Mathematics Education (Vol. 4). University of Haifa, Israel: PME 

 

 

Website: https://pme46.edu.haifa.ac.il/ 

The proceedings are also available via  

https://www.igpme.org/publications/current-proceedings/ 

 

 

 

 

Copyright @ 2023 left to the authors 

All rights reserved 

 

ISSN:  0771-100X 

ISBN:  978-965-93112-4-8 

 

 

 

 

Printed by the University of Haifa 

Logo Design:  Sharon Spitz (https://www.sharonspitz.com/) 

Cover design:  Sharona Gil (Facuty of Education, University of Haifa)  

https://pme46.edu.haifa.ac.il/
https://www.sharonspitz.com/


 

PME 46 – 2023  3 - i  

TABLE OF CONTENTS VOLUME 4 

RESEARCH REPORTS (P-Z) 

 

TOWARDS A SPECIFICATION OF DIGITAL COMPETENCES FOR  

STEM TEACHERS IN AN EDUCATIONAL CONTEXT. ELICITING  

EXPERTS’ VIEWS 4-3 

Rouven Pankrath and Anke Lindmeier 

STUDENTS’ USE OF UNNECESSARY BRACKETS AS A WAY OF 

 EXHIBITING STRUCTURE-SENSE 4-11 

Ioannis Papadopoulos and Athina Thoma 

TYPES AND FEATURES OF DIALOGICAL TASKS FROM MATHEMATICS 

TEACHERS' PERSPECTIVE 4-19 

Reut Parasha and Boris Koichu 

ARE EXPERTS’ NOTICING FOCUSES REGARDING THE LEARNING  

POTENTIAL OF TASKS AND ITS USE CONSISTENT ACROSS  

INSTRUCTIONAL SITUATIONS? A SECONDARY ANALYSIS 4-27 

Josephine F. Paul, Anika Dreher, Ting-Ying Wang, Feng-Jui Hsieh,  

 Linn Hansen, Anke Lindmeier 

GENDER-RELATED BELIEFS OF PROSPECTIVE MATHEMATICS  

TEACHERS 4-35 

Georg Pfeiffer and Daniela Assmus 

REPRESENTING COVARIATION FUNCTIONAL SITUATIONS IN 

 A TABLET-ENABLED DIGITAL LEARNING ENVIROMENT 4-43 

Marios Pittalis, Eleni Demosthenous and Ute Sproesser 

A META-DISCIPLINARY REFLECTION ON A STEAM SCHOOL ACTIVITY: 

 THE ROLE OF MATHEMATICS 4-51 

Gabriella Pocalana, Ornella Robutti and Giulia Bini 

UNIT STRUCTURES RARELY ARTICULATED: TEACHERS’   

EXPLANATIONS OF MEANINGS OF MULTIPLICATION 4-59 

Susanne Prediger1,2 and Anke Wischgoll 

STUDYING THE ROLE OF PSEUDO-OBJECTS IN PROOF BY  

CONTRADICTION 4-67 

Kostas Probonas and Giorgos Psycharis 

 

 

  



 

3 - ii   PME 46 – 2023   

LEVELS OF MATHEMATICAL KNOWLEDGE IN LINEAR ALGEBRA FOR 

ENTERING UNIVERSITY 4-75 

Kolja Pustelnik, Stefanie Rach, Daniel Sommerhoff2,  

and Stefan Ufer 

PROSPECTIVE PRIMARY TEACHERS’ UNDERSTANDING OF  

ONE-DIMENSIONAL PHENOMENA: LINE, RAY AND SECTION 4-83 

Simone Reinhold and Bernd Wollring 

THE ROLE OF LANGUAGE-AS-RESOURCE AND LANGUAGE- 

AS-POLITICAL IN COLLEGE MATHEMATICS COURSES 4-91 

Jocelyn Rios 

EMBODIED CURIOSITY: A FRAMEWORK FOR MATHEMATICAL  

MEANING-MAKING 4-99 

Sheree Rodney 

IHIGH SCHOOL STUDENTS' PERCEPTIONS OF THE  

RELEVANCE OF MATHEMATICS IN HIGHER EDUCATION 4-107 

Dunja Rohenroth, Irene Neumann and Aiso Heinze 

INTRODUCTION AND THEORETICAL BACKROUND 4-107 

Joshua M. Ruk and Laura R. Van Zoest 

TEACHER CHANGE AND INCLUSIVE INTERVENTIONS FOR  

LEARNERS WITH MATHEMATICS DIFFICULTIES 4-123 

Robyn Ruttenberg-Rozen and Marc Husband 

WHAT IS A “GOOD” ARGUMENTATION IN MATHEMATICS  

CLASSROOM? 4-131 

Saccoletto Marta 

DIDACTIC-MATHEMATIC KNOWLEDGE TRAITS OF PRE-SERVICE  

TEACHERS WHEN POSING AND SOLVING ROBOTIC PROBLEMS 4-139 

Gemma Sala-Sebastià, Adriana Breda, Alicia Sánchez  

and Vicenç Font 

INDIVIDUAL CONCEPTION FRAMES AS A CONCEPT FOR THE 

 ANALYSIS OF MATHEMATICAL LEARNING 4-147 

Alexander Salle and Marcus Schütte 

DIGITAL MONITORING OF FRACTION LEARNING: ADAPTING  

A TEST FOR KNOWLEDGE OF FRACTION SUBCONSTRUCTS 4-155 

Constanze Schadl, Anke Lindmeier 

CHARACTERIZING EXTERNAL VISUALIZATION INTERVENTIONS:  

A SYSTEMATIC LITERATURE REVIEW 4-163 



Abraham & Prediger 

PME 46 – 2023  4 - iii  

Johanna Schoenherr and Stanislaw Schukajlow 

TEACHERS’ DIAGNOSTIC ACTIVITIES DURING TASK-BASED  

ASSESSMENTS IN A DIGITAL SIMULATION 4-171 

Christian Schons, Andreas Obersteiner, Frank Fischer  

and Kristina M. Reiss 

STATISTICAL THINKING AND VIEWING PATTERNS WHEN 

 COMPARING DATA DISTRIBUTIONS: AN EYE-TRACKING STUDY  

WITH 6TH AND 8TH GRADERS 4-179 

Saskia Schreiter and Markus Vogel 

HOW DO MATHEMATICS TEACHERS LEARN TO CREATE A  

MATHEMATICAL STORYLINE IN PROBLEM-BASED LESSONS? 4-187 

Gil Schwarts, Patricio Herbst and Amanda Brown 

MATHEMATICAL REASONING TYPES AS GENDERED? VIEWS FROM 

PALESTINIAN/ARAB ISRAELI TEACHERS 4-195 

Juhaina Awawdeh Shahbari, Laurie Rubel and Fatema Kabha 

DYNAMIC VISUALIZATION AND EMBODIED DESIGN FOR  

TRIGONOMETRY LEARNING: LOOKING OR DOING? 4-203 

Anna Shvarts and Linda Zenger 

STRATEGY USE IN NUMBER LINE TASKS OF STUDENTS WITH  

AND WITHOUT MATHEMATICAL DIFFICULTIES:  A  

STUDY USING EYE TRACKING AND AI 4-211 

Anna Lisa Simon, Parviz Asghari, Achim J. Lilienthal, & Maike Schindler 

A NOVICE TEACHER’S IDENTITIES – FROM LOSING HER  

BALANCE TO REGAINING HER CONFIDENCE 4-219 

Charlotte Krog Skott and Jeppe Skott 

DIDACTIC SUITABILITY CRITERIA IN TEACHERS’ PRACTICAL 

ARGUMENTATION IN THE PHASE OF DESIGN OF A LESSON STUDY  

CYCLE ABOUT FUNCTIONS 4-227 

Telesforo Sol1, Alicia Sánchez, Adriana Breda and Vicenç Font 

FOSTERING STUDENTS’ KNOWLEDGE ABOUT PROOF 4-235 

Femke Sporn, Daniel Sommerhoff and Aiso Heinze 

FROM 2D TO 3D: SUPPORT of a 3-Dimensional DYNAMIC GEOMETRY 

ENVIRONMENT IN LEARNING proof 4-243 

Camilo Sua, Angel Gutiérrez and Adela Jaime 

  



 

3 - iv   PME 46 – 2023   

CHINESE LANGUAGE LEARNERS’ READING COMPREHENSION 

 WHEN SOLVING MATHEMATICAL WORD PROBLEMS 4-251 

Emily S. W. Sum, Miranda, K. Y. Wong, Antonia, Y. T. Yip 

 and Wee Tiong Seah 

ENHANCING SPATIAL REASONING THROUGH GEOMETRY  

TRANSFORMATION INSTRUCTION IN GHANA 4-259 

Mawuli Kofi Tay and Armando Paulino Preciado Babb 

CONNECTING MATHEMATICS LEARNING TO LEARNING ABOUT  

STRUCTURAL RACISM IN THE UNITED STATES 4-267 

Eva Thanheiser and Molly Robinson 

APPLETS AND PAPER & PENCIL TASKS AS RESOURCES FOR WORKING 

 WITH MATHEMATICAL REPRESENTATIONS 4-275 

Odelya Tzayada and Michal Tabach 

GROUNDING CHINESE NEW STANDARDS’ FOCUS ON COUNTING- 

UNITS IN A CONSTRUCTIVIST, UNITS-AND-OPERATIONS MODEL 4-283 

Ron Tzur, Rui Ding, Yunpeng Ma, Rongjin Huang  

and Bingqian Wei 

ANALYSING THE QUALITY OF ADVANCED MATHEMATICS LECTURES 

REGARDING THE PRESENTATION OF THEOREMS AND PROOFS –  

THE CASE OF REAL ANALYSIS LECTURES 4-291 

Karyna Umgelter and Sebastian Geisler 

STRATEGY USE IN NUMBER LINE ESTIMATIONS OF FRACTIONS – 

AN EXPLORATORY STUDY IN SEARCH FOR ADAPTIVE EXPERTISE 4-299 

Wim Van Dooren 

MAKING SENSE OF ZERO TO MAKE SENSE OF NEGATIVE NUMBERS 4-307 

Joëlle Vlassis and Isabelle Demonty 

THE DISCOURSE MAPPING TREE AS A TOOL FOR ANALYZING  

THE POTENTIAL AND IMPLEMENTATION OF LINEAR ALGEBRA 

 TASKS 4-315 

Miriam N. Wallach, Einat Heyd-Metzuyanim and Ram Band 

ANSWER PATTERNS OF JAPANESE SECONDARY SCHOOL STUDENTS  

IN TIMSS 2015 MATHEMATICS SURVEY 4-323 

Koji Watanabe 

REPRESENTING ‘TALL AND SHORT’ IN DRAWINGS  – PRE-SCHOOL 

 TO YEAR 2 4-331 

Jennifer Way 



Abraham & Prediger 

PME 46 – 2023  4 - v  

IAPPLYING A COMMOGNITIVE-BASED FRAMEWORK TO PROMOTE 

 TEACHERS’ COMMUNICATION ABOUT REASONING AND PROVING 4-339 

Merav Weingarden and Orly Buchbinder 

FROM UNIVERSITY TO SCHOOL: EXPLORING BEGINNING TEACHERS 

INTEGRATING REASONING AND PROVING 4-347 

Merav Weingarden and Orly Buchbinder 

LEARNING ABOUT DIGITAL TECHNOLOGIES OF THE WORKING 

 WORLD IN REGULAR MATH CLASSES? TEACHING COMPOSITE  

BODIES WITH 3D PRINT AS A LEARNING CONTEXT 4-355 

Mira H. Wulff, Anika Radkowitsch and Aiso Heinze 

TEACHERS’ MULTIPLE AND ADAPTIVE NOTICING DRIVEN BY  

THEIR FRAMING OF PROFESSIONAL OBLIGATIONS IN THE 

 CONTEXT OF A PROVING ACTIVITY 4-363 

Mei Yang, Andreas J. Stylianides and Mateja Jamnik 

ELEMENTARY PRESERVICE TEACHERS’ NOTICING OF EXEMPLARY  

LESSONS: A COMPARISON OF NOTICING FRAMEWORKS 4-371 

Qiaoping Zhang, Yicheng Wei and Jing Liang 

EXPLORING THE ROLE OF PEDAGOGY IN MATHEMATICAL  

CREATIVITY VIA MULTIPLE SOLUTION TASKS: A COMPARATIVE  

STUDY OF TWO SCHOOLS IN CHINA 4-379 

Ying Zhang 

SIXTH GRADERS’ LEARNING OF MULTIPLICATIVE STRUCTURE  

PROBLEMS THROUGH THE VARIATION PRINCIPLE 4-387 

Cristina Zorrilla, Ceneida Fernández, Anna-Katharina Roos,  

Salvador Llinares, and Susanne Prediger 

 

 

 





 

 

 

 

VOLUME 4 

 

RESEARCH REPORTS  

 

P - Z 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 



 

2023. In M. Ayalon, B. Koichu, R. Leikin, L. Rubel & M. Tabach (Eds.). Proceedings of the 46th Conference of 

the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 3-10). PME 46. 

TOWARDS A SPECIFICATION OF DIGITAL COMPETENCES 

FOR STEM TEACHERS IN AN EDUCATIONAL CONTEXT. 

ELICITING EXPERTS’ VIEWS 

Rouven Pankrath and Anke Lindmeier 

FSU Jena, Germany 

 

Despite an increasing number of available frameworks for (future) teachers’ digital 

competences, it often remains unspecified what teachers should know and be able to 

do. Hence, deciding on the focus of courses is still challenging. We initiated a Delphi 

process with stakeholders from research, school administration and practice in a local 

educational context to identify digital competences central for STEM teachers. This 

report covers the first stage of the process, where competence expectations synthesized 

from different frameworks were subjected to relevance evaluations. The results 

indicate a high degree of consensus among the experts, and experts from various fields 

of expertise differ only in a few aspects. We discuss how the process may inform others 

challenged to decide on questions related to (future) teacher education. 

INTRODUCTION 

Across the world, national policy actions stress the importance of preparing (future) 

teachers for working in a digital world. Hence, digital competences are seen as an 

essential aspect of the professional competence of teachers that enable teachers to use 

digital technologies in and for teaching. For instance, they should be able to integrate 

digital technologies effectively into teaching processes and use them for lesson 

preparation or communication with parents. 

Several international (and also national) frameworks conceptualize digital 

competences or describe their range, for instance, the TPACK model (Koehler & 

Mishra, 2009) and the DigCompEdu (Redecker, 2017). However, existing frameworks 

for digital competences for teachers are hardly suited to decide what should be first and 

foremost targeted in courses fostering digital competence for (future) teachers of 

specific subjects. So, in many educational contexts, educators need to know what might 

be considered relevant by others holding responsibilities in the same context. This 

contribution addresses the problem for STEM teachers for (upper) secondary level in 

a first step by investigating whether it is possible to elicit a consensus of different 

stakeholders from research, school administration, and practice within an educational 

context regarding what might be relevant digital competences for all teachers.  

THEORETICAL BACKGROUND 

Digital competences of teachers can be described as a set of knowledge, skills, and 

attitudes related to the use of digital technology in education (Ferrari, 2012), and, 

accordingly, frameworks describe them in different ways. For example, the TPACK 

framework by Koehler and Mishra (2009) portrays teachers' professional knowledge 



Pankrath & Lindmeier 

4 - 4 PME 46 – 2023 

as an overlap of technological, pedagogical, and content knowledge. This model is 

compact yet rather abstract and focuses on critical areas of teachers’ knowledge, four 

related to digital competences. Another widespread framework for teachers’ digital 

competences is DigCompEdu (Redecker, 2017). It comprehensively lists 22 different 

abstract competences in six areas. For example, teachers are expected to be able to use 

digital resources for teaching by creating and modifying them (2.1) or for professional 

collaboration (1.2), but they are also expected to support the students’ responsible use 

of technology (6.4). Every competence is further characterized by hierarchical 

proficiency expectations in eight levels. Although this comprehensive framework is 

less abstract than TPACK, it still describes competences in a general manner and 

comprises a wide variety of different expectations. 

Typically, digital competence expectations are also documented by national policies. 

In the federal state of Germany, for instance, the standing conference of ministries of 

education (KMK, 2017) issued competence expectations built on the cited frameworks 

and other resources. For instance, they incorporate ideas of critical education, which 

are often referenced in general education and its sciences, but not in (European) 

mathematics education (Skovsmose, 1985). However, the national policy documents 

also have commonalities with the international frameworks, like being very abstract. 

As overarching documents, all frameworks are also limited informative regarding the 

expectations for teachers of specific subjects, for example, mathematics. At the same 

time, study results indicate that the use of digital technology differs between subjects, 

for example, mathematics and natural sciences (Mullis et al., 2020), so expectations 

may also have to be differentiated according to the subjects taught. 

Moreover, the frameworks often lack information regarding an important question for 

the purpose of teacher education and training: What might be considered a minimal set 

of competences relevant for all (future) teachers? It can be assumed that even experts 

would answer the question differently, as teacher education and training are fields of 

shared responsibilities and partially disconnected (scientific) discourses.  

RESEARCH QUESTIONS 

This contribution addresses the problem of a need for more specific learning 

expectations regarding digital competences for (future) teachers. As described, current 

models of teacher digital competences do not guide what might be particularly relevant 

for teachers. They are also less informative regarding specific subjects, despite there is 

evidence that the use of digital technology differs between subjects. Moreover, general 

education reportedly uses different frameworks than subject-specific educational 

research, but there is a lack of evidence on whether the views of experts from different 

fields differ. According to our interest, we focus on STEM subjects which are often 

referenced as being at the fore of using digital technology. 
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We aim to answer the following research questions: 

RQ1) Is there a consensus regarding which digital competences are relevant for all 

mathematics and science teachers by experts within a certain local context?  

RQ2) Do experts with different fields of expertise (e.g., in the subjects, in general 

education) have different views on the relevance of competences? 

DESIGN OF THE STUDY AND METHODS 

The study is part of a larger study implementing the Delphi method (Diamond et al., 

2014), which can be described as a moderated collaborative problem-solving process. 

This report covers the preliminary results of the first round, where we investigated 

whether experts’ views on digital competence statements reached a consensus. As there 

were already frameworks for digital competences referenced in our educational 

context, we decided to start with a set of statements based on an analysis and synthesis 

of the frameworks (see below) in a structured online questionnaire. In this contribution, 

we report on the procedure and the results of this online questionnaire. 

We expected the online questionnaire to be suited to identify statements seen 

consensually as relevant and others as not. The results should be used in the future 

second Delphi round to further specify learning expectations according to the identified 

relevant competence statements in group discussions with the experts. This should 

finally allow deciding on the design of courses for (future) STEM teachers fostering 

digital competences considered relevant by stakeholders with shared responsibilities in 

teacher education and training in our educational context. 

Design of the Instrument 

To identify a set of statements to be used in our questionnaire, we started analyzing the 

structure of an online course called digi4all (Seegerer et al., 2021), designed to equip 

pre-service and in-service teachers with basic digital concepts. As Seegerer created this 

course in collaboration with other subject education scientists through a similar 

consensus process, we expected the course to be a good starting point, yet being coined 

from the perspective of the author, a computer science education expert. We further 

subjected the frameworks of TPACK, DigCompEdu, and the relevant national 

educational policies, including the local curriculum for the school subject of computer 

science (indicating the local expectations of general education outcomes related to 

digital competences) to a qualitative content analysis. We synthesized the expectations 

of the different sources into statements and grouped the statements according to 

categories. Therefore, we merged and expanded the categories of digi4all, and the 

process resulted in eight competence areas (Table 1). When writing the statements, we 

aimed at easy readability of the statements and provided examples in case of possible 

divergent understanding of terms. 

We structured the statements in each competence area in two parts differentiating 

between knowledge and skills. So, the statements in the first part referred to topics that 

may be expected to be known, whereas the statements in the second part referred to 
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actions that may be expected to be mastered. To illustrate this, we present one statement 

referring to knowledge (indicated by K in the label) and one to skills (S) for the 

competence areas CA1, CA3, and CA6: “Binary number system as the basis of ‘digital 

functioning’” (CA1Kbin); “Operating with binary digits, e.g., conversion of binary to 

decimal numbers, binary addition, subtraction” (CA1Sbin); “Fundamentals of 

statistics” (CA3Kstat); “Evaluate collected information and data and present it 

appropriately for the addressee” (CA3Sstat); CA6: “Psychological effects of social 

networks (e.g., cyberbullying)” (CA6Ksocnet); “Using video conferencing tools” 

(CA6Svidcon). 

Label Content [number of statements] Label Content [number of statements] 

CA1 Fundamentals of the functionality 

and use of a computer [14] 

CA5 Fundamentals of media culture and 

influence of media on daily life [6] 

CA2 Fundamentals of the functionality 

and use of the internet [10] 

CA6 Communicating through and 

collaborating with digital 

technologies [10] 

CA3 Getting, saving and evaluating data 

and information [11] 

CA7 Designing digital learning 

environments (in general) [8] 

CA4 Understanding, using and evaluating 

algorithms [8] 

CA8 Using and evaluating subject-

specific digital tools [8] 

Table 1: Overview of the eight competence areas (abbr. CA) with a short description 

of contents and the number of statements identified. 

To elicit what the experts considered to be digital competences relevant for all 

mathematics and science teachers, we asked them to rate each of the statements. The 

experts could rate the statement as being relevant for all teachers or not. They could 

further indicate whether they considered a basic level or an advanced level of 

knowledge/skills as necessary, which was asked to inform later stages of the Delphi 

process. In addition, they could decide not to rate the statement if they feel to do so 

(“This is not something I can assess”). 

For each CA, the experts could comment in free text fields if they had suggestions for 

competences that are needed by all teachers but not covered by the presented 

statements. It was possible for the experts to navigate freely through the questionnaire 

at any time and to change the given answers. 

Sampling method and sample 

The experts for this questionnaire were intentionally sampled. Our educational context 

refers to a German federal state (Thuringia) and the Gymnasium level. All future 

secondary teachers for this level are educated at one university. Since our focus is on 

mathematics and science, we contacted all STEM education professors. In addition, we 

also contacted professors in the field of educational sciences that are responsible for 

the general education parts of teacher education. Finally, we contacted the ministry of 

education of the federal state as representative of the educational administration. In 

each case, we contacted the head of the department. We asked for personal 

participation and the nomination of a given number of post-/doctoral researchers or 
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employees with relevant expertise to participate in the questionnaire. In addition, we 

asked to nominate up to two expert teachers experienced in mentoring future teachers 

and one subject expert (professor) experienced in teaching future teachers for each 

subject. Overall, we aimed at a list of 5 to 7 participants per field of expertise. With 

this sampling strategy, we intended to mirror the shared responsibilities in teacher 

education and training in our educational context.  

To investigate RQ2 regarding potential differences according to the experts’ field of 

expertise, we build groups as follows: Mathematics and computer science (group 1), 

biology, physics, and chemistry (group 2), educational sciences and educational 

administration (group 3). Whereas group 2 refers to the natural sciences, group 1 spans 

computer science and mathematics as subjects with a common root and (still) partly 

common grounds in mathematics. Group 3 represents experts that have, by nature of 

their professional field, a general perspective on teachers and their competences 

independent of the subjects taught. 

In the end, we invited 46 people to take part in our questionnaire as experts. We 

informed the experts about the goals and procedures and whether they were free to 

participate. The experts were informed that we could identify responses with personal 

information, which is necessary for the next round of the Delphi process. This research 

report is a working report by the time of January 2023. At this time, we received 

complete responses from 36 of the invited experts (age: M = 43.7; SD = 12.4). 

Group Field of expertise Number of responses Response rate 

1 (n=14) Mathematics (MA) 6 86% 

Computer Science (CS) 8 89% 

2 (n=11) Biology (BI) 4 80% 

Physics (PH) 4 80% 

Chemistry (CH) 3 60% 

3 (n=11) Educational Sciences (EdS) 6 60% 

Educational Administration (EdA) 5 100% 

 Total 36 78% 

Table 2: Number of participants by field of expertise and response rates. 

Data analysis 

We report the experts’ rating of the full set of 75 competence statements structured in 

eight competences areas. We treated answers where experts decided not to rate the 

statement as missing. To answer RQ1, we counted whether experts considered each 

statement as a relevant requirement for all teachers without differentiating between 

possibly different levels of sophistication the experts might expect (basic vs. advanced) 

statements seen by at least 75% of the experts as being relevant were considered 

consensually representing a relevant expectation (typical Delphi criterion, Diamond et 

al., 2015). Some experts provided additional comments in the text fields provided with 

each competence area (98 written comments in total). The detailed analysis of these 

comments cannot be part of this working report, but a first inspection led to the 
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impression that the responses were mainly comments on the presented statements with 

few suggestions for additions.  

Regarding RQ2, we subjected differences in agreement rates between the groups of 

experts with different fields of expertise to a Chi²-test of independence and manually 

inspected observed differences. 

RESULTS  

General findings will first be reported aggregated for the competence areas. With our 

criterion of 75% necessary agreement rate, we note a trend over the different 

competence areas. As CA1 to CA4 are more about the technical and general aspects of 

using technology and five to eight are more about teaching-specific aspects, nearly all 

statements in the competence areas five to eight exceeded the 75% agreement criterion. 

For example, the statements CA6Ksocnet and CA6Svidcon (see above) reached 100% 

agreement rates. In contrast, several statements did not reach the specified agreement 

rate in CA1 to CA4. For example, the statement CA1Kbin reached 52%, and CA1Sbin 

only 13% agreement rate. However, overall relevance agreement rates were high 

(M = 80%, SD = 23% agreement rate). To answer RQ1, the experts' ratings indicate 

that 59 out of the 75 presented statements were consensually considered to be relevant 

for all (future) STEM teachers, at least on a basic level. 

CA 1 CA 2 CA 3 CA 4 CA 5 CA 6 CA 7 CA8 

10 of 14 5 of 10 9 of 11 3 of 8 6 of 6 10 of 10 8 of 8 8 of 8 

Table 3: Number of statements with an agreement rate at or above 75% across all 

experts (N=36) in each competence area. 

Regarding RQ2, we exemplarily focus in this report on CA1 and CA3, as the experts’ 

responses show certain variations in these areas. The results of the Chi²-test indicate 

that only for 2 of the 25 statements, there are significant differences between the 

agreement rates. To illustrate how the experts’ views differ in our study, we present 

details for selected statements. Among the statements in CA1, we presented two 

statements referring to skills in using software for text editing and presentation. The 

experts consensually rated these as relevant for all teachers (100% agreement rate). 

 Overall Group 1 

MA + CS 

Group 2 

BI + CH +PH 

Group 3 

EdS + EdA 

Chi²-test  

CA1Kbin 52% 29% 44% 90% * 

CA1Sbin 13% 7% 11% 22% n.s. 

CA3Kstat 61% 67% 67% 50% n.s. 

CA3Sstat 100% 100% 100% 100% n.s. 

Table 4: Agreement rates split up by groups on selected statements of CA1 and CA3 

to illustrate how experts’ responses vary (* < .05, n.s. not significant). 

In contrast, the two CA1 statements about binary numbers given above achieved 

varying agreement rates (Table 4), with the agreement of group 1 lower than group 2 

and the agreement of group 2 lower than group 3. But, the descriptive differences 

correspond only for CA1Kbin to a significant difference. As other examples, in CA3, 
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we presented two statements about statistics, one referring to knowledge (CA3Kstat) 

and one to skills (CA3Sstat). Despite certain variances in agreement rates between 

groups (Table 4), the differences cannot be considered statistically significant. 

To sum up, and as already indicated by the high consensus rates reported above, the 

views of experts with different fields of expertise only differ in a few cases. It has to 

be noted that we exemplarily focused on CA1 and CA3 in this preliminary report, and 

the analyses of the other two areas showing certain variations are pending. 

DISCUSSION 

This contribution reports the results of a study investigating whether experts of 

different fields of expertise in an educational context have similar views on what is 

considered digital competences relevant for all STEM teachers. As a starting point, we 

presented a set of 75 statements in eight competence areas synthesized from different 

frameworks. The results indicate that the experts consensually rate a wide range of 

statements as relevant for all teachers. We see indications that the consensus is almost 

perfect when expectations are particularly teaching-specific, as in competence areas 

“fundamentals of media culture and influence of media on daily life” (CA5), 

“communicating through and collaborating with digital technologies” (CA6), 

“designing digital learning environments (in general)” (CA7) and “using and 

evaluating subject-specific digital tools” (CA8). For less teaching-specific areas, 

experts’ ratings are more differentiated so that, for example, general skills like using 

standard software for text editing are undisputedly seen as relevant. At the same time, 

questions related to the hidden principles of technologies, like binary numbers or 

statistical principles, did not reach a consensus in our study.  

Against expectations, the results of our preliminary analysis suggest that differences 

between the groups of experts from different fields of expertise are not very salient. 

We illustrated this by the examples of the statements referring to the binary system and 

its operations. From a mathematical point of view, it is remarkable that the relevance 

agreement rates are generally low but lowest for the group of experts from mathematics 

and computer science and highest for the educational sciences and administration 

group, which seems paradoxical at first sight. One possible explanation might be that 

experts more familiar with these concepts underestimate their relevance. We will use 

the planned group discussion to elicit the reasonings behind the relevance ratings by 

experts from different fields for possible explanations. 

Our study certainly has limitations. First, we must remember that we focus on a certain 

educational context. Hence, the findings are not generalizable across contexts. 

However, to our knowledge, studies that systematically investigate whether experts 

with shared responsibility in teacher education and training have similar or different 

views on digital competence expectations are rare. Our methods might also inform 

other studies addressing similar teacher education problems. Second, so far, our 

competence statements are still abstract and may be interpreted differently by experts 

with different backgrounds. In addition, we did not consider whether the experts' views 
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might show considerable variability regarding the expected level of the competences, 

even if a statement was consensually rated as relevant. We will focus on these aspects 

in further analyses of the data and the second round of the Delphi process, where we 

intend to initiate group discussions and aim for a consensus on the level of specific 

expectations of mastery. The process might still show that, despite a perfect agreement 

regarding the competence statements (e.g., teachers have to know about the 

“Functioning of social networks”, CA6Kfunsoc), experts with different backgrounds, 

like mathematics educators and general educators, may mean something different by 

this statement.  

On the one hand, our findings underline the relevance of a wide variety of digital 

competences for (future) STEM teachers. On the other hand, our study shows that the 

original problem of deciding what should be covered by teacher education courses 

remains even though we applied a strong consensus criterion. This is remarkable, given 

teacher education and training experts' diverse backgrounds. However, it also suggests 

that the different stakeholders with shared responsibilities in teacher education and 

training might succeed in initiating a common discourse.  
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STUDENTS’ USE OF UNNECESSARY BRACKETS AS A WAY OF 

EXHIBITING STRUCTURE-SENSE 

Ioannis Papadopoulos1 and Athina Thoma2 

Aristotle University of Thessaloniki1, University of Southampton2 

 

In this paper, we analyze high school students’ answers to algebraic questions focusing 

on their use of unnecessary brackets. This is a part of a larger study exploring students’ 

use and non-use of brackets at various educational levels and on different 

mathematical topics. Our focus in this paper is on the instances of the use of 

unnecessary brackets and their connection to students’ structure sense. The analysis 

of the students’ written solutions showed three main categories regarding keeping the 

substitution of numerical or algebraic expressions separate, illustrating the 

application of a rule focusing on explicitly illustrating the different elements, and 

showing the grouping of terms in order to assist with the following evaluations.  

INTRODUCTION 

Brackets constitute a structural element of arithmetic and algebraic expressions since 

they determine the relations that exist between different parts of these expressions. For 

example, in the equality 
𝑎+𝑏

𝑐+𝑑
= (𝑎 + 𝑏) ÷ (𝑐 + 𝑑) brackets preserve the structure of 

the initial expression by making clear the relation between the numerator and the 

denominator of the fraction. Despite their importance in the structure of arithmetic and 

algebraic expressions, it seems that sometimes students do not physically write the 

necessary brackets. So, the right part of the equation above might be written as 𝑎 +
𝑏 ÷ 𝑐 + 𝑑. In this case, students very often evaluate the expressions in a way that 

mirrors the presence of brackets, acting thus as if the brackets were there. 

Papadopoulos and Gunnarsson (2020) refer to this phenomenon as the ‘use of mental 

brackets’ and claim that their use is connected to students’ structural understanding. 

However, there is another option beyond the dichotomy ‘use or non-use of necessary 

brackets’. This is the use of unnecessary brackets. Our research focuses on whether, 

and if yes to what extent, the use of unnecessary brackets relates to students’ structure 

sense. 

THEORETICAL BACKGROUND 

For most students, brackets are related to rules for the order of operations. This is 

reasonable since in school brackets are introduced and used mainly in the following 

context. When the student is asked to evaluate an expression containing bracketed sub-

expressions, then the content of these brackets takes precedence. Thus, brackets 

determine which operation should be calculated first. The emphasis on this aspect of 

brackets underplays the role of brackets as structural elements of the expression and 

therefore the significance of students' structure sense. Structure sense is a term 

introduced initially by Linchevski and Livneh (1999) aiming to describe students’ 
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difficulties when they use their knowledge of arithmetic structure during their first 

steps of learning algebra. According to them, structure sense for arithmetic expressions 

is related to students’ ability to correctly parse the expression and identify the relations 

between the components of the expression as well as between the components and the 

whole. The term was refined later by Hoch and Dreyfus (2006) who claim that students 

exhibit structure sense when they are able to recognize a familiar structure in its 

simplest form; consider a compound term as a single entity; and, by substituting 

appropriately they identify a familiar structure in a more complex form and make use 

of the expression’s structure through appropriate manipulation. Hoch and Dreyfus 

(2004) found that the presence of brackets plays a significant role in the way students 

use the structure of the expression. More specifically, they found that the presence of 

brackets helps students focus their attention on certain terms of the expression thus 

influencing positively their structure sense.  

On the antipode, Papadopoulos and Gunnarsson (2020) working with primary school 

students examined the absence of brackets and its connection with structure sense. 

They investigated Grade 5 and 6 students on the evaluation of rational arithmetical 

expressions. The students had to initially write these expressions in their horizontal 

form and then evaluate them. In this case, the use of brackets is necessary to preserve 

the structure of the given rational expression. The analysis illustrated that many 

students did not physically write brackets in the horizontal form but evaluated the 

expressions as if the brackets were there. From the technical point of view, the way 

they evaluated the horizontal expression violated the rules for the order of operations 

but in essence, they respected the structure of the initial expression. Papadopoulos and 

Gunnarsson (2020) refer to this phenomenon using the term ‘mental brackets’. So, the 

use of mental brackets seems to have assisted students in perceiving the expressions in 

the way they should be perceived regardless of students’ writing. Later, Papadopoulos 

and Thoma (2022) investigated the same issue in the solutions of high school students 

in the context of algebra. They found that students use mental brackets mainly when 

substituting values in variables. This use of mental brackets was identified as either 

applied to whole expressions (global mental brackets) or just to some of their parts 

(local mental brackets). 

In this paper, we are interested in another aspect that completes the span of the use of 

brackets which is the use of unnecessary, superfluous brackets. Sheppard (1916) very 

early suggested their use claiming that students “avoid the necessity of learning by rote 

the arbitrary and (to the young student) apparently meaningless rule that 

multiplications and divisions are to be performed before additions and subtractions” 

(p. 296). The issue has been examined sporadically and the findings are mixed. Some 

studies suggest the use of unnecessary brackets to emphasize the structure of the 

expression (Marchini & Papadopoulos, 2011). Others express their doubt about 

whether the use of unnecessary brackets benefits students (Gunnarsson et al., 2016). 

Marchini and Papadopoulos (2011) used unnecessary brackets in arithmetical 

expressions in grades 2 and 3 in Italy and Greece for identical arithmetical expressions 
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such as □ + 4 = 9 and (□ + 4) = 9 and found that their use considerably improved the 

number of correct answers by helping students visualise the content of these brackets 

as a single entity. On the other hand, Gunnarsson et al. (2016) transformed expressions 

of the form 𝑎 ± 𝑏 × 𝑐 to 𝑎 ± (𝑏 × 𝑐) to emphasize the priority of multiplication over 

addition or subtraction aiming to highlight the structure of the expressions thus 

facilitating the conventional rules. In the end, it was found that the use of unnecessary 

brackets did not enhance students’ performance when learning the order of operations. 

All these studies share a common characteristic. The introduction of the unnecessary 

brackets was made by the researchers aiming to serve certain teaching or research aims. 

In this landscape, our interests are focused on the use of unnecessary brackets that are 

initiated by the students themselves while evaluating algebraic expressions. So, our 

research question becomes: In what ways students’ structure sense is displayed through 

the different uses of unnecessary brackets? 

THE SETTING OF THE STUDY 

The participants were 181 Grade 10 and 11 (16-17 years old) students from rural 

schools in Greece. According to the official curriculum, they had been taught the rules 

for the order of operations, exponents, and algebraic identities. The students were given 

a questionnaire with two groups of tasks. The first group included two tasks with 

exponents (Fig. 1), asking for the calculation of powers with positive and negative 

exponents when the base of the power is an integer or a rational number.  

 

Figure 1: First group of tasks 

The second group included four items (Fig. 2) asking for substitutions in algebraic 

expressions.  

 

Figure 2: Second group of tasks 
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In all items the use of brackets is imperative to get the correct result. Moreover, the 

items of the second group demand both algebraic manipulation and knowledge about 

integer exponents. The students worked individually for about 10-15 minutes and their 

written solutions constitute the data of this study. Data were analyzed in the context of 

qualitative content analysis (Mayring, 2014) by initially identifying instances of the 

use of unnecessary brackets. Then, these instances were further examined and 

categorized in terms of their connection to the issue of structure sense and the strategy 

the students followed. 

RESULTS AND DISCUSSION  

The analysis resulted in 203 instances of the use of unnecessary brackets distributed in 

three main categories. Students’ writings illustrate the use of unnecessary brackets to 

show (i) the substitution of certain values (165 instances), (ii) to show the application 

of certain mathematical knowledge (7 instances), and (iii) to show the grouping of 

terms (31 instances). 

Use of unnecessary brackets to show substitution 

In this case, students used unnecessary brackets to show how they substituted the asked 

values (numbers or monomials) to the given variables. In Task 1, some students 

translated first the exponent 𝑥4 as 𝑥 ∙ 𝑥 ∙ 𝑥 ∙ 𝑥, then substituted the given number and 

used brackets to enclose each substitution. In each case, the first pair of brackets is 

unnecessary (Fig. 3, left). Similar use of brackets can be seen in the example drawn 

from Task 5 (Fig. 3, right). 

 

 

 

Figure 3: Students’ scripts illustrating substitution of numerical values 

The same happened in Task 6 when students substituted the variables 𝑎 and 𝑏 with the 

monomials −2𝑥𝑦 and −𝑥𝑦 respectively (Fig. 4). The student initially rewrote the 

expression and then when substituting the monomials in 𝑎 and 𝑏 they added brackets. 

In the substitution of the monomial −2𝑥𝑦 to 𝑎 the brackets are not needed. However, 

the student kept using them to possibly illustrate the term 𝑎 and its relation to the rest 

of the expression. 
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Figure 4: Substituting monomials 

This use of unnecessary brackets is aligned with what Novotná and Hoch (2008) call 

“substitution principle”, an important feature of structure sense referring to the 

replacement of a variable by a compound term (the product −2𝑥𝑦  in our case). In total 

165 instances of using unnecessary brackets for substitution were identified in 

students’ written answers.    

Use of unnecessary brackets to show the application of certain mathematical 

knowledge 

In this category, students used unnecessary brackets to show how they applied certain 

rules. These students seem to want to manipulate the expressions in line with the 

appropriate rules and explicitly highlight the structures within an expression linking to 

the rule. Seven such instances were identified in students’ answers. In Figure 5, the 

student used the distributive law to calculate the result of the product (−2 + 3) ∙ (−2 +
3). Parentheses and square brackets have been used to show the four terms that are 

formed when applying the distributive law. However, for three of the four resulting 

terms, the brackets are unnecessary.  

 

Figure 5: Applying the distributive law – Student’s answer to 6i) 

Similarly, in Figure 6, the student used unnecessary brackets to show how the 

following exponent rule (
𝑎

𝑏
)
𝑘

=
𝑎𝑘

𝑏𝑘
  was applied. So, she used unnecessary brackets to 

illustrate terms 𝑎 and 𝑏 (2 and 3 respectively) raised to the same exponent.  

 

Figure 6: Applying exponential properties 

Having a structure sense for the distributive law means that students easily recognize 

the forms 𝑎𝑏 + 𝑎𝑐 and 𝑎(𝑏 + 𝑐) as equivalent (Schüler-Meyer, 2017). Mastering the 

syntax or the rules for manipulating symbolic writings is closely connected with 

possessing structure sense (Linchevski & Livneh, 1999).  

Use of unnecessary brackets for grouping purposes 

Another category of using unnecessary brackets was the grouping of terms. The 

difficulty of the tendency to detach a numeral from the preceding minus sign in the 

grouping of numerical terms has been discussed in the literature (Linchevski & Livneh, 

1999). Structure sense demands an understanding of how terms in arithmetic 

expressions are grouped and this grouping cannot be made arbitrarily (Gunnarsson & 
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Karlsson, 2015). In our study, we identified two different kinds of using unnecessary 

brackets for grouping: (i) to keep certain terms of the expression together, and (ii) to 

keep the result of the operation separate.   

In the first case, students use unnecessary brackets to keep together either the whole 

expression or parts of an expression. In Figure 7 (left) square brackets have been used 

to keep together the whole right part of the identity (𝑎 − 𝑏)2after substituting variables 

𝑎 and 𝑏 with the monomials −2𝑥𝑦 and −𝑥𝑦 respectively. In the same figure on the 

right, the two examples show the use of unnecessary brackets to keep together a part 

of the expression. More precisely, the brackets are used to keep together the 2𝑎𝑏 part 

of the identity when substituting 𝑎 and 𝑏 with numbers (above) or the 𝑎𝑏 part when 

substituting 𝑎 and 𝑏 with monomials (below).     

    

 
 

Figure 7: Grouping for keeping certain terms of the expression together 

In the second case, the students, no matter whether they worked with numbers or 

variables, used unnecessary brackets to show the result of their calculations. In Figure 

8 (left) unnecessary brackets have been used to show the result of (−2)2 (above) and 

(−2) ∙ (−3) (below). On the right side of Figure 8 unnecessary brackets are used to 

show the result of the evaluation of the algebraic expression.   

 

 
 

Figure 8: Grouping for keeping the result of the operation separate 

In the examples above unnecessary brackets act as a perceptual grouping mechanism 

within a mathematical expression to support the successful accomplishment of the 

tasks. They form a common visual area inside the expression that draws the attention 

of the student to this specific part of the expression (see the work of Landy & Goldstone 

(2010) who examined analogous visual evidence in students’ work that had been 

formed by leaving a noticeable blank space between some terms of the expression). 

This kind of grouping enables fast, effortless apprehension of the internal structure of 

expressions (Braithwaite et al., 2016). In total 31 instances of grouping were identified 

in the students’ written answers.   

CONCLUSIONS 

In this study, students’ use of unnecessary brackets while evaluating algebraic 

expressions is examined. The use of unnecessary brackets, together with the use of 
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necessary and mental brackets completes the span of the brackets’ use in relation to 

structure sense. The connection between the last two uses of brackets (necessary and 

mental) with students’ structure sense has already been highlighted (Linchevski & 

Livneh, 1999; Papadopoulos & Gunnarsson, 2020). The aim of this paper is to illustrate 

the connection between students’ use of unnecessary brackets and structure sense.  

It is worth mentioning that in contrast with the relatively small number of studies 

focusing on unnecessary brackets, in this study it is the students (instead of the 

researchers) who initiated the use of unnecessary brackets while evaluating algebraic 

expressions. So, the students intentionally changed the visual presentation of the 

expression, and these changes seem to serve as powerful cues that guide students’ 

attention on specific parts of the expressions and support them to accomplish the 

evaluation of the expression. This visual enhancement of the structural elements of the 

expression constitutes one of the possible ways to support the development of students’ 

structure sense (Marchini & Papadopoulos, 2011). 

The detailed analysis of students’ written responses in this study resulted in 

exemplifying three different uses of the unnecessary brackets. First, for substitution 

purposes, an important feature of structure sense is when brackets were used to show 

the replacement of a variable by a number or a compound term (Novotná & Hoch, 

2008). Second, for showing the application of certain mathematical knowledge such as 

the exponential properties or the distributive law, thus exhibiting mastering the syntax 

or the rules for manipulating symbolic writing, which is indicative of structure sense 

(Schüler-Meyer, 2017; Linchevski & Livneh, 1999). Third, for grouping purposes, 

where unnecessary brackets were used as a perceptual mechanism that allowed them 

to apprehend the internal structure of given expressions (Braithwaite et al., 2016).  

It can be said that the use of unnecessary brackets, along with other perceptual cues 

such as spacing (Landy & Goldstone, 2010) can be utilised as ways to support students’ 

development of structure sense. If students are exposed very often to unnecessary 

brackets as a visual element to retain their attention to certain parts of an expression, 

then it might be possible for students to enhance their understanding of the structural 

elements of the expression.  

It is important to note that our study’s small number of participants does not allow to 

generalize the findings. However, they are encouraging enough to prompt a broader 

study including students across all educational levels and exploring the use of 

unnecessary brackets in different mathematical domains. In our study, we used tasks 

from one mathematical domain, namely algebra and focused on students’ written 

solutions. Further investigation on students’ use of unnecessary brackets in different 

mathematical domains (e.g., calculus) and additional data (e.g., students’ interviews) 

would provide further insight in students’ use of unnecessary brackets and their 

structure sense. 
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TYPES AND FEATURES OF DIALOGICAL TASKS FROM 

MATHEMATICS TEACHERS' PERSPECTIVE 

Reut Parasha and Boris Koichu 

Weizmann Institute of Science, Israel 

 

This study aims to examine the types of mathematical tasks that teachers select or 

modify to elicit argumentative dialogue among students, and to identify the dialogical 

characteristics attributed to these tasks by teachers. The data were collected in a task-

based PD program aimed at fostering dialogical teaching in mathematics classrooms. 

The results indicate that when it comes to the independent selection or modification of 

a task, many types are considered, but most of the teachers prefer tasks that based on 

explication of students' mistakes and misconceptions. Additionally, we identified three 

features of tasks that make them dialogical from the teacher's perspective: Triggering 

cognitive conflict, mathematical complexity, and encouraging multiple solutions or 

approaches to the same problem.  

INTRODUCTION 

The importance of dialogical teaching, which encourages students to engage in dialogic 

argumentation during collaborative problem solving, is broadly recognized in the 

professional literature. Researchers (e.g., Swan, 2007; Sullivan et al., 2012) have 

designed various types of tasks to facilitate learning via reasoning and discussion in 

the mathematics classroom. To trigger discussions and support productive 

conversations, the literature recommends mathematical tasks to bear elements of 

disturbance (Zazkis & Mamolo 2018), surprise (Swan, 2007), cognitive conflict (ibid), 

complexity (Sullivan et al., 2012), multiple solutions and approaches (Leikin, 2011), 

open questions and prompts for deliberating reasoning (Sullivan et al., 2012), 

uncertainty (Schwarz & Baker, 2016), and negotiability in that students can elaborate 

on different perspectives based on their previous experience and knowledge (ibid).  

However, the teacher perspectives on feasibility of and opportunities for stimulating 

argumentative dialogue among students in a mathematics classroom through task 

selection/modification is still insufficiently captured (Kaur & Chin, 2022). To address 

this gap, this study examines types of tasks that teachers consider as dialogue-eliciting, 

and strives to identify the main features they attribute to these tasks to encourage 

dialogue among students. Our research questions are as follows. While participating in 

a task-based professional development (PD) program aimed at fostering productive 

dialogue in the mathematics classroom, (1) What types of mathematical tasks do 

teachers independently select/modify in order to trigger argumentative dialogue among 

their students? (2) From the teacher's perspective, how might these tasks promote 

argumentative dialogue among students in a mathematics classroom?  
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THEORETICAL BACKGROUND 

Schwarz and Baker (2016) characterize argumentation that is desirable in education as 

a kind of dialogue that integrates rigorous reasoning and respectful reference to the 

other. They show that dialectical moves, as opposed to consensual explanations, 

predict conceptual gains and suggest that this type of talk is most productive for 

learning. To this end, we consider argumentative dialogue as a dialogue in which 

students collaboratively explore differing views, and dialogical tasks as mathematical 

tasks that have the potential to elicit respectful disagreement as students work together. 

Despite the literature’s broad acknowledgment of the importance of dialogical 

teaching, and despite teachers' apparent desire to develop their students' dialogical 

abilities, systematic enactment of dialogical tasks is not yet widespread (Schwarz & 

Baker, 2016).  

Choy and Dindyal (2021) note that although most teachers use “standard” (i.e., 

procedural, textbook-like) tasks available to them, they are able to modify them so as 

to provoke meaningful discussion among students, provided that the teacher recognizes 

the affordances inherent in the task. Crespo and Harper (2020) suggest that teachers' 

exposure to and experience with a variety of structures and task types can help them in 

selecting tasks or modifying standard tasks. Jones and Pepin (2016) also point out the 

importance of teachers being active participants in selecting, adapting, or designing 

tasks in order to develop their agency over the tasks and over their enactment.  

In light of the above, we adopted the following key principles regarding the selection 

or development of dialogical tasks by and with teachers: 1. A standard task can be 

transformed into a dialogical task by modifying it. 2. With appropriate support, 

teachers are able to modify the tasks available to them to make them more dialogical. 

3. Task-based PD that aims to promote productive dialogue in the mathematics 

classroom should provide teachers with a repertoire of experiences with a variety of 

dialogical types of tasks and encourage them to independently select tasks that have 

dialogical spirit or to modify standard tasks into dialogical tasks. Types of dialogical 

tasks that can be used in such a PD include open-ended tasks (Zaslavski, 1995); who-

is-right tasks (Koichu et al., 2021); evaluating mathematical statements tasks (Swan, 

2007); sorting tasks (ibid); problem-posing tasks (ibid) and more. 

METHOD 

Context, participants and data sources 

The data were collected in 2018-2021, as part of the activity of DIALOGOS project. 

The goal of the project was to develop dialogical instructional materials and facilitate 

dialogical teaching in science, mathematics and philosophy in six secondary schools 

in the central part of Israel. The mathematics R&D group of the project collaborated 

with 26 in-service teachers (4 males and 22 females) who had teaching experience 

ranging from one to 20 years. The teachers, who as a rule did not have prior experience 

in dialogical teaching, participated in a PD course, which was conducted by the 
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DIALOGOS team. In the mathematical part of the PD (20 to 30 hours per year), the 

main effort was devoted to experiencing, designing and reflecting on dialogical 

mathematical tasks in accordance with the key principles described in the previous 

section.  

The DIALOGOS team collected data from various sources, two of which are relevant 

to the concerns of the study reported in this paper: written final assignments of the PD, 

and video-recorded oral presentations during the PD meetings. The final assignment 

was given in two formats for the teachers to choose from. The first was to plan a lesson 

that would encourage argumentative dialogue among students. The second format 

required selecting two "standard" tasks and modifying them to evoke argumentative 

dialogue among students. The instructions for the oral presentation were to present a 

mathematical task that evoked an interesting dialogue in a class, or a task having the 

potential to do so. In each of the options, the teachers had to explain why the task they 

proposed was expected to stimulate the desired dialogue. Some teachers submitted the 

assignment in pairs, while others submitted them individually. In terms of the data 

analysis and for answering the research questions at stake there was no significant 

difference between teacher products following different formats of the final assignment 

and the presentation. In summary, 60 dialogical tasks chosen or designed by 26 

teachers were analysed, along with their considerations of why these tasks would evoke 

argumentative dialogue among secondary school students. 

DATA ANALYSIS 

The data were analysed in two steps correspondingly to the research questions (RQs): 

identification of the type of the task (i.e., what the learner is asked to do), and of the 

teacher considerations regarding the dialogical potential. To classify the tasks, we used 

deductive coding methods (Creswell, 2014) by coding the tasks in terms of categories 

known from the literature (e.g., a sorting task, a problem-posing task, etc.). We also 

employed inductive analysis methods (Creswell, 2014) to categorize tasks that have 

not been described in the literature. For the second step, we used an open, iterative 

coding process (ibid) in order to create categories that reflect the main characteristics 

of a dialogical task from the teacher’s perspective. Two guiding questions 

accompanied this step in the analysis: why did the teacher consider the task to be 

dialogue-eliciting? In the teacher’s view, what would the students disagree about? The 

main codes used to classify the tasks are presented below.  

Monitoring & Evaluation tasks: Tasks requiring evaluating, comparing, or 

monitoring given mathematical statements or solutions. These tasks encourage 

students to evaluate and compare alternative reasoning approaches (Swan, 2007). For 

example, tasks requiring to decide which of the given solutions is correct (i.e., who-is-

right tasks), tasks requiring to identify and correct mistakes in reasoning, or evaluate 

the correctness of several mathematical statements. Two sub-categories emerged in 

this category: Analyzing reasoning and solutions (ARS) and Evaluating mathematical 

statements (EMS).  
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Particularly challenging tasks: Tasks requiring some creative effort and higher-level 

thinking to solve instead of a direct application of a procedure (Yeo, 2017). The 

category consists of two sub-codes: Problem-solving task (PST), and Qualitative 

reasoning task (QRT). 

Investigation tasks: Tasks requiring investigation and discovering of underlying 

patterns or structures of mathematical objects or situations encountered in everyday 

life. (This is in contrast to tasks that require investigation to solve a problem, Yeo, 

2017). Three sub-codes emerged from the data in this category: Open investigation 

tasks (OIT), Closed investigation tasks (CIT) and Noticing tasks (NOT). 

Multiplicity-eliciting tasks: Tasks that include specific instructions to provide more 

than one method for solving a problem (MPM), to present multiple possible solutions 

(MPS), or express opinions about multiple methods/solutions (e.g., "what is the best 

method?") (OPI). 

Classifying mathematical objects (CMO): Tasks requiring to examine objects, and 

classify or sort them according to their different attributes (Swan, 2007). 

Problem-Posing (PP): Tasks requiring students to devise their own mathematical 

problems or questions (Swan, 2007). 

Procedure application tasks (PAT): Tasks calling for direct application of procedures 

(Yeo, 2017), which are generally perceived to be of low cognitive demand and can be 

solved by students in relatively short time. The format of PAT is usually "solve", 

"calculate", "prove that...", or "find".  

Other - Tasks not covered by any of the above codes. 

FINDINGS 

To answer RQ1, we report in Table 1 on the types of tasks the teachers suggested as 

dialogical tasks. Some of the teachers presented more than one task, and some of the 

tasks were coded with more than one code. Accordingly, percentages in Table 1 sum 

up to more than 100%. Of the 60 dialogical tasks, Monitoring & Evaluation tasks were 

the most common, presented by 77% (out of 26) of the teachers. The other task types 

presented in the PD sessions, such as Classifying of mathematical objects, Problem-

posing, and Open-ended tasks, were relatively rare or did not appear at all. We deem 

this finding quite surprising because during the PD many teachers reported that they 

never use tasks belonging to the Monitoring & Evaluation category in their lessons. 

One of the teachers even referred to who-is-right tasks as "childish" in one of the PD 

meetings, but eventually she chose to present this type of tasks in her final essay. It is 

also interesting to see that 54% of the teachers chose Procedure application tasks 

(PATs) as dialogue-eliciting tasks. Indeed, why might a simple, procedural task trigger 

argumentative dialogue among students? A close look at the data reveals several 

answers to this question. First, 14 out of 24 PATs were augmented by the teachers with 

additional types of tasks. Second, sometimes PATs were used as a prerequisite for the 

dialogue foreseen. In additional cases, a PAT on its own was considered as evoking 
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argumentative dialogue because of the expected procedural difficulties or common 

mistakes that might occur in the classroom.  

Table 1: Types of tasks and their frequency of appearance 

Number (%) of teachers  

N=26 

Number (%) of tasks  

N=60 

Code 

(type of task) 

20 (77%) 27 (45%) Monitoring & Evaluation tasks 

12 (46%) 10 (17%)  Particular Challenging tasks 

11 (42%) 14 (23%) Investigation tasks 

7 (27%) 10 (17%) Multiplicity-eliciting tasks 

2 (8%) 2 (3%) Classifying mathematical objects 

1 (4%) 1 (2%) Problem-Posing 

14 (54%) 24 (40%) Procedure application tasks 

4 (15%) 4 (7%) Other 

As for RQ2, three (not mutually exclusive) features of dialogical tasks were inductively 

distilled from the teachers’ explanations. 

Cognitive conflict – a feature of a task that causes cognitive dissonance in learners, as 

a result of the exposure to conflicting conceptions, various mistakes, or inconsistent 

ideas that emerge during the task solution.  

The dialogue that may be triggered by the "cognitive conflict" includes expressions of 

disagreement, counter-arguments and attempts at mutual persuasion. At the same time, 

it can include dialogical moves aimed at reflecting on the dissonance revealed. From 

the teacher’s perspective, this feature contributes aspects of disturbance and surprise 

to the task-solving experience, as shown in the following examples taken from final 

essays as particularly illustrative.   

Teacher#10: "An optimal mathematical dialogue can be created by presenting the 

students' errors and a discussion following the errors."..." I presented them with 

incorrectly solved exercises in order to cause a cognitive conflict" (Final essay, lesson 

plan, ARS tasks). 

Teacher#16: "A dialogic discourse that confronts the students with mistakes they made 

in the solution... when there were mistakes, and students explained to each other, and 

insisted on having an explanation of why their way of thinking was incorrect, like "I 

understood what you explained, but wait, why is what I'm saying wrong?" That is, they 

were not satisfied with the correct answer but really wanted to understand the errors in 

their thinking" (Final essay, reflecting on ARS+QRT tasks that evoked dialogue in 

class) 

Teacher#11: "At this point, a dialogue and a small "storm" emerges in the class, 

because how could a result different from mine being obtained?" (Final essay, a 

planned dialogic lesson with PAT+ARS tasks). 

Mathematical Complexity – a feature of a task to be cognitively or mathematically 

demanding for the students. According to the teachers, the mathematical complexity 

of a task can be manifested in two ways: i) Procedural complexity – the task involves 
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technical mathematical procedures that are difficult, long, or not readily accessible to 

the solvers though still within their reach. ii) Problem-solving complexity – the task 

involves the need to invent a previously untaught solution path. Namely, the solver is 

unacquainted with some of the content required, or with the solution method, hence 

she does not have a readily accessible pathway for solving the question.  

In this case, a dialogue can take the form of students sharing knowledge and ideas, or 

of disagreements over the correctness of proposed solution strategies and approaches. 

The complexity element creates a sense of uncertainty among students in the task-

solving experience and reinforces the need for collaboration and dialogue. 

Teacher#15: "The source of the dialogue: How do you find the limits? How do you 

calculate the integral of this function?" (Final essay, reflecting on a PAT that evoked 

dialogue in class through procedural complexity).  

Teacher#1: "The dialogical tasks will stimulate brainstorming, thinking and discussion 

as they are more complex and deeper than the original questions, and their answers are 

not trivial" (Final essay, modifying PAT into CIT). 

Teacher#20: "...There are constraints, and you have to reach the largest volume...the 

students: "No, I have a better idea! Let's try this way, no!" This is how they try to 

convince each other." (Oral presentation, reflecting on a PST that has evoked a 

dialogue in the class). 

Multiplicity – a feature of a task that explicitly elicits different (correct) solutions or 

approaches. The "Multiplicity" of the task can trigger a dialogue because when students 

take different approaches to the same task, they are forced to convince others of the 

merit of their approach. The multiplicity feature also provides different points of access 

to students in heterogeneous groups, allowing more students to actively participate in 

the discussion. 

Teacher#21: "The task is an opportunity for the children to discuss their different ways 

of solving, even though at the end there is only one answer." (Final essay, lesson plan, 

MPM task). 

Teacher#24: "Question No. 2 [of the task designed] allows multiple correct answers... 

the significant dialogue is expected in question 2... around the different ways by which 

it is possible to prove that the square is a rectangle" (Final essay, lesson plan, OIT). 

Teacher#10: "Open-ended tasks have the potential to stimulate discussion among the 

students, because they have multiple solutions, therefore all student in the class have 

the opportunity to find different solutions according to their level of knowledge and in 

a class discussion to receive many correct solutions." (Final essay, lesson plan, OIT) 

Figure 1 shows the distribution of the teachers and the number of tasks related to seven 

different characterizations of dialogic tasks resulting from the three features. To recall, 

the same task could be characterized by more than one feature. For example, a task 

with specific instructions to solve a problem in multiple methods (MPM) was 

sometimes considered dialogical by teachers because of its Multiplicity as well as its 
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Complexity. As one can see, most of the teachers characterized their tasks using one 

or two of the features, and only 4 teachers attributed to their tasks all three features. 

Figure 1 – Seven features of dialogical tasks based on three inductive themes 

 

CONCLUDIND REMARKS 

Despite the extensive literature on dialogical tasks and their desirable characteristics, 

there is a lack of knowledge about the tasks teachers perceive as dialogical. In our study 

(RQ1), we found seven main types of tasks the teachers see as (potentially) dialogical, 

and reported their frequencies of appearance in the data pool (Table 1).  

For us, three findings are particularly notable. First, of the various types of dialogical 

tasks presented in the DIALOGOS PD sessions, most teachers presented tasks that 

require monitoring and evaluation based on explicating students' errors and 

misconceptions. Second, the other types of tasks presented in the PD sessions, such as 

classifying objects, problem-posing, and open-ended tasks, were rare in teachers' 

essays. Instead, several types of closed investigation tasks, which teachers described 

as stimulating dialogue because of their complexity, were chosen, though these were 

not presented or discussed in the PD meetings. Third, the teachers proposed as 

dialogical a relatively large number of unmodified PATs, while recognizing the 

potential of these tasks for dialogicity in their pedagogical moves rather than in the task 

formulations. For example, such tasks could be used as a reference for building 

arguments for the forthcoming “non-standard” tasks. These findings can be of 

importance for understanding which types of dialogical tasks teachers are likely to use 

and which practices they are comfortable with, such as identifying and discussing 

student errors. The findings also empirically support Choy and Dindyal's (2021) idea 

of noticing the (dialogic) affordances of a (standard) task by anticipating possible 

difficulties that students may face. 

With respect to RQ2, we identified three features of tasks that teachers see as 

potentially dialogical: cognitive conflict, mathematical complexity, and multiplicity. 

On the one hand, these three features are well established in the literature. On the other 

hand, their appearance in our data pool adds ecological validity to the literature and 

encapsulates it into three operational characteristics that, as we know now, are relevant 

for teachers. Accordingly, we deem these findings of potential importance for 

promoting argumentative dialogue in the classroom, as follows: when teachers 
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recognize the dialogic affordances inherent in the task, they are more likely to be able 

to harness them to promote argumentative dialogue.  

Hopefully, the three features of dialogical tasks identified in our study from the 

teachers’ perspective can be used in practice in two complementary ways: as a seed of 

a framework for characterizing dialogical situations as planned and enacted, and as a 

pedagogical tool for teachers to select, design and enact dialogical tasks. 
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Professional noticing is an important aspect of teacher expertise. Research has shown 

that noticing might vary between cultures. Prior studies indicate that culture-specific 

norms influence noticing. But, these findings stem from group comparisons. The 

reported study aims at understanding how individual focuses may influence noticing 

in addition to cultural influences. It uses noticing vignettes to investigate the aspects 

Western (German, N=17) and East Asian (Taiwanese, N=19) professors in 

mathematics education (experts) focus their attention on when evaluating the potential 

of tasks for mathematical learning and its use in instruction. We present preliminary 

results regarding the consistency of the focuses across situations, identify five types of 

experts regarding their focuses, and discuss implications for further noticing research. 

THEORETICAL BACKGROUND 

Noticing, beliefs, and knowledge 

We follow the idea of Sherin (2017) and understand noticing as professional processes 

that include selective attention to specific “aspects of classroom situations that are 

relevant for instructional quality” (Dreher et al., 2021, p. 90) and knowledge-based 

reasoning of the noticed instructional aspects. We describe selective attention as the 

specific focus persons have during noticing. We understand selective attention and 

knowledge-based reasoning as cyclical interacting subprocesses (Dreher et al., 2021). 

Just as the focused aspects determine how one interprets what is noticed, the 

professional knowledge and beliefs one draws on determine the focus. Beliefs are 

“understandings, premises, or propositions about the world that are thought to be true. 

[…] Beliefs might be thought of as lenses that affect one’s view of some aspect of the 

world” (Philipp, 2007). Thus, if different persons focus their attention on different 

aspects, this may be due to differences in beliefs or professional knowledge.  

To investigate noticing, it is common to use video, comic, or written vignettes. Written 

vignettes benefit from an easy adaption during the development process and allow for 

a representation of an instructional situation in a simplified manner (Dreher et al., 

2021). Teachers typically have to analyse the instructional situations, and the responses 

to vignettes can be used to (1) identify the teachers noticing focus and (2) infer what 

knowledge guided their reasoning. In this report, we understand the knowledge 

somebody draws on when noticing as an overarching term for professional knowledge 



Paul, Dreher, Wang, Hsieh, Hansen & Lindmeier 

4 - 28 PME 46 – 2023 

(CK, PCK, PK) and beliefs. Thus, we also understand evaluations based on beliefs as 

a knowledge-based interpretation within the noticing framework. 

Beliefs can refer to the facets of professional knowledge. They influence building and 

using professional knowledge and vice versa. Similar to culture-specific norms, beliefs 

are acquired through “enculturation and social construction” (Pajares, 1992, p. 316). 

Furthermore, people form so-called belief systems (Pajares, 1992), which are 

considered as the entirety of beliefs a person holds. These systems are individual and 

do not require a general agreement or an agreement reached in groups (Nespor, 1987), 

as norms do. Likewise, they do not have to be consistent, and even if people share some 

of the same beliefs (e.g., due to underlying culture-specific norms), they can be very 

differently integrated into their belief systems. 

Word problems as specific tasks in Western and East Asian cultures 

In a primary analysis within the “TaiGer Noticing” project, cultural differences 

regarding task potential and its use were investigated (Lindmeier et al., 2022). As large 

disparities within the German and within the Taiwanese expert samples were 

discovered, we draw attention to the individual level. Therefore, aspects different 

persons might focus on when evaluating task potential for mathematical learning and 

its use should be identified by considering the previous research referring to 

mathematical tasks and their role in instruction. Mainly tasks provide opportunities to 

foster students’ mathematical thinking and learning as well as students' mathematical 

engagement (e.g., Stein & Lane, 1996). Word problems as a specific type of task are 

defined as verbal problem descriptions, including questions students should answer by 

applying mathematical operations (Verschaffel et al., 2020). They are considered to 

have a high potential for students’ mathematical learning if they are aligned with the 

learning objectives, encourage students to argue mathematically, or allow multiple 

solutions. However, whether a task’s potential is used appropriately depends on its 

implementation by the teacher (e.g., Stein & Lane, 1996).  

Beyond such general descriptions of potentials of word problems, cultural differences 

may also be relevant. In Western countries, word problems are considered to have high 

potential when they refer to real situations, promote the creation of mathematical 

models (process orientation), and foster individual learning (Leung, 2001). Whereas in 

East Asian countries, a task is considered to hold high potential when it promotes 

focusing on correct calculations and results (product orientation), as well as fosters 

learning, practising, and repeating strategies (subject content) (e.g., Leung, 2001).  

RESEARCH QUESTIONS 

Against this background, we ask: (Q1) Which noticing focuses do experts have when 

evaluating task potential and its use? (Q2) Are the aspects that experts focus on the 

same across various instructional situations so that types of experts can be identified?  
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CONTEXTS AND METHODS OF THE STUDY 

This study is part of the binational research project “TaiGer Noticing”. The project 

investigates differences in culture-specific norms regarding teaching quality. In the 

first project phase, the noticing of experts from both countries was elicited. Group 

comparisons indicate that experts from Germany and Taiwan evaluate the potential of 

tasks and its use differently and in line with cultural expectations (Lindmeier et al., 

2022). This article reports a secondary analysis of the experts’ responses following a 

different analysis approach. We examine how individual factors may influence 

noticing to better understand the interplay of different aspects in noticing processes. 

Instruments 

The instruments were designed and validated through a joint development approach of 

the German and Taiwanese research teams. The vignettes were translated and checked 

for ecological validity (i.e., instructional situations could have occurred in either 

country’s secondary mathematics instruction). For further information about the 

development process, see Dreher et al. (2021). Each vignette includes a short 

description of an instructional situation, a picture of the task (Figure 1), and a fictitious 

transcript of a classroom interaction. 

 

Figure 1: Vignette Task1 (description, task, transcript) 

The tasks were considered to have a high potential for mathematical learning from the 

perspective of the authoring team from one country but not necessarily the other. 

Primarily, the vignettes were designed to investigate culture-specific norms. Hence, 

each includes an anticipated breach of a norm (i.e., illustrates a non-optimal use of task 
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potential; for further information, see Dreher et al., 2021; Lindmeier et al., 2022). This 

study refers to three vignettes, but only one of them will be described in more detail in 

this report. For the other two, see Lindmeier et al. (2022). Despite displaying different 

instructional situations, they have a common frame of reference (mathematics 

instruction, same grade, word problems related to real-life situations), allowing for 

comparisons across the situations. 

Vignette Task1 was designed in Germany. The vignette deals with proportional 

relationships. A text and an illustrative image show a real-life situation regarding 

medicine dosages. A specific dosage for a kid, Paul, shall be determined. The task 

requires finding at least two different solution strategies. Hence, the German authors 

assumed that the task potential lies in supporting students’ flexible solving of real-life 

applications. Accordingly, the authors expect teachers to use this task to treat different 

solution strategies and highlight connections between them. In contrast, the teacher in 

the vignette just collects the solutions of two students verbally without further 

elaboration and only writes down a third solution using an equation on the blackboard.  

Sample and procedures 

The study participants were mathematics education professors in Germany and 

Taiwan. They were active in mathematics education research and teacher education 

and training. Assuming a participation rate of 50% and aiming for a sample of 15 

experts in each country, a random sample of 30 professors in Germany was contacted. 

In Taiwan, only 32 professors met the criteria. All of them were contacted. In total, 36 

experts participated: 19 Taiwanese professors (6 female, 13 male) from 10 universities 

and 17 German professors (7 female, 10 male) from 13 universities.  

The experts were asked to respond with a short text to the question: “Please evaluate 

the teacher’s use of the task in this situation and give reasons for your answer.” The 

vignettes were presented in the experts’ native language. The experts responded in 

German resp. Chinese writing. Hence, the response had to be translated into English as 

the common language within the research team. Afterwards, the experts’ responses 

were analysed by qualitative content analysis to answer Q1. For this secondary 

analysis, a coding system of 13 codes regarding the focused aspects in the experts’ 

responses was generated inductively (Table 1). The responses were analysed sentence 

by sentence, and a code was assigned if (positive and/or negative) annotations to the 

aspect occurred. Several codes could be assigned to each response. Codes were only 

assigned once per response, even if experts mentioned an aspect several times, for 

instance, at the end and the beginning of their response. It must be noted that this coding 

approach considerably differed from the approach in the original analysis, where the 

goal was to compare the noticing of the experts from the different cultures as groups. 

After coding each response, we applied a person-related perspective to the analysis. To 

examine how consistently one expert focused on each aspect, it was counted in how 

many of their three responses (one to each vignette) an expert mentioned each of the 

13 aspects. That gave us a dataset of 36 x 13 values from 0 (mentioned in none of the 

responses) to 3 (mentioned in each response). We applied a data-driven approach to 
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answer Q2 with this dataset: A hierarchical cluster analysis based on the code variables 

was conducted to determine different types of experts. An elbow plot was used to 

inform about the number of clusters. The types of experts were interpreted in terms of 

their characteristic patterns of focuses.  

RESULTS 

To answer RQ1, the focuses reflected in the experts’ responses are presented in Table 

1. As explained, a code was given when the aspect was mentioned in a positive or 

negative manner. For example, code 5 was given both when an expert said that the 

explanation and discussion of the solution were appropriate and when s/he noted that 

the solution should have been explored in more detail. It was possible to apply all codes 

across the three vignettes.  

Code Mentioning/evaluating (the) Experts evaluate (the) Number of code 

assignments in 

vignette Task1/2/4 

V1 mathematical correctness whether the presented solutions were 

correct 

5/7/5 

V2 mathematical completeness solution as complete or mention missing 

mathematical aspects 

3/3/5 

V3 other mathematical aspects use of terms, mentioning mathematical 

properties and solution strategies 

6/3/8 

V4 different solution paths links between/fitting of/pros & cons of 

solution paths 

27/21/32 

V5 depth of explanation explanation and discussion of the solution 17/22/13 

V6 modelling aspects link to the real-life situation or 

algebraization 

3/25/7 

V7 the value of the task  whether the benefit of the task is clear to 

the students 

5/7/4 

V8 students’ understanding whether the solution is comprehensible for 

all students 

9/14/17 

V9 Visualization/result 

consolidation 

the need for a visualization or 

consolidation of the solution 

11/5/6 

V10 student activity student’s participation/using student’s 

ideas 

13/24/22 

V11 teacher activity teacher's activity positive/too directive; 

mention teacher’s tasks 

26/28/31 

V12 appreciation of student 

activity 

whether the teacher gave 

feedback/appreciated student’s ideas 

10/6/1 

V13 pursuit of the learning 

objective 

whether the teacher focused on his/her 

learning objective 

7/3/4 

Table 1: Coding system consisting of the identified focuses across all vignettes 

The subsequent cluster analysis based on these variables revealed five clusters of 

experts (short: types). The types can be described as experts who  
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T1. have no specific focus; never focus on mathematical aspects (V1, V2, V3), V7 

and V13 (2 Taiwanese, 4 German experts) 

T2. mainly focus on V4 and V11 (5 Taiwanese, 6 German experts) 

T3. mainly focus on V1, V5, V8, V9, V10, and V11; V4 is mentioned in each of the 

3 responses (3 German experts)  

T4. mainly focus on V4, V5, V10, and V11; V6 and V8 are at least mentioned in one 

response (4 Taiwanese, 2 German experts) 

T5. mainly focus on V4, V10, and V11; V2 is never mentioned (8 Taiwanese, 2 

German experts). 

Note that mainly focus means that, on average, the experts assigned to the 

corresponding type mentioned an aspect on average in more than two of the three 

responses.  

The T1-expert’s responses shown in Figure 2 indicate no consistent focus. The aspects 

the expert refers to change between the different instructional situations, and none of 

the focuses is consistent across all three vignettes. In his or her response to Task2 s/he 

places the entire attention on the modelling aspects, whereas in responding to Task1 

and 4 also, the different solution paths (V4) and the missing depth in elaborating the 

paths and the situation (V5) are mentioned. 

Vignett

e Response (partially abbreviated) Codes 

Task1 The teacher wants to promote flexibility in solving [real-life applications]. 

S/He does this by not only asking for results, but by encouraging and 

positively evaluating the variety of possible solution paths. […] However, 

some of the solution paths remain somewhat under-determined as for 

example "looking at the numbers". Only at the very end the actual result 

is recorded […] 

V4, V5, 

V9, V12 

Task2 The […] modelling task is largely ignored here and only the formal core 

of the task is discussed. Why it is necessary to determine the zero point in 

particular, i.e. why it is thus possible to mathematize in this way, is not 

discussed here, nor are the educated guesses in a) Thus the task is reduced 

to a formal calculation task.  

V6 

Task4 The task serves as an example for showing how to algebraize. Alternative 

algebraizations are taken up and are briefly addressed. It would be great 

to relate the two solutions to each other. The richness of the situation 

would be exploited even more thereby. 

V4, V5, 

V6 

Figure 2: Type T1 expert’s responses to vignette Task1, 2 and 4. Note that the last 

column indicates all codes assigned to the full responses. 

The consistent focuses in the T3-expert’s response shown in Figure 3 are V4, V5, V10 

and V11. S/He criticizes in each response that the teacher should have further explored 

the students’ solutions and mentions dealing with different solution paths. Also, s/he 

draws attention to the improvement of the students’ and the teacher’s activity in each 

response. In addition, other aspects are mentioned once or twice, for instance, the 

modelling aspects (Task2) and the students’ understanding (Task2, Task4). 
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Vignette Response (partially abbreviated) Codes 

Task1 […] when dealing with the students’ responses, he/she confirmed the 

students’ thoughts too quickly. […] [the teacher] did not conduct a 

discussion or explanation of how the students used these methods to 

obtain answers […] The same problem occurred to the reaction toward 

S3’s proposing a proportional relationship. The teacher directly 

determined that the student used the function that relates the kg to the ml, 

and directly explained the idea for S3. […] 

V4, V5, 

V10, V11 

Task2 [...] it is a pity that the teacher did not allow the students to explain why 

they made these guesses […] When S1 stated […] that you just have to 

set f (x) = 0 and solve for x, the teacher immediately confirmed [the idea] 

and asked the students to solve the problem. This would perplex the 

students who did not yet understand that the problem could be solved by 

this method. The teacher should have asked why to use this method [and] 

could ask S4 to explain why -4 did not work [...]  

V1, V4, 

V5, V6, 

V8, V10, 

V11, V13 

Task4 [...] the teacher presented two approaches of setting equations and asked 

the students’ preference […]. However, the students had different 

opinions, the teacher […] directly made a conclusion […] the students 

may still have difficulty to grasp the better way […] The teacher should 

have let the students make more tries and then compare, to gain their 

approaches of problem-solving.  

V4, V5, 

V8, V10, 

V11 

Figure 3: Type T3 expert’s responses to vignette Task1, 2 and 4. Note that the last 

column indicates all codes assigned to the full responses. 

DISCUSSION AND CONCLUSION 

This study investigated whether experts’ noticing focuses are consistent across 

different instructional situations regarding task potential and its use represented in 

written vignettes. We could identify 13 different focuses which occurred in the experts’ 

responses. These noticing focuses (Table 1) align with the findings from research on 

mathematical tasks; for instance, tasks might have a high potential for students’ 

mathematical learning when they align with the learning objectives (V13) or allow 

multiple solutions (V4). Looking more precisely at the experts’ responses, it is evident 

that they are based on professional knowledge and beliefs. Exemplary, a belief that can 

be identified in the T3-expert’s response to Task4 (Figure 3) is that students do not 

understand or have difficulties solving tasks when they are not allowed to practice/try 

on their own.  

The results of the secondary analysis of a dataset of experts’ noticing indicate that 

individual focuses may indeed prevail when noticing. Five types of experts can be 

differentiated regarding the focused aspects during noticing. Four types can be 

interpreted as describing consistent, yet different focuses: Persons of each type have in 

common that their main focuses across all vignettes are similar (T2-5). However, some 

experts in our sample also applied different focuses to different instructional situations 

presented in the vignettes (T1). For example, the vignette Task2 seems to include 

salient attractors regarding mathematical modelling, as the focus of some experts shifts 

to this aspect (see Task2 in Figure 2). 



Paul, Dreher, Wang, Hsieh, Hansen & Lindmeier 

4 - 34 PME 46 – 2023 

The study has several limitations. We will check whether the rating is intersubjectively 

applicable (intercoder reliability). The dataset may be considered marginally sufficient 

for the statistical analysis considering the number of persons in relation to the focused 

aspects. However, the resulting types of experts provide insight into the consistency of 

noticing focuses across situations. This short contribution could not report a more 

detailed presentation of each type and a comparison between German and Taiwanese 

experts. Also, cultural contrasts between German and Taiwanese experts’ noticing 

were not discussed in detail in this contribution. A follow-up study will examine the 

connections between individual focuses, as reported in this paper, and the noticing of 

anticipated breaches of a norm as evaluated in the primary analysis of the “TaiGer 

Noticing” project. It will investigate how the different methodological approaches help 

us to understand how noticing processes depend on individual and cultural factors. 
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GENDER-RELATED BELIEFS OF PROSPECTIVE 

MATHEMATICS TEACHERS 
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Gender-specific differences in mathematics to the disadvantage of girls are attributed, 

among other things, to stereotypical beliefs of teachers. However, it is not known to 

what extent such beliefs have already been developed in prospective mathematics 

teachers. In this article, a qualitative interview study with 23 german pre-service 

teachers is presented, which aimed to reconstruct gender-related beliefs. Beliefs about 

various gender-related differences as well as their causes could be reconstructed. 

Many participants showed an awareness of stereotypical role models and their causes 

for gender-related differences, but also own stereotypical beliefs. Conclusions, 

especially for mathematics didactics in teacher education, are drawn on the basis of 

empirical findings. 

THEORETICAL BACKGROUND 

A number of empirical studies have shown that in many countries, including Germany, 

gender differences in mathematical activities exist to the disadvantage of girls.  Results 

of PISA 2000, IGLU-E 2001 or TIMSS 2007-2019 demonstrate a greater mathematical 

performance of boys than girls (Blunck & Pieper-Seier ,2010; Nonte et al., 2020). In 

addition to the poorer performance, studies show that girls encounter mathematics with 

a significantly lower interest in mathematics (Ganley & Lubienski, 2016), are less 

motivated to perform (Klieme et al., 2010) or show lower performance-related self-

confidence in mathematical abilities than boys (Skaalvik & Skaalvik, 2004). 

Nowadays, such gender differences are mainly attributed to society and education 

(Blunck & Pieper-Seier, 2010). For example, societal influences include the 

stereotyping of mathematics as a male domain, whereas traditional gender role 

stereotypes are marked as unfavorable parenting styles in attitudes of parents (ibid.).  

Likewise, the different expectations of teachers towards boys and girls influence 

gender-specific differences: Budde (2009), for example, demonstrated that teachers 

assume that boys in particular are mathematically gifted.  Fischer and Rustemeyer 

(2007) argue that teachers expect girls to perform significantly less in mathematics, 

which leads to lower performance by girls.  Butler (1994) also found that teachers who 

underestimate the abilities of female pupils are more likely to offer help to them and 

are more likely to show compassion towards them. In addition, studies show low 

awareness among teachers of the impact of their gender expectations on their students’ 

achievement and ability self-concepts (Büker, & Rendtorff, 2015). Rather, the 

expectation-oriented teacher behavior is, among other things, an expression of gender-

related (and partly implicit) beliefs that are stereotyped (ibid.).  
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Beliefs are considered to be individual mental constructs that have an emotional 

component with an individual normative character (Hannula, 2012; Philipp, 2007) and 

develop in the course of engagement with the environment (Rokeach, 1968). In the 

case of teachers, acquired knowledge (e.g., during teacher education) and experiences 

(e.g., in teaching or in one's own past school years) are considered as central 

developmental factors for beliefs (Buehl & Fives, 2009). However, to our knowledge, 

nothing is known about the genesis of gender-related and possibly stereotypical beliefs.  

Considerations to raise awareness of socially determined gender differences in the 

subject of mathematics already start in university teacher education. Suggestions for 

the conception of seminar series can be found, for example, in Langfeldt and Mischau 

(2011). The aim is to acquire gender competence as a “key competence related to the 

occupational field” (ibid., p. 315, translated by the authors). For example, prospective 

teachers should acquire abilities for the gender-sensitive design of teaching and 

learning (“didactic-methodical competence”) and of interaction processes 

(“interactional competence”), scientific foundations with regard to gender research 

(“subject competence”) and abilities to reflect on their own gender images and their 

own gender-related expectations (“Self competence”). However, for the training of 

prospective mathematics teachers it is criticized that the acquisition of gender 

competence is not anchored in Germany and therefore this acquisition of competence 

is of little or no importance at universities in Germany (ibid.).  

 

RESEARCH INTEREST 

The aim of the following study is to reconstruct gender-related beliefs of prospective 

mathematics teachers. The interest is based on the fact that while teachers’ beliefs are 

considered to influence gender differences between boys and girls, little is known about 

the beliefs themselves (Büker, & Rendtorff, 2015).  In this respect, it is of particular 

interest to what extent prospective mathematics teachers have already developed 

gender-related beliefs and whether these are stereotyped. Furthermore, the 

reconstruction of these beliefs is useful due to the possibility to derive and legitimize 

reflections on university teacher education with regard to a sensitization of gender-

specific differences. University teacher training of prospective mathematics teachers 

in Germany hardly focuses on gender aspects (Langfeldt & Mischau, 2011). Therefore, 

it seems all the more important to explore gender-specific beliefs in order to break 

down stereotypical beliefs through targeted university educational programs, if 

necessary.  

METHODOLOGICAL CONSIDERATIONS 

A qualitative research and analysis method was chosen for the described research 

interest using a semi-standard interview. 

Participants were 23 pre-service primary school teachers (female: n=19, male: n=4). 

These students were taking university courses in teacher education with mathematics 
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as a subject at a German university and were thus in the first phase of their professional 

education, in which hardly any practical teaching experience is gained in schools. 

Participants were at different stages of the teacher education program.  

The conception of the interview is guided by basic principles of the problem-centered 

interview form according to Witzel and Reiter (2012). The aim of this interview form 

is to bring out the interviewees’ subjective views on relevant problems by providing 

concrete conversation stimuli (ibid.). The problem-centered interview is therefore 

suitable for the reconstruction of beliefs (e.g., Eichler & Schmitz, 2018).  In the present 

study the interviewees were asked to take a stand on whether boys and girls should be 

taught mathematics separately or why the proportion of girls in extracurricular 

activities to foster mathematical talent is low. In addition, various mathematical tasks 

of primary school lessons (e.g., factual, arithmetic and geometry tasks) were used as 

conversation stimuli for which the interviewees were asked to assess which of these 

tasks were particularly aimed at girls or boys. The tasks were chosen to address 

stereotypical beliefs regarding preferred topics or activities of the genders. 

The evaluation of the data was carried out using qualitative content analysis according 

to Mayring (2014). After total transcriptions of the interviews passages which are 

substantial in content were found. Arguments and evaluations were regarded as 

substantial passages, as they refer to mental constructs of the interviewee that have an 

emotional component with an individual normative character and thus mark beliefs 

(Hannula, 2012; Philipp, 2007). This methodological approach on reconstructing 

beliefs is already established (Pfeiffer, 2023). From the reconstructed beliefs, a 

category system was then compiled based on Mayring (2014). The aim of this 

categorisation was to capture the complexity of the case-related analysis results or the 

different beliefs in order to make general statements about the types of gender-related 

beliefs of prospective mathematics teachers.  

RESULTS 

A category system of gender-related beliefs 

From the data, beliefs about the following deductively and inductively developed 

categories could be reconstructed:  

1. gender disparities.... 

a....with regard to mathematics achievement (e.g., “It is usually the case that 

boys are gifted in maths and girls flourish in languages.”) 

b....in terms of subject-related interests (e.g., “Boys are more interested in 

mathematics than girls.”) 

c....in terms of preferred mathematical activities and tasks (e.g., “Girls are 

attracted by tasks where they can draw/colour something.”, “For boys, things 

that have a clear structure with a fixed sequence are worthy of consideration. 

Girls tend to be puzzlers and then they deal more intensively with another 

direction.”) 
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d....with regard to affective characteristics (e.g., “Girls do not dare to participate 

in extracurricular maths projects because they are afraid of being laughed at if 

they ask a question.”) 

e....with regard to behavioural characteristics (e.g., “Boys are bold and 

sometimes give the wrong approach, while girls think longer and think through 

backgrounds.”) 

2. explanatory approaches to gender-related disparities via socialisation-related factors 

/ stereotypical ideas ... 

a....among parents (e.g., “There is a popular idea among parents that boys are 

more gifted in science subjects than girls.”) 

b....among teachers (e.g., “Gender differences in mathematics lessons are caused 

by teachers because girls feel put off if only boys are praised.”) 

c....in society (e.g., “It is socially influenced to say that boys are better at 

mathematics and science than girls”, “Girls think they are worse in mathematics 

because this prejudice is transmitted through generations.”) 

3. non-existence of gender-specific disparities ... 

a....with regard to mathematics achievement (e.g., “Girls can do maths just as 

well as boys.”) 

b....in terms of preferred mathematical activities (e.g., “Boys do not prefer 

different mathematical activities than girls because it depends on how interested 

you are in the subject and not whether you are a boy or a girl.”) 

Analysis and discussion of selected aspects 

Overall, the pre-service teachers’ statements and the reconstructed beliefs largely fit 

well with study results on mathematics-specific gender-related gaps between boys and 

girls and their causes, so that many categories resulted deductively from theoretical 

foundations. If mathematics-specific disparities were mentioned, they mostly related 

to interest in the subject. Thus, the majority of the participants attested boys a greater 

interest in the subject of mathematics than girls. Differences in performance were only 

rarely mentioned and then usually justified by a low interest in the subject or equated 

with it. With regard to preferred mathematical activities and tasks, most reconstructed 

beliefs did not assume any general gender-related differences. Nevertheless, 

stereotypical attributions were repeatedly expressed, such as drawing tasks in geometry 

or inventing arithmetic stories as preferred tasks for girls or purely symbolic arithmetic 

tasks for boys. Typically, however, students independently labeled these as 

stereotypical views or prejudices. 

Socialisation-related factors were predominantly mentioned as causes for possible 

differences between girls and boys, which in turn were attributed to stereotypical ideas 

in society in many cases. Thus, many students expressed an awareness of the 

importance of stereotypical ideas. Stereotypical ideas were mainly attributed to parents 
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or to society in general. Teachers were rarely addressed in this context. One example 

is represented by Ms. B., who responded to the question of how to increase the 

proportion of girls in extracurricular projects for mathematically interested and gifted 

children: 

“Yes (.) so first of all avoid these stereotypical phrases then (.) out of that also if now for 

example if I now as a teacher stand in front of the class really address all the children and 

not just yes you boys you are always so good or so ((laughs)) but yes address everyone.” 

The infrequent focus on teachers may indicate that the interviewees were previously 

unaware of influences of stereotypical beliefs among teachers on gender differences. 

This empirical finding is also reflected in other studies (Büker et al., 2015). On the one 

hand, this result can be explained by a still missing identification of the students with 

their future teaching profession. They may also have been unaware of their own role 

in causing gender differences due to a lack of teaching experience. Possibly, 

corresponding beliefs first develop with experience in everyday school life (Buehl & 

Fives, 2009). Nevertheless, increased awareness of gender inequality in teacher 

education can contribute to pre-service teachers’ knowledge of their own role, which 

in turn can shape the genesis of beliefs in the future teaching profession. On the other 

hand, the result can be attributed to the fact that the societal or socialization-related 

stereotyping of mathematics as a male domain (Blunck et al., 2010) is recognized but 

also accepted by the students. Possibly, through unilateral explanations of gender 

differences, pre-service teachers evade their later pedagogical duty to counteract 

inequality with regard to the category of gender. Thus, the development of 

comprehensive gender competence in teacher education is relevant. 

Even though the beliefs of many pre-service teachers point to an awareness of the 

stereotyping of mathematics as a male domain, various interview passages can be 

identified in which stereotypical beliefs can be suspected. These are found in interview 

passages that do not explicitly ask about differences between genders. Two examples 

will illustrate this. 

When asked about differences in terms of preferred mathematical activities, Ms. H. 

does not want to make blanket attributions:  

 “I think that’s pretty individual, so I don’t think you can say that across the board. I don’t 

know if there’s something that boys generally like better than girls, I think it depends on 

the person.” 

At the end of the interview, Ms. H. is asked whether she considers gender-segregated 

teaching to be useful in the subject of mathematics. She rejects this. She answers the 

question of what this could look like if it were to be used as follows: 

“Maybe with the girls it would be even more with painting somehow I can imagine now 

so just something geometric and with the boys maybe to what extent that’s possible 

something crafty maybe even, something you can link with math, something like that.” 

It is not possible to assess whether Ms. H. is aiming at suspected differences in 

performance or interest.  
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Mr. H. has met many girls with good math grades in his own school biography. In his 

opinion, girls and boys do not differ in terms of mathematics performance. He rejects 

separate mathematics classes: 

"No. I have to say that, because everyone benefits from learning together [...] Girls could 

also take over an enthusiasm from the boys, so to speak "look how fast he can do that, I 

want that too" and something like that. I would totally reject that, because all children have 

the right to learn together somehow, I think, and also to learn from each other, so I wouldn't 

advocate teaching that separately." 

The focus on the boys’ speed indicates that differences are implicitly assumed here as 

well. 

Similar statements can be found in further interviews. They suggest that in situations 

of quick decisions, the often existing awareness of stereotypical ideas and their 

consequences does not take effect, but that the nevertheless existing unconscious 

stereotypical ideas guide actions. In order to cope with the challenges in everyday 

pedagogical life, the category of gender is used. Gender-related and stereotypical 

beliefs serve here to filter complexity. It can be assumed that this does not reduce 

gender-related differences, but rather reinforces them. 

SUMMARY AND CONCLUSIONS 

The study provides empirical findings on gender-specific beliefs of pre-service 

teachers. With the help of formed categories it was possible to bundle the aspect variety 

of the beliefs. The central findings are that the gender-related beliefs (1) point to a 

greater interest in mathematics among boys, (2) point to an awareness of the 

importance of stereotypical views among parents and society in general, (3) hardly 

refer to the role of teachers as contributors to gender differences, and (4) are partly 

stereotype-loaded. The infrequent focus on teachers and the partly stereotype-loaded 

beliefs legitimize to increasingly address gender as a dimension of discrimination in 

teacher education. 

As a consequence of the results, we see the function of gender-sensitive courses 

primarily in the support of pre-service teachers in the development of gender-sensitive 

action competence. Following the conceptual considerations of Langfeld and Mischau 

(2011) for the design of gender-sensitive courses using the competence dimensions 

"subject competence", "didactic-methodical competence", "interactional competence" 

and "self-competence" to be developed, we locate suitable activities for the 

development of a competence to act above all in the examination of didactic-

methodical questions and in the examination of interactions in mathematics teaching. 

For the latter, a differentiated analysis of conversation excerpts from classroom 

situations with regard to stereotypical interaction patterns is the first step. An essential 

element is the joint development of alternative, gender-neutral language patterns and 

reactions. Role plays, for example, can be used to incorporate these into the 

participants’ own repertoire of actions. It would make sense to deepen these 
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experiences in the school class and also to analyse and reflect on one’s own interaction 

patterns. 

In addition, other research interests emerge from the results of the study. It can be seen 

that prospective mathematics teachers have gender-specific and, in some cases, 

stereotypical beliefs. However, nothing is known about the development of such 

beliefs. It is therefore interesting to find out, first, whether there is a connection 

between views of mathematics or of mathematics teaching and gender-specific beliefs. 

Grigutsch et al. (1998), for example, distinguish formalistic, schematic, process-

oriented, and application-oriented views of mathematics and mathematics teaching. 

Second, it might be interesting to investigate a connection between educational 

biography in mathematics and gender-specific beliefs. Possibly, the beliefs are shaped 

by their own learning success in mathematics. 
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The purpose of this study was to empirically investigate whether a tablet-enabled 

digital learning environment facilitates students to graphically represent functional 

situations that require the coordination of two co-varying quantities. Fifty-nine 11-

year-old-students were asked to construct graphs for four scenarios. The results show 

that a significant percentage of students utilized the feedback provided by the learning 

environment to revisit their initial graph. The feedback involved watching how the 

animation matched the constructed graph, which helped students in overcoming 

typical mistakes, such as sketching lines that showed variation in only one of the 

quantities. Several students provided comprehensive explanations to match the graph 

with the scenario that reflected different categories of covariational reasoning.  

 

INTRODUCTION AND THEORETICAL BACKGROUND 

Researchers still struggle to find effective ways of integrating technology into 

mathematics teaching and learning. This also holds for the domain of functional 

thinking and graphical reasoning. It is important to know how portable and handheld 

digital technologies offer opportunities for enacting embodied learning in situations 

that require representing functional relations (Abrahamson & Bakker, 2016). This is 

also supported by the National Council of Teachers of Mathematics (NCTM, 2000) 

that emphasized both the use and connection of representations in making sense of 

functional relationships. The present study focuses on the aspect of connecting a 

physical situation with a graphical one by using digital tools / technologies. The goal 

of this study is to empirically investigate whether a tablet-enabled digital learning 

environment facilitates students representing graphically functional situations. We 

explored 11-year-old students representing distance changing over time in a variety of 

physical situations that require coordination of the co-varying quantities while using a 

table-enabled digital environment. 

Functional Thinking 

Functional thinking has been described as a key component in mathematics education 

and has generally been defined as the process of building, describing, and reasoning 

with and about functions. The covariation approach to functional thinking has recently 

received increasing attention in mathematics education and has been examined through 

contextualized dynamic functional situations (Thomson & Carlson, 2017). It has been 

linked to a dynamic view of the function concept as it supports a view of mathematics 

as a way of making sense of the phenomena of relationships of dependence, causation, 

interaction, and correlation between varying quantities. In this study, we conceptualize 



Pittalis, Demosthenous & Sproesser 

4 - 44 PME 46 – 2023 

primary school students’ functional thinking as the type of thinking that focuses on the 

invariant relation between two varying quantities and involves noticing, generalizing, 

and abstracting relations between covarying quantities; and representing these relations 

(Pittalis et al., 2020). Hence, representing the graph of a dynamic functional 

relationship is considered an important functional thinking ability. It requires reasoning 

about relatives changes of the involved quantities, the direction of these changes, and 

the translation between natural language and graphical representations to model 

dynamic functional situations. 

Covariation and Graphical Reasoning 

Students’ ability to reason with quantities and relationships has empirically proved to 

foster functional thinking (Ellis, 2011). As proposed by Thompson and Carlson (2017), 

the covariation approach to function is supported by the covariational reasoning 

framework. This framework suggests that students should be able to think about two 

varying quantities and understand that this variation takes place simultaneously. This 

type of reasoning is important for interpreting and constructing graphical 

representations because it facilitates making connections between the involved 

quantities. The term of graphical reasoning encompasses both graph interpretation and 

construction. More precisely, graph interpretation includes visualizing features of a 

graph, interpreting relationships and connecting the identified relationships with what 

the graph represents (Shah & Hoeffner, 2002). For distance-time situations, students 

should be given the opportunity to connect the represented physical situation with 

visual elements of the graphical representation and vice versa. To do so, two 

instructional approaches have been suggested (Duijzer et al., 2019). The first one 

emphasizes the quantitative or local aspects of graphing, while the second one 

highlights the importance of grasping qualitative or global aspects of the graph. The 

global perspective is important in developing understanding of the real-life situation 

that is represented by the general shape of the graph. It facilitates visualizing the global 

relationship between two quantities before constructing an exact graph. Research 

shows that students encounter difficulties when representing changes over time, such 

as interpreting a graph as an iconic representation of a real situation or plotting and 

connecting points in the graph without considering the values between successive 

points and consequently without understanding that the graph represents a relationship 

between covarying quantities (Moore et al., 2013). 

Embodied Learning Environments for Graphing Motion 

Digital environments for graphing motion can be categorized in respect to bodily 

involvement and immediacy. Bodily involvement can be distinguished between own 

motion and observing others/objects’ motion. Immediacy is defined in terms of 

immediate and non-immediate. An immediate task provides a simultaneous interaction 

with the physical environment, whereas in the second case this interaction is based on 

an embodied simulation. Embodied learning environments are effective when students 

make use of their own motion and link this motion immediately to a graphical 
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representation (Duijzer, et al. 2019). In this study, we explored students’ understanding 

of graphing motion as they observed and influenced an objects’ motion in which the 

bodily involvement took place in the absence of direct stimuli.  

THE PRESENT STUDY 

The purpose of the present study was to investigate students representing qualitative 

and quantitative aspects of co-varying quantities (distance-time scenarios) in a tablet-

enabled learning environment. In line with the lenses of the above theoretical 

frameworks, the research questions are: (a) Does a tablet-enabled learning environment 

that provides students an interactive graphing motion tool facilitate 11-year-old 

students to represent qualitative and quantitative aspects of distance-time scenarios and 

(b) do students use covariational reasoning while representing distance-time scenarios?  

Participants, Intervention, Tasks and Procedure 

Fifty-nine 11-year-old-students (28 girls and 31 boys) from three Grade 5 classes 

participated in the study. They had used tablets in their mathematics lessons several 

times before. The students had not been taught functional situations involving 

measures that covariate simultaneously. In line with the national curriculum guidelines, 

students mainly focus on exploring patterns and function tables.  

The intervention was designed in the framework of the Erasmus+ project FunThink 

with the goal to foster functional thinking. For this purpose, a module of four 40-

minutes lessons was designed with an emphasis on the aspect of covariation.  The 

lessons were delivered by a member of the research team in a two-week period. The 

module includes activities that require conceiving co-varying quantities, representing 

graphically distance-time scenarios, animating physical movement scenarios and 

distance-time graphs with an applet. All students had access to the applet on tablets. 

Based on the covariation aspect of function, we used the online applet Turtle Crossing 

from the Desmos platform (desmos.com) in the intervention. The applet presents a 

turtle that walks away from the sea and students make connections between several 

turtle-crossing scenarios and graphs. We used the functionality to draw a distance-time 

graph and then watch an animation of the turtle’s journey (see Table 1).  

Two weeks after the completion of the intervention program, each student was 

interviewed in a session of approximately 20 minutes. We provided four scenarios and 

students had to construct a graph in the Turtle Crossing applet that corresponds to the 

given scenario. Students were informed that they could edit their work based on the 

feedback provided by the animation that showed the turtle’s journey according to the 

student’s graphs. A warm-up example familiarized the students with the procedure. 

The researcher prompted the students to validate their work by getting feedback from 

the animation and raised questions to investigate if students could match parts of the 

graph with specific moving actions. Two scenarios required conceptualizing global 

aspects of the graph while the other two involved grasping local aspects (see Table 1).  

Scenarios - Global Scenarios - Local 
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Task 1: The turtle moves away from the sea. 

Suddenly, it stops for a while. Then, it 

continues moving away from the sea. 

Task 2: The turtle moves away from the sea. 

Suddenly, it stops for a while. It then starts 

returning to the water. Before reaching the 

water, it decides to move away again.  

Task 3: The turtle moves 8 ft away 

from the sea in 4 seconds. It pauses 

for 2 seconds. It then returns to the 

sea in just 2 seconds. 

Task 4: The turtle is 4 ft away from 

the sea. It moves 2 ft away over the 

next 4 seconds. It then returns to the 

water by traveling 2 ft per second. 

desmos.com 

Table 1: Description of Tasks 

Data collection and Analysis 

This study used qualitative methods for data collection and analysis. We videotaped 

the interviews to capture students’ work on the tablets as well as their verbal 

explanations. A qualitative interpretive framework was used for the data analysis 

(Miles & Huberman, 1994), which consisted of three phases. The first phase focused 

on examining whether the constructed graph matched the scenario, and whether the 

student could explain which part of the graph corresponds to scenarios. In the second 

phase, we examined students’ mistakes and the extent to which they utilized the 

feedback provided by the applet to edit their work. Finally, we analyzed students’ 

explanations to identify covariation reasoning instances. To do so, we set-up a coding 

framework that synthesized theory and data driven codes.  

RESULTS 

We addressed the first research question of the study by examining students’ graph 

constructions and their verbal explanations. Particularly, we analyzed whether 

students’ graphs corresponded to the given scenario and whether they revised 

appropriately their graphs based on the feedback provided by the applet.  

Table 2 presents the number of students that constructed the graph, which corresponded 

to the given scenario from their first attempt and the number of students that used the 

feedback from the applet to revise their graph. In Task 1, 46% of the students 

constructed the correct graph from their first attempt, while in Task 2 the respective 

percentage was 54%. Both tasks involved understanding of co-varying functional 

situations at a global level. In Task 1, 46% of the students effectively used the provided 

feedback by the animation and revised their constructed graph after one/two or multiple 

attempts. To inspect incorrect solutions in more detail, typical student mistakes were 

categorized. These mistakes appeared in their first attempt or after multiple attempts. 

Several students represented the turtle’s pause by leaving a blank space between two 

segments (see Table 3, Task 1(a)) or by missing to represent it (Table 3, Task 1(c)). 
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Other students constructed a vertical segment at some part of the graph, indicating 

difficulty in handling the independent variation of time (Table 3, Task 1(b) and (d)). In 

Task 2, 37% of the students managed to revise their graph based on the provided 

feedback. In Table 3, Tasks 2(a)-(c) present students’ difficulty in constructing the 

turtle’s return to the water by handling both the increase of seconds (time) and the 

decrease in feet (distance). Also, several students faced difficulties in handling 

precisely the quantity that shows the turtle’s distance from the water by representing 

that the turtle changed direction before reaching the sea (Task 2(d)).  

 Correct from 

the first 

attempt 

Correct after 

one/two revisions 

Correct after 

multiple 

revisions 

Incorrect after 

multiple attempts 

Task 1 

Task 2 

Task 3 

Task 4 

27/59 (46%) 

32/59 (54%) 

22/59 (37%) 

2/59 (3%) 

12/59 (20%) 

15/59 (26%) 

12/59 (20%) 

17/59 (29%) 

15/59 (26%) 

7/59 (11%) 

17/59 (29%) 

8/59 (14%) 

5/59 (8%) 

5/59 (9%) 

8/59 (14%) 

32/59 (54%) 

Table 2: Correctness of students’ graphs across tasks 

In the local scenarios, students’ graph constructions were less successful compared to 

the global ones. In Task 3, 37% of the students and in Task 4, only 3% managed to 

create a graph that corresponded to the given scenario from their first attempt. 

However, 49% of the students revised their graph correctly in Task 3 based on the 

animation after one/two or multiple attempts. As shown in Table 3, Tasks 3(a)-(c), 

students faced difficulties in representing the turtle’s returns to the sea (the distance to 

the water decreases) while the time is still running (the time in seconds increases). It 

seems that the provided feedback helped students to identify their mistake and revise 

it accordingly. Further, students faced difficulties in representing the time needed for 

the turtle to return to the water (Task 3(d)). In Task 4, 43% of the students managed to 

revise their graph successfully. It was common among students to interpret the phrase 

“the turtle is 4 ft away from the sea” as the turtle moves 4 ft away from the sea in 4 

seconds (see Task 4(a) in Table 3). Hence, they tended to use the point (0,0) as the 

starting point instead of the point (0,4). Other students sketched a vertical segment on 

the y-axis from the origin to the point (0, 4), while others sketched a horizontal segment 

from the point (0, 4) to the point (4, 4) (see Tasks 4(b) and 4(c)). Again, some students 

represented the scenario “It moves another 2 ft away over the next 4 seconds” by using 

a vertical segment, ignoring the increase of time. The students also faced difficulties in 

representing the last part of the scenario, since it provided the rate of distance-time. 

Twelve out of the 19 students that succeeded in the task, followed a step-by-step 

strategy, constructing the return second by second till the turtle reached the x-axis. 
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 (a)                           (b)                                     (c)                           (d) 

Task 

1 

 
   

Task 

2 

    

Task 

3 

    

Task 

4 

    

Table 3: Typical mistakes of students in the four tasks 

To answer the second research question, we examined students’ explanations while 

working on the four tasks. We analysed how they explained the correspondence 

between the constructed graph and the scenario, and how they reasoned about the time 

intervals for specific parts of the scenarios in Tasks 3 and 4 (see Table 4). This analysis 

provided evidence regarding students’ covariation reasoning. In Tasks 1 and 2, 60% 

and 65% of the students respectively, provided correct interpretation of the graph by 

explaining the correspondence of each part of the graph with the given scenario. 

Although it was not directly required, in Task 1, 33% of the students that provided a 

part-part explanation and in Task 2, 20% included numeric data (i.e., concrete values 

of the quantities) in their explanations. Further, 21% and 26% of the students provided 

general or partially correct explanation based on the animation or the graph, without 

making clear connection with the scenario in Tasks 1 and 2, respectively. In Task 3, 

28% of the students provided general or partially correct explanation based on the 

animation or the graph, while 58% explained adequately the correspondence between 

the graph and the scenario. It is worth mentioning that half of the students that provided 

part-part explanation relied on the aspect of time when comparing the velocity of the 

turtle in the parts of the journey, while the other half coordinated time and distance. In 

Task 4, only 12% of the students provided general or partially correct explanation 

based on the animation or the graph and 43% provided an adequate explanation that 

can be categorized into 3 groups. The first group (5 out of 25) explained the format of 
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their graph without relating explicitly the two quantities. The second group (12 out of 

25) grasped the notion of rate for the return of the turtle, without relating the rate of 2 

feet per second with the total distance that had to be covered. The third group (8 out of 

25) coordinated effectively the two-covarying measures, as they calculated in advance 

the time needed by the turtle to return based on the given rate and calculated the rate 

of feet per second for different parts of the graph. 

Therefore, we identified six categories of covariational reasoning in students’ 

representations of covariation situations, based on the explanations they provided in 

the four tasks (Table 4): (a) Lack of coordination of two quantities graphically, (b) 

qualitative coordination in one (or selected) dimension (e.g. interpretation of moving 

away from the water = only as one quantity increases, the other quantity also increases 

but not being able to sketch that the turtle stays still), (c) qualitative coordination in 

multiple dimensions, (d) quantitative coordination in one dimension (e.g. interpretation 

of walking 8ft in 4 s = as one quantity increases by 8ft, the other quantity increases by 

4s), (e) quantitative coordination in multiple dimensions, and (f) abstract coordination 

(can compare by unitization, can calculate time/distance needed for given rate). 

 Part-part 

explanation 

General or partial 

explanation 

based on the 

animation 

General or partial 

explanation based  

on the graph 

No 

explanation 

or incorrect 

interpretation 

Task 1 

Task 2 

Task 3 

Task 4 

35/59 (60%) 

39/59 (65%) 

34/59 (58%) 

25/59 (43%) 

7/59 (11%) 

5/59 (9%) 

8/59 (14%) 

2/59 (3%) 

12/59 (20%) 

10/59 (17%) 

8/59 (14%) 

5/59 (9%) 

5/59 (9%) 

5/59 (9%) 

9/59 (14%) 

27/59 (45%) 

Table 4: Students’ explanations across tasks 

DISCUSSION 

The contribution of this study lies on the empirical examination of the way 11-year-

old students graphically represent functional situations that require coordination of two 

co-varying quantities in a tablet-enabled digital learning environment that provides an 

animation of the constructed graph. The results of the study show that in the two tasks 

with the global aspects, around half of the students constructed a correct graph in their 

first attempt and about 40% of the students correctly edited their work and provided 

appropriate explanations that matched each part of the graph with the scenario, by 

using the feedback provided by the learning environment in the form of an animation 

of the turtles’ journey. The provided feedback facilitated overcoming typical mistakes 

in representing covarying quantities such as coordinating the variation of the involved 

measures and interpreting a graph as an iconic representation (Moore et al., 2013). The 

most typical one was representing the increase of time as the distance stays stable or 

decreases (Shah & Hoeffner, 2002). The percentage of students that constructed a 

correct graph that involved representing local aspects in the first attempt was smaller, 



Pittalis, Demosthenous & Sproesser 

4 - 50 PME 46 – 2023 

but again, about half of the students managed to edit appropriately their graph based 

on the provided feedback. To do so, several students coordinated quantitatively only 

one of the involved quantities, others coordinated quantitatively both quantities and 

some of them exhibited an abstract coordination of the co-varying quantities by 

unitizing and calculating time/distance for different parts of the graph. The results of 

the study empirically show the potential of integrating tablet-enabled learning 

environments in mathematics teaching to develop the covariation aspect of functional 

thinking and graphical reasoning. Further, the study shows possible ways to utilize the 

embodied nature of distance-time activities to model dynamic functional situations by 

making self-dynamic connections between scenarios and graphical representations.   
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A META-DISCIPLINARY REFLECTION ON A STEAM SCHOOL 

ACTIVITY: THE ROLE OF MATHEMATICS 
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Università degli Studi di Torino 

 

This paper aims at providing a meta-disciplinary reflection on the role of mathematics 

in the design of a STEAM activity for lower-secondary schools. The analyzed case 

study involves a group of teachers of different disciplines from the same Italian school, 

who collaboratively designed an interdisciplinary STEAM activity, following a 

template created by researchers in mathematics education, in the context of an 

international European project. We analyze data gathered in an interview with the 

mathematics teacher of the group, conducted to gain insight into the role of 

mathematics in the design of the activity, from her point of view. Different roles 

emerged from the teacher’s reflections about the subsequent phases of the project, 

entailing an evolving relationship between mathematics and the other disciplines. 

INTRODUCTION AND THEORETICAL BACKGROUND 

Interdisciplinarity indicates an approach to a topic that embraces the competences of 

different scientific sectors or disciplines, which cooperate to provide a wider 

understanding of a common topic (Capone, 2022). More than 50 years ago, at the 

Seminar on Interdisciplinarity in Universities held in Nice (France), scholars joined 

efforts to promote interdisciplinarity and identify the role of mathematics in 

interdisciplinary activities, reckoning that interdisciplinarity “is important to allow 

students to find themselves in the present-day world, to understand and criticize the 

flood of information they are deluged with daily” (Apostel et al., 1972, p. 14). This 

becomes even more relevant today, in a world that increasingly demands intertwined 

skills to make sense of its complexity. Indeed, interdisciplinarity in mathematics 

education (Doig et al., 2019) and in STEAM (Science, Technology, Engineering, Arts 

and Mathematics) education (Khine & Areepattamannil, 2019; Henriksen, 2019) has 

been assuming increasing importance in the last decades. Yet, Piaget warns us that, due 

to its deductive nature, mathematics has a “particular independence” (Piaget, 1972, p. 

127) from other scientific disciplines of experimental nature. This peculiarity requires 

a focused effort by the teachers to make interdisciplinary connections between 

mathematics and other disciplines apparent to students.  

Researchers in mathematics education in many parts of the world implement “various 

sorts of conjunction of mathematics with other knowledge” (Williams & Roth, 2019). 

In these implementations, the role of mathematics is interpreted in different ways 

(Stohlmann, 2018). Sometimes, mathematics is conceived as a tool for doing the 

computational work needed to solve scientific/technological problems; in other cases, 

mathematics is used to model phenomena observed in other disciplines (Williams & 

Wake, 2007).  
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The aim of this paper is to conduct a meta-disciplinary (Williams & Roth, 2019) 

reflection on the role of mathematics in the design of an interdisciplinary STEAM 

activity for lower-secondary schools, based on how it is perceived by the mathematics 

teacher as a co-designer of the activity. Addressing this issue, we can contribute to 

deepening the insight into interdisciplinary STEAM teaching and collaborative design 

of STEAM activities by teachers of different disciplines. Our research question is: 

What is the role of mathematics in a STEAM activity, cooperatively designed by 

teachers of different disciplines, according to the mathematics teachers’ perspective? 

CONTEXT AND METHODOLOGY 

Our study context is the Erasmus+ Project named STEAM-Connect, where researchers 

from different countries (Austria, Finland, Italy, Luxembourg and Slovakia) and 

teachers of different disciplines (arts, mathematics, music, technology, etc.) work 

collaboratively to design STEAM activities for all school grades. Different levels of 

connection are expected as outcomes of the project: a connection between teachers of 

different disciplines in each school, between teachers of different schools in the same 

country; between researchers and teachers of the same country, between researchers 

from different countries, and between researchers and teachers from different countries 

during the dissemination phase. We claim that the process of designing an 

interdisciplinary STEAM activity is far from trivial. It takes a long time and multiple 

design cycles for teachers to learn how to collaborate and coordinate to choose a 

common object (a problem or a topic) and to pursue the common aim of the activity. 

The STEAM-Connect project has a duration of three years and started in November 

2021. During the first months of the project, researchers from all the involved countries 

co-created a common template for the STEAM activities to be designed by teachers. 

The common template had the aim of supporting the exchange, sharing and 

dissemination of the STEAM activities within different schools, in the same country 

or in different countries, in the final phase of the project. 

The data analyzed in this paper refer to the Italian national phase of the project, in 

which the teachers used the template provided by the researchers to collaboratively 

design STEAM activities. For our investigation, we selected as a case study a lower-

secondary school in Piedmont, open to educational innovation and already engaged 

with the Mathematics Department of the University of Turin (UNITO) in other 

projects. Firstly, we analyzed the template filled in by the teachers of this school to 

gain an overview of the STEAM activity in terms of involved disciplines, school grade, 

time needed and learning objectives. Then, we conducted a semi-structured interview 

with the mathematics teacher of the school, Paola (pseudonym), who is a very 

experienced teacher, having also the role of teacher-educator in other projects. She 

answered two main questions, which constituted the baseline of the interview: 1) “How 

did the idea of the STEAM activity that you designed in your school come about?”; 2) 

“How would you describe the role of mathematics in the STEAM activity that you 

designed in your school?”  
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With a qualitative methodology and an interpretative approach (Cohen et al., 2007), 

we analyzed the transcript of Paola’s interview, to answer our research question, with 

specific attention to the evolution of the role of mathematics in the design of the 

STEAM activity during the project, as described by Paola.  

RESULTS 

From the first part of the template designed by the researchers (Figure 1, translated 

from Italian by the authors), filled in by Paola and her colleagues to describe their 

STEAM activity, we understand that it is intended for a sixth-grade class and it deals 

with the topic of symmetries and translations. The involved disciplines are: arts, music, 

technology, science and mathematics. Among the learning objectives, the teachers 

declare a general objective, common to art, music and science, which refers to the real-

world applications of the concept of symmetries and translations. Besides that, they 

declare a learning objective specific to mathematics, connected with the mathematics 

curriculum: the representation of symmetries and translations in the Cartesian plane. 

In the interview (translated from Italian by the authors), Paola explains the path which 

led her and her colleagues to the design of the STEAM activity described in the 

template. She reports that the idea for the original nucleus of the activity, emerging at 

the very beginning of the STEAM-Connect project, involved only two teachers and 

three disciplines: arts, science and mathematics (these last two taught by Paola herself). 

Paola proposes an interesting reflection on the role of mathematics as the main aim of 

the activity: arts and science were not involved per se, but as opportunities to talk about 

symmetries, starting from concrete examples. Indeed, the activity was carried out 

during the mathematics class, with the art teacher assuming the role of “special guest”. 

Paola: The first collaboration with the art teacher […] entailed starting from the 

study of symmetries in artworks and in natural elements, to arrive at the 

discovery of the Fibonacci sequence and the golden rectangle. […] in that 

case, it was mathematics, let's say, that dominated science and art and it 

was the art teacher who came in co-presence with me to carry on this 

activity. 
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Figure 1. First part of the STEAM activity template. 

A similar dynamic is reported by Paola regarding the relationship between mathematics 

and music, during the first collaboration of the teachers of these disciplines on the topic 

of symmetries. She explains that the idea of the topic came from a teacher professional 

development program (SSPM), which she followed at the Mathematics Department of 

the University of Turin (Pocalana & Robutti, 2022).  

Paola: During the SSPM professional development program, they proposed an 

activity on the inverse, retrograde canon of music, as an application of 

symmetries. I was intrigued by this theme, so I asked the music teacher for 

help and she came to my rescue. We studied a path that started from music 

and resulted in the representation of symmetries on the Cartesian plane. 

On this occasion too, the activity took place entirely during the mathematics classes: it 

was the mathematics teacher who asked the music teacher to collaborate on a specific 

topic and the mathematical content of the topic was the main aim of the activity. Figure 

2 shows how the relationship between mathematics and the other disciplines could be 

conceptualized during this preliminary phase of the STEAM-Connect project. 

            

Figure 2. Relationships among disciplines at the beginning of the project. 
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In the following phases of the project, Paola and her colleagues built on these ideas on 

the topic of symmetries and translations, asking for the collaboration of the technology 

teacher to investigate the topic in the case of regular polygons. Paola declares that she 

was the promoter of the collaboration and that the mathematical content, in this phase, 

was still the aim of the whole path, even though the activity was designed to be carried 

out during the curricular classes of all the disciplines. 

Paola: Since the idea started from me and I started to involve the other colleagues, 

there was the mindset, even when talking about disciplinary contents, of 

reasoning in terms of mathematical contents. 

Paola describes the path of the activity with the metaphoric image of the spiral, because 

it was designed to converge towards mathematics, in temporal and content terms. 

Paola: We made a sort of spiral, let's say, that is all the disciplines connected, even 

temporally, one after the other. […] So, the figure that best represents the 

path, in my opinion, is the spiral, which reaches the top, where mathematics 

is at the top. 

Figure 3a shows how the relationship between mathematics and the other disciplines 

could be represented at this phase of the STEAM-Connect project. Mathematics is at 

the end of a path starting with arts, designed to introduce students to the mathematical 

content of symmetries and translations. Mathematics is, in a sense, the ideal destination 

of the spiral path. 

Paola reports that, in the subsequent design cycles of the same activity, the growing 

connection among teachers enabled by the context fostered a new awareness that all 

disciplines could be integrated with equal dignity in the path. This awareness gradually 

changed the relationships between the different disciplines, resulting in other 

disciplines being no longer considered only at the service of mathematics, but all 

contributing to providing a wider understanding of a common topic with an 

interdisciplinary approach (Capone, 2022).  

This evolution took place over several months in which the Italian teachers and 

researchers participating in the STEAM-Connect project met periodically to discuss 

the design work of STEAM activities and to compare the proposals of the different 

schools, thus promoting collective reflections. 

Paola: I believe that a path has been outlined in which everyone serves everyone. 

[…] It's not just aimed at introducing mathematics content, I mean, it's not 

that the work that the technology colleague does, or what the art colleague 

does has only that purpose. It has a specific aim for each curricular 

discipline. 

Paola also describes the role of mathematics in this advanced phase of the design 

process as a means of modelling what students discover in the other disciplines, as a 

lens that enables students to make sense of the complexity of a topic in an 

interdisciplinary way. 
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Paola: Mathematics ultimately re-read everything that the students did, in 

different contexts, with an eye to general modelling. 

Figure 3b shows how the interdisciplinary relationship between mathematics and the 

other disciplines could be represented, in light of Paola’s words, after several months 

of design work in the STEAM-Connect project. At the centre is the common topic of 

symmetries and translations connecting science, art, technology and music, with 

mathematics as a lens allowing to focus and model the connections. In this way, the 

design process as described by Paola reflects mathematics’ “particular independence 

[which puts it] in a special position as regards interdisciplinary relationships” (Piaget, 

1972, p. 127). 

    

Figure 3. Evolution of the role of mathematics in the STEAM-Connect project. 

According to Paola, the collaborative design work carried out in the context of the 

STEAM-Connect project fostered the awareness of the possibility – not often taken 

into consideration in Italian schools - to find common topics that could be addressed 

by different disciplines, creating a sort of “STEAM curriculum”.  

Paola: I believe that the main outcome of this collaborative design work is the 

awareness, raised in me and in my colleagues, of being able to find 

interconnections between the contents of different disciplines. 

DISCUSSION 

In this study, we conducted a meta-disciplinary (Williams & Roth, 2019) investigation, 

to understand the roles of the different disciplines in the design of a STEAM activity, 

particularly focusing on the evolution of the role of mathematics. The analysis of the 

case study revealed that the role of mathematics changed during the different design 

cycles of the activity. Indeed, during the first experiences of interdisciplinary activities 

conducted in Paola’s school, the role of mathematics was predominant, with the 

mathematics teacher as the promoter of the collaboration with the art or the music 

teacher, who were at the service of the mathematical aim of the activity (Figure 2).  

In the context of the STEAM-Connect project, as a consequence of the connection 

between teachers of different schools and researchers, reflecting together on the design 

of STEAM activities, the relationship between mathematics and the other disciplines 

started to evolve. The mathematical content of the topic of symmetries and translations 
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became the ultimate aim of a path, involving the other four disciplines in a “spiral” 

process leading towards it (Figure 3a). As the project progressed, the teachers 

collaborated on an increasingly equal basis to the design of an interdisciplinary 

STEAM activity with shared objectives, meaningful for all the involved disciplines 

(Figure 3b). The topic of symmetries and translations was perceived as a common 

object to all the disciplines, even though it was proposed by the mathematics teacher.   

The different levels of connections favored by the STEAM-Connect project increased 

teachers’ awareness of the possibility of collaboratively designing interdisciplinary 

activities on a shared topic. This awareness gradually moves them from a teaching 

paradigm focused on the knowledge products of the different disciplines to a teaching 

paradigm aimed at eliciting the processes that gave rise to the knowledge products and 

their mutual relations.  A new awareness has also been reached of the modeling role of 

mathematics, which enables students to read natural phenomena or artistic expressions 

through a common lens.  

Reflecting on how to connect different disciplines, each with its specific epistemology, 

in the design of an interdisciplinary “STEAM curriculum” could be both a 

developmental aim for the next phases of the project and a venue for future research. 
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EXPLANATIONS OF MEANINGS OF MULTIPLICATION 
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Explaining meanings is an important discourse practice for developing conceptual un-

derstanding of basic mathematical concepts such as multiplication. The study investi-

gates how n = 102 teachers explained the meaning of multiplication, and how they 

reacted to a student’s explanation. The analysis of teachers’ written explanations re-

veals affordances and constraints: While the largest group of teachers referred only to 

symbolic repeated addition, more mathematics teachers than out-of-field teachers al-

luded to the key multiplicative structure of unitizing in their explanation, but both 

groups rarely articulated the unit structure explicitly. When reacting to a student’s 

explanation with incomplete dot arrays, similar tendencies occur: Even when graph-

ically referring to unit structures, only very few teachers offered an explicit language 

of unitizing. The findings show the need for professional development to enable all 

teachers to unpack the meaning of multiplication beyond repeated addition and to ex-

plicitly address meaning-related language for unitizing. 

 

INTRODUCTION: INVESTIGATING TEACHERS’ EXPLANATION  

For developing conceptual understanding, the discourse practice of explaining mean-

ings is crucial. It is usually conducted by teachers in instructional explanations or in 

interaction with students’ explanations when teachers react to students’ emerging ex-

planations and leverage them (Leinhardt, 2001). However, instructional and co-con-

structed explanations can only enhance students’ conceptual understanding under two 

empirically specified conditions: (a) it must focus the crucial structure underlying the 

concept in view (Wittwer & Renkl, 2008), (b) many students can only engage in ex-

plaining meanings focusing on structures when targeted language support is provided 

(Planas, 2021; Post & Prediger, 2022). Fulfilling these conditions requires considerable 

topic-specific (pedagogical) content knowledge (Leinhardt, 2001), so the concern 

arises that they might be particularly demanding for teachers without mathematics 

teaching certificates (called out-of-field teachers) who are increasingly employed in 

German schools. We compare out-of-field teachers’ explanations with those of math-

ematics teachers. For this, we use a topic-specific approach for the topic of meanings 

of multiplication for natural numbers, with the following research question:  

How do mathematics teachers and out-of-field teachers explain the meaning of multi-

plication, and how do they react to a student’s incomplete explanation?  
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THEORETICAL BACKGROUND  

State of research on conceptual requirements: Meanings of multiplication  

Many students have been shown to struggle with the meaning of multiplication, as it is 

more abstract than addition and subtraction, with different roles of both factors (Clarke 

& Kamii, 1996). The key meaning of multiplication is counting in units, i.e., 3 x 5 is 

to be interpreted as three units of fives (Götze & Baiker, 2021). For other countries, it 

was shown that many teachers still translate multiplication to repeated addition (3 x 5 

means 5+5+5), converting between two symbolic representations (Askew, 2019); in 

spite of empirical evidence that interventions with repeated addition are less effective 

than those focusing more explicitly on unit structures (summarized by Clarke & Kamii, 

1996). Jumps on number lines and dot arrays as graphical representations support stu-

dents’ meaning-making processes (Barmby & Milinkovic, 2011). Rather than only 

translating symbolic to graphical representations, connecting entails to explain how the 

structure of one representation is reflected in the other one (Post & Prediger, 2022); for 

multiplication, the unit structure is to be made explicit (Götze & Baiker, 2021).  

State of research on linguistic requirements: Engaging in explaining meanings 

with language support of meaning-related phrases 

In general, students’ processes of meaning-making have been shown to be best pro-

moted when they are engaged in discourse practices of explaining meanings (Mos-

chkovich, 2015). Not only teachers’ instructional explanation offers or constraints 

learning opportunities (Lachner & Nückles, 2016), but also the interactively con-

structed explanations in which teachers react to and leverage students’ emergent ideas 

(Leinhardt, 2001). However, not all students can immediately contribute to these dis-

course practices (Moschkovich, 2015), so teachers are requested to provide language 

support, with phrases that can be used not only to articulate procedures, but also the 

mathematical structures underlying the meaning of a concept; these phrases are termed 

meaning-related phrases (Post & Prediger, 2022). Case studies found teachers’ strug-

gle with identifying and promoting meaning-related phrases (ibid.; Planas, 2021). 

Substantiating these considerations for the topic of meaning-making for multiplication, 

it is not enough to say, e.g., “the dot array matches 3 x 5 because here is 3 and here is 

5”. Instead, the unit structure needs to be articulated, e.g., by “the dot array consists of 

three fives” or “three rows of five each”. Götze & Baiker (2021) showed that teaching 

with language offers of such meaning-related phrases results in significantly higher 

learning gains than with the same tasks and graphical representations, but without 

meaning-related phrases articulated. When studying the ways teachers explain multi-

plication, it is therefore crucial to also assess this linguistic requirement, the explicit-

ness in which they articulate the unit structure by such kind of meaning-related phrases.   
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State of research on teaching requirements: Teachers’ explanation of meaning 

and potential challenges for out-of-field teachers  

Teachers’ explanations of meanings have been studied for various mathematical con-

cepts, e.g., optimization problems (Lachner & Nückles, 2016), or multiplication of 

fractions (Shure et al., 2022). Both studies reveal that many teachers tend to prioritize 

reports of procedures before explanations of meanings, and Lachner & Nückles (2016) 

identified that teachers with lower content knowledge have a higher risk for this prior-

itization. Shure et al. (2022) show that prospective teachers rarely meet the linguistic 

requirements of offering meaning-related phrases in the case of fractions. With respect 

to multiplication with natural numbers, Barmby & Milinkovich (2011) showed that 

teachers have heterogeneous abilities to choose adequate representations meeting the 

conceptual requirements, but their first insights focus only on conceptual requirements, 

but not on linguistic requirements, similar to the teachers observed by Askew (2019). 

For all topics, little is known about how teachers’ instructional explanations are asso-

ciated with their reaction to students’ incomplete explanations, although this is the first 

step for interactively establishing collective explanations.  

Given the repeated findings that (pedagogical) content knowledge can heavily influ-

ence teachers’ explanations (Leinhardt, 2001; Lachner & Nückles, 2016), a particular 

group of teachers raises our interest which is currently growing due to mathematics 

teacher shortage: About 20-30% of the teachers who teach mathematics in German 

middle schools hold no mathematics teaching certificate. Several international studies 

indicate that students learn less from out-of-field teachers (Hobbs & Törner, 2019), but 

so far, the mechanisms are not understood in detail. In the context of explaining mean-

ings for multiplication, we hypothesize that out-of-field teachers might provide expla-

nations that meet less the conceptual and linguistic requirements than mathematics 

teachers. By testing this hypothesis, we intend to contribute to explaining the mecha-

nisms underlying the findings on out-of-field teachers’ lower effectiveness.  

 

METHODS  

Methods of data gathering 

Sample. The sample consisted of German teachers (n = 102) in the beginning of their 

first session of a volunteer professional development (PD) online course on teaching 

conceptual understanding of basic concepts. 65 reported to hold a mathematics teach-

ing certificate, 29 to be out-of-field teacher, 8 did not disclose their certificate. The 

teachers had 0-36 years of experience in mathematics teaching (median of 4 years).  

Data collection and participant consent. A LimeSurvey was conducted in the first 

15 minutes of the PD course. For the participants, it was framed as an activity to first 

think individually about key questions of the PD that were later discussed in small 

groups. The research purpose was explained, and participants’ consent was collected. 
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Items on explaining and reacting to student explanation. This paper focuses on two 

open items on meaning-making for multiplication (Figure 1): Item 1 asks the teachers 

to give an own explanation, it is slightly scaffolded by an uncommented image (of six 

dice of four dots each) which only few teachers used in their explanation. Item 2 cap-

tures the first step of interactively establishing explanations, asking the teacher to react 

to a student’s explanation in an incomplete dot array that clearly hints to a well-known 

superficial idea of translating representations without reference to the unit structure.  

 

Figure 1. Two items for teachers in view of this study 

 

Methods of data analysis  

The teachers’ written responses were analyzed for both items in a deductive-inductive 

code formation process (Mayring, 2015). In Step 1, we started with codes known from 

the literature on  conceptual and linguistic requirements and teachers’ typical forms of 

explanation for multiplication. In Step 2, these deductively given codes were then re-

fined and extended inductively to capture the relevant phenomena in the data. For sav-

ing space, the resulting coding schemes with anchoring examples will be presented 

together with the frequencies in Tables 1/2 in the next section. In Step 3, all 102 written 

answers were rated by two coders who reached an interrater reliability of Cohens  = 

.83. In Step 4, the frequencies of different explanations and reactions were determined 

for the whole sample and compared between the subsamples of mathematics teachers 

and out-of-field teachers. The hypothesis that out-of-field teachers meet less of the 

conceptual and linguistic requirements than mathematics teachers was tested by 

Fisher’s exact tests in place of χ2 tests (due to small sample sizes) on the 5 % level, as 

well as the associations identified in contingency data of Item 1 and 2.  
 

RESULTS 

Teachers’ own explanations of the meaning of multiplication  

and differences between mathematics and out-of-field teachers  

Table 1 presents all codes developed to capture the teachers’ written explanations for 

Item 1 (from Figure 1) and anchoring examples. The third column lists the frequencies 

of codes for explanations in the whole sample of all 102 teachers. It reveals that 20% 

of the teachers gave no explanation or none that met conceptual and linguistic require-

ments. 65% gave an explanation that is conceptually acceptable, but not yet articulated 

in a concise and explicit language (the linguistic requirement), among them 31% who 

mentioned only repeated addition. 15% of the teachers provided explanations that met 
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conceptual and linguistic requirements, with 13% using a condensed phrase that has 

been identified as preferable in earlier classroom research (Götze & Baiker, 2021). 

Table 1. Frequency of codes for teachers’ explanations (Item 1) 

 

The last two columns compare frequencies for mathematics and out-of-field teachers. 

Out-of-field teachers gave much more often no explanation or none that fulfills the 

requirements than the mathematics teachers (35% vs. 8%). Significantly less often they 

provided a conceptually acceptable answer, yet without explicitly articulating the unit-

izing structures (52% vs. 75%), with repeated addition occurring half as much (20% 

vs. 40%). The 2x3 Fisher exact test confirms that as hypothesized, out-of-field teachers 

met the conceptual requirements with highly significantly lower frequency (p < .01), 

while no substantial differences were found for linguistic requirements (14% vs. 17%).  

Teachers’ reactions to a student’s explanation and  

differences between mathematics and out-of-field teachers 

Table 2 documents the codes developed to capture the teachers’ written reaction to 

Torben’s wrong explanations for Item 2 in Figure 1, with anchoring examples. Only 

two reactions falsely evaluated Torben’s answer as correct. 15 teachers reported to first 

ask back (which can indeed be important). So, the total of 31% of reactions not ful-

filling conceptual and linguistic requirements contains these 15% asking back which 

might meet the requirements in the next steps. 59% of the teachers suggested to react 

by pointing the student to the meaning of multiplication in dot arrays (36% of them 

without unitizing, only focusing repeated addition or the total of 15 dots), and without 

providing any language support for articulating the unit structure. Only 10% articulated 
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the unit structures explicitly and thereby fulfilled the conceptual and linguistic require-

ments in their reaction (even less than in the own explanation in Item 1).  

Table 2. Frequency of codes for teachers’ reaction to Torben’s explanations (Item 2) 

 

Again, significant differences can be found between mathematics and out-of-field 

teachers in these reactions: The 2x3 Fisher exact test confirms the hypothesis that out-

of-field teachers met significantly less the conceptual requirements than mathematics 

teachers (p < .05), whereas the linguistic requirements were even met minimally better. 

Associations between own explanation and reaction to student explanation 

Figure 2 visualizes the contingency data how teachers’ own explanations (in Item 1) 

and their reactions to students’ explanations (in Item 2) are associated. The bars docu-

ment the rating of teachers’ own explanation in Item 1: 15 explanations in the upper 

bar met both, conceptual and linguistic requirements, 53 in the medium bar met con-

ceptual but not linguistic requirements, and 9 in the lowest bar meet none of the re-

quirements (missings and codes “asking back” were excluded, so the total is 77).  

Figure 2. Associations of teachers’ own explanation to reactions to explanations 

 

 

The colors in the bars indicate the connection to the teachers’ suggested reactions in 

Item 2, with a strong dominance of yellow, i.e., meeting conceptual but not linguistic 
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requirements: Out of 9 teachers whose explanation in Item 1 met no requirements, 33% 

(3 of 9) suggested reactions not meeting the conceptual and linguistic requirements in 

Item 2. This percentage is higher than 4 of 53 for those with medium explanations and 

0 with top explanations. In contrast, 26% (44 of 15) of those with top explanations also 

met both requirements in their reaction in Item 2. The 3x3 Fisher exact test shows that 

these associations between own explanations and reactions are significant (p < .05). 

 

DISCUSSION  

Whereas other studies have analyzed teachers’ explanations in real classroom situa-

tions (Leinhardt, 2001; Planas, 2021; for multiplication Askew, 2019), with all com-

plexities and pressure to instantaneous reaction, this study investigated explanations 

and reactions written in an action-relieved situation in the beginning of a PD session. 

Table 1 reveals that 80% of the teachers offered explanations that largely met concep-

tual requirements, including 31% repeated addition, which was evaluated as possibly 

bearing an adequate conceptual structure (equal groups being united), but not a suitable 

language to articulate the unit structures explicitly, as they are either only formal or 

focusing on joining, but not on generating new units. In contrast, only 15% of all teach-

ers’ explanations also met linguistic requirements by explicitly articulating the unit 

structures. The percentages are even lower in Table 2 for teachers’ reactions to a false 

student explanation (69% meeting conceptual requirements, 10% for linguistic require-

ments). The contingency data in Figure 2 reveals that teachers who gave full explana-

tions of the meaning of multiplication (that adequately address and explicitly articulate 

the multiplicative structure) were more likely to react to students’ incomplete ideas in 

conceptually adequate ways, but not all of them provided good language support for 

students to articulate the multiplicative unit structure explicitly.  

The hypothesis that out-of-field teachers meet the conceptual requirements signifi-

cantly less frequently has been confirmed (and resonates with often documented con-

ceptual restrictions in out-of-field teaching, Hobbs & Törner, 2019). But the hypothesis 

was rejected for linguistic requirements: Regarding explicit language support, mathe-

matics and out-of-field teachers show similarly low frequencies.  

These findings must be interpreted with caution, given the methodological limitations 

of the study (only two items and a relatively small sample size for group comparisons). 

But already now, the findings show a strong need for professional development on 

conceptual and linguistic requirements for more helpful explanations, in particular en-

abling teachers to give explicit language support by meaning-related phrases (Planas, 

2021; Götze & Baiker, 2021; Post & Prediger, 2022). During the PME conference, we 

hope to be able to present also pre-post data of the evaluation study of the PD and se 

changes of teachers’ explanations through the PD. 

Acknowledgement. This study is a first step of the MuM video PD study (BMBF grant 

No. 01JD2001A to S. Prediger by the National Ministry of Education and Research). 
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 STUDYING THE ROLE OF PSEUDO-OBJECTS IN PROOF BY 

CONTRADICTION  

Kostas Probonas and Giorgos Psycharis  

National and Kapodistrian University of Athens 

 

This paper reports research focusing on how pseudo-objects (i.e. geometrical figures 

in a dynamic geometry environment containing contradictory properties) may enhance 

upper secondary students’ learning of proof by contradiction. Under the lens of the 

cognitive unity of Theorems and Theory of Semiotic Mediation we explore the semiotic 

potential of pseudo-objects in mediating the proving process from the conjecturing 

phase to the final proof. We analyzed the work of three pairs of students during their 

engagement with non-constructability tasks favoring the occurrence of pseudo-objects. 

The results show that pseudo-objects contributed differently to students’ 

argumentation and proof. This indicates the complexity of addressing the semiotic 

potential of pseudo-objects in students’ learning of proof by contradiction. 

INTRODUCTION AND THEORETICAL FRAMEWORK 

Many research studies have focused on analyzing how dynamic geometry 

environments (DGE) mediate the transition from conjecture to proof through the 

development of argumentation. In most of these studies, it is stated that there is a 

cognitive gap between the formal proof and the empirical argumentation developed by 

students who aim to construct a proof (Mariotti, 2019). Boero et al. (1996) introduced 

the idea of cognitive unity of theorems to describe the continuity and connection 

between the arguments developed in the construction and validation of a conjecture 

and those used in the construction of the proof. A proof may be more easily accessible 

to the student, if it is related to a previous activity of argumentation aimed at supporting 

the production of a conjecture. 

A specific type of proof is indirect proof, such as proof by contradiction, which can be 

defined as 'the proof of a statement, whose premise includes the negation of the 

conclusion' (Baccaglini-Frank et al., 2018). If a statement S can be expressed as an 

implication pq, a proof by contradiction is the direct proof of the proposition S*: 

pꓵ¬qrꓵr¬, where r is any proposition (Antonini & Mariotti, 2008). Accordingly, an 

indirect argument is an argument in the form ‘…if it were not so, it would happen 

that…’ (ibid). Over the last years there is an increased research attention to the role 

that DGS may play in proof by contradiction especially through the use of pseudo-

objects (Leung & Lopez, 2002). A pseudo-object is defined as 'a geometrical figure 

associated to another geometrical figure either by construction or by projected-

perception in such a way that it contains properties that are contradictory in the 

Euclidean theory (Baccaglini-Frank et al., 2013, p. 65). Recent studies have pointed 

out the specific contribution that DGE have in supporting students' indirect 

argumentation that can lead to proof by contradiction. To perceive a pseudo-object, 
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one must perceive in a figure contradictory geometric properties in the context of 

Euclidean geometry. Such properties in a DGE can result from the conflict of direct 

and indirect invariants. This perception could occur when the figure is degenerated due 

to the co-existence of the conflicting properties (Baccaglini-Frank et al., 2018). The 

direct invariants are determined by the geometric relations defined by the commands 

used to construct the figure (robust constructions) and the indirect invariants result 

from the consequences of the construction in the context of Euclidean geometry 

(Mariotti, 2019). Baccaglini-Frank et al. (2013; 2018) highlighted the important role 

of pseudo-objects in students' reasoning during the process of proof by contradiction. 

Specifically, they confirmed that its occurrence in a DGE is a decisive factor that 

influences the development of indirect argumentation and proof.  

Our study is also informed by the Theory of Semiotic Mediation (TSM) (Bussi & 

Mariotti, 2008) that recognizes the central role of the semiotic process (i.e. 

transformation of signs) in teaching and learning. Mariotti (2019) explored the role of 

dynamic geometry tools as tools of semiotic mediation, the process of internalizing 

these tools and their use in developing geometric thinking capable of bridging the gap 

between argumentation and proof. The logical dependence of robustly constructed 

properties with their consequences (invariants) can be related to a Theorem. A 

Theorem is a system of elements where a proof can be conceived when there is a 

statement to which it provides validation, but also when there is a theory (e.g., 

Euclidean Geometry) within which the validation makes sense (Mariotti, 2019). Thus, 

each construction in a DGE has a counterpart in the statement of a Theorem. Mariotti 

(2019) also highlighted the semiotic potential of a DGE in helping students develop 

mathematical meanings related to a Theorem and the semiotic potential of a pseudo-

object, which is related to the mathematical meaning of indirect proof.  

The purpose of the present research is to study the contribution that DGE have in 

supporting students' indirect argumentation that can lead to proof by contradiction. 

Under the lens of the cognitive unity of Theorems and TSM, we aim to explore the 

semiotic potential of the pseudo-object in mediating the proving process from the 

conjecturing phase to its final product.  

METHODOLOGY  

Participants and data collection 

Data were collected by the first author through three interventions of three teaching 

hours each in a private school. The participants were 3 pairs of students, two pairs from 

grade 11th and one from grade 10th (4 girls, 2 boys). Each intervention was preceded 

by a students’ familiarization with the The Geometer’s Sketchpad software lasting 2 

teaching hours as the students had no previous experience with it. Data collected 

through the screen and audio recorders that students had on their laptops as well as a 

camera that recorded their movements towards the screen. Data were fully transcribed 

for the analysis. 
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Research tools 

Students were given three open, conjecturing, non-constructability tasks in succession, 

which were preceded by a task where the figure was constructable.  All three problems 

given to the students were constructed by the first author according to Baccaglini-Frank 

et al.’s (2017) design principles with the aim to facilitate students’ production of 

indirect argumentation and indirect proof. In the present study, we utilized the type of 

tasks given in the form ‘Is it possible to construct a figure of type X with properties Y1, 

Y2, … Yn? If so, construct it robustly. If not, explain why not.’. Our a-priori analysis 

of the tasks confirmed this potential, in addition to the potentiality of the figures to turn 

into a pseudo-object.  

Task 1: Can you construct a right triangle whose exterior bisector of an angle is parallel 

to one of its sides? If yes, describe the construction steps. If not, explain why. 

Task 2: Can you construct a rectangular parallelogram ABCD such that the bisector of 

the angle with sides AD and the diagonal AC and the bisector of the angle with sides 

BC and the diagonal BD are perpendicular? If yes, describe the construction steps. If 

not, explain why. 

Task 3: Construct an isosceles triangle ABC with AB=AC and the circle with center A 

and radius r ≤ AB. Let K, L be the points of intersection of the circle with AB and AC 

respectively. Construct CK, BL (T the point of intersection). Can CK and BL be 

perpendicular and simultaneously be tangent to the circle at points K,L? If yes, describe 

the construction steps. If not, explain why. 

METHOD OF ANALYSIS 

The analysis was carried out in two steps following a broadly grounded approach 

(Charmaz, 2014). In the first step, we selected the transcripts concerning the students’ 

interaction with pseudo-objects and from them we extracted dialogical episodes 

following the development/evolution of students’ argumentation (conjectures, kind of 

arguments, contradictions, proofs). For each dialogical episode (a) we coded the 

students’ actions (e.g. dragging) while working with the DGE, the feedback that 

students received and its source and (b) we provided analytical comments according to 

our theoretical framework (cognitive unity, TSM). In the second step, we aimed to 

make explicit the constituent elements of students’ argumentation in terms of 

geometric properties and relationships (invariants). For this, we constructed tables for 

each one of the identified contradictions coding in columns: direct invariants; induced 

condition (by the student); indirect invariants; and contradictions. In the third step, 

constant comparison between the coded dialogical episodes and tables (first and second 

steps) allowed us to categorize the students’ approaches in terms of the formulation of 

the conjecture, the development of direct/indirect argumentation and the role of the 

pseudo-object in this proving process. 
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RESULTS 

Two categories emerged from the data analysis. In the first category, the students used 

productively the feedback of the pseudo-object to develop their argumentation in 

connection with geometric theory and constructed a valid proof. In the second 

category, the students utilized the pseudo-object mostly for visual evidence. This 

limited their argumentation to visual and empirical arguments. Below, we present two 

illustrative episodes from the work of two groups of students to highlight each 

category. The analysis is accompanied by two tables (tables 1,2) that represent the 

geometric properties and their relationships that constitute the students’ perception of 

the pseudo-object during the proving process (from conjecture to proof). 

Constructing a valid proof: The case of Clio and Silia 

In the episode of students Clio and Silia in task 1, the students constructed the right 

triangle (A1, table 1) and the external bisector of C (A2) robustly and after a short 

exploration they tried, through dragging the point B, to induce that the external bisector 

is parallel with AB (P1). The triangle was degenerated into a straight line (figure 1) 

and that was perceived by students as a result of the conflict of direct (Α1ꓵΑ2) and 

indirect invariants (P1). The initial contradiction (Α1ꓵΑ4) arose as visual feedback of 

the degeneration of the triangle (figure 1b) and the figure turned into a pseudo-object. 

Then the students made a conjecture concerning the non-constructability of the figure. 

Clio: (They become parallel) only if AC...  

Silia: ... is coincide with BC. But ... that can't be done. Because it won't be a 

triangle after that. 

By dragging point B close to point A, students explored further the dynamic changes 

in the figure with the aim to justify its degeneration. In this process, they developed 

indirect argumentation to support their conjecture about the non-constructability of the 

figure. The arguments were in the form ‘if they (AB, CD) become parallel then it will 

happen...’. Eventually, the students perceived the indirect invariant that the external 

bisector bisects an angle of 180° (P2), which contradicts with the geometric property 

that each external angle of a triangle is less than 180ο (L1). This contradiction was also 

visualized on the screen (figure 1b). 

Silia: It should be 90ο (to be parallel) 

Clio: The whole angle should be straight. [Points to external angle] 

Silia: It should be vertical (the line bisector) … but the external C is not 180ο. 

The students seemed confident about the validity of their arguments and the researcher 

asked them to construct a proof in a piece of paper. For about ten minutes the students 

were attempting to complete the proof on the paper and at the same time they continued 

to interact with the DGE figure (dragging point B close to point A). Also, they pointed 

to angles and sides with their fingers on the screen and simultaneously referred to 

geometric properties of the figure in each step of their proof construction.  
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Figure 1a,b: Figure and degenerated figure (task 1) 

Finally, they completed their proof on the paper through the use of symbols and 

mathematical relationships. The final outcome of their work was influenced by the 

feedback of the pseudo-object and the visualization of the contradictions it offered. 

During the analysis, we (the authors) were able to describe this influence by 

interrelating the students’ work on DGE, their gestures pointing to the screen, their oral 

expressions (e.g. about geometrical properties stemming from the invariants) and the 

written parts of the proof on the paper. For instance, the indirect invariant 'the external 

bisector bisects an angle of 180°' (P2) was matched with the expression 

BCD+BCA=DCE while the direct invariant 'CD is an external bisector' (A2) was 

matched with BCD=DCE.   

Clio: [Showing on the screen] If the external bisector bisects an angle of 180°… 

Ah, this (BCD) plus this (BCA) should equal this (DCE), but it can't 

because this (BCD) is equal to this (DCE).   

In this episode the visual feedback that the DGE provided through the degeneration of 

the figure allowed the students to formulate the conjecture. Their interpretation of 

degeneration was supported by dragging that allowed them to reproduce the 

degeneration, explore its conditions and relate it with geometrical properties. 

 Table 1: Analysis of students’ perception of contradictions (task 1) 

This interplay of visualization and geometric theory mediated by the dragging tool, led 

students’ argumentation to evolve and helped them to explain mathematically the non-

constructability of the figure. Their arguments developed in the conjecturing phase 

were reorganized and transformed into a proof by contradiction under the lens of the 

Euclidean geometry. Thus, the students related the DGE figure to a Theorem and 

through this they achieved cognitive unity.  

Direct invariants Induced condition Indirect invariants Contradiction 

Α1ꓵΑ2 P1 Α3(⇒Α4)  

Α1ꓵΑ2 P1 P2(⇒Α4)  

Final proof in paper 

Α1ꓵΑ2 P1 P2: ΒCD+BCA=DCE 

Α2 : BCD=DCE 

(P2ꓵΑ2:BCA=0) 

ꓵ L1 

Α1: ABC is a right triangle with A=90°, Α2: the line CD is the external bisector, Α3: AB 

coincides with BC, Α4: ABC is not a triangle (degenerates into a straight line) P1: 

external bisector is parallel to AB, P2: the external bisector bisects an angle of 180° (the 

external angle is 180°) L1: each external angle of a triangle <180ο 
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Constructing an invalid proof: The case of Fani and Valia 

This episode is extracted from the work of Fani and Valia on task 2. The students had 

constructed robustly the requested figure (A1, A2 table 2) and they started to drag its 

draggable points so as to achieve the verticality of the bisectors (A1). The figure 

degenerated into a straight line (A3, figure 2b). The degeneration caused uncertainty 

to students about the constructability of the figure and challenged them to provide 

explanations.  

Valia: To be perpendicular (the bisectors), ABCD becomes a straight line. But is 

this (ABCD) a parallelogram? 

Fani:   So, when it becomes a straight line, the angle becomes 180°… right? 

Valia: Zero degrees, isn't it? So, they bisect an angle (DAC) of 0ᵒ perhaps… 

The students realized that the size of the bisected angle was a consequence (indirect 

invariant) of the condition they were trying to impose (bisectors being perpendicular). 

So, they used the angle measure tool to measure it. The feedback of the measure (90ο) 

allowed the students to discern the perpendicularity of the bisected angle DAC (P2). 

This was perceived as a contradiction (P2ꓵL1) and led them to state the conjecture of 

non-constructability. 

Valia: So, to become 90o (AEB) 

Fani: DAC will also become 90o 

Valia: That means that it is not possible…  

Fani: A part of DAC can’t be 90o by itself! 

The pseudo-object emerged as the students perceived the contradictory geometric 

properties of an angle being 90 degrees that had to be less.  

 
 

Figure 2 a,b: Figure and degenerated figure (task 2) 

The indirect argument had as a source the visual feedback of pseudo-object and the 

angle measure tool. However, the contradictory geometric properties of the pseudo-

object were perceived by the students visually and empirically. The argument ‘when 

the bisectors become perpendicular, the bisected angle DAC becomes 90 degrees’ was 

not explained in connection to Euclidean Geometry.  

Direct invariants Induced condition Indirect invariants Contradiction 

Α1ꓵΑ2 P1 Α3  

Α1ꓵΑ2 P1 P2,Α3 (So, A4)  
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Table 2: Analysis of students’ perception of contradictions (task 2) 

The final product of the students’ work was an invalid proof (table 2) due to the fact 

that it was based on the above mentioned empirical argument. Their proof had an 

explanatory function as it persuaded them for the non-constructability of the figure, but 

their conjecture was not validated within geometric theory. This episode indicates the 

semiotic potential of the pseudo-object with respect to the mathematical meaning of 

the contradiction. Although the students did not provide a mathematically valid proof, 

their interaction with the pseudo-object provided a basis for developing a conjecture 

through indirect argumentation and conceptualizing the contradiction at least in the 

DGE figure.  The episode indicates also the diverse forms of cognitive unity that can 

be actualized in the process of rebuilding a conjecture into a mathematical theorem. 

CONCLUSION 

The results of the present study highlight how the DGE can mediate the proving process 

in open non-constructability tasks designed to promote the occurrence of a pseudo-

object during students’ exploration. The degeneration of the DGE figure provoked 

students’ engagement in exploring further its properties as well as in providing 

explanations through indirect argumentation. The analyzed cases of students reveal that 

the pseudo-object contributed differently to students’ argumentation and proof. In the 

first case, it facilitated proof validation through connections to geometric theory. In the 

second case, it facilitated the construction of an invalid and explanatory proof 

promoted by the visual feedback. Our findings also indicate the critical role of pseudo-

objects in the final product of proof. In both analyzed cases, the (valid and invalid) 

proof developed by the students on the paper appeared to be strongly related to the 

arguments they developed during their interaction with pseudo-objects. In conclusion, 

our study shows that pseudo-objects do not concern only the perception of a pair of 

contradictory properties, but they can foster a dynamic process of investigating, 

looking for geometrical properties, explaining emerging (visual or theoretical) 

conflicts and developing argumentation within geometric theory. Also, our study 

reveals the diverse ways by which the semiotic potential of pseudo-object can be 

actualized and contribute to the cognitive unity of Theorems in proof by contradiction. 

This brings to the fore the need for further and systematic research in the role of 

pseudo-objects in students’ learning of proof by contradiction. 

Final proof in paper 

Α1ꓵΑ2 P1 P2,L2 (So A4) P2ꓵL1 and Α5ꓵL2 

Α1: ABCD is a rectangular parallelogram, Α2: Lines AE and BE are the bisectors of angles 

DAC and DBC, Α3: Points, sides and diagonals coincide, Α4: ABC is not a rectangular 

parallelogram (it degenerates into a straight line), A5: The sum of the angles of the 

parallelogram is 360°, P1: The angle between the two bisectors is 90°, P2: The bisected 

angle is 90°, L1:  Bisected angle is  <90° (sub-angle),  L2: The sum of the angles of the 

parallelogram is >360° 
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Transitioning from school to university represents a challenge for most mathematics 

students, which is often connected to different characteristics of mathematics at both 

institutions. Prior mathematical knowledge has been shown to play an important role 

for success in the first year of university studies. Based on an IRT-approach, we 

investigate a model for prior knowledge in Linear Algebra for the transition from 

school to university. The model comprises four levels of mathematical demand and is 

based on an analogous model for Analysis. It is grounded on the distinction between 

conceptual and procedural knowledge and on changes of representations. The model 

allows to describe students’ prior knowledge and investigate in further research, which 

kind of knowledge is important for the transition to university. 

INTRODUCTION 

The transition from school to university represents a challenge for many mathematics 

students. In Germany, many students with a major in mathematics drop out (Heublein, 

2014). While the reasons for this dropout are manifold, several studies showed that 

students’ prior mathematical knowledge is an important predictor for success at the 

transition from school to university (Hailikari et al., 2008; Halverscheid & Pustelnik, 

2013). However, to understand the transition and as a basis for developing means to 

support students, more is better findings are insufficient, and it is vital to characterize 

levels of mathematical knowledge that are helpful for a successful transition. 

For the domain of Analysis, the KUM-A model (Rach & Ufer, 2020) describes levels 

of mathematical knowledge considered relevant for a successful transition to 

university. While the model consists of four levels of demand, empirical data indicates 

that the third level distinguishes between students who master their first Analysis 

course and those who do not. Items on this level require a deeper understanding beyond 

well-known procedures and representations. 

In this article, we present a corresponding model for Linear Algebra based on a test 

with 25 items. Therefore, we describe four levels of knowledge and investigate the 

item assignment to a level based on the item’s empirical difficulty. Using student 

solutions for two items, we illustrate the validity of the model. 
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THEORETICAL BACKGROUND 

Mathematics at the transition from school to university 

At the beginning of university studies, students in many countries face challenges 

posed by two shifts: the shift from guided to self-regulated learning and a shift within 

mathematics itself (Rach & Heinze, 2017). Focussing the second shift, mathematics at 

schools deals mostly with calculations based on real-world problems. Therefore, 

mathematics in school can be seen as a tool to solve such problems and technical 

aspects and procedures are in the foreground (Gueudet, 2008; Hoyles et al., 2001). A 

view of mathematics including proofs and formal definitions is partly covered in 

curricula but underrepresented in the classroom (Jordan et al., 2008; Witzke, 2015) At 

university, mathematics is treated as a scientific discipline (Engelbrecht, 2010; 

Gueudet, 2008). Accordingly, not the solution of specific application problems is of 

interest, but a theoretical perspective on mathematics as an axiomatic, deductive 

system. General concepts with abstract definitions and deductive proofs are central. 

Conceptual and procedural knowledge 

The aforementioned distinction between calculation and application versus axiomatic, 

deductive systems has been associated with the distinction between procedural and 

conceptual knowledge (Göller et al, 2022). Procedural knowledge is generally defined 

as “the ability to execute action sequences to solve problems”, whereas conceptual 

knowledge is defined as knowledge about the facts in a domain, their interrelations as 

well as the understanding of principles that govern a domain (Rittle-Johnson et al., 

2001, p. 346). Therefore, conceptual knowledge is sometimes described as “knowing 

that”, whereas procedural knowledge is described as “knowing how” (Förtsch et al., 

2018). While interrelated (see Schneider et al., 2011) both types of knowledge can be 

empirically separated and are associated with different uses. While procedural 

knowledge may be sufficient when solving familiar tasks, conceptual knowledge is 

often considered the basis for solving unfamiliar tasks. Moreover, procedural 

knowledge is restricted to specific types of tasks, while conceptual knowledge can be 

used flexibly in different types of situations and is generalizable (Rittle-Johnson et al., 

2001). Besides generalizability, conceptual knowledge is further characterized by the 

possibility of representational change (Kaput, 1989), which is often a requirement for 

better understanding given mathematical problems and how procedural knowledge can 

be used to solve them. Regarding Linear Algebra, changing between a geometric view 

and an algebraic view can foster the understanding but is also an obstacle in itself 

(Gueudet-Chartier, 2004). Thomas et al. (2015) give an overview of students 

difficulties in Linear Algebra, especially an overreliance on an intuitive understanding 

(Waro et al., 2011) and a dominant view of basis as matrix manipulations (Thomas, 

2011). 

KUM-A level model for Analysis 

Rach and Ufer (2020) described a level model of prior knowledge in Analysis for 

university courses. Based on a reanalysis of 21 items with 1553 students, four levels 
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were defined: the items on level 1 require procedural knowledge and knowledge of 

facts. They are formulated with little use of formal notations. To solve these items, 

students have to apply routine procedures. To solve items on level 2, students require 

conceptual knowledge to choose a solution procedure that is not obvious from the item 

text. Only routine changes of representations are included in level 2. Level 3 can be 

described by deeper conceptual knowledge, requiring integrated knowledge about 

different representations. To solve items on this level, students must link different 

representations or construct their own representations that are not given in the items. 

On level 4, formal notations and deductive reasoning are important. Empirical data 

underlined that level 3 was crucial for success in first-semester university Analysis 

courses (Rach & Ufer, 2020).  

RESEARCH QUESTIONS 

Aiming to create a model analogous to KUM-A for Linear Algebra, which can be used 

to better understand difficulties at the secondary-tertiary-transition and support 

students, this paper investigates two research questions:  

 Is it possible to identify and describe a model of mathematical knowledge in 

Linear Algebra based on the KUM-A model from a theoretical perspective? 

 Are the theoretically derived levels reflected by the empirical item difficulties 

from a scaling study and do students solution and difficulties when working 

on items of different levels correspond to their level classification? 

METHODOLOGY 

The Linear Algebra test consists of 25 multiple choice or open items. The items deal 

with the concepts of vector operations, orthogonal vectors, scalar products, linear 

combinations, linearly dependent vectors, straights, linear functions, linear equation 

systems, distances, and groups, which are taught in school as well as are important 

learning prerequisites for a Linear Algebra course in university (Halverscheid & 

Pustelnik, 2013). 

To derive the level description for knowledge in Linear Algebra, we conducted several 

steps: first, we drafted a preliminary model for Linear Algebra based on the KUM-A 

level descriptions (Rach & Ufer, 2020). Second, we generated items for each level of 

this preliminary model. Third, preliminary cut-off scores for this model were 

determined based on the empirical difficulties of the items which were gained in an 

IRT scaling study with 182 students. This preliminary four-level model is described in 

Rach et al. (2021). Finally and for this contribution, we revised the preliminary four-

level model based on the aforementioned theoretical considerations to improve its 

theoretical consistency. Modified level descriptions were formulated by the first author 

and revised by the second author. Afterwards, this new theoretical description was then 

again compared to the empirical item difficulties resulting from the scaling study to 

determine new cut-off parameters.  
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Written solutions of 34 students who worked on the test in their last school year were 

used to investigate the validity of our model, by considering whether students’ 

solutions and difficulties corresponded to the theoretically derived level descriptions.  

RESULTS 

Table 1 shows the number of items assigned to each level of the revised model and the 

cut-off parameters for each level.  

Table 1: Description for the four levels with number of items and cut-off parameters 

 

Comparing the items’ allocations to the levels of the revised model with those of the 

preliminary model, 21 items were allocated to the same level in both models, while 

four items were shifted to another knowledge level by the revision. This leads to small 

shifts of the cut-off parameters compared to Rach et al. (2021). 

Level 1 consists of items which require routine procedures that can be identified 

directly from the given problem or knowledge about facts, for example the definition 

of a circle or identifying the slope of a linear function. The procedures can be 

performed without conceptual understanding of the objects. Items require no changes 

of representations specific for Linear Algebra. The items do not contain coordinate 

representations. Switching between algebraic and geometric representations is only 

necessary in well-known situations. The items use little algebraic notation or can be 

translated into simple calculations by well-known routines. The correctness of general 

statements can be determined by calculations or properties known from the real 

numbers. 

Items on Level 2 require conceptual knowledge. For example, parameters have to be 

chosen such that given properties are fulfilled by some objects, such as distances and 

solution sets. In contrast to items on level 1, knowledge of facts or performing 

procedures is not sufficient. The items use some algebraic notations of concrete 

objects, for example to describe equations of lines in vector form or linear systems of 

equations. Changes between algebraic and graphical representations are limited to 

concrete objects, such as specific vectors or lines. In these cases, a coordinate system 

is given to perform such changes in representations. Changes in general situations, 
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given only by properties, are not necessary. Switching between geometric and 

algebraic representations of objects is also only dealt with in standard situations.  

For items on Level 3 deep conceptual knowledge that is not present as a fact is required. 

Different representations of objects and their properties are necessary to solve the 

items, sometimes more than one change of representations has to be performed. Items 

require self-chosen examples to evaluate statements of objects and their properties. 

Especially changes between geometric and algebraic representations are necessary to 

solve the items on this level. The geometric and algebraic properties have to be 

combined to solve the items. The representations of partially generic objects are 

changed but no operations on the objects need to be performed.  

Items on Level 4 require complex conceptual knowledge, which integrates algebraic 

and geometric representations of objects. Notations are on an algebraic level, for 

example the equation of a proportional function. Typically, more than one change of 

representations is necessary, for example from a verbal description to an algebraic 

description to solve the item, and afterwards to a geometric interpretation. The objects 

under consideration are not concrete objects but are given only by their properties. 

Therefore, representations of partially generic objects must be used. In addition, to 

solve the items, mental operations on geometric representations must be performed.  

Discussion of example items 

The following item (see Fig. 1) is an example for level 2: To solve the item, one has to 

use the properties of the scalar product. After identifying the correct procedure, the 

item can be solved by calculations with concrete vectors. Thus, one fact has to be 

combined with one procedure. The item can be solved by working with specific vectors 

given with specific numbers. Changing to a geometric representation (which is well 

known for given coordinates) of the situation can be helpful but not required. 

Figure 1. Example item on level 2 (difficulty parameter –0.24). 

 

The difficulties found in students‘ answers to the item show that it requires more than 

a simple calculation since the connection between a right angle and the scalar product 

has to be made and may be missing (e.g. “There is probably a Cosine-formula, which 

I always look up”). Some students also remembered false facts (e.g. “The scalar 

product has to be 1 to have a right angle”).  
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As a second example (see Fig. 2), we discuss an item of level 3: deepened conceptual 

knowledge is necessary to solve the item by this group of students. Different concepts 

must be linked in a way that is typically not treated in school in this or a similar way. 

It is necessary to combine geometric properties, such as orthogonality, and algebraic 

properties, such as linear combinations and linear independence. The algebraic 

formulation of the item must be changed to a geometric representation to solve the 

item. The vectors are not specified, but only their properties are given.  

Figure 2: Example item on level 3 (difficulty parameter 1.36, item is correct when all 

choices are correct). 

 

One difficulty of the item is knowing the various concepts which are mentioned in this 

item. Mistakes show problems in translating the statements to a geometric 

representation, e.g. “Just because two vectors are orthogonal, another vector cannot 

lay in the same direction”. This statement indicates problems in mentally using a 

geometric representation, which points to problems in changing the representation. It 

also shows the problem of dealing with partially generic vectors which are only defined 

by their properties. This requirement characterizes the third level.  

DISCUSSION 

The proposed level model for prior knowledge in Linear Algebra as well as the 

adjoining empirical data highlight that it was possible to transfer the model for Analysis 

to describe knowledge in Linear Algebra. Mainly different depths of conceptual 

knowledge and the role of representational changes characterize the different levels of 

knowledge in Linear Algebra.  

The examples of two items illustrate that the theoretical level description fit to 

difficulties of students solving the items. However, it would be desirable to further 

validate the model by analysing more written item solutions. 

However, for the items in our Linear Algebra test, the representational changes are 

mostly between graphical and algebraic representations, which differs from the 

Analysis model. The high levels of demand in our test are less described by the number 

of integrated representations but by the usage of concrete numerical objects and generic 

objects given by their properties. A second limitation concerns our choice of items. 
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The model fits our 25 items but there are demands that are missing. For example, 

formal proof is missing in the items and is therefore not part of our model for Linear 

Algebra. However, solutions rates for the test item are between 4,7% and 96,0% 

covering a range of difficulties. 

Our model allows for further investigation of study success in the first semester. 

Analogous to the approach of Rach & Ufer (2020), it would be interesting to see, which 

prior knowledge in Linear Algebra is related to success during the first semester at 

university and which level describes this knowledge. The description of demands 

regarding prior knowledge for the first semester of studies would also help the design 

of transition courses to support incoming students. In this context it is an open question 

to which extent the same levels of knowledge are achieved in Analysis and Linear 

Algebra by individual students.  
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PROSPECTIVE PRIMARY TEACHERS’ UNDERSTANDING OF 

ONE-DIMENSIONAL PHENOMENA: LINE, RAY AND SECTION 

Simone Reinhold and Bernd Wollring 

Leipzig University & University of Kassel 

 

Teachers’ content knowledge is considered to play a meaningful role for teaching as 

(young) learners’ development depends on their teachers’ correct understanding and 

use of relevant terminology, especially in geometry. In the project we report partly in 

this paper, we intend to detect pre-service teachers’ understanding of one-dimensional 

phenomena in Euclidean geometry, namely (straight) lines, rays and sections. Here, 

the prospective teachers were asked to spontaneously take notes concerning the 

different types of lines without any preceding instruction. The analyses reveal a great 

variety of individual notions, referring to everyday embedding or mathematical aspects 

and ranging from intuitive associations to formally adequate definitions. Aspects we 

assume to be beneficial as well as the impact of obstructive details are discussed. 

INTRODUCTION 

Considering that the concepts line, ray and section are basic topics in geometry and 

tackle fundamental ideas in various mathematical contexts, there has only been limited 

research concerning the understanding of these concepts, so far. Hence, there is a 

demand to deepen the research regarding (pre-service) teachers’ and students’ 

understanding of these concepts, comprising the interplay of their concepts during 

teaching and learning in the geometry classroom. Assuming that pre-service teachers’ 

(PSTs’) notions have a strong impact on their prospective students’ learning, the initial 

study presented here intends to enlighten facets of PSTs’ individual ground.  

THEORETICAL FRAMEWORK 

Subject matter knowledge: Issues in teacher education for geometry? 

Building on the efforts of Shulman (1986), Ball et al. (2008) suggest that mathematical 

knowledge for teaching includes subject matter knowledge (SMK) and pedagogical 

content knowledge (PCK). Focusing on SMK, horizon content knowledge (HCK), 

specialized content knowledge (SCK) and common content knowledge (CCK) are 

defined as subdomains of SMK. HCK addresses knowledge concerning relations 

between topics, including familiarity with the curriculum. With a stronger focus on 

teacher’s capability to analyze students’ approaches and errors, SCK is considered to 

be specific for teaching. More generally, CCK comprises mathematical understanding 

and skills which are essential for teachers, but may also be important in settings outside 

the classroom (e. g. correct use of terms and notations). Aspects of CCK may not 

necessarily be mentioned in the classroom, but deficiencies in CCK can cause problems 

in SCK (Steele, 2013, p. 249). Therefore, even “unpacked mathematical knowledge” 

(CCK) which helps to distinguish between a term’s mathematical meaning and its 
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everyday reference is important “(…) because teaching involves making features of 

particular content visible to and learnable by students.” (Ball et al., 2008, p. 400).  

For more than 20 years, mathematics education research has revealed elements of 

PSTs’ SMK, pointing at alarming lacks concerning content knowledge in geometry 

(Browning et al., 2014). As higher levels of SCK and CCK have been shown to 

correlate with stronger student outcomes in various studies, inadequacies of pre- and 

in- service teachers’ SCK and CCK might be a potential source of students’ difficulties 

in understanding (Steele, 2013). Hence, details and the development of PSTs’ CCK 

obviously require ongoing and deep attention. For teacher education in geometry, this 

involves key facts and principles of Euclidean geometry, conceptual understanding of 

core concepts and the adequate use of terms (Jones, 2001; Sinclair et al., 2016). 

Common content knowledge: Concepts in Geometry? 

A concept involves the “(…) ideal representation of a class of objects, based on their 

common features” (Fischbein, 1993, p. 139). Representatives of a class of geometrical 

phenomena (one-dimensional figures, two-dimensional shapes or three-dimensional 

solids) can be visualized or grasped by visual (resp. haptic) perception (Franke & 

Reinhold, 2016). Thus, a concept includes a collection of characteristics which are 

considered to be relevant by an individual. A person may be able to verbally state these 

characteristics, but conceptual knowledge reaches beyond the capability of naming 

representatives or repeating formal definitions. It rather comprehends the perception, 

visualization and identification of distinctive properties which refers to individual 

mental images while thinking of a specific representative (Tall & Vinner, 1981).  

Based on this, we have to consider that (prospective) teachers have encountered the 

concepts line, ray and section in various practical embeddings and formal contexts 

before they start teaching the topic themselves. They have met and used the terms in 

everyday contexts “over the years through experiences of all kinds” (Tall & Vinner, 

1981, p. 152). In addition, they have most likely faced formal, precise and 

differentiated definitions, and have used this knowledge for geometric constructions. 

The theory of the epistemological triangle helps to understand this complex interplay 

(…) between the mathematical signs, the reference contexts, and the mediation between 

signs and reference contexts, which is influenced by the epistemological conditions of 

mathematical knowledge. (Steinbring, 2005, p. 22)  

According to this notion, the concept of line, resp. ray and section and their abstract 

relations results from the individual interpretation of the related signs (e. g. one-

dimensional representations in drawings) which have to be connected to an appropriate 

reference context or objects. 

Line, ray and section as fundamental concepts in geometry 

Basic activities with dynamic geometric environments (e. g. GeoGebra as one of the 

most popular DGE) practically illustrate that any geometric construction depends on 

the fundamental ideas of dots, lines, rays and sections and their interaction throughout 
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the digital design. Approaching from a historic and more theoretical perspective with 

Hilbert’s axioms of incidence (Axiome der Verknüpfung; Hilbert, 1903, pp. 2-3), 

Hartshorne (2000) states:  

We simply postulate a set, whose elements are called points, together with certain subsets, 

which we call lines. We do not say what the points are, nor which subsets form lines, but 

we do require that these undefined notions obey certain axioms:  

I1. For any two points 𝐴, 𝐵, there exists a unique line 𝑙 containing 𝐴, 𝐵.  

I2. Every line contains at least two points. 

I3. There exist three noncollinear points (that is, the points not all contained in a single 

line). (Hartshorne, 2000, p. 66) 

Based on this, additional axioms of betweenness (Axiome der Anordnung; Hilbert, 

1903, p. 4) underpin the definitions for the terms ray and section:  

If 𝐴 and 𝐵 are distinct points, we define the line segment 𝐴𝐵̅̅ ̅̅  to be the set constisting of 

the points 𝐴, 𝐵 and all points lying between A and B. (Hartshorne, 2000, p. 74) 

Given two distinct points 𝐴, 𝐵, the ray 𝐴𝐵 ⃗⃗ ⃗⃗ ⃗⃗   is the set consisting of 𝐴, plus all points on the 

line 𝐴𝐵 that are on the same side of 𝐴 as 𝐵. (Hartshorne, 2000, p. 77) 

Freudenthal (1973) acknowledges this work, but most critically points at the limited 

use. Referring to the axiomatic approaches and the resulting formal definitions 

suggested by Hilbert and Pasch, he even states that they were complicated – useful for 

basic research but not for doing “geometry within them” (p. 402), and especially not 

beneficial for teaching geometry. Hence, suitable reference contexts (Steinbring, 2005) 

have to be considered: For example, the concept ray is fundamental for Euclidean plane 

isometries in geometry (e. g. shifting along a ray; rotation following the angle between 

two rays). Extending resp. shrinking a shape is visualized by the movement of certain 

points on rays. Grasping the aspect of infinity of a line may occur in contrasting this 

feature to the limits of a section. Furthermore, polygonal shapes consist of a closed 

path of sections. The concept section is also essential for the concept of measurement.  

Reaching beyond: References of lines, rays and sections to arithmetic learning 

There are various ways for visually representing numbers (Dehaene & Brannon, 2011). 

Yet, it is often suggested that the mental representation of numbers can take the form 

of a (straight) line in horizontal orientation. In primary, the external representation of 

natural numbers often refers to this number line (Obersteiner, 2018). The active use of 

this external representation plays a fundamental role for the development of mental 

representations. Hence, the concept of rays is used from grade one on – usually starting 

at zero on the left side, sometimes suggesting infinity by an arrow on the other side and 

putting marks on the line to represent the discrete numbers in the series of natural 

numbers. Later on, the concept of the straight line (with an open end on both sides) 

helps to represent whole numbers. Depending on the scale, each marking point on the 

number line defines the position of a number (in ordinal relation to other numbers) 

within this spatial structure. The difference between two natural numbers (resp. whole 
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numbers) is visualized by the distance of two points on this straight line – namely a 

section as part of this ray (resp. of the straight line).  

 

RESEARCH QUESTIONS, DATA COLLECTION AND ANALYSIS 

Aiming at contributions to an empirically grounded theoretical framework for PSTs’ 

conceptual knowledge in one-dimensional geometry (with a focus on CCK), the main 

purpose of the partial study presented in this paper is to detect qualitative aspects of 

PSTs’ understanding of line, ray and section: 

 Which aspects are used by the PSTs in written notes to characterize their 

individual concepts of line, ray and section?  

 (How) Are the different aspects used to indicate distinctions between the three 

concepts (e. g. with comments on the relationship or for an explicit distinction)? 

 In how far does this lead to types of concepts? 

The data collection for the analyses we share in this paper, focused on 135 written notes 

by PSTs in geometry courses at the end of their first year at a German university in 

2022. During their second semester, the terms line, ray and section (German: Gerade, 

Strahl, Strecke) had not been addressed systematically, and no formal definitions had 

been negotiated. Yet, the terms might have been used when the PSTs talked informally 

about shapes and solids. With only general advice and without any further instruction, 

the PSTs were asked: “Please take a note: What do you understand by line (ray, 

section)?” Subsequently, the notes were negotiated in a communicative setting. Here, 

the PSTs presented their individual notes to peers and were able to revise the notes in 

the sense of collaboratively elaborated versions.  

A research group, consisting of experienced and novice researchers (other PSTs shortly 

before final exams), developed a coding guideline mainly according to methods of 

Grounded Theory (Corbin & Strauss, 2015). Trying to detect qualitative aspects of the 

PSTs’ individual understanding concerning line, ray and sections, the interpretation, 

coding and contrasting comparison of the data was supported by MAXQDA (2022). 

Furthermore, the research group passed phases of consensual validation (Beck & 

Maier, 1994) during their weekly interpretation sessions, resp. when using and 

elaborating the coding guideline for the analysis of these data sets.  

For the analyses we share here, we focus on the initially taken individual notes and on 

the data we collected in this very special sample (PSTs in geometry classes with a 

geometry framing as a setting for the query). Yet, further and ongoing studies which 

are not reported here due to space limitations, widen our findings (e. g. data collection 

with primary students in grades 1 to 4, adults in non-academic settings, tasks including 

activities of drawing or sorting, using diagrams and digital technology). Initial 

inspiration for these and subsequent data collections was taken from earlier studies 

with secondary students with test items concerning the understanding of lines and 
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sections (Vollrath, 1998). For the analyses of this additional data, we took intercoder-

reliability into account.  

EXCERPTS FROM THE RESULTS 

Codes and categories which emerged from the data turned out to be either more general 

or quite specific for line, ray or section. Beginning with the more specific findings 

concerning aspects the PSTs used in written notes to characterize their individual 

concepts, table 1 presents examples of aspects which were mentioned most frequently 

when PSTs offered notes for section (quotes throughout data translated by the authors). 

Table 1:  What is mentioned by PSTs when taking notes on section? 

aspect exemplary quotes from PSTs 

beginning and end  has beginning and end (P37);  

line with defined beginning point and end (P39) 

limitations line limited by 2 points; limits on both sides (P13; P33) 

measuring distance from a to b; length between 2 points (P43; P33) 

 

Although these codings seem to resemble, they sometimes occurred combined in the 

sense of distinct aspects which are obviously considered to offer complementary details 

(e. g. in the notes by P33). Yet, they did not necessarily occur coincidently, but were 

mainly found in seperate notes. Most frequently mentioned aspects for line which are 

displayed in table 2 spotted light on further aspects the PSTs referred to.  

Table 2:  What is mentioned by PSTs when taking notes on line? 

aspect exemplary quotes from PSTs 

dimension and shape line without curvature (P45); line without curves (P22); 

way without bending (P17); straight line (P16) 

infinity (runs) endlessly long (P23; P26), lies in space and can be 

endlessly long (P14); not limited by anything (P44) 

 

When taking notes on ray, PSTs most frequently mentioned the absence of aspects 

which were stated for the other two concepts at the same time, namely the absence of 

an ending point (in contrast to section) and/or the absence of infinity (in contrast to 

line). In other words, identifying limitations and infinity seem to span two arbitrary 

aspects which are used deliberately in the notes which are underpinned by the absence 

of aspects. In addition, we found that the absence of aspects was also addressed to 

distinguish line from section (absence of beginning and end; e. g. P9). Yet, the absence 

of infinity was never mentioned to clarify the concept section. Most of these notes 

contain traces of Hilbert`s axioms of incidence and betweenness (see above), which 

PSTs obviously remind from their own textbooks in school. In addition and getting 
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back to our second question regarding the distinction between concepts, we can state 

that relationships are addressed either explicitely or via stating the absence of features 

(which are mentioned for one or two of the other concepts). 

Furthermore, the aspect dimension and shape was never re-considered in our sample 

for the concept ray if it was mentioned for the other concepts at all, but associations 

occurred among notes for all concepts. For example, PSTs reminded themselves of the 

axes of the coordinate system or the time line and referred to the representation of the 

number line for the concept ray. The concept section was sometimes associated with a 

path which illustrates that the PSTs’ not only included descriptions of a visualized 

static scenery, but used the visualization of movement (e. g. imagining a movement of 

themselves or imagining points “running” along a ray etc.) 

P43: When I move from one point to another one, then the track I have covered 

is the section.   

Regarding the question of different types of concepts, we found differences concerning 

the quality of the selected aspects and concerning the individual ways which were used 

to compose various aspects throughout the notes. Most frequently, the notes concerning 

the concepts line, ray and section could be characterized as:  

 single-feature-oriented, with a tendency to add single aspects which were 

regarded as either complementary but often included redundancies, 

 genetic-oriented, with a focus on constructive processes during the drawing of a 

one-dimensional representative, 

 relation-oriented in various entanglements, mentioning shared aspects but 

distinguishing one concept from the other two concepts (or distinguishing one 

concept from only one of the other two) by specializing and/or contrasting (e. g. 

the absence of features, see above)  

Yet, in some of the interrelating considerations we identified potential obstacles, as one 

or two of the concepts for line, ray or section might be adequate or at least promising 

whereas a related concept is not connected in an appropriate way: 

P5: A section is the distance from one point to another one. A ray is a section 

which is directed from one point to a certain path. 

P14: Ray illustrates that a line goes into a certain direction. 

Surprisingly, neither the absence of infinity nor the quantitative aspect shortest 

connection between two points was mentioned for section by any of the PSTs in our 

sample. Instead, two quotes indicated severe misunderstandings or at least insecurity: 

P17:  A section has a starting point & no ending point ( does not have to be 

straight?) 

P20:  A section describes the connection between two to several points. This 

[connection] does not need to be straight. 
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DISCUSSION, CONCLUSIONS AND OUTLOOK 

Pursuing a qualitative empirical research paradigm, we constantly widened our 

perspective and shifted from stating the (non-)existence of formally correct and 

complete definitions to a closer look at the potential of individual wordings and the 

interpretation of references which we consider to be useful for teaching and learning 

in the classroom. Hence, we discovered similarities to the findings reported by Vollrath 

(1998) concerning grade 7/8 students’ concepts of line and section (see tables 1 and 2). 

Connecting the concepts line and section with phenomena in real life (e. g. infinite 

lines in the universe, ruler, sections on a map; Vollrath, 1998, p. 25) also resembled 

our findings, although associations throughout our data were more likely restricted to 

mathematical contexts. Yet, according to our notion, these discoveries demand for an 

interpretation which reaches beyond (normative) expectations. We rather suggest to 

consider in detail how individual associations might be worth considering for the work 

in the classroom in the sense of adequate reference frames (Steinbring, 2005). 

Consequently and in a subsequent step, PSTs could and should discuss (resp. explore 

in diagnostic settings) to what extend these associations might be useful or obstructive 

for (young) students. 

Furthermore, our analyses suggest that the concept ray plays an important role in the 

sense of interlinking the concepts line and section. This raises the question if addressing 

and exploring the relationship between all three concepts might provide a promising 

approach to foster PSTs’ (and students’) understanding. First analyses of data we 

gained from communicative settings with peer PSTs who negotiated and cooperatively 

revised their notes (see methods) point into that direction and suggest that 

communicative arrangements might help the individual PST to establish stronger 

reference contexts: Throughout negotiations, core contexts are identified with the aim 

to find colliding aspects or misunderstandings which then vanish in the PST-teams’ 

revised notes. These enclose features of relation-oriented descriptions, which should 

be contrasted to single-feature-oriented and/or genetic-oriented descriptions as PSTs 

reflect and enrich their understanding, later on. 

The study shows that acknowledging and appreciating aspects of individual concepts 

is meaningful and productive. We consciously limit this statement to the concepts line, 

ray and segment, but consider it quite possible that such an approach is also fruitful for 

other mathematical terms, especially for concepts in geometry. 
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THE ROLE OF LANGUAGE-AS-RESOURCE AND LANGUAGE-

AS-POLITICAL IN COLLEGE MATHEMATICS COURSES 
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This paper examines the role of language in shaping multilingual students’ experiences 

navigating undergraduate mathematics courses. Drawing from what has been learned 

at the K-12 level, this paper uses the metaphors language-as-resource and language-

as-political to capture the tensions that may exist in language diverse classrooms. Data 

stems from interviews with 28 multilingual students (whose home languages differ from 

the language of instruction), enrolled in introductory college mathematics courses. 

Findings demonstrate how students intentionally leveraged their home language as a 

resource in their mathematics courses, particularly as a resource for establishing 

community. At the same time, results highlight the role language played in students’ 

marginalizing experiences in the classroom.  

INTRODUCTION 

College mathematics classrooms are becoming more linguistically diverse given the 

context of globalization and migration. In these spaces, students often bring different 

language resources that can be used to support their learning of mathematics. At the 

same time, languages carry different statuses in society (Civil, 2008), and students’ 

language resources may not be equally valorized in the classroom (Planas & Civil, 

2013). In the United States, discourses about English being the language of instruction 

may position native English speakers as the ideal language user in educational spaces 

(Subtirelu, 2015). Given this landscape, creating an equitable and inclusive classroom 

environment requires knowledge of how language can be leveraged to support college 

students’ mathematical learning. It also requires recognition of the interconnectedness 

of language and status in the classroom. 

The goal of this paper is to examine the role of language in undergraduate mathematics 

courses. Despite what has been learned at the K-12 level surrounding language and 

mathematics education (Barwell et al., 2016), little has been learned about supporting 

linguistic diversity in college math classrooms. Drawing from K-12 research, this paper 

explores if and how language serves as a resource for college students when navigating 

their mathematics courses. It also explores to what extent language shapes the political 

contexts of the classroom.  

THEORETICAL FRAMEWORK 

Planas and Civil (2013) present a framework for conceptualizing language in 

secondary mathematics classrooms using the metaphors language-as-resource and 

language-as-political. Language-as-resource represents the potential language has to 

facilitate multilingual students’ learning of mathematics. Language-as-political 
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represents the role that language plays in assigning status in the classroom, where some 

students are privileged are others are marginalized based on their language identity. 

Planas and Civil demonstrate this framework’s relevance in understanding students’ 

experience and the tensions that may emerge in multilingual classrooms. In the 

following sections, each metaphor is discussed and contextualized in the literature. 

Language-as-resource 

Language-as-resource is grounded in a sociocultural perspective, which emphasizes 

the role of cultural tools in the process of learning (Lerman, 2000). From this 

perspective, language is seen as more than just vocabulary and grammar. Rather, it is 

seen as a cultural tool for thinking, communicating, socializing, and making sense of 

the world (Moschkovich, 1999). Therefore, language-as-resource recognizes students’ 

home languages as valuable tools for fostering mathematical learning. Studies in 

secondary mathematics education have examined how multilingual students use 

language, along with other resources like gesturing, to meaningfully engage in 

mathematical discussions during class (Moschkovich, 1999; Planas & Civil, 2013).  

In addition, research has examined the ways that multilingual students use 

translanguaging to make sense of mathematics (Zahner & Moschkovich, 2011). 

Translanguaging captures how multilingual students often communicate by 

interweaving different linguistic resources (García, 2009). In the context of the math 

classroom, Planas (2021) defines translanguaging as “the creative use of language for 

mathematics teaching and learning as classroom participants make sense of their 

worlds and identities” (p. 10). Studies have shown that students use translanguaging in 

deliberate ways to support their cognitive and social engagement while working on 

mathematical tasks with peers (Planas, 2021; Zahner & Moschkovich, 2011).     

Language-as-political 

Language-as-political stems from a sociopolitical perspective on learning (Gutiérrez, 

2013), emphasizing the role of language, power, and identity in shaping students’ 

learning experiences. Planas & Civil (2013) highlight an example of language as 

political by discussing the idea of language valorization. This encapsulates how certain 

languages, like English, are positioned as being more valuable or useful than other 

languages. Native speakers of English are also often positioned as superior language 

users (Shuck, 2006). As such, linguistic features, like accent, can be used to signify 

outsider status. Furthermore, native speakers may feel less responsibile to 

communicate with non-native speakers when there are gaps in understanding during 

an interaction (Subtirelu, 2015). These political realities can shape how multilingual 

students negotiate identity and power in the classroom when interacting with others. 

A growing body of research at the K-12 level has foreground a sociopolitical 

perspective on language. One of the main findings across the literature suggests that 

multilingual students tend to participate less during whole class discussions (Civil, 

2008; Gorgorió & Planas, 2001; Planas & Civil, 2013). Planas & Civil (2013) 

document how bilingual students engaged in rich mathematical sense making using 
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their home language in a group setting. However, during whole class discussions, 

students felt the expectation that their contributions must always be in the language of 

instruction. This made them feel less comfortable participating. Students also felt 

pressure to speak in the language of instruction without mistakes. As a result, students’ 

focus on grammar often interrupted their focus on mathematics. These examples 

demonstrate how language-as-political can impact on classroom participation.  

Research Questions 

The research questions that this study addresses are: (1) In what ways did 

undergraduate students use their home languages as a resource for learning in their 

undergraduate mathematics courses? (2) In what ways did the political nature of 

language impact students’ experiences learning mathematics? 

METHODS 

The data analyzed in this paper stems from interviews with 28 multilingual students, 

whose home languages differed from the language of instruction (English). The 

languages represented in the sample included: Arabic (3), Bangla (3), Chinese (4), 

Farsi (1), Hindi (4), Korean (1), Spanish (9), Uzbek (1), and Vietnamese (2). Students 

either identified as being international students (18), immigrants (2), refugees (2), or 

transnational students (6), who lived near the border with Mexico and regularly moved 

between countries. In addition to their home language, students were selected for 

participation in this study based on their enrolment in either a pre-calculus or calculus 

course at the university where this study was conducted. The university was a large 

research university in the Southwestern, United States and a designated Hispanic-

serving institution. 

Semi-structured interviews were completed with each participant, lasting between one 

to two hours. Interviews focused on understanding students’ experiences in their 

mathematics course and how language shaped these experiences. Students received 

$30 for completing an interview. 

All interviews were transcribed in full and assigned pseudonyms. Transcripts were 

carefully read over and analyzed using a thematic analysis approach (Braun & Clark, 

2006). This approach consisted of an initial round of content-driven coding, followed 

by a second round of data-driven coding. The content-driven coding focused on 

identifying instances in the data that exemplified language-as-resource and language-

as-political. Definitions of these codes were developed based on the definitions in 

Planas and Civil (2013).  

A second round of coding focused on identifying emergent themes among the 

examples of language-as-resource and language-as-political. An open coding system 

was used and descriptors for each code was developed. The final step of analysis 

focused on comparing, contrasting, and connecting codes, identifying themes across 

the data, and selecting quotes that were representative of each theme. The quotations 

included in this paper have been modified slightly for clarity. The main modification 
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consisted of removing partially repeated phrases. No modification impacted the 

meaning or feel of the quotes.   

RESULTS 

Language-as-resource 

Students viewed language as a valuable resource that supported their learning and 

course engagement. By knowing more than one language, students felt that they could 

(1) be more flexible and creative when problem-solving, (2) have access to more 

resources like YouTube videos and textbooks (in both English and their home 

language), and (3) use language to connect with others in their course. This paper 

focuses on illustrating (3), as it was the most prevalent theme from the data. To do this, 

examples are shared from interviews with two students, Laura and Abhinav. These 

examples highlight the role of language in building meaningful connections with others 

and the positive impact that they had on students’ course experiences. 

Laura was enrolled in calculus I and was a local student, whose home language was 

Spanish. At first, Laura found it difficult to “click” with other students in her section 

and felt like they were not interested in connecting with her. Halfway through the 

semester, Laura started working on homework outside of class with a classmate, Javier. 

At one point, they worked on homework together over FaceTime since they were both 

at their homes. Laura recalled this experience, by sharing: 

I heard people in the background speaking Spanish, and then I heard a telenovela on, and 

I was like ‘hold on a minute, you’re telling me that you’re Mexican?’ and he was like 

‘yeah’, and I was like ‘whoa, this changes everything’. 

Laura had wondered if Javier spoke Spanish, but “[hearing a telenovela] confirmed it”. 

After this, Laura felt that her experience in calculus would be “a little bit better now”.  

Laura and Javier began regularly working on math homework together and helping 

each other learn: “I made a friend and I’m okay with the one friend that I have, because 

I know if I need help on a math problem, he’ll help me”. Laura and Javier’s shared 

identity and background as Spanish speakers allowed them to develop “more of a 

connection, click” and support each other in valuable ways throughout the course. 

Spanish not only facilitated their connection, but also served as a resource allowing 

them to communicate better. For example, Laura was able to utilize translanguaging 

when discussing mathematical ideas: “It’s kind of second nature now. We just flip the 

switch and go from English to Spanish or Spanish to English. It’s never just one thing, 

it’s both”. Laura did not use translanguaging because she was unable to sustain a 

conversation in one language. Instead, she described it as the natural way she 

communicates: it “flows better” and is more “comfortable”.  

In addition, being able to translanguage while working on mathematics allowed Javier 

and Laura to communicate more quickly, add humour, and “lighten up the 

atmosphere”. This was particularly important to Laura, since doing mathematics often 

felt intimidating. Translanguaging helped created a space where Laura felt confident 
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and comfortable engaging with the course material, in a way that validated her 

linguistic resources.  

For Abhinav, an international student from India, language also allowed him to connect 

with other Hindi speaking students in his calculus II course: 

Whenever I spot an Indian in the class, I feel a kind of connection with him. I immediately 

start thinking that he’s my friend /…/ And whenever I talk to him, then I use Hindi /…/ So 

bilingualism has introduced that concept of familiarity.   

In addition, language helped establish a close relationship between Abhinav and his 

calculus instructor, who spoke Hindi. Abhinav felt “more of a connection” with his 

instructor and saw him as a mentor he would “keep in touch with” after the semester 

ended. Abhinav regularly attended office hours, which was not a common practice 

among the other students interviewed in this study.  

Moreover, communicating with his instructor felt easier, given their shared language 

background. For example, Abhinav did not feel “comfortable” speaking English in the 

classroom; however, speaking English with his professor felt “more comfortable”:   

In front of a native speaker, I'm always conscious like, am I saying this correctly? Am I 

making a mistake here? /…/ But in front of him, I'm like, okay, he will understand what 

I'm gonna say. I don't need to be like super correct when speaking to him /…/ It makes it 

easier for me to communicate with him. 

Abhinav was also able to speak Hindi during office hours. This created an affirming 

space where Abhinav could leverage his home language in his learning of mathematics. 

Laura and Abhinav’s experiences highlight the role of language as a social resource, 

having the potential to help students build community that can support their learning 

and engagement in their mathematics courses. 

Language-as-political 

Student interviews also revealed ways that language was political in the undergraduate 

mathematics classroom and the tangible impact that that had on students’ course 

experiences. Findings demonstrate (1) students’ beliefs that only English should be 

used in the classroom, (2) that speaking English in a way that signifies non-native 

speaker status (i.e., speaking with an accent or making mistakes) would be viewed 

unfavourably in the classroom, and (3) that native speakers were less likely to 

meaningfully engage with the contributions of non-native speakers. This paper focuses 

on illustrating (3), by sharing examples from two students, Dep and Anita.    

Dep was an international student from Vietnam taking calculus I. When Dep tried to 

participate during class, her peers and instructor often made her feel like they did not 

“have time” to “understand” what she was trying to say: “I tried to talking with them 

and like no one responds, so I stop talking”. Dep recounted an experience where she 

asked her group: “anybody working on the question three, I have a problem with that.” 

No one responded to her, which made her feel like her attempts at communication were 
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unintelligible. This also caused her to feel embarrassed: “I feel embarrassing because 

I’m thinking that maybe they don’t understand what I am saying”.  

From talking with Dep during the interview, it was clear that she was an effective 

communicator in English. However, it seemed that her group members were not 

willing to put in effort to meaningfully engage with her contributions. Instead of 

listening and asking clarifying questions when needed, they ignored her contributions 

and made her feel like she was taking up time.  

Dep also experienced similar behavior from her instructor: 

We [multilingual students] have different languages so there are some words we don’t 

[know]. We don’t know that much vocabulary compared to domestic students. So we are 

trying to find words to tell him. Sometimes I think he don’t have a lot of time talking with 

us. So that’s quite a problem.  

The unwillingness of others to meaningfully engage in communication with Dep had 

tangible impacts on her participation. Being ignored by her group members made her 

decide to “stop talking” during class, even though she valued participating. Dep 

ultimately ended up dropping the course, which demonstrates how the politics of 

language can impact students’ academic trajectories in math or STEM.   

Anita, an immigrant from Guatemala, had similar experiences working in groups in her 

calculus I course. Each week, Anita’s group had to take a timed group quiz, which 

required them to work together. The quizzes were heavily weighted. When Anita asked 

questions during the quiz, she was often positioned as “taking up time” and distracting 

the group from completing the quiz:  

Sometimes I wouldn’t know how to say a word and so sometimes my English would go 

like really bad, where they wouldn’t know what I was talking about. And they’re like ‘I’m 

sorry I don’t understand what you’re saying’. And they’re like ‘okay, well maybe forget 

your question and let’s just actually get to the problem’.  

I keep retrying to say what I meant, but he just gave up like ‘I’m sorry I don’t understand 

what you’re talking about’. 

As these quotes evidence, Anita’s group members positioned her questions as not 

relevant to the problem they were working on. They also seemed to reject their role in 

making sure Anita’s contributions were understood (e.g., by asking questions, giving 

Anita space to rephrase her ideas, etc.).  

Dep described being ignored by group members. In contrast, Anita’s group members 

were often rude and belittling when they did not understand what she was trying to 

convey. Anita shared that “one student was like ‘I’m sorry but we really need to get 

going’ but some others were like ‘dude, stop, we can’t do this’. And then that time I 

would feel like I’m so worthless”. In her calculus course, Anita felt like “an outcast” 

and woke up “heavier” on days she knew she had class. The marginalization that Anita 

experienced primarily stemmed from her peers’ unwillingness to meaningfully engage 

with her verbal contributions during group work. Like Dep, Anita also did not finish 
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the course and had to retake it over the summer, luckily with classmates who were 

kinder and more supportive.  

DISCUSSION 

The goal of this paper was to better understand the role of language in undergraduate 

mathematics courses. From interviews with multilingual college students, findings 

demonstrated the relevance of language-as-resource and language-as-political in post-

secondary mathematics education contexts. On one hand, students clearly viewed their 

home language as a valuable resource, particularly for fostering social connections. 

Students leveraged language and their language identities to build community within 

their math courses. These communities became students’ main sources of support in 

the course and the main way that they engaged with others. These communities also 

became spaces in their mathematics courses that affirmed their linguistic and cultural 

identities. By findings social resources that validated their home language, students 

also created spaces where learning and communicating about mathematics felt 

comfortable.   

At the same time, students shared experiences in the classroom that demonstrated 

language-as-political. These examples often took place during group work. This is not 

surprising, since group work opens the classroom space for interactions and often 

makes identities more visible (Takeuchi et al., 2019). Findings exemplified how, 

during group work, native speakers did not always meaningfully engage with the 

contributions of non-native speakers. Students described instances where their 

contributions were ignored or belittled. Over time, these experiences inhibited their 

participation and sense of belonging in the course. This had tangible implications on 

students’ experiences studying mathematics at the university.    

More work is needed to explore how to better support language diversity in college 

mathematics classroom. Research can examine how to create more spaces where 

students can use their home language to learn mathematics (e.g., bilingual study 

sessions, recitation sections, study groups, etc.). These spaces could also have the 

potential to help students connect with peers and build community around a shared 

language identity. In addition, future research is needs which explores how to create 

classrooms norms that encourage equitable communicative responsibility. This 

describes the responsibility all speakers should assume to work together to establish 

mutual understanding during a social interaction (Subtirelu, 2015). Recognizing 

language as a resource, while also recognizing the sociopolitical context of the 

classroom, can help instructors be better equipped to build inclusive and equitable 

college mathematics classroom in this growing multilingual educational landscape.  
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EMBODIED CURIOSITY: A FRAMEWORK FOR 

MATHEMATICAL MEANING-MAKING  

Sheree Rodney  

Ontario Tech University 

This research investigates the role of curiosity and Geometer’s Sketchpad in 

developing mathematical meanings with grade nine students (14 -15years old). I 

introduce Embodied Curiosity, a theoretical framework that speaks to the connectivity 

between trait-curiosity and digital technology, and use it to exemplify the attributes of 

learning that can be interpreted as observable curiosity while providing insights about 

learners’ mathematical meaning-making. The research findings show the body links 

curiosity to technology in ways that provide opportunities for mathematical meanings 

to be constructed. 

Keywords: curiosity, digital technology, embodiment, mathematical meaning    

INTRODUCTION 

There is high research interest in how to encourage students’ meaning-making using 

technology (Schnaider & Gu 2022; Manshadi, 2021) and more so on how to foster 

students’ meaning-making as teachers in mathematics (Brodie, 2010; Jaworski, 2015). 

The basis of this research is to illustrate how we can gain insights into learners’ 

meaning-making processes when the focus is on embodied learning. This study 

introduces a new theoretical framework which I called Embodied Curiosity and uses 

data from one episode (extracted from a wider data pool) to validate the framework as 

a potential theoretical consideration for mathematics learning. Additionally, I show 

how the Embodied Curiosity framework is conceptualized using descriptions of its 

main principles, and visualization of the interconnectedness among the fundamental 

elements on which the framework is grounded. 

In this study, curiosity, or trait-curiosity, is reconceptualized not solely as an intrinsic 

motivation but rather as a relationship with the external. I have adopted Loewenstein’s 

(1994) curiosity definition that curiosity is “as a form of cognitively induced 

deprivation that arises from a gap in knowledge or understanding” (p. 75). Implying 

that curiosity is a realization of the imbalance between what we know and what we 

want to know. He draws attention to how problematic it is to theorize about curiosity 

and argues that previous definitions did not capture certain significant characteristics 

of it. One such example is its intensity (the pain of not having information) and another, 

is its transience (how short-lived curiosity is). Furthermore, I take mathematical 

meanings to be the product of students’ beliefs, use of symbols, verbalisation, visual 

representations, and making connections to mathematical concepts while doing 

mathematics. The Geometer’s Sketchpad was specifically chosen for this research 

because of the dynamic visualization and affordances it provides. The research 

addresses the following research questions: To what extent does the body triggers 
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curiosity? And what insights can be gained about learners’ meaning-making in 

mathematics through engagements with Sketchpad?  

CONTEXT AND BACKGROUND 

Curiosity is immeasurable and cannot be seen with the naked eye. For this reason, it 

has been problematic to define. In many researches, curiosity is seen as an internal 

motive that influences human behaviour and fosters active learning (Oudeyer, Gottlieb 

& Lopes, 2016; Kidd & Hayden, 2015). However, Berlyne (1954) suggests two types 

of curiosities, one that increases the perception of a stimulus (perceptual or sensation-

seeking) and the other that reinforces knowledge (epistemic or knowledge-seeking). 

He argues that these two types of curiosities inform not only how we become curious, 

but also, why we are curious. Berlyne’s dualistic (epistemic vs perceptual) approach is 

meaningful to this research because it implies that curiosity is motivated internally and 

externally which sets up an intersectional space for curiosity and digital technology–a 

space that is of interest to this research. 

Sketchpad 

Sketchpad is dynamic geometry software (DGS) that combines technology and 

mathematics in teaching geometry. The software has been used to create, explore and 

analyze a wide range of mathematical concepts in algebra, geometry, and calculus 

among other mathematical areas (Bakar, Tarmizi, Ayub & Yunus, 2009). It includes 

Euclidean geometry tools such as point, circle, polygonal shapes, lines, line segment, 

and line ray, all of which are used to produce geometric drawings and constructions. 

Sketchpad is designed to encourage students to discover how geometrical shapes are 

related, which contributes to the development of their own mathematical meanings. 

Due to the dynamic nature of the software, learners experience hands-on manipulation 

of mathematical concepts while identifying patterns, making conjectures, and 

producing proofs at a faster rate than they would in static environments. Furthermore, 

the draggability feature of the software allows the learner to examine examples and 

non-examples of geometric constructions on the same screen at the same time. In 

research conducted by Arzarello et. al’s (2002) who analyzed learner’s dragging 

practices, found that learners engage in certain dragging modalities when they perform 

a geometric tasks using DGS: Wandering dragging (aimlessly moving the points on 

the screen), Bound dragging (moving a point that is linked to an object), Guided 

dragging (dragging the basic points to give it a particular shape), Dummy Locus 

Dragging (dragging a point to maintain a previously discovered property), Line 

Dragging (drawing new points to keep the shape of the figure), Linked Dragging 

(connecting a point to an object and attaching it to the object), and Dragging Test 

(moving draggable points to test if the shape main its properties). 

Bearing these dragging practices in mind, I have extended Arzarello et. al’s modalities 

to include curious dragging. Curious dragging includes these modalities with 

something extra– temporality, speed, and emotion. For example, Arzarello et. al’s 

bound dragging occurs when the learner moves a constructed point that is linked to an 
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object. If this is done in a slow meticulous manner or fast with excitement it can be 

interpreted as curious dragging. I demonstrate this further in the analysis of the episode.  

Mathematical-Meaning Making 

According to Radford et. al (2011), the learning of mathematical concepts is 

consistently changing which creates space for the development of creative and critical 

involvement in the way children learn. This shifts the focus away from traditionally 

recognizing the teacher as the sole dispenser of knowledge, to embrace the fact that 

learners are capable of constructing their own knowledge. Based on this, there is a 

constant need to better understand how meanings are constructed in mathematics. To 

this end, the mathematical meaning-making process involves the way learners think 

and communicate about mathematical concepts when they interact in a social context. 

Radford et. al suggest that this can be “accomplish[ed] through, written, oral, bodily, 

and other signs” (p.150). Since this research is concerned with the understanding of 

geometric terms relating to the circle theorem, the mathematical meaning-making 

process emphasizes how learners come to understand the connections between 

concepts pertaining to the circle. I argue that these meanings emerged both explicitly 

and implicitly providing implications for pedagogical and research interests. 

THEORETICAL FRAMEWORK 

Researchers have proposed that the body is more than skin-bound and plays an 

important role in learning mathematics. For example, Gol Tabaghi & Sinclair (2013) 

suggest that learning takes place when speech, body movement, gestures, and material 

work together in a harmonious relationship. Similarly, Embodied Curiosity, the 

theoretical framework that informs this study, focuses on a network of four 

fundamental elements (curiosity, body movement, digital technology, and 

mathematical meanings). The framework is taken as a stratigraphic structure (Figure 

1) with semi-permeable layers similar to 

that of a biological cell. The layer of 

curiosity is considered the main 

component and starting point of the 

structure and is usually triggered by 

students’ wondering or uncertainty. The 

semi-permeable nature of the layers 

allows for the distinction of examples 

and non-examples of instances or 

factors that connects each layer to the other.  Figure 1: The Embodied Curiosity Model 

For example, while visual fixation may be considered an emerging curiosity, its 

movement throughout the framework could be restricted because visual fixation is also 

associated with other emotions like interest and attentiveness. Likewise, a learner 

sitting in an upward position while clicking the mouse cannot be considered emerging 

curiosity unless this movement is followed by a lean forward while attending to 

something specific with the technology. This implies that in order for curiosity to be 
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triggered, developed, and sustained there must be a combination of factors and free 

movement of certain factors from one layer to the other. 

In this model, the learner demonstrates curiosity when they ask questions that imply a 

gap in their knowledge or express uncertainty about a concept. When this occurs the 

learner usually seeks to fill that gap through exploration with the technology. In doing 

so, the body reacts in certain ways creating an interweaving connection among 

curiosity, body movement, and technology.  I call this connection relational-curiosity, 

which is the first principle of the Embodied Curiosity framework. It is important to 

note that this type of curiosity is not controlled by the learner, but instead, relies heavily 

on both the learner and technology working hand-in-hand. Due to the displacement of 

learners from the central position within an interaction, the second principle of the 

Embodied Curiosity framework is that it is temporal and emergent. This means 

Embodied Curiosity is unplanned and emerges in real-time, while the third principle 

has to do with Sketchpad’s dragging capability. I suggest that learners engage in a 

dragging modality called curious dragging. This type of modality is an extension of 

Arzarello et. al dragging modalities and it also involves time, speed, and emotions. 

Based on the model, when a learner experiences relational-curiosity two types of 

mathematical meanings emerge; those that are explicit (verbalized by the learners) and 

implicit, which are not clearly expressed. Explicit meanings symbolize that 

mathematical meanings are constructed while the implicit meanings can be used by the 

teacher to resuscitate the Embodied Curiosity process.  

METHODOLOGY 

Video recordings of classroom observations and students’ work from a high school 

located in the Caribbean form part of the data used in this study. The school is referred 

to as School Y for anonymity and was purposely selected because of its technology-

rich environment– a fully equipped computer lab with at least 30 computers. The 

participants (pseudonyms: Kyle, Jeff, and Ali) were randomly selected from a class of 

grade nine students (ages 14 and 15 years old).  At the time of the research, the students 

were beginning the geometry section of the mathematics curriculum and the topic 

circle geometry theorem was chosen to accommodate the research. Furthermore, the 

students had prior exposure to geometry in previous grades and were already familiar 

with the basic properties of the circle, albeit in a static environment. However, they 

were doing circle geometry theorem for the first time, and most significantly, both the 

teacher and the students were using Sketchpad for the first time as well.  

The classroom observations were done over a three-week period, where students 

engaged in tasks using only Sketchpad. They were allowed to collaborate with each 

other, either working on individual computers or by sharing one computer in pairs or 

triads. The duration of the classroom sessions was forty-five minutes and the classroom 

interactions were video recorded as well as students’ work was saved and retrieved 

from the schools’ server after each session. The mathematics curriculum is offered 

approximately five times per week. However, I was accommodated for two sessions 
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(90 minutes) per week in the school. During the non-research sessions, the teacher 

engages students in simple geometry tasks, such as constructing and classifying 

triangles based on their properties. In this way, both teachers and students became more 

proficient in using Sketchpad and the students were able to reinforce the knowledge 

they may have experienced in previous lessons. Data from video-recorded classroom 

sessions and students’ work were analyzed in a continuous, iterative manner to 

ascertain how and when curiosity was triggered after which, episodes were interpreted 

for evidence of relational-curiosity (students’ uncertainty/ wondering-body movement-

Sketchpad). Finally, these selected episodes were analyzed to locate scenarios when 

mathematical meanings emerged and the episode presented in this research is one of 

eight examples that were identified.  

RESULTS AND ANALYSIS 

The data were analyzed with an eye on how curiosity could be identified and leveraged 

for mathematical meaning-making, as well as, the role of Sketchpad and its affordances 

in the process. The data was examined through the stratigraphic lens of the Embodied 

Curiosity process with consideration on the three main principles. However, the focus 

of the analysis in this study is on the explicit meanings and not the implicit ones. The 

episode represented in this research was selected from six similar examples. 

Episode one: The smallest finger holds the biggest secret. 

Kyle, Jeff and Eli, are working together on a task using the shared-computer 

arrangement. They had been given the task to identify the type of triangle formed when 

two random points on the circumference are connected to the centre point of the circle. 

This is their fifth session and their interaction with Sketchpad has improved 

significantly. In performing this task, Jeff, performs the construction in the following 

order; circle, two random points on the circumference and then two line segments 

connecting centre point and points on the circumference. This sequential action 

produces an incomplete triangle inscribed in the circle shown in Figure 2 [a]. The 

children seem satisfied that they constructed a triangle in the circle. 

 

Figure 2: [a] Incomplete triangle [b] Completed triangle 

After a few minutes had pass, Kyle, who is sitting left of the computer (Figure 3), 

invites his teacher to their computer station and asks, “Sir, something like this?” 

Implying that Kyle is uncertain about the construction. His teacher notices that the 

triangle is incomplete (only sides AC and BC were drawn) and said, “But – but it needs 

one more <pause> that – that’s a triangle now?” The teacher’s pause mid-sentence is 

an indication that he refrains from telling them exactly what was missing. 
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Figure 3: Students exploring the isosceles triangle 

Kyle then leans forward (Figure 3[a]) to investigate the missing information while Jeff 

(centre) and Eli (right) are visually fixated on the screen. In keeping with the Embodied 

Curiosity framework Kyles’ uncertainty and leaning forward action implies that 

curiosity is triggered and the process of relational-curiosity is activated. The missing 

side of the triangle signifies the gap in their knowledge. However, Jeff and Eli’s visual 

fixation is restricted because there is no telling if they are curious. As such, Kyle was 

able to progress from one layer of the model to the other but the others did not. It would 

appear that the students conceive arc AB as one side of the triangle. In an attempt to 

fill this gap, Kyle used his pinky finger to perform a tracing action on the screen (Figure 

3 [b]). This action shows the connection between the body and digital technology, but 

most significantly, the development of the idea that the third side of the triangle should 

be a line segment rather than a curved arc as it appears in Figure 2 [a]. This action also 

helps Jeff and Eli to complete the diagram seen in Figure 2[b]. With the completed 

triangle on the screen, Kyle beckoned to his teacher a second time to join them at their 

computer station. This time, after looking at the construction the teacher asked:  

1.Teacher:  “So how will you know what type of triangle is that? What do you notice? 

2. Eli:  The sides are equal (hovering the cursor over the two radii) 

3.Teacher:  hmmm~~ and when two sides are equal what kind of triangle is that? 

4. Kyle:  <contemplating out load> equilateral ~~scalene (while using his pinky 
finger to trace several triangles on the top of his desk) What is the name of 
this triangle again? 

 

Figure 4: Kyle’s finger motion drawing the scalene triangle on the desk top  

The teacher’s leading question, “What type of triangle is that?” (Turn 1), and the 

probing question “what do you notice?” (Turn 1), helped Kyle to re-examine his 

previous knowledge. Again, he used his pinky finger (Figure 4), this time, to draw 

several triangles on the desk while he decides on which triangle is on the screen (Turn 

4). There seemed to be an internal conflict with associating the vocabulary word with 

the property of the triangle. Again, this is an indication that there is a knowledge gap 
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and that Kyle is uncertain about which triangle is on the screen. On the surface level, 

Kyle’s knowledge seems to shift focus from the necessary; knowledge he can arrive at 

from previous knowledge (the two sides having the same length), to the arbitrary; 

knowledge he needs help with (the vocabulary word) as explained by Hewitt (1999). 

After a few minutes had passed, Eli decides to measure the attributes of the triangle “to 

find out if the sides are equal” and test her conjecture in Turn 2. Identifying that this 

was so, Kyle quickly dragged point A along the circumference, making point B 

invariant and performed Arzarello et. al’s dummy locus dragging, that is, dragging a 

point to maintain a previously discovered property. Upon doing so, they recognise that 

the side lengths and two angles maintain equality throughout (Figure 2 [b]). In addition, 

Kyle engaged in curious dragging as his dragging motion is swift, and with 

excitement as the magnitude of the side lengths and angular measures changes. 

However, when point A coincides with point B on the circumference, Kyle is 

meticulous and cautious in his action as if he is concerned about disrupting the 

properties and conjectures he already discovered. The students are able to say the sides 

and angles were equal but unable to attach the name of the triangle to the properties.  

DISCUSSION 

The purpose of this study was to introduce a new way of thinking about how curiosity 

can be leveraged for the development of mathematical meanings and to give an account 

for the mediatory role digital technology plays in the process. The results showed that 

students wondering and uncertainties manifest through questions and body movements 

which are possible physical markers for observable curiosity. It was also evident that 

relational-curiosity, a construct of the Embodied Curiosity framework, unfolded 

when the students performed tasks relating to the circle geometry theorem. 

Additionally, the analysis showed that learners were able to verbalize the property (two 

equal sides and two equal angles) of the isosceles triangle explicitly but were unable 

to match the vocabulary word to the meaning. Kyle’s use of his pinky finger on the 

computer screen showed how the technology prompts the body to react in real-time 

which implies the temporal and emergent nature of the Embodied Curiosity process. 

Furthermore, this action guaranteed communication about the mathematical meaning 

was inclusive perhaps for all the students and filled the information gap (the third side 

of the triangle) that created the imbalance in the first place. Another interpretation 

could be that Kyle reified the missing third side as something concrete and, it seemed 

his pinky finger was entrapped with the technology and it was in this entrapment that 

caused his curiosity to be satisfied. Once relational-curiosity was present the 

opportunity appeared for mathematical meanings to be developed. This was evident 

when Kyle, through the draggability of Sketchpad, engaged in curious dragging which 

allowed them to match the changes in side length and angular measures with their 

visualization of the triangle on the screen. Despite, their challenges in associating this 

property with that of an isosceles triangle, they were able to recognize that the third 

side was a line segment rather than an arc and that this special triangle has two equal 

sides and two equal angles. They could also tell that by changing the position of a point 
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on the circumference changes the magnitude of the side length and angular measure 

but does not disrupt the property of the triangle.  
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Mathematics plays a central role in the STEM subjects (science, technology, 

engineering and mathematics) and also in a large number of other subjects. However, 

many students start their university studies with inadequate expectations regarding the 

needed mathematics. The present paper reports on a study investigating N=984 

German high school students’ perceptions of the relevance of mathematics for 

university studies by contrasting the subjects economics, education, medicine, and 

physics. Both, students’ perception of the relevance of mathematics in general as well 

as of specific required mathematical aspects were assessed for the different subjects. 

The results indicate that many high school students underestimate the relevance of 

mathematics, especially in education studies. 

 

INTRODUCTION AND THEORETICAL BACKROUND 

Decades ago, Niss (1994) attested mathematics the so-called relevance paradox 

„formed by the simultaneous objective relevance and subjective irrelevance of 

mathematics” (p. 371). Previous studies have shown that already (high) school students 

perceive a subjective irrelevance of mathematics (e. g. Brown et al., 2008; Onion, 

2004). For example, Brown et al. (2008) report 16 years old high school students say 

“the amount of insignificant maths work that I will NEVER use is quite big” (p. 11) or 

to ask “who needs to know trigonometry in everyday life?” (p. 11).  

This unseen relevance is in contrast to the fact that a wide range of subjects to be 

studied at universities includes mathematics, certainly in the field of STEM (e.g., 

Deeken, 2020) but also beyond (e.g. in economics, medicine or psychology, Mulhern 

& Wylie, 2016; Weintraub, 2002). So, it does not come as a surprise that about 70 % 

of US bachelor students earn credits in mathematics courses (Douglas & Salzman, 

2020) and that in Germany more than 80 % of the freshmen are expected to bring 

mathematical knowledge and abilities from school (Neumann et al., 2021). Two recent 

Delphi studies identified which mathematical prerequisites are expected from 

incoming students, from the perspective of university instructors (Deeken et al., 2020; 

Rohenroth et al., under review). Expected aspects span across mathematical content, 

mathematical processes, views about mathematics as a scientific discipline, and 

personal mathematics-related characteristics. Although these studies show that 

university instructors have – sometimes even quite high – expectations, many students 

take up a study holding inadequate expectations with respect to the required 

mathematics (e. g., Venezia et al., 2003). Missing information and inadequate 

expectations about required mathematics, in turn, may likely result in frustration during 
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the studies and, at the worst, in student drop-out. In fact, many university students 

report that they have been surprised about how much mathematics and which particular 

mathematical knowledge and abilities are required in their studies (e. g., Darlington & 

Bowyer, 2016).  

RESEARCH QUESTIONS 

The present study aims to complement these retrospective studies by contributing a 

prospective perspective, that is, by investigating high school students’ views about 

mathematics for their future university studies. In particular, we address the following 

research questions: (1) How do high school students perceive the relevance of 

mathematics for different subjects to be studied? (2) To what extent are high school 

students’ views about the required mathematical aspects adequate given university 

instructors’ expectations? (3) To what extent does the adequateness of students’ views 

relate to the relevance of mathematics they see for particular subjects of study? 

METHOD 

The sample comprises N = 984 high school students from upper secondary level (533 

female, 434 male, 13 diverse, 4 no response) from four German federal states who 

voluntarily completed an online questionnaire sent to their teachers or school 

principals. First, the students were asked to rate the importance of mathematics for the 

university studies of economics, education, medicine, and physics (1: "no importance" 

to 10: "very high importance"). Then, participants were presented specific 

mathematical prerequisites, which had been identified in the previous Delphi studies 

MaLeMINT and MaLeMINT-E (Deeken et al., 2020; Rohenroth et al., under review). 

These mathematical prerequisites addressed mathematical content (basic aspects from 

lower secondary as well as aspects from calculus, vectors and matrices, and 

stochastics) and mathematical processes (e. g., mathematical modelling). For each 

aspect and for each of the four study subjects, students were asked to indicate if they 

expect that the aspect is required for a study of the respective subject (yes/no). To not 

overburden students, they were assigned one of two overlapping lists of 24 aspects.  

For data analysis, we compared high school students’ ratings with expectations 

previously indicated by the university instructors. For each student, a mathematical 

learning prerequisite was scored to be adequate if the student indicated the aspect as 

(not) necessary and the aspect had been identified as (not) necessary by university 

instructors in the respective subject as well. If a students’ rating differed from the 

university instructors’ expectation, the prerequisite was scored as underestimated 

(students: not necessary; instructors: necessary) or overestimated (students: necessary; 

instructors: not necessary). Then, we determined the percentage of prerequisites scored 

as adequate, underestimated and overestimated for each high school student and each 

of the four subjects. Given that the percentages of overestimated prerequisites were 

very low (0 % - 4,1 %), we focused on the percentage of adequately scored 

prerequisites for further analyses.  
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RESULTS 

RQ 1: Perceived relevance of mathematics for different subjects of study 

Investigating the perceived relevance of mathematics in general, we found high school 

students to clearly differentiate between the four subjects of study (Economics: 

M = 7.5, SD = 1.9; Education: M = 3.5, SD = 1.9; Medicine: M = 5.9, SD = 2.1; 

Physics: M = 9.4, SD = 1.3, see also Table 1). As expected, students rated the relevance 

of mathematics highest for the study of physics, followed by the studies of economics 

and medicine. The relevance of mathematics for the education studies was viewed quite 

low. In fact, about the same percentage of students (i.e., more than 85 %) indicated that 

mathematics has no or a (rather) low relevance for the studies of education as they 

viewed mathematics (very) highly relevant for physics (Table 1). 

 

  

No or low 

relevance (1-2) 

Rather low 

relevance (3-5) 

Rather high 

relevance (6-8) 

(Very) High 

relevance (9-10)  

  abs. (in %) abs. (in %) abs. (in %) abs. (in %) Total 

Economics 13 (1,4 %) 137 (14,7 %) 480 (51,4 %) 303 (32,5 %) 933 

Education 323 (34,7 %) 465 (49,9 %) 130 (13,9 %) 14 (1,5 %) 932 

Medicine 48 (5,1 %) 350 (37,5 %) 437 (46,8 %) 98 (10,5 %) 933 

Physics 10 (1,1 %) 11 (1,2 %) 108 (11,6 %) 806 (86,2 %) 935 

Table 1: Perceived relevance of mathematics for different subjects. 

RQ 2: Adequateness of students’ views about the required mathematical aspects  

Figure 1 displays the distribution of students with respect to their percentages of 

adequately scored learning prerequisites. It shows that the above findings regarding the 

relevance of mathematics in general also hold true for the specific learning 

prerequisites. More than 75 % of the students adequately scored at least 70 % of the 

prerequisites as necessary for the study of physics. In contrast, the vast amount of high 

school students underestimated most of the prerequisites required for the study of 

education. Such obvious trends are missing for the studies of economics and medicine. 

However, it has to be noted that only about a third (economics) or even less (medicine) 

of the students adequately scored at least 70 % of the prerequisites required for the 

respective subject. 
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Figure 1: Distribution of students with respect to their relative frequencies of 

adequately scored learning prerequisites. 

Table 2: Mean percentage of adequately scored learning prerequisites. 

 Total Mathematical content 
Mathematical 

processes 

  Basics Calculus 
Vectors & 

matrices 

Stochastics & 

general content 
 

 M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) 

Economics .55 (.30) .65 (.32) .46 (.44) .25 (.42) .61 (.40) .50 (.39) 

Education .19 (.21) .16 (.22) .10b (.29) -a .29 (.37) .17 (.27) 

Medicine .43 (.31) .46 (.34) .29 (.40) .16c (.33) .48 (.43) .46 (.39) 

Physics .81 (.25) .86 (.24) .79 (.36) .75 (.39) .68 (.40) .83 (.31) 

Notes: For each subject, only those mathematical learning prerequisites were included which had 

been identified as necessary by the university instructors. N = 940; MIN = 0, MAX = 1; 
a No necessary learning prerequisite; b Based on only one learning prerequisite; c Based on two 

learning prerequisites 

Table 2 displays the mean percentage of adequately scored learning prerequisites 

across all participating students in more detail. Note, that these numbers are based on 

only those learning prerequisites which had been indicated as “necessary“ for the study 

of the respective subject by the university instructors. Again, the numbers reflect the 

quite good perceived relevance of specific mathematical prerequisites for physics, and 

the underestimation of prerequisites for education. Compared to basic mathematical 
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content (e.g. fractions and equations), which is more widely regarded as necessary, 

content from upper secondary level (i.e., calculus and vectors/matrices) is 

underestimated more often – at least for economics, medicine and physics. For the 

study of education, prerequisites across all topics are widely underestimated. 

Compared to the other content aspects, stochastics prerequisites are perceived as 

necessary as (or even more than) basics for the study of economics, education, and 

medicine. In contrast, the relevance of stochastics for physics is underestimated most 

often compared to the other mathematical topics. The results for the mathematical 

processes (i.e., processes typical of mathematical work such as modelling or 

argumentation), mirror the overall results.  

RQ 3: Relation of adequateness of students’ views to relevance of mathematics  

Given the results on research questions 1 and 2, we wondered, if high school students’ 

adequate perception of single mathematical learning prerequisites is related to their 

perceived overall relevance of mathematics for a particular subject of study. We 

therefore compared the mean percentages of adequately scored learning prerequisites 

between those students who had indicated no or a (rather) low relevance of 

mathematics in general to a particular subject (1-5 on the 10-point Likert scale) and 

those who had indicated a (rather) high relevance (6-10 on the 10-point Likert scale). 

 No or (rather) low perceived relevance (Rather) High perceived relevance 

  M (SD) N   M (SD) N 

Economics .33 (.27) 150   .59 (.28) 783 

Education .16 (.19) 788   .37 (.27) 144 

Medicine .28 (.25) 398   .55 (.29) 535 

Physics .48 (.41) 21   .82 (.23) 914 

Table 3: Mean percentages of adequately scored learning prerequisites in two groups 

of students with different perceived relevance of mathematics in general for the 

different subjects. 

Table 3 shows, that overall, high school students who perceived mathematics as not or 

only (rather) less relevant for the subject of study in fact rated fewer specific learning 

prerequisites as adequately necessary for the respective subject, compared to those 

students who perceived a (rather) high relevance of mathematics for the subject. For 

economics, a t-test showed that this difference was significant 

(t(931) = -10.413, p < .001) with medium effect size, r = .32. For the subjects of 

education and medicine, we performed non-parametric Mann-Whitney U tests given 

inhomogeneous variances and lack of normal distributions. The tests showed again 

significant differences with medium effect sizes for both, education (U = 30.115, p < 

.001, r = .30) and medicine (U = 51.817, p < .001, r = .44). For physics, the number of 

students perceiving no or (rather) low relevance of mathematics was too low to 

meaningfully perform a parametric or non-parametric test of significance. However, 

comparing the confidence intervals showed no overlap, indicating a significant 
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difference between both groups of students as well (no or (rather) low relevance: 95 % 

CI = [.29; .66]; (rather) high relevance: 95 % CI = [.81; .84]). Overall, these results 

show, that a high perceived relevance of mathematics in general is related to how 

adequately students perceive specific learning prerequisites for the respective subject.  

DISCUSSION 

Previous studies have shown that, in retrospective, many university students report that 

they had been surprised about how much and which mathematics is needed in their 

studies, sometimes resulting in unaccomplished expectations, frustration and even 

drop-out (e.g., Heublein, 2014; Venezia et al., 2003). Little is known, however, about 

in how far high school students’ – prospective – perception of the relevance of 

mathematics for future university studies is in line with the mathematical prerequisites 

expected by university instructors from incoming freshmen. The present study 

therefore aimed at investigating high school students’ views on the relevance of 

mathematics for future university studies, contrasting the studies of economics, 

education, medicine and physics. 

Based on an online-questionnaire we found high school students to perceive an overall 

relevance of mathematics in general, but to clearly differentiate between subjects of 

study. Physics, a traditional STEM subject, was regarded to highly rely on 

mathematics. Likewise, students perceived a rather high relevance of mathematics for 

economics. In contrast, the relevance of mathematics for education was perceived very 

low. The same ranking of subjects is found when exploring students’ perceived 

necessity of specific learning prerequisites (e.g., fractions, derivatives). However, the 

results on students’ perceived necessity of specific learning prerequisites also shows, 

that students often do not know what exactly is required for studying a particular 

subject; this is even true for subjects, in which mathematics is considered to be highly 

relevant (Table 3). This finding, particularly for economics and medicine, reflects what 

Kollosche (2017) called an „empty signifier“ (p. 639). Students view mathematics to 

be relevant for economics and medicine in general, but they are unaware of what 

aspects of mathematics are relevant in particular, and thus, how specific aspects are 

subjectively relevant to themselves. This relevance paradox (Niss, 1994) can only be 

solved if students are not only shown that mathematics is important, but also which 

mathematics is important. This requirement seems to be satisfactorily fulfilled for the 

study subject physics (Table 2) and might be due to the fact that physics instruction in 

German schools is permeated by mathematics. In contrast, economic classes hardly 

address mathematical models so that high school students know that mathematics is 

somehow relevant for economics but they do not have a clear idea of what 

mathematical content beyond the basics plays a role in economics. Finally, education 

is not a school subject in most of the federal states in Germany. Hence, high school 

students hardly have an opportunity in school to get information about the 

mathematical requirements for this subject of study. 
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Limitations 

The sample selection was not representative and depended on the decisions of the 

school principals and teachers of the students. The participation of the students was 

voluntarily which might have caused a selection bias. However, since we assume that 

mainly interested students participated in the study, the sample might be a positive 

selection of students with a more positive attitude towards mathematics. A second 

limitation is that the mathematical requirements for the four subjects of study were 

determined by Delphi studies with university instructors for these subjects. Although 

the Delphi method is an established method to generate consensual results among the 

university instructors, there might be universities where study programs for the four 

subjects have higher or lower mathematical requirements depending on the specific 

focus (especially for education studies).  

Implications 

Despite the limitations, implications can be derived for future research as well as for 

educational practice. The inadequate perceptions of the relevance of mathematics to 

some subjects of study raises the question of what students’ perceptions are based on. 

There might be personal factors like, for example, that students already decided to 

study a specific subject after finishing school and, hence, collected information about 

corresponding study programs. Another relevant variable might be family background 

that exerts influence on the students’ perceptions because other family members study 

or studied a specific subject and possess relevant knowledge. Another type of factors 

might be school-related factors. With respect to the different subjects, a more 

mathematical orientation of the subjects’ instruction in school could have an influence 

on students’ perception of the relevance of mathematics for a specific subject of study. 

Such subject-specific factors could be identified by, for example, investigating the 

subjects’ textbooks and curricula. However, since not every subject to be studied at 

university is represented by a corresponding school subject, contexts of application in 

mathematics textbooks and in mathematics class might also be analyzed in terms of 

both quality and quantity in order to investigate their influence on students’ perception 

of the relevance of mathematics for subjects of study. 

With respect to educational practice the present study indicates the need to show 

students the relevance of mathematics in various fields of study. In this context, we 

developed tasks for mathematics classes that highlight specific mathematical 

requirements in various fields of study. Initial tests with high school students have 

shown that students are more likely to perceive mathematical requirements in different 

fields of study if such tasks are supplemented by a reflection question. These reflection 

questions connect the content of the task with the context of university study and make 

the relevance of mathematics in the corresponding subject of study explicit. 
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We used videotaped enactments of high cognitive demand tasks to investigate whether 

teachers who were engaged in the teaching practice of building—and thus were 

focused on having the class collaboratively make sense of their peers’ high-leverage 

mathematical contributions—provided scaffolding that supported the maintenance of 

high cognitive demand tasks. Attempting to build on high-leverage student thinking 

seemed to mitigate the teachers’ tendencies to provide inappropriate amounts of 

scaffolding because they: (1) believed the building practice required them to refrain 

from showing the students how to solve the task; (2) wanted to elicit student reasoning 

about their peer’s contribution for the building practice to utilize; and (3) saw the 

benefits of their students being able to engage in the mathematical thinking themselves. 

INTRODUCTION 

Research has shown the advantages of teaching practices that use student thinking 

(e.g., Carpenter & Fennema, 1992), the importance of using high cognitive demand 

tasks, and the need to maintain high levels of cognitive demand during task enactments 

to maximize their benefits (e.g., Stein & Lane, 1996). Research has also identified 

several factors that support the maintenance of high cognitive demand, including the 

appropriate use of scaffolding (Stein et al., 1996). Recent attention has been directed 

toward articulating specific teaching practices that use student thinking. For example, 

the MOST Research Team has focused on articulating the teaching practice of building 

(e.g., Leatham et al., 2022), a teaching practice designed to take full advantage of 

MOSTs (Mathematical Opportunities in Student Thinking)—high-leverage student 

mathematical contributions that provide an in-the-moment opportunity to engage the 

class in joint sense making about that contribution to better understand the important 

mathematics within it. Better understanding the interaction between teaching practices 

that use student thinking and the maintenance of cognitive demand will support 

leveraging the known abilities of both to support student learning. We contribute to this 

understanding by investigating how teachers’ attempts to engage in the teaching 

practice of building affected the scaffolding they provided during their enactments of 

high cognitive demand tasks.  

LITERATURE REVIEW 

The MOST Research Team has defined the teaching practice of building (henceforth 

referred to as building) as making a student contribution “the object of consideration 
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by the class in order to engage the class in making sense of that thinking to better 

understand an important mathematical idea” (Van Zoest et al., 2017, p. 36). They 

describe building as being comprised of four elements: (1) establish the student 

mathematics of the [contribution] as the object to be discussed; (2) grapple toss that object in 

a way that positions the class to make sense of it; (3) conduct a whole-class discussion that 

supports the students in making sense of the student mathematics of the [contribution]; and 

(4) make explicit the important mathematical idea from the discussion (Leatham et al., 2021, 

p. 1393) 

Their work to articulate the key aspects of each element has relied on an iterative 

process involving teacher-researchers (TRs) who enacted the team’s evolving 

conceptions of building in their classrooms (Leatham et al., 2022). The TRs did this 

using a set of high cognitive demand tasks designed to elicit predictable MOSTs that 

the TRs could prepare to build on (see Figure 1). 

(a) Percent Discount 

The price of a necklace was first increased 50% 

and later decreased 50%. Is the final price the same 

as the original price? Why or why not? 

(b) Variables 

Which is larger, x or x + x ? 

Explain your reasoning. 

Figure 1: Two tasks used by the teacher-researchers. 

Cognitively demanding tasks are challenging problems, or sets of problems, that 

require students to use their existing knowledge, sometimes in new and unique ways, 

along solution pathways that are not immediately clear (Stein et al., 1996). The use of 

such tasks has been shown to lead to student learning gains (Stein & Lane, 1996). 

Unfortunately, the high cognitive demand of these tasks is not maintained in many 

lessons that begin with cognitively demanding tasks (Henningsen & Stein, 1997). As 

a result, much work has been done to understand the complexity of maintaining high 

levels of cognitive demand during task enactments. For example, drawing from 520 

task enactments, Stein et al. (1996) identified factors that maintain and lower cognitive 

demand. These factors have been utilized by numerous studies (e.g., Estrella et al., 

2019) to better understand the maintenance of cognitive demand. 

Providing appropriate scaffolding is one of Stein et al.’s (1996) factors that help 

maintain cognitive demand. They determined that teachers or more capable peers 

offering appropriate scaffolding occurred in 58% of tasks where cognitive demand was 

maintained during set up and implementation. Henningsen and Stein (1997) looked 

specifically at tasks that began as the highest category of cognitive demand—doing 

math—and determined that appropriate scaffolding was offered in 73% of such tasks 

for which the cognitive demand was maintained. Challenges become nonproblems is 

one of the factors that Stein et al. (1996) found to cause cognitive demand to be 

lowered. The reasons they give for this happening included the teacher “specifying 

explicit procedures or steps to perform” or “either performing [the challenging aspects 

of the task] or telling them how to do them” (Stein et al., 1996, p. 479)—that is, 
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providing inappropriate scaffolding. Inappropriate scaffolding was found in 64% of 

enactments where cognitive demand was lowered, regardless of the starting level of 

the tasks (Stein et al., 1996), and in 39% of enactments where cognitive demand was 

lowered for doing math tasks (Henningsen and Stein, 1997). Thus, it is clear that 

scaffolding is an important factor in both the maintenance and decline of cognitive 

demand during task enactments. 

Smit and colleagues (2013) conceptualized the idea of scaffolding for whole-class 

settings. In their work, as is typical, scaffolding is generally described as a positive 

contributor to student learning. The research on the maintenance and decline of 

cognitive demand, however, suggests that the nature of the scaffolding matters. For 

example, a common scaffolding strategy is to give students a worked example of a 

similar problem. In the context of working with a high cognitive demand task, however, 

this is likely to undermine the goals of the task because it provides the students with a 

specific strategy for solving the task, and thus lowers the cognitive demand. Teachers 

who are engaged in the teaching practice of building are focused on having the class 

engage in making sense of MOSTs—high-leverage contributions made by their 

peers—and thus may be focused on providing scaffolding that is more compatible with 

the maintenance of high cognitive demand tasks. By considering scaffolding through 

the lens of cognitive demand, we can draw from previous work to better understand 

how the scaffolding that teachers provide during task enactments may have been 

affected by their attempt to engage in the building practice. 

THEORETICAL FRAMEWORK 

Our investigation of scaffolding takes a participationist approach (Vygotsky, 1987). 

That is, we see student learning as taking place through students' interactions with more 

knowledgeable others, such as the teacher and their peers. As discussed in Sfard and 

Cobb (2022), this approach acknowledges several important aspects of instruction: the 

tasks used; the engagement of students with the tasks, both individually and through 

class discussion; the teacher as the knowledgeable other who facilitates the learning; 

and the teacher’s mathematical knowledge for teaching. Thus our decision to use high 

cognitive demand tasks with accompanying task notes that provided guidance in these 

areas. For example, the notes provided common student responses to the tasks, 

identified which student contributions were likely to be MOSTs and provided 

suggested questions to ask at different points in the enactment to facilitate students’ 

understanding of the embedded mathematics. We use a broad definition of scaffolding 

“as an interactional process between a person with educational intentions and a learner, 

aiming to support this learner’s learning process by giving appropriate and temporary 

help” (van Oers, 2014, p. 535). Thus, we considered a teacher move to be scaffolding 

if there was evidence through what the teacher did or said that they were “aiming to 

support” the students’ learning of mathematics with their actions. We used the cognitive 

demand framework (Stein et al., 1996) to determine whether the scaffolding provided 

was appropriate.  
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METHODOLOGY 

Six middle school teacher-researchers (TRs) in the larger MOST project focused on 

conceptualizing the teaching practice of building (for more details, see Leatham et al., 

2022) provided 24 videotaped classroom enactments of the tasks in Figure 1 (each 

teacher enacted each task twice), 6 online teacher surveys, and 5 recorded online 

teacher interviews (one teacher was not available). We first analyzed the videotaped 

task enactments using the Reorganized Factors that Undermine or Keep Cognitive 

Demand (RUK; Ruk, 2020), a succinct tool designed to consistently measure the 

factors that maintain and lower cognitive demand (as identified by Stein et al., 1996). 

The “Amount of Scaffolding” category of the RUK looks at how much scaffolding was 

offered on a continuum from 1 to 4, with 4 representing task enactments with 

scaffolding that supported students without taking away necessary struggle. We next 

developed the survey that we administered to the TRs based on the findings from the 

RUK analysis. For example, to better understand scaffolding we asked this question: 

“In general, after you present an example or other information to your classes, how is 

what you presented related to the problem(s) that you assign your students afterwards?” 

Then we developed the interview questions for the TRs based on the results of the RUK 

and their individual survey responses. For example, if the results showed that a TR 

offered different scaffolding than usual, they were asked: “To what extent did 

[attempting to enact the building practice] change the amount of scaffolding that you 

normally offer (as opposed to other problems that you give your students).” This 

process of analysis followed by additional data collection allowed us to engage in the 

three levels of quantitative data analysis described by Simon (2019). 

RESULTS 

Attempting to engage in the teaching practice of building seemed to have a positive 

effect on the scaffolding teachers provided during their enactments of high cognitive 

demand tasks. The RUK showed that 23 out of the 24 task enactments (96%) had 

appropriate scaffolding throughout the enactment, and the remaining enactment had 

appropriate scaffolding at the beginning of the enactment. Contrast this with 

Henningsen and Stein’s (1997) study of tasks of high cognitive demand, where they 

found appropriate scaffolding in only 73% of the enactments. To better understand the 

relationship of the scaffolding teachers provided to their enactment of the building 

practice, we turn to the interviews, where two teachers illustrated how they did a little 

less scaffolding than they normally do, one described how they did a lot less 

scaffolding, and two explained how they did the same amount of scaffolding. One of 

the two teachers who said that they offered a little less scaffolding gave an example of 

the scaffolding they would have offered for the Variables task (see Figure 1b) if they 

hadn’t been attempting to engage in the building practice. They said that they “would 

have started a little bit with a conversation about what is a variable, and what different 

ways a variable can be used.” However, this teacher recognized that offering this 

scaffolding “takes away from the mathematics that [the students] experienced as they 

went through [the task]” and, because they believed that experiencing this mathematics 
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was needed for the building practice, they did not offer this additional scaffolding. If 

the teacher had offered this scaffolding before students began grappling with this task, 

cognitive demand would likely have been lowered significantly. Students would have, 

as part of the scaffolding, discussed and likely resolved ideas related to the underlying 

mathematics of this task—that all possible values within a domain must be considered 

to determine relative values of variable expressions—before they had the opportunity 

to engage with these ideas themselves through exploration of the task. Thus, it seems 

that this teacher offered an appropriate amount of scaffolding because they believed 

that it was a necessary part of the building practice. 

The other teacher who said that they offered a little less scaffolding, revealed during 

their interview that for the Variables task, if it had not been for enacting the teaching 

practice of building on student thinking, they “might have given [the students]: try it 

with two positive numbers, try it with two negative numbers, you know, can you 

generalize what happened.” This scaffolding would have lowered the cognitive 

demand of this task because students would have lost the opportunity to explore for 

themselves and discover that positive and negative numbers (as well as zero) lead to 

different outcomes for this task, which in turn leads to uncovering the underlying 

mathematics. This teacher also said that before understanding the practice of building 

on student thinking, “I would have [scaffolded] right away.” But now, I’d wait and “if 

I didn't see that there was going to be a good discussion then I might say, okay why 

don't you guys try it with different types of numbers and see what happens.” This 

teacher believed that the mathematics “actually will make more sense to them because 

they came up with those ideas, it wasn't me telling them, oh you were wrong see here’s 

your counterexample. You know, that they can kind of, like, work through that 

muddiness themselves, and come out hopefully with a more clear picture.” Through 

attempting to engage in the building practice, this teacher came to see the value in 

allowing students to productively struggle in their classroom, not just in service of the 

building practice, but in general as well. 

The teacher who said they offered a lot less scaffolding, revealed in her interview that 

if it had not been for enacting the teaching practice of building on student thinking, and 

wanting “all of those different misconceptions to come out,” they would have started 

the Variables task by asking their students to think “about different numbers. Like, 

make sure you think about all the numbers, or something like that.” Although this is 

not as explicit as telling students to consider positive and negative numbers, it would 

have likely had a similar effect of lowering the cognitive demand of this task because 

students would have been given clues about the underlying mathematics before they 

started grappling with the task. Thus, it also seems that the desire to draw out student 

thinking when enacting the building practice can improve the scaffolding offered 

during the use of high cognitive demand tasks. 

One of the two teachers who said they would have offered the same amount of 

scaffolding offered an appropriate amount of scaffolding during their enactments. This 

teacher had an extensive knowledge of cognitive demand research, and said that this 
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research, “made a huge impact on me, and my practice” and that “I think it's extremely 

important that students are engaged and doing significant math and working at a high 

level.” This teacher was immersed in applying cognitive demand research in their 

classroom and thus was already focused on continuously attempting to provide an 

appropriate amount of scaffolding. 

The other teacher offered inappropriate scaffolding in one of their enactments by 

working through a specific example that broke the problem down into smaller steps, 

and then asking students for only small bits of information, such as simplification of 

expressions or what specific numbers represented—a type of questioning pattern that 

Wood (1998) identified as funneling. Also, rather than letting students work through 

incorrect ideas by asking follow-up questions, the teacher said “no,” and waited for 

correct thinking to emerge. These actions run contrary to the practice of building 

because, although the interaction began with the student’s thinking, the attention 

quickly shifted to the teacher’s way of thinking. These teacher actions removed the 

challenge from the task by breaking it down into smaller parts, controlling the 

conversation, and only moving forward when students shared the correct thinking that 

the teacher was looking for. Fortunately, the teacher did this towards the end of the 

enactment, so the students had time to grapple with the task before the cognitive 

demand was lowered. Had the teacher provided this scaffolding earlier in the 

enactment, cognitive demand likely would have been lowered even more. To gain an 

understanding of why cognitive demand was lowered in this way, we look again at our 

interview data. 

During their interview, this teacher realized that offering the scaffolding that they did 

ran contrary to the building practice—that they had gone too far and had given too 

much information away to their students. The teacher also noted that if they had not 

been enacting the practice of building on students’ thinking, they likely would have 

worked through an example like this much earlier in the class discussion but held off 

because they believed that enacting the building practice required more time for 

students to work through this task on their own. Furthermore, if it hadn't been for 

enacting the building practice, she likely would have lowered the cognitive demand 

even further than she did by offering this scaffolding earlier and giving her students 

even less time to productively struggle with this task. So, even though she did not 

adhere to the guidelines of the practice, this teacher still maintained a higher level of 

cognitive demand than if she had not been attempting to enact the building practice. 

Considering the cases described above, the results of applying the RUK, and the survey 

and interview data, we can conclude that the teachers in this study were able to 

recognize appropriate scaffolding for enacting a high cognitive demand task. However, 

even though they can recognize this, they may still offer scaffolding that takes away 

the need for students to make sense of the mathematics in the task, and thus lowers the 

cognitive demand of the tasks that they are enacting. Attempting to build on student 

thinking seemed to mitigate the teachers’ tendencies to provide inappropriate amounts 

of scaffolding for three reasons:  (1) they believed the building practice required them 
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to hold back from showing the students how to solve the task: (2) they wanted to elicit 

student reasoning about their peer’s contribution for the building practice to utilize; 

and (3) they saw the benefits of their students being able to engage in the mathematical 

thinking themselves. 

DISCUSSION 

Our findings showed that the teachers in this study were able to recognize appropriate 

scaffolding. Indeed, almost unanimously they provided appropriate scaffolding for 

every task they enacted as part of this study. However, even though they could all 

recognize, and successfully provide appropriate scaffolding, most of them noted that 

they would have offered more scaffolding had they not been enacting the building 

practice. Furthermore, if they were all to provide the scaffolding that they described in 

their interviews, they almost assuredly would have lowered cognitive demand for their 

task enactments. However, it seems that if teachers have a specific reason (e.g., 

attempting to enact the building practice, or a belief in the importance of maintaining 

cognitive demand), they can, and do, provide scaffolding that supports student 

learning. 

Since teachers can recognize appropriate scaffolding and provide it if they try, it seems 

that what they need is a reason to do so. In our study, attempting to engage in the 

building practice provided that reason. Other specific teaching practices may also 

provide reasons for offering appropriate scaffolding and thus support the use of 

scaffolding to maintain high cognitive domain. As such, future research to better 

understand the influence of specific teaching practices on the scaffolding teachers 

provide during enactment of high cognitive demand tasks could compare teachers who 

simply enact a task with teachers who try to engage in a teaching practice that prompts 

them to consider the scaffolding they should offer when enacting that same task. Future 

research could also investigate whether teachers who have improved the scaffolding 

they provide when engaged in a particular teaching practice, such as building, extend 

that appropriate use of scaffolding to their teaching more broadly. 
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Inclusion for learners experiencing difficulties learning mathematics (DLM) relies 

partly on the actions of the teacher in the anticipating, planning and teaching of 

interventions. Yet, teacher enactment of mathematics interventions can be variable and 

bereft of mathematics. We share findings on how 16 teachers experienced foundational 

changes to their conceptions of interventions. Teachers participated in a video club 

where we educated awareness of inclusive mathematical interventions for learners 

experiencing DLM. Teachers reconceptualized their role as being embedded within 

interventions, responsive, and agentic. Findings contribute to the understanding of 

teacher change that supports inclusive practice for learners experiencing DLM.  

INTRODUCTION 

The promise of an inclusive mathematics classroom remains elusive, despite continued 

calls and research (Qvortup & Qvortup, 2018). Streaming, ability grouping, or 

removing students from the classroom according to perceived math ability and 

mathematics difficulty are still prevalent in many mathematics classrooms (e.g., Hunter 

et al, 2020). Judgements of math ability and difficulties are tied to biases and beliefs 

about who can do mathematics (Ruttenberg-Rozen & Jacobs, 2022), leading to tiered 

systems where some students are provided with a more rigorous mathematics education 

than others. Inclusion is a complex construct that can be understood in relation to 

exclusion, and who is excluded. While there are many definitions for inclusion, we use 

Qvortup and Qvortup’s (2018) comprehensive definition of inclusion as a three-level 

process of (1) physical inclusion, (2) social inclusion, and (3) identity (belonging to a 

community). 

All three processes rely on the actions of the teacher in the anticipating, planning, and 

teaching of interventions for learners experiencing difficulties learning mathematics. 

However, the practice of these processes competes with deficit ability narratives about 

who can learn mathematics. These narratives can be unconscious and differ from 

conscious beliefs. For example, a teacher might hold the conscious belief that everyone 

can learn and be successful at learning mathematics, but simultaneously have deficit 

narratives that students who experience DLM cannot be successful at mathematics. 

This means that despite conscious beliefs supporting inclusion, teachers may not 

actively support the physical, social, and identity inclusion of learners who experience 

DLM because of deficit narratives (Ruttenberg-Rozen & Jacobs, 2022). 

The goals of the current study are to use Mason’s (2002) Educating Awareness to 

provoke teacher change towards more mathematical and inclusive interventions for 

learners experiencing DLM. In this study we ask the questions: 
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 How do teachers conceptualize mathematics interventions and their role in 

interventions for learners experiencing difficulties learning mathematics? 

 What inclusive shifts do teachers make in their conceptions of interventions 

through developing Awareness of narratives of practice? 

We note that the term “mathematics difficulties” is used in many ways in the research 

literature. In this present study we asked the teachers to identify learners who they 

perceived as having difficulty learning mathematics. The teachers chose students 

whom they felt were “unresponsive” to their teaching. 

INTERVENTIONS 

The term “intervention” is often used as a catch-all phrase in mathematics classrooms 

to encompass any action that involves intervening between learners experiencing 

difficulty and mathematics content (Fuchs et al., 2008). Despite a large number of 

documents, professional development, and guides provided to teachers about practice 

for interventions, research has found that teachers rarely enact recommended strategies 

in the classroom (Crawford et al., 2020). When teachers do enact the strategies, there 

is still variability even with pre-designed intervention programs (Hunt et al., 2016). 

How teachers conceive of an intervention depends on prior experience and perspective 

with interventions. For instance, an intervention in mathematics can be conceived of 

as something planned for after an assessment, when the teacher sends students to a 

different teacher for support, or in-the-moment responses that teachers enact. Notably, 

the content of mathematics interventions for learners experiencing mathematics 

difficulties is often bereft of mathematical reasoning, despite the interventions being 

aimed at mathematics learning (Gervasoni & Lindenskov, 2011). For example, in the 

practice of explicit feedback in mathematics interventions (Powell & Fuchs, 2015, 

p.185), teachers use “affirmative” feedback, noting the procedures the student did well, 

or “corrective” feedback, “redirecting all student errors.” Although both types of 

feedback serve the purpose of supporting learners in meeting the requirements of 

certain curricular goals, they do not necessarily support mathematical reasoning.  

Subsequently, it is important for teachers to develop a practice of mathematical 

interventions that is inclusive and mathematical. In this study we adapt Qvortup and 

Qvortup’s (2018) definition of inclusion to mathematics interventions. For 

mathematics interventions to be inclusive they should:  

 Support the physical needs of learners by providing adequate space to do and 

play with mathematics, with all learners, 

 Support the social needs of learners by acknowledging the intervention of 

mathematics within the classroom “as a complex of interaction systems” (p.812), 

leveraging the systems in an anti-deficit way for mathematics learning, and 

 Support the mathematical identity of learners by providing support to both 

achieve mathematically and develop the mathematical reasoning skills that 

supports being part of a mathematical community. 
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THEORETICAL FRAMEWORK—FOUNDATIONAL TEACHER CHANGE 

In the literature on teacher change, researchers have proposed different models for 

looking at what and how teachers change (e.g., Guskey, 2002). Although these models 

attribute different factors (e.g., dispositions, practices, beliefs) to view changes and 

discuss different pathways for change (e.g., linear vs cyclical), there are common 

underlying experiences that support teacher change, including an experimentation 

phase where teachers try things out in their own classrooms (Putnam and Borko, 2000) 

and the value of discussing and collaborating with colleagues (Goldsmith et al., 2014). 

These experiences are offered to teachers through a range of professional development 

opportunities, including structured courses with timelines and self (teacher) directed 

inquiries that occur without imposed timelines or expectations. For example, Chapman 

and Heater’s (2010) study documents one teacher’s self-development journey 

throughout her career, characterizing awareness and teacher change through three types 

or processes: instrumental, conceptual, and foundational. Of significance to this study 

is foundational change where Chapman and Heater (2010) describe the change from 

both the teacher’s orientation of self (identity) and practice (actions). Teachers 

embracing foundational change do so by thinking in new ways and are empowered to 

transform their teaching. 

THEORETICAL FRAMEWORK—EDUCATING AWARENESS 

An awareness is a concept that encapsulates the conscious and unconscious sight 

(Mason, 2002) we gain from our noticings about our experiences. The path to an 

awareness begins with a disturbance of some kind that triggers a noticing,  

for the disturbance which triggers a noticing triggers a collection of associated sensitivities, 

and hence also triggers a perspective, a way of seeing and of thinking about what is noticed 

(Mason, 2002, p.167).  

The disturbance challenges the familiar and causes our senses to be heightened. We 

then direct our senses to attend to something within the disturbance, creating a noticing 

(Mason, 1998). What we attend to and the resultant noticing depends on our individual 

experiences, expertise, and backgrounds. As such, the same disturbance can create 

different noticings for each person. For an awareness to occur, there has to be “intention 

and commitment” (Mason, 2002, p.36) at each attention and noticing phase. A person’s 

degree of awareness and amount of intention and commitment are influenced by 

expertise. Experts become accustomed to their environments and may not recognize 

the disturbance in the first place. At the same time, experts can leverage their multiple 

connected experiences for interpretation (Mason,1998) at the noticing and awareness 

phases. Noticings are responsive to events once those events have already occurred. 

However, the goal of an awareness is anticipatory so that we can move closer and 

closer to notice the moment before an event, the moment when one still has a choice 

to make (Mason, 2002).  

Educating awareness (Mason, 2002; Mason & Davis, 2013) is about educating for 

explicitly constructing a repository of awareness experiences. The purpose of the 
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repository is to connect the experiences for meaning making at the moment of noticing. 

Essentially, educating awareness is developing the expertise for the many potential 

opportunities that can result from one noticing. 

METHODS 

This research project used video club as a method for professional development within 

a 36-hour course about assessment and elementary mathematics education. Much 

literature has been written about using video clubs to frame professional development 

in mathematics education (van Es & Sherin, 2008). This includes how video clubs can 

support teacher practice and reflection (Charalambos et al., 2018). There were 21 

elementary (grades 1-8) teacher participants in this study with a range of experience 

from 1 to 15 years. Eight teachers signed up to share video clips (30 seconds to 2 

minutes) from their classrooms that evidenced an intervention. The video clubs took 

place during one semester, and the clips came from various elementary school grades 

across a large geographical area that included both rural and urban school settings. 

After the course was completed, teachers were asked to complete a short reflection 

based on the following prompt: What new awareness(s) do you have about 

interventions? If you can remember, what were you doing when you first had that new 

awareness. I used to think that interventions were ……  Now I know interventions are… 

We used thematic analysis (Braun & Clarke, 2006) to analyze our data. We first coded 

all the reflections using Concept Codes, “a word or short phrase that symbolically 

represents a suggested meaning broader than a single item or action” (Saldana, 2016, 

p.119). We coded three types of responses: original conceptions of interventions, new 

shared awarenesses, and evidence of change. We, then collapsed all the codes into our 

three identified themes: embedded shifts, responsive shifts, and agentic shifts. 

RESULTS 

We found evidence of foundational changes regarding shifts of awareness of 

interventions as inclusive in 16 of our 21 participants. Of the other five participants, 

three had conceptual change only, and we did not find evidence of change in the last 

two participants. The 16 participants had varying conceptions of interventions as their 

starting points (e.g., interventions are what specialists do, and interventions as rote 

practice). However, regardless of their starting point, each of the 16 participants 

developed new awarenesses in at least one of our three themes. Table 1 shows the 

distribution of themes among the16 participants. In what follows we share our results 

regarding the three themes. For each theme, we highlight one reflection that 

demonstrates shifts in awareness. 
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Table 1: Distribution of Themes 

Themes Participants 

Embedded Nadine, Shanti, Grayson, Greta, Seshi, April, Talia, Mariam, Sheryl 

Responsive Nadine, Grayson, Malika, K.T., Greta, Kathy, Tracy, Sheryl, Nkechi, 

Pat 

Agentic Nadine, Shanti, Tariq, Greta, Kathy, Sheryl, Nkechi 

 

Embedded Shifts 

We found 9 instances of embedded shifts in our analysis of the participants’ reflections. 

We defined a shift as embedded if participants demonstrated a new awareness of 

interventions as an explicit part of their mathematics curriculum and lesson planning, 

and/or as embedded throughout the lesson. Some of the participants, like Greta, 

originally thought that “Intervention(s) was something I really thought…the Resource 

Teacher…did.” Other participants, like Mariam, originally viewed interventions as 

something that only happened at the end of a lesson after a student was assessed. The 

participants who experienced embedded shifts discussed how they could plan 

mathematics tasks and teacher moves to be used as interventions. Nadine, for example, 

highlighted how she could use mathematical tasks and plan questions to support the 

needs of her learners experiencing difficulties:  

Questions that are well designed…get all students doing math. (they can be as simple or as 

complex as you make them). I think that simple interventions like providing students with 

rich tasks and thinking questions will give you the most out of your precious teacher time.  

Before participating in video club, Nadine described how she prepared separate lessons 

for her ‘struggling students.’ These lessons would be implemented after the whole 

group lesson. Nadine has now shifted her awareness of interventions to be embedded 

(included) within her regular teaching practice. Nadine’s reflection demonstrates a 

foundational change in how she now is considering how to implement (action) her new 

awareness within the time constraints of her teaching practice. 

Responsive Shifts 

We found 10 instances of responsive shifts in our analysis of participants’ reflections. 

We defined a shift as responsive if participants demonstrated a new awareness of 

interventions as being interactional (e.g., not something one does to another), and in-

the-moment when a teacher notices a difficulty. Some of the participants, like Malika, 

originally thought that interventions were only “to gather evidence” and assess the 

learners. Other participants, like Cheryl, saw interventions as “scripted” and 

“proscribed” for teachers to carry out. The participants who experienced responsive 

shifts discussed in-the-moment mathematical conversations between learner and 

teacher or between learners as being interventions for learners who experience 
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mathematics difficulties. Grayson, for example, highlighted how the conversation in 

random groups during rich mathematical tasks could be an intervention,  

Students who are given rich math tasks are provided an opportunity to contribute 

meaningfully in randomized groups. These groups are not based on what we perceive as 

abilities of the student, but on what developing conversation they can have about the 

material. These groups lead to deeper understanding of mathematical discourse.  

Before participating in video club, Grayson thought that interventions were only what 

were proscribed on an Individual Education Plan (IEP) and were solely planned by the 

resource teacher. Grayson has now shifted his awareness to the possibility of 

randomized groupings, and students intervening with each other. Notably, Grayson 

now includes learning about “mathematics discourse” as an intended outcome of an 

intervention. This is a foundational change for Grayson as he begins to include 

mathematical thinking processes in his concept of an intervention. 

Agentic Shifts 

We found seven instances of agentic shifts in our analysis of participants’ reflections. 

We defined a shift as agentic if participants demonstrated a new awareness of their 

power to provide inclusive interventions for their students. Some of the participants 

discussed interventions as outside their purview and their sense of professional failure 

when deferring to others for interventions. Tariq was the most explicit of all our 

participants in this regard, when he shared,  

…interventions meant the last resort. After you try everything you can on your own … you 

contact the intervention specialist. This expert arrives at your classroom to make an hour-

long observation and will give you suggestions to fix whatever is it you called them about... 

Oftentimes reaching out for this help makes a teacher feel like they are failing their students 

in some way.  

Tariq shares his new awareness,  

I have learned that interventions are constant, and a result of teacher noticings. The second 

I notice something a student has said, or has done, and I make a note for future instruction, 

or ask a question, or back away and give students time to think, I am making interventions 

to direct, or redirect thinking and deepen student understanding. 

Tariq begins to express agency in his narrative of new awarenesses about interventions. 

Whereas before Tariq saw interventions as something an outside expert enacts, he now 

realizes that he can enact interventions with his teacher moves. Added to this Tariq is 

empowered by the notion that he is already doing these interventions in his classroom. 

Other participants also use agentic words to describe their new awarenesses, like Kathy 

who discusses “the meaningful impact” she will make through responding to students, 

and Shanti who speaks about interventions as “something I can do.” 
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DISCUSSION AND CONCLUSION 

In our study, we provided 21 participants with noticing opportunities to develop new 

awarenesses of inclusive mathematical interventions. 16 of the 21 participants 

experienced foundational change. This means that 16 participants developed a new 

orientation in their understanding of interventions and discussed the subsequent 

changes they would make to their practice. Regardless of their starting point, 

participants experienced change in at least one of three ways: a shift towards viewing 

interventions as embedded, a shift towards viewing interventions as responsive, and/or 

a shift towards regarding their own agency to implement interventions in their practice. 

Taken together, these shifts correspond to the expanded definition (Qvortup & 

Qvortup, 2018) of inclusive mathematics interventions we included above.  

Teachers became more aware of how interventions can be enacted within the physical 

space of their classrooms. Meaning students who experience difficulties learning 

mathematics can experience physical inclusion through the interventions. In terms of 

social implication, teachers became more aware of how to leverage their learning 

communities to support interventions for learners experiencing difficulties. In these 

learning communities all learners, regardless of difficulty could receive supports and 

suggestions. Finally, and perhaps most significantly, the foundational changes that 

participants experienced has the potential to impact the mathematical identities of their 

students. Many of the mathematics interventions currently in practice are not 

mathematical (Gervasoni & Lindenskov, 2011). Through the video club, the teachers 

became aware that mathematics interventions include mathematics and the 

mathematical thinking processes. Mathematics is embedded, responsive, and teachers 

felt agency to include them in interventions. Integrating mathematics and mathematics 

thinking processes into their intervention practice, can support the sense of belonging 

and entry into a mathematics community for learners experiencing difficulties. 
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WHAT IS A “GOOD” ARGUMENTATION IN MATHEMATICS 

CLASSROOM? 

Saccoletto Marta 

University of Turin 

 

This paper investigates the argumentative processes produced by upper secondary 

school students during an educational activity designed with the dual goals of 

introducing classical concepts of probability theory through problem solving and 

promoting argumentative competence. We reckon that in this context the main function 

of argumentations is to support probabilistic thinking development. We are interested 

in investigating how this function influences the development of argumentative 

processes in the classroom. We analyse two classroom episodes in order to show how 

argumentative processes evolve in relation to the interventions of the teacher and the 

peers, and how the changes in the produced arguments reflect the function that 

argumentation is intended to serve. 

INTRODUCTION 

In the educational context, the teaching and learning of argumentation is receiving 

increasing attention and it is included in the official documents of several countries. In 

Italy, argumentation appears within the learning goals at every scholastic level, even 

with explicit reference to mathematics (Mariotti, 2022). A reflection on the aspects of 

argumentation that can be considered and assessed in the mathematical classroom is 

therefore necessary (Stylianides et al., 2016). This depends on the conceptualisation of 

argumentation. Many Mathematics Education researchers have investigated the topic 

of argumentation from different perspectives and there is no single definition of 

argumentation in the field (Hanna, 2020). As far as mathematics education is 

concerned, some research highlights the social side of argumentation and focuses on 

the aspects of the argumentation that influencing acceptance by the classroom. 

Stylianides (2007) notices that the statements used in an argument should be in line 

with certain standards of the current mathematical culture and, at the same time, it 

should be accepted within the conceptual reach of the classroom participants. 

Classmates and especially the teacher play a crucial role. Interlocutors – and therefore 

their beliefs, knowledge, and convictions – can influence the development of the 

argumentative process (Krummehuer, 1995) and the constitution of socio-

mathematical norms (Yackel, 2001). Students-teacher cooperation is usually exercised 

through the use of language, which plays a key role in mathematics classroom, and the 

development of (written and/or spoken) texts (Ferrari, 2021). Argumentation processes 

can be developed in classrooms in relation to different activities and purposes (not only 

to convince). For example, argumentation can be taken into consideration in relation 

to conjecture (Pedemonte, 2007), or it could be used to make students’ thinking visible 

(Cusi et al., 2017). In addition, it is often related to students’ learning (Schwarz, 2009). 
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We think that the different functions of the argumentative process in classrooms are 

related to the educational goals. This work is part of the research strand that considers 

argumentation primarily as a social process, based on production of texts. We focus on 

argumentations developed during an upper secondary school classroom sequence, 

designed with the double aim of introducing classical probability theory concepts 

through problem-solving and fostering argumentative competence. In this context, the 

development of argumentative processes and probabilistic thinking are interconnected. 

In particular, argumentations sustain the development of sensemaking in probability. 

The core of the paper is investigating how the argumentation function of sustaining 

learning influences the development of argumentative processes in the classroom.  

THEORETICAL FRAMEWORK 

In line with Ferrari (2019), we consider argumentation as an interactive process based 

on the production of (written and/or spoken) texts. Texts and, more generally, language 

play different functions in mathematical classroom. For example, Ferrari (2021) 

distinguishes functions that are related to everyday use and functions typical of 

mathematics education. His research makes use of tools of linguistic pragmatics, whose 

main interest is the study of different uses of language. As far as argumentation is 

concerned, the neuropsychologists Mercier and Sperber (2017) thoroughly study uses 

of argumentations and reasoning. In accordance with the authors, arguments are mostly 

intended for social consumption. People may present them to explain and justify 

themselves, to evaluate others’ reasoning, or to convince those who think differently. 

Producing and sharing arguments generally make communication more advantageous, 

by making it more reliable. A good argumentation should display coherence 

relationships between the speaker’s claim and the knowledge, convictions and system 

of beliefs held by the addressees, allowing the audience to evaluate these relationships 

on their own. The ways in which the coherence relationship can be displayed and 

evaluated depend on the context and on cultural aspects. Moreover, in Mercier and 

Sperber’s (2017) theory, the role of the interlocutor/s is fundamental. As in the broader 

case of communication, the interactive nature of the dialogue and the interlocutor’s 

responses allow to refine justifications and arguments, shaping the argumentation 

process. The interlocutor’s reactions are particularly useful for two reasons: she/he can 

indicate whether she/he has understood, and she/he can actively guide the effort of the 

speaker. In our study we mainly focus on conversations developed in educational 

settings that are characterised by educational aims. We are hence interested in reactions 

that contain information about student’s performance and understanding in 

mathematical classroom. In accordance with the framework of Hattie and Timperley 

(2007) we call such reactions feedback. The main purpose of feedback is to help 

learners shorten the distance between current understanding and performance and the 

intended educational goals. The effective feedback addresses the issues of clarifying 

the direction of the teaching and learning trajectory, of considering the progress that 

has been made towards the goal and of defining which activities are useful to make 

better progress. It could address multiple issues at once. Feedback works at four levels: 
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Task level (in relation to quality of the task implementation), Process level (concerning 

the process underlying a task), Self-regulation level (referring to the way students face 

the task and the achievement of the learning goals, including control and confidence), 

Self level (usually expressed as praise addressed to students). 

In line with the theoretical framework and the context of the didactical sequence 

considered, we focus on argumentative processes mainly addressed to other classmates 

and responding to the function of supporting the learning processes occurring in the 

mathematics classroom. The question the article seeks to answer is: how do these 

argumentative processes evolve in relation to teacher and student feedback, and which 

ways to express the coherence relationships between the speaker's statement and the 

knowledge and belief system of the peers emerge? 

METHODOLOGY 

We collected data from a didactical sequence that was designed with the teacher and 

that was implemented during regular mathematics classroom activities of 19 students 

of 11th grade. Two main educational goals were involved: to introduce classical 

probability theory concepts through problem-solving and to foster collaborative 

argumentative processes. The last one is at the core of the paper. The didactical 

sequence design included two main phases. In the first phase students were engaged 

with introductory activities focused on the resolution of the classical problem of 

“division of the stakes”, historically associated with the emergence of classical 

probability concepts in the Pascal-Fermat correspondence (Borovcnik & Kapadia, 

2014). In the second phase, students were challenged with different problems, which 

allowed them to face some of the misconceptions typical of the field (Batanero, 2005). 

In this work we consider only argumentative processes developed during the first 

phase. This phase focused on the “division of the stakes” problem, which is: 

Two players A and B play heads or tails with a fair coin. Each game, corresponding 

to each coin toss, is won by A if the outcome of the toss is heads and by B if the outcome 

is tails. A and B give 12 euros each. The stake is 24 euros. The player who first wins 6 

rounds wins the game, and thus the entire stake. A always bets on "heads" and B on 

“tails”. The game is interrupted at the score 1- 0 for A. How should the stakes be fairly 

divided i.e., that it gets both players to agree? 

The problem was presented to the students before any theoretical probability concept 

related to it. Firstly, students faced the problem in small groups and shared their 

resolution to the whole class (step 1). Secondly, students returned in their small group 

to answer some teacher’s questions that help them to analyse their and other groups’ 

resolutions with a critical stance. The reflections were then shared during a collective 

discussion (step 2). Subsequently students were presented with some solutions given 

by mathematicians in the history of mathematics. We chose four resolutions: Pacioli’s, 

Cattaneo’s, Cardano’s and Fermat’s. Mathematicians’ solutions were proposed for the 

problem in which the game was supposed to stop at a different score: 5- 3 for A. For 

the detail of the resolution and the ways in which they have been presented to students 
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we refer to Paola (2019). Each of the four students’ groups received a different 

resolution. Students then worked in small groups to understand the proposed resolution 

and they presented it at the rest of the classroom (step 3). Afterwards, in small groups’ 

students reflected and critically analysed the proposed resolutions. Finally, during class 

discussion, students were asked to argue in order to sustain or to reject the proposed 

resolutions (step 4).  

The lessons were video recorded, and the students’ written productions were collected. 

Interactive argumentations have been the focus of a qualitative analysis.  

PRESENTATION AND ANALYSIS OF TWO CLASSROOM’S EPISODES 

In this section, we present and analyse data from the last two class discussions. Two 

episodes are described, in which students from the same group (G1) propose different 

arguments to support the same conclusion, and the related reactions of peers and the 

teacher. In addition, we briefly describe two representations introduced by another 

group (G2), that are crucial to analyse the second episode. 

Episode 1 

The first episode occurs during the class discussion in step 3. G1 study the 

mathematician's solution that was assigned to them and then present it to the classroom. 

Since they do not agree with the solution, they show another resolution they came up 

with. Below, we report Andrea's presentation of the G1 proposal and the subsequent 

reaction of one of his classmates. 

Andrea: We calculated that, now I'll explain how, A has a chance of winning by 7/8 

while B by 1/8. Why? Because we start from a situation of 5 to 3. And if 

we assume […] that B wins, tails would have to come up three times in a 

row. However, the probability that of getting tails three times in a row is 

one over two cubed. Why? Because the probability of getting heads or tails 

is always fifty percent, so one-half, and if this must happen three times in 

a row it will be one-eighth and therefore two cubed. Consequently, the 

probability of A winning is seven-eighths… 

Enrico:  I don’t understand why, if it has to come three times heads, I have to 

multiply three times a half.  

At this point in the discussion almost all students agree to divide the stakes 

proportionally to the probability of the two players winning. However, as declared by 

Enrico, it is not clear how to calculate these “probabilities of winning”. Andrea’s text 

is mathematically correct, and Andrea seems to be willing to explain and justify each 

step of his group solution. However, his text is based on some assumptions about 

probability computation that are not shared in the classroom. Enrico's question 

highlights this lack of understanding and agreement with the underlying assumption. 

Since Andrea is not able to explain why the result was 1/8, another G1-participant, 

Giacomo, tries to help. Giacomo is the only one in the classroom who had already 

encountered probability theory in previous scholastic segments. Firstly, Giacomo tries 

to explain the result showing all the possible outcomes of three tosses of a fair coin. 
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However, this does not explain why they used the multiplication, so Enrico raises the 

issue again. 

Enrico:  However, I don’t understand why the product…  

Giacomo:  Because at the algebraic level if you consider the probability of coming out 

tails to be equal to one half, if you toss the second coin, this [toss] is 

independent of flipping the first coin. Being two independent events, you 

have to multiply one half by one half.  

Enrico:  But why? I don't understand. 

Giacomo’s justification is based on the knowledge of some classical probability 

computational algorithms, which are not known to the other students in the classroom. 

While Andrea's argument does not explain why the result of the calculus is 1/8, in 

Giacomo’s argument the justification is presented, but it is based on theory, which 

seems to be evoked in an almost authoritative way. According to Mercier and Sperber’s 

(2017) definition, both Andrea’s and Giacomo’s interventions are not good 

argumentations, since their peers are not able to evaluate the coherence relationship 

between the speaker’s claim and their knowledge, convictions and system of beliefs. 

At this point, the teacher decides to stop the discussion. He states that Giacomo’s 

assertion about the product of stochastic independent events sounds almost like a 

“guru’s recommendation”, and it is not useful to clarify the reason why. He concludes 

that the class needed to think about it, and he moves the discussion forward. The 

teacher could have accepted G1’s arguments and praised it as the correct resolution. 

On the contrary, he stops the conversation, without commenting on the correctness of 

the resolution. The teacher’s feedback is at the level of the process. He evaluates 

Enrico’s reaction as being suitable for the situation and he considers Giacomo’s 

intervention as not helpful to build common knowledge. Doing so, the teacher suggests 

that the function of a good argumentation is not only to support a resolution, but also 

to help students develop a common knowledge and understanding. The feedback is 

about the students’ performance (where the students are in their learning trajectory) 

and, at the same time, it is useful to clarify the teaching and learning goals. 

G2’s representations 

Later in the same lesson Enrico’s group (G2) presents Fermat’s resolution by means of 

a tree diagram represented in Figure 1. Fermat imagines that the players play the 

maximum number of games remaining and considers the possible outcomes. With a 

score of 5 to 3, there are three rounds left and eight possible outcomes, represented by 

the branches of the tree diagram at the top of Figure 1, where T is for heads and C is 

for tails. In seven out of eight cases A wins; that is, the probability of winning for A is 

7/8 and for B is 1/8. Fermat’s resolution is based on a fiction (in any case, the two 

players play three rounds) that is not easy for students to accept. In fact, G2-students 

observe that the players would play three more rounds only if tails came up in the first 

two tosses, otherwise the game stops after one or two rounds. Then, they present 

another possible representation of the game (Figure 1, lower part). In this tree diagram 
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each branch stops with the victory of one of the two players, and the probability of 

winning for B is calculated to be equal to 1/4. 

 

Figure 1: Tree diagrams of Fermat’s (at the top) and G2’s (below) resolutions. 

G2’s representations express their point of view and conviction about the problem, and 

their reluctance to accept Fermat’s mathematical fiction. Their difficulty in grasping 

the not equiprobability in the second representation could be related to the 

equiprobability bias (Batanero et al., 2005). These representations are subsequently 

referred to by the teacher and peers and can be considered shared within the class. 

Episode 2 

The second episode takes place during step 4 of the activity. After small groups’ 

reflection students are asked to discuss collectively. At a certain point of the class 

discussion, G1 shares their reflection and conclusion. Sabrina summarises the group 

resolution. She states that also using the G2’s tree diagram it would be possible to 

calculate player B winning probability to be equal to 1/8 (and not 1/4). She supports 

her claim with the argument reported below. Her speech is intertwined with the 

construction of the pie chart illustrated in Figure 2, the steps for its construction have 

been included within the transcript in brackets. 

 

Figure 2: Group 1’s pie chart. 

Sabrina:  We tried to explain it with a pie chart. Here there is a 50% chance to get 

heads or tails, so the chart is like this (she draws a circle and divides it in 

half with a segment. She writes T in the upper half of the circle and C in 

the lower one). If heads wins, the game ends here (she points at the upper 

half of the circle), but if tails wins there is again a 50% chance that heads 

wins or tails wins (she divides the bottom half in two equal parts and writes 

T for heads and C for tails). Again, here the game ends and here it 

continues. And then again here it splits because if heads come up, heads 
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wins, or tails, tails wins (she divides the circle quarter denoted by letter C 

in two parts), either way the game ends, but what we see here is 1/8.  

All the students in the classroom, particularly G2’s students, claim they understand, 

and they agree with G1’s solution. Sabrina's argument refers to G2’s tree, which 

reflects their convictions and responds to their need to use representations more closely 

related to the game development. G1’s representation allows Sabrina to show the not-

equiprobability of the possible outcomes by correlating the branches with different-

sized slices of the pie chart, and without referring to unshared theoretical results. Pie 

charts are generally used to represent ratios and quantities and students had no 

difficulty in reading the result in such representation. According to Mercier and 

Sperber (2017), it can be considered a good argumentation, since it shows the 

consistency between G1’s and G2’s convictions and knowledge, and it allows students 

to evaluate the relationships on their own. 

DISCUSSION AND CONCLUSION 

Andrea’s and Sabrina’s arguments support the same conclusion. However, they 

express their conclusion in a completely different way. If the function of argumentation 

is to help collective sensemaking development of probability theory concepts, it is 

crucial to consider peers’ convictions and knowledge as a starting point. This allows 

to convince them by showing coherence relationships that they can evaluate on their 

own. Andrea’s and Giacomo’s arguments do not support the desired educational goal 

of developing probability concept sensemaking; therefore, they are rejected by some 

of their classmates and by the teacher. Enrico’s reaction to Andrea’s e Giacomo’s 

interventions could be interpreted as a sign of the fact that Enrico shares the learning 

goals. Conversely, Sabrina’s diagram seems to play a crucial role in conveying 

probability meanings. The pie chart strongly characterises Sabrina’s argument and 

allows her classmates to change their opinion. The analysis shows that goals shared 

and expressed by the feedback seem to be crucial for shaping the development of the 

collective argumentation, clarifying what can be accepted or not by the classroom at 

the moment. Considering the functions that the argumentative texts should fulfill in the 

classroom could help the teacher give feedback to students. Moreover, since the 

development of argumentation depends on context and interlocutors, adapting one's 

arguments to different interlocutors could be understood as a feature of argumentative 

competence. In conclusion, we remark how interactions are “elegant ways to divide 

cognitive labor” (Mercier and Sperber, 2017, p. 236), and how this interactive nature 

of the process could help students refine and enhance the arguments produced. 

However, the characteristics of a suitable argument depend on several factors, such as 

the didactical functions of argumentative processes, and the time in the teaching-

learning process at which they take place. Further investigations are certainly needed. 

Firstly, the role of representations and, in general, the possible ways in which 

coherence relationships can be shown in mathematical argumentation are to be 

explored further. Secondly, considerations about possible ways to enhance students’ 
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participation as an attentive audience are to be made. Finally, the peculiarity of the 

probability context is to be deepened, and other contexts could be taken into account. 
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This paper aims to characterize traits of didactic-mathematical knowledge of pre-

service teachers when solving and posing robotics tasks. We qualitatively identified 

aspects of mathematical and computational knowledge of 97 pre-service teachers of 

Early Childhood Education when solving tasks as users of the educative robot Blue-

bot, and we analyzed their justifications when reflecting on the design of robotic tasks. 

The results show that participants present characteristics of didactic-mathematical 

knowledge, but errors and ambiguities are evidenced in the programming procedures 

and representations. These errors and ambiguities influence the didactic suitability of 

the robotic tasks they designed. For further research, it is considered to develop 

didactic-mathematical and computational knowledge in the training of future teachers. 

INTRODUCTION  

Computational Thinking (CT) should be developed progressively, starting at an early 

age (Zapata-Ros, 2019). The current Spanish curriculum incorporates CT in the second 

cycle of Early Childhood Education (students from 3 to 6 years old), in the area of 

discovery and exploration of the environment, to develop in students the process of 

problem-solving (MEFP, 2022). 

To attend to this normative demand, there is a need to introduce teacher training 

programs to foster CT from Early Childhood Education (among others, Benton et al., 

2017; Ribeiro et al., 2011; Seckel et al., 2022a). In addition, research can be found that 

aimed to study pedagogical practices and teachers' conceptions regarding the use of 

robots in the early ages (among others, Papadakis, 2020; Seckel et al., 2021). These 

studies have highlighted the research agenda to study the knowledge that teachers 

should acquire to be able to teach. Within the framework of the Ontosemiotic Approach 

(OSA) (Godino et al., 2007), there is a model of Didactic-Mathematical Knowledge 

(DMK) that interprets and characterizes the teacher's knowledge (Pino-Fan & Godino, 

2015). In that sense, the general objective of this research is to characterize traits of the 

didactic-mathematical knowledge of future kindergarten teachers when solving and 

posing robotic tasks. 

THEORETICAL FRAMEWORK  

The Didactic-Mathematical Knowledge (DMK) model interprets and characterizes the 

teacher's knowledge from three dimensions: mathematical dimension, didactic 

dimension, and meta-didactic-mathematical dimension (Pino-Fan & Godino, 2015). 

The mathematical dimension of the DMK includes common content knowledge and 
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extended content knowledge. The didactic dimension of the DMK includes epistemic, 

cognitive, affective, interactional, mediational, and ecological subcategories of 

knowledge. The meta-didactic-mathematical dimension is the one that characterizes 

the knowledge that teachers need to reflect on their practice and to evaluate the didactic 

suitability to find possible improvements in the design and implementation of these 

processes (Breda et al., 2017). 

For each of the components of the DMK, the OSA has "theoretical-methodological" 

tools that have been described and used in several investigations (Godino et al., 2007). 

For example, the "ontosemiotic configuration" tool is available for the development of 

instruments to systematically analyze teachers' knowledge of the mathematical 

dimension and the epistemic facet of the DMK. This tool allows the description and 

characterization of the primary mathematical objects-representations/language in its 

different registers; problem situations; concepts and definitions; propositions; 

procedures; and arguments/justifications-that are produced through mathematical 

processes or as part of the planning of a task (or sequence of tasks) for the classroom 

(Malaspina & Font, 2010). In addition to this, mathematical knowledge contemplates 

the description of teachers’ errors and ambiguities from a mathematical point of view. 

On one hand, for the development of instruments to systematically evaluate and 

analyze teachers' knowledge of the meta-didactic-mathematical dimension, the 

Didactic Suitability Criteria (DSC) tool becomes operational, which according to Font 

et al. (2010) are characterized as follows: Epistemic Suitability, to assess whether the 

mathematics being taught is "good mathematics"; Cognitive Suitability, to assess, 

before starting the instructional process, whether what is to be taught is at a reasonable 

distance from what the students know, and after the process, whether the learning is 

close to what was intended to be taught; Interactional Suitability, to assess whether the 

interactions resolve doubts and difficulties of the students; Mediational Suitability, to 

assess the adequacy of the material and temporal resources used in the instructional 

process; Affective Suitability, to assess the involvement (interests and motivations) of 

the students during the instructional process; Ecological Suitability, to assess the 

adequacy of the instructional process to the educative project of the center, the 

curricular guidelines, the conditions of the social and professional environment. The 

notion of DSC has had a relevant impact on teacher training in different countries, in 

particular, in the development of the teacher's meta-didactic-mathematical knowledge 

about their practice as Early Childhood pre-service teachers in Catalunya (Sala-

Sebastià et al., 2022). 

On the other hand, Estebanell et al. (2018), propose a model for initial teacher training 

that contemplates four levels for the development of CT: user, reflective user, teacher, 

and reflective teacher. Concerning the user level, Seckel et al. (2022b) propose a 

classification of the teachers’ errors in the planning of programming, they are the 

following: a) error due to the absence of a function in programming; b) error by 

excessive quantification of a function in programming; c) error due to the 

misunderstanding of a type of programming, and d) error when applying previous 
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knowledge. Further, teachers must recognize two basic aspects when designing tasks 

(Arlegui & Pina, 2016). The first aspect is related to the idea of a robotics problem-

type task, whose resolution involves the robot moving from an initial state to a final 

one, through the planning of a sequence of actions (intermediate states that are 

programmed). The second aspect is related to criteria that should guide the approach 

of a problem or a sequence of problems, these are: 1) to contemplate progressive 

complexity, 2) to refer to known and unknown aspects and 3) to place the problem in 

an environment (scenario).  

METHODOLOGY  

The participants in the study were 97 students of the Didactics of Mathematics course 

of the Early Childhood Education Degree at a Catalan university (Spain). The trainee 

teachers were organized into work teams to carry out the didactic sequence that was 

proposed to them; there were 17 work teams in total. 

The data were obtained from the recordings of some of the sessions implemented, from 

the field notes of the first and second authors, who acted as teachers of the group 

carrying out participant observation, and from the documents written by the 

prospective teachers, called [D1], [D2] and [D3]. 

The learning sequence designed by the first two authors of the article and implemented 

with prospective teachers contemplated two sessions and autonomous work of the 

teams. The didactic objective of session 1 focused on the development of logical-

mathematical and computational thinking skills in 5 or 6-year-old children by solving 

tasks with an educative robot. It was explained to them that they had to address and 

answer the questions in the dossier [D1] and describe what they had done to answer 

them, and no further information was given, neither about the working of the Blue-Bot 

robot nor about the use of the other resources provided. Each task in the dossier, in 

turn, responds to certain specific objectives of CT development that connect diverse 

contents in a transversal way, such as argumentation, logical-mathematical reasoning, 

and spatial and metric reasoning, among others. The purpose of the second session was 

the participants' identification of key aspects of the characteristics that a problem-type 

task should have and the sub-processes that should be carried out to solve it. Students 

were asked to think of characteristics of a good problem to be used for didactic 

purposes. Afterwards, each group should present a document with their list in a forum 

of the subject platform to share it with other participants [D2]. After this session, 

participants were asked to design as a team a session for 5 - 6-year-old children with 

educative robots that contemplates elements of the didactic use of the problem-type 

tasks identified in session 2 and the experience lived in session 1 [D3]. 

To identify aspects of mathematical knowledge presented by future kindergarten 

teachers when solving tasks as users of the Blue-Bot educative robot, the document 

[D1] with the answers of the future teachers to the tasks presented in the dossier and 

the explanation of the actions performed to achieve them were considered. Also, the 

recordings of the development and resolution of the tasks posed in the dossier were 
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considered when the future Early Childhood Education teachers manipulated the Blue-

Bot robot. To identify traits of mathematical and computational knowledge, the notion 

of ontosemiotic configuration in the DMK model of the OSA (Pino-Fan & Godino, 

2015) was used. In addition, the categories of errors that teachers make when 

programming the robot proposed by Seckel et al. (2022b) were used.  

To collect all the characteristics that the participants believed that a problem-type task 

should have, a content analysis of this document [D2] was carried out, where we 

identified the emerging characteristics and which of them coincided among the 

different teams. Then, the design of a robotic task and its possible implementation with 

5 - 6-year-old children made by the participants [D3] was taken into account. This 

document was analyzed to identify which of the emerging characteristics resulting 

from the analysis [D2] appeared in [D3], i.e., whether the pre-service teachers had 

considered the key aspects of the characteristics that a robotic problem should have. 

And then, it was analysed to identify the suitability of the participants' designs and to 

determine their mathematical meta-didactic knowledge. 

Finally, a triangulation of the analyses among the most expert authors in the use of the 

instruments is carried out and it was possible to infer aspects of the didactic-

mathematical and computational knowledge of the participants when posing and 

solving robotic tasks from the aspects of mathematical and mathematical meta-didactic 

knowledge emerging in the previous analyses. This inference was also triangulated 

with the opinion of an expert in the OSA theoretical framework. 

RESULTS AND DISCUSSION 

Firstly, we found arguments/justifications, representations/language, propositions and 

procedures referring to the mathematical objects sequence and measurement from the 

primary objects that emerge from the future teachers' answers to the proposed robotic 

problems. It was not possible to identify, for example, definitions or concepts referring 

to a specific mathematical object. 

Many groups do not reach the level necessary to argue and justify whether different 

orders can take the robot to the same place. Although some teams already establish a 

justification based on the sequencing related to CT, many teams argue that the robot 

arrives at a certain place based on the concrete idea of a path (not referring to the robot's 

programming). Regarding the procedures pointed out by the teams for the calculation 

of the distance between one class and another, although the estimation procedure and 

the arithmetic calculation of multiplication appear, the idea of measurement by 

comparison (once they work with medium-scale distances) does not arise, for example. 

In addition, most of the teams showed errors in the programming procedure when they 

had to give the instructions for the robot to return along the outward route. Regarding 

how the participants represent the orders given to the Blue-Bot, although the verbal-

written, symbolic, and iconic representations appear, they present errors in the 

representation of the route that the robot follows and also ambiguities in the drawing 

of the arrows made with their iconic representation. 
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Although studies show positive levels of interest, knowledge, problem-solving and 

self-efficacy of future teachers when working with robotics and CT in basic education 

(Piedade, 2021), this study shows a lack of mathematical (sequence and measurement) 

and computational (sequence programming) knowledge when solving robotic 

problems at the user and reflective user level. This is consistent with the studies of 

Seckel et al. (2022b), who observe different types of errors made by future kindergarten 

teachers when solving robotic problems, both in the use of robot commands and their 

respective programming representation. 

In addition to the results referring to the analysis of the mathematical and 

computational knowledge of the participants that show errors and ambiguities in the 

programming procedures, their designs lack didactic objectives focused on the teaching 

and learning of computational knowledge. The representation or writing of robot 

programming algorithms is not promoted as an essential element for the development 

of computational thinking. It can be inferred that future teachers do not contemplate it 

in their designs either because they do not master it (as they make mistakes), or because 

they are not aware of the importance of fostering the writing or representation of 

algorithms as an institutionalization of CT knowledge. This is reflected in the epistemic 

and cognitive suitability of the designs.  

The designs take special care of aspects related to affective suitability, including many 

elements to motivate and involve children in a fun activity that generates positive 

emotions. To this purpose, they mainly provide task contexts (pupils' centres of 

interest; very close, everyday and familiar situations; games with prizes; children's 

stories, etc.), which aim to involve pupils in the activity. The resources identified in 

the analysis of mediational suitability support this focus on the emotional part of the 

design, since, in general, most of the resources are used to enrich the context (carpets 

decorated with motifs of the topic of the centre of interest, children's stories, etc.). 

However, the programme cards that could have been proposed as facilitating resources 

for learning and developing CT do not play a central role, as they are included only as 

an optional use. To get children involved in the activities designed, pupils are given an 

active and leading role in making decisions and expressing justifications and 

arguments. To do this, they are organized into small working groups that facilitate the 

necessary interaction (interactional suitability) for these situations of debate and 

reflection, led by the teacher, to take place. This type of design of future Early 

Childhood Education teachers with a strong concern about high affective suitability 

was also found in Sala-Sebastià et al. (2022). 

According to the results, the least considered suitability by the pre-service teachers is 

the ecological suitability, as it seems that none of the participants consulted the 

curriculum to ensure that their proposal complied with the legal guidelines. 

Furthermore, although all designs include contextualized tasks, none of them shows an 

interdisciplinary approach. Only one deal with the environment in a cross-cutting 

manner but with little depth, and a couple of them foster connections with other content 

within mathematics (numerical and spatial thinking).  
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When future teachers design educational practices without having been given a detailed 

guide on how the designs should be, many of the elements of consensus in the 

educational community emerge, such as the fact that the task should involve and 

motivate students, that students should interact, share ideas and help each other, among 

others (Breda, et al., 2017). But other equally important aspects do not always emerge, 

such as, for example, establishing didactic objectives and assessment criteria, 

establishing a sequence of activities of progressive difficulty, establishing mechanisms 

for institutionalising the central contents that are the objective of educational practice, 

among others (Seckel et al., 2022). 

CONCLUSIONS 

The results show that future teachers present characteristics of didactic-mathematical 

and computational knowledge since, in the participants' answers, aspects of such 

knowledge can be timidly observed. However, they show certain weaknesses in 

mathematical and computational knowledge that are reflected in the results on the 

didactic suitability of the designs drawn up. So, we wondered whether it might be 

necessary to include in the training of these future teachers basic mathematical 

knowledge and, specifically, computational thinking to guarantee the quality of their 

future educative practices and to comply with the current guidelines of the Spanish and 

Catalan curricula. 

If the DSC, which in this work has been used as a methodological element to carry out 

the data analysis, were made available to future teachers in the degree, they could use 

them as a design tool and implementation guide to help keep in mind and balance the 

various didactic facets of educational practice. Thus, the development of didactic 

knowledge in future teachers would be promoted. 

The results of the study, determined from a particular context, have limitations as they 

are based on future teachers of kindergarten in a specific geographical area of Spain.  

Different results could be obtained if the study were carried out with future teachers of 

primary school or with in-service teachers in another location. It is also important to 

underline that the robotic tasks proposed in the dossier also conditioned certain types 

of response. Changing them could imply some modifications, albeit subtle, in the 

results found. 

Further research could consider that the future teachers participating in the study carry 

out a kind of simulation by applying the tasks designed with their peers to bring out 

characteristics of didactic knowledge that were not contemplated in the design. In 

addition, it is considered relevant to incorporate mathematical and computational 

knowledge in the training of future teachers to operate the Blue-Bot robot and develop 

logical, spatial and computational thinking. It is also considered to incorporate the DSC 

in the training to develop didactic knowledge. 
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The mathematical thinking and acting of learners are determined by individual 

interpretations of mathematical concepts. These interpretations can be reconstructed 

from an individual perspective––as individual conceptions––as well as from an 

interactionist perspective––as specific frames. So far, however, it remains unclear, 

how individual conceptions take effect in mathematical interactions and, on the other 

hand, how joint negotiation processes about mathematics affect the development of 

sustainable individual conceptions. Combining both concepts, we develop the concept 

of individual conception frames in order to create a theoretical foundation for the 

empirical analysis of individual mathematical learning in interactions. 

 

1. BASIC IDEAS AND INDIVIDUAL CONCEPTIONS OF MATHEMATICAL CONTENT  

Basic ideas of mathematical concepts can be understood as interpretations of 

mathematical concepts which are ideal-typical. These interpretations are connected to 

real-life as well as to mathematical contexts and representations and can thus give 

meaning to the mathematical concept. Through these connections, basic ideas should 

also enable flexible mental variations of the concept at hand and their application in 

inner-mathematical as well as modelling contexts. (Blum & vom Hofe, 2016; vom 

Hofe 1995; Greefrath et al., 2021). Examples of basic ideas for subtraction of natural 

numbers are i) the interpretation of subtraction as the determination of a difference 

between two quantities, and ii) the interpretation of subtraction as the removal of a 

subset from an initial quantity. Basic ideas can thus answer, in particular, the question 

of which interpretations of the concept at hand learners should develop when dealing 

with mathematical contents. 

The derivation and formulation of basic ideas are carried out through a factual analysis 

of the mathematical content: By relating definitions of the mathematical concept to 

real-life or mathematics-related contexts and phenomena (Freudenthal, 1983), 

researchers derive relevant interpretations of the concept and classify them based on 

commonalities of the respective interpretations (Salle & Clüver, 2021; vom Hofe & 

Blum, 2016). 

However, basic ideas usually do not go along with what learners develop for actual 

interpretations of mathematical concepts. Therefore, in the relevant literature, the basic 

ideas are contrasted with individual conceptions of mathematical concept (vom Hofe, 

1995; vom Hofe & Blum, 2016). Several empirical studies show the significance of 

such conceptions for the explanation of differences in students’ performance (e. g., 
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Prediger, 2008; see also vom Hofe & Blum, 2016). Individual conceptions are 

understood as individual interpretations of one person which are also connected to real-

life or mathematical contexts and representations. Individual conceptions are action-

guiding for the individual (Balacheff & Gaudin, 2009; Jetses & Salle, submitted; vom 

Hofe, 1995). Regarding features of individual conceptions, two views can be identified 

in literature: The first view assumes that individual conceptions are to be regarded as 

situation-transcending constructs which are activated in different situations; the second 

view, which the authors of this paper follow, understands individual conceptions as 

situation-specific: individual conceptions are thus always newly constructed by a 

person in every situation and are therefore never the same (Jetses & Salle, submitted; 

Balacheff & Gaudin, 2009). Such situation-specific and action-guiding individual 

conceptions can be sustainable in terms of content, but also fragmented or flawed. 

If, in similar situations, the same person shows similarities in the respective individual 

conceptions with regard to the underlying interpretation, we can speak of a common 

core of individual conceptions (Jetses & Salle, submitted). This core in turn has a 

character that transcends situations. Such cores provide information for researchers 

about which previous experiences and which previous knowledge could be guiding for 

the construction of corresponding individual conceptions of the person. The 

construction, further development and networking of sustainable individual 

conceptions is regarded as crucial for mathematical learning (Piaget, 1976; vom Hofe, 

1995). Against this background, a crucial question is how learners can develop such 

cores of sustainable individual conceptions when learning mathematics at school in 

order to construct adequate individual conceptions on their basis. 

Answers to this question can be given from an individual perspective, for example, 

through appropriately designed learning arrangements that focus in a special way on 

the construction of individual conceptions, such as functional thinking exercises that 

require mental changes of mathematical objects from geometry or other domains (e. g. 

Weber, 2007). However, the action-guiding character of individual conceptions is not 

limited to situations in which a person thinks about mathematics alone; in this sense, 

individual conceptions also influence interaction, i.e. the negotiation processes in 

exchange with teachers and other learners. That is why the question of how individuals 

construct and apply sustainable individual conceptions must also be answered from an 

interactionist perspective in particular. According to an interactionist understanding, 

individual interpretations of the corresponding mathematical concepts are influenced 

by the reciprocally referring actions of the interaction partners in interactions. This will 

also have an effect on the construction of individual conceptions or the core of precisely 

these of the participants. In contrast to other approaches that can be used to investigate 

the role of conceptions in interactions (e. g. Balacheff & Gaudin, 2009; Vergnaud, 

1996), the concept of basic ideas and individual conceptions focuses on specific 

mathematical concepts. On the one hand, this allows a targeted view on these concepts, 

and on the other hand, enables comparisons of individual conceptions with the 

corresponding basic ideas. 
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The purpose of this paper is to formulate a theoretical foundation for a methodological 

approach which allows us to explore answers from an interactionist perspective by 

investigating cores of individual conceptions of specific mathematical concepts in 

interactions. This foundation shall take into account individual as well as interactionist 

aspects of the development of individual conceptions. 

2. MATHEMATICS LEARNING FROM AN INTERACTIONIST PERSPECTIVE – 

THE CONSTRUCTION AND MODIFICATION OF FRAMES 

At the center of an interactionist perspective on mathematics learning is the concept of 

learning mathematics in and by interaction. Implementations of an interactionist 

perspective on mathematics learning can be found in interactionist approaches of 

interpretive research in mathematics education (cf. Bauersfeld et al., 1988; Jung, 2019; 

Jung & Schütte, 2018; Jung et al., 2022; Krummheuer, 2007, 2011; Schütte, 2014; 

Schütte et al., 2021). Social interaction is following these approaches seen as the 

constituting starting point of mathematical learning processes. Essential theoretical 

assumptions of an interactionist perspective on mathematics learning can be found in 

the sociological theory of symbolic interactionism (Blumer, 1969, 2013) and in 

approaches to collective learning (Miller, 1986, 2006). According to Blumer, the 

coexistence of people is constituted by symbolic interactions, so that actions of the 

individual are always carried out on the basis of previously interpreted actions of the 

counterpart. In addition to the concept of interaction, the concept of interpretation and 

the meaning resulting from these interpretations thus form the foundations of symbolic 

interactionism. According to this theory, meanings of mathematical objects or 

operations can be described as “social products”, which are produced in mutual 

collective processes of interpretation (Blumer, 2013, p. 67).  

By participating in such collective constructions of meaning, individuals can transcend 

their limited individual abilities to construct meaning and in this way create the basis 

for individual mathematical learning (Schütte et al., 2021; Jung et al., 2022). However, 

from an interactionist perspective, learners do not enter collective negotiation 

processes without experience and knowledge, nor do they only build up situation-

specific concepts in these processes. Therefore, at the beginning of an interaction, all 

learners create initial situation-specific interpretations of the situation they are in, so-

called definitions of situation, based on their individual experiences and knowledge 

(Jung, 2019; Krummheuer, 1992). The learners involved in the negotiation processes 

always draft the definitions of situation in anticipation of possible interpretations of the 

other learners and change or adapt them in processes of mutual negotiation of 

mathematical meaning (Jung, 2019; Krummheuer, 1992) with other learners. Within 

this process of mutual alignment of individual definitions of situation, a moment of 

‘interpretive agreement’, i.e. a shared interpretation between the learners––an 

interpretive interim, as Schütte et al. (2021, see also Jung et al., 2022) call it––can be 

achieved (on the term see also Voigt, 1994, p. 78; as taken-as-shared understanding). 

In the sense of Miller (1986, 2006), the interpretive interim holds the potential to be 

potentially innovative for the individual and thus to systematically transcend the 
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individual’s interpretive capacities. In the sense of an interactionist understanding of 

learning, thus it constitutes the ‘stimulation potential’ for fundamental, situation-

transcending cognitive construction and restructuring processes of the individual. 

Therefore, a one-time collective construction of an interpretive interim usually does 

not lead to individual cognitive construction or restructuring processes; rather, it 

requires the repeated negotiation of the same interpretive interim - not necessarily in 

the same group of learners. By that, the underlying situation definitions of the 

individual that led to the production of the interpretive interim can “converge” into 

more standardized and routinised retrievable situation definitions (Schütte et al., 2021; 

Jung et al., 2022). These permanent cognitive constructions or restructurings of 

learners are called the construction or modification of frames with reference to 

Goffman (Goffman, 1959; Krummheuer, 1992). On basis of such frames, learners 

remake their interpretations of the situation in subsequent mathematical negotiation 

processes and thus receive changed opportunities for participation. According to an 

interactionist perspective on mathematics learning, individual situation-transcending 

cognitive construction and restructuring processes are thus reciprocally connected with 

collective mathematical negotiation processes or structurally embedded in them (see 

also the concept of the commognitive framework by Sfard, 2008; Schütte et al., 2021). 

3. JUXTAPOSITION OF INDIVIDUAL CONCEPTIONS AND FRAMES  

If we compare the terminologies as well as the concepts for describing mathematics 

learning mentioned above, many similarities can be found in both, which are most 

notably reflected in the central role of interpretations for individual conceptions and 

frames. Moreover, ‘blind spots’ can be identified in both concepts, which could be 

illuminated by a possible combination. In this way, the concept of basic ideas makes it 

possible, to compare individual interpretations which are descriptively obtained with 

‘target’ basic ideas which are derived normatively from mathematical considerations. 

Thus, the extent to which there is a certain match can be identified. So far, however, it 

has not been possible within the basic ideas framework to describe how learners will 

interpret the mathematical concept at hand in interactions in future, based on analysed 

cores of individual conceptions; the core of individual conceptions describes 

commonalities of different reconstructed individual conceptions only retrospectively 

so far. The framework of basic ideas cannot fundamentally describe how in interaction 

processes taking place within a group of learners––who contribute their own 

interpretations of mathematical concepts––affect and change the respective cores of 

individual conceptions of all learners. It can be assumed that cores of individual 

conceptions also become relevant for conceptions constructed in the future, for 

example, that learners use their previous experiences and knowledge, which have 

coagulated in cores, as a background for the construction of new conceptions––and this 

also and especially through exchange with others. However, a corresponding 

theoretical and methodological foundation for the empirical analysis of this connection 

is not available and will be developed in this paper in the following. 
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However, the analysis of situation-transcending cognitive construction and 

restructuring processes is precisely at the centre of the theoretical approach of 

mathematics learning in and by interaction, and in particular, of the central concept of 

frames. This could be a useful supplement to basic ideas: Thus, the theoretical approach 

of mathematics learning in and by interaction focuses the origin of the permanently 

reconstructed and modified individual restructuring the interaction with others. That is 

based on an understanding that without this interaction any frames would not be 

produced. Also, the concept of frame seems to allow describing how learners will 

interpret in interaction processes in future under the assumption that they will apply a 

reconstructed frame. The concept of frame conceptualises just a kind of background 

foil against which learners make future interpretations of situations, e.g. in further 

interactions. However, the concept of frame has a ‘blind spot’ in describing 

mathematics learning, too. According to the logic of the construction and modification 

of frames, these frames always receive a kind of collective validation of the quality of 

the emerging individual restructurings thorough the culture of involved mathematics 

practitioners. However, comparisons of learners’ frames in terms of their quality with 

“target frames” that are derived normatively from mathematics, are not possible, 

although this would be desirable to assess mathematical learning potentials. 

4. INDIVIDUAL CONCEPTION FRAMES 

The considerations above thus give reason to expect that the merging of the concepts 

of frame and of individual conceptions core can fix the mutual blind spots in the 

reconstruction of mathematical learning processes. The theoretical merging builds on 

two parallels of the concepts. On the one hand, irrespective of their different 

fundamental theoretical foundations in interactionist or cognitive-constructivist 

approaches, both frames and cores of individual conceptions refer to the individual and 

make it possible to describe what is situation-transcending. On the other hand, both 

concepts have the basic assumption that they stem from a kind of bundle of 

interpretations: First, cores of individual conceptions can be understood as 

commonalities of a bundle of different individual interpretations of a mathematical 

concept (and are thus always related to this mathematical concept); secondly, frames 

can be understood as bundles of interpretive interims that an individual has produced 

in different situations with other learners involved in mathematical interactions (and 

thus refer to situations). 

Based on these considerations, we introduce the concept of a frame that is shaped by a 

core of individual conceptions, or, in short, individual conception frame of a 

mathematical concept. This term attempts to address the 'blind spots' of both concepts. 

In the sense of an interactionist view of learning in relation to frames, this is an 

individual construct which is produced interactively. By that, it leads to expanded 

opportunities of participation in future interactions, in the way that the individual can 

build up on previously successful action-guiding interpretations of a specific 

mathematical concept.  In the end, it has an effect on the interactive construction and 

modification of new individual frames of conception (Schütte et al., 2021). In the sense 
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of describing a core of individual conceptions that refers to a mathematical concept, an 

individual conception frame makes it possible to compare the individual construct 

which is interactively produced with normatively derivable basic ideas to this 

mathematical concept. In this way, making assessments about the sustainability of 

developed individual constructs of the learners becomes possible. Within this new 

conceptual network, basic ideas can be understood as a ‘desirable’ background foil that 

enables learners to construct ideal-typical interpretations of a specific mathematical 

concept in respective situations. Therefore, when comparing the individual conception 

frame with normative basic ideas, one can also speak of a comparison with a basic idea 

frame of the mathematical concept. 

5. PERSPECTIVES 

The purpose of this paper is to create a theoretical basis, on which mathematics learning 

from an individual and interactionist perspective can be described. With such a basis, 

new theoretical elements can be developed at the interface between theory and 

empiricism. Basic so-called sensitising theoretical concepts (Kelle, 1994, p. 239; cf. 

sensitising concepts Blumer, 1954, p. 7; Strauss & Corbin, 1994), which––like the 

individual conceptual frame here––are derived from existing theory, represent an 

important tool in this process. The basic assumption is that empiricism is able to disrupt 

and change these theoretical constructs and that they can be further developed into an 

empirically substantial concept through application in the empirical field.  

In principle, on the one hand, we assume that learning mathematics through the 

construction of frames is a fundamentally interactively conditioned process. However, 

on the other hand, having regard to the concept of basic ideas, individual conceptions 

are also crucial for such learning. According to this understanding, any differences that 

arise from different frames––different individual conception frames in particular––of 

the individuals who are participating in the interaction are a motor of learning (Schütte, 

2014). Such differences challenge new interpretative agreements of the participants 

and thus lead to the construction and modification of existing frames. How this 

construction and modification of individual conception frames can be described, how 

such a description can enable the reconstruction of mathematical learning at the 

interface between the individual and the interaction partners, and in how far eventual 

modifications of frames also become apparent in non-interactively shaped situations in 

which the mathematical concepts are applied, shall be subject of future empirical 

studies.For this purpose methodological approaches of both underlying research 

paradigms are to be brought into synergy with each other in the sense of a mixed 

methods design (Jetses et al., submitted; Schütte et al., 2019). 
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Fraction learning is a central yet difficult topic in mathematics education. Hence, 

formatively monitoring fraction learning is important. Despite a sound research base 

from paper-based studies, findings on fraction learning are still difficult to use in 

practice, as mathematics teachers have limited access to test materials, for example. 

This contribution presents the first results of a study that explores the feasibility of 

digital testing with n = 231 sixth graders. It focuses on the psychometric quality of 

fraction tests that have been adapted to a digital format and their suitability for 

repeated testing. The findings indicate similarities but also differences compared with 

the paper-based tests. The two tests indicate to be parallel and hence suitable for the 

digital monitoring. The implications of our findings for school practice are discussed. 

INTRODUCTION 

Even though fraction learning is a central topic in mathematics education and predicts 

later learning success (Siegler et al., 2012), most students encounter a range of 

problems while learning fractions (e.g., McMullen & Van Hoof, 2020). Prior studies 

inform about the components of fraction knowledge and central mathematical 

predictors for successful learning in this area (e.g., Schadl, 2020). Whereas most 

research focusing on predictors is restricted to statements such as “more (prior 

knowledge) is better (for later fraction learning)”, the recent literature provides models 

that allow describing the relations between central predictors and fraction knowledge 

based on levels models that capture qualitative differences in knowledge beyond that 

linearity (Schadl, 2020). Even though promising for the educational context, teachers 

cannot benefit from these findings in practice so far. For instance, access to test 

materials is often restricted, and paper-based tests are inconvenient to administer and 

evaluate. Providing tests for digital testing could be an opportunity to remedy these 

issues. Further, digital testing may allow the assessment of learning trajectories and 

supports mathematics teachers to formatively assess and monitor students’ fraction 

learning (Black & William, 2004). 

Following the three-staged development process of instruments for monitoring 

learning (Fuchs, 2004), research should first focus on the psychometric quality of 

developed tests (stage 1) in terms of validity and reliability, for instance, with item 

response theory (IRT) scaling methods. Next, it is required to investigate their 

suitability for monitoring learning progressions based on repeated testing (stage 2) and 

their usability by mathematics teachers (stage 3). In this contribution, we address 

stage 1 and touch stage 2, presenting preliminary analyses of the piloting of a digitized 

fraction test with two test forms (a short and a long one).  



Schadl & Lindmeier 

4 - 156 PME 46 – 2023 

Structural modeling of fraction knowledge 

Several approaches can be found in the literature to describe the structure of fraction 

knowledge from different perspectives. So, for example, Siegler and colleagues (2011) 

emphasize students’ understanding of fraction magnitude representations and fractions 

placing on number lines as central (magnitude perspective). Other approaches highlight 

the meaning of fractions (part-whole perspective), enabling students to gain deepened 

insights into fraction procedures. From this latter perspective, Schadl (2020) provides 

a three-facet model with knowledge of fraction subconstructs, fraction arithmetic 

skills, and fraction word problems. Developing fraction knowledge in this perspective 

depends on mathematical predictors such as whole number multiplication and division. 

This contribution follows the part-whole perspective and focuses on the knowledge of 

fraction subconstructs according to Schadl (2020).  

Modeling knowledge of fraction subconstructs from low to high based on results 

from paper-based studies 

Based on a paper-based large-scale assessment with N = 782 sixth and seventh graders, 

Schadl (2020) modeled knowledge of fraction subconstructs from low to high with four 

levels. The test materials used in this large-scale assessment contained tasks for the 

subconstructs part-whole, ratio, operator, quotient, and measure that were strongly, 

slightly, or non-prestructured. Strongly and slightly prestructured tasks required 

shading fractions on models that were divided into equal parts or to evaluate statements 

as (in)correct (both strongly prestructured task formats) or to select the correct 

statements from several given (slightly prestructured task format). Such pre-structures 

were not given in non-prestructured task formats, where students had to construct and 

present solutions. So, the original test spans different subconstructs of fraction 

knowledge and covers, in addition, items with varying degrees of demands for students. 

The empirically supported hierarchical models suggest that level 1 is characterized by 

the part-whole subconstruct in strongly prestructured task formats. Level 2 is 

characterized by the part-whole subconstruct in slightly and non-prestructured task 

formats. Further, tasks that require linking the part-whole with other subconstructs in 

strongly prestructured situations are characteristic of level 2. On level 3, this linking is 

required either in slightly or non-prestructured task formats. On level 4, students have 

to be able to deal with complex relations between the subconstructs with no or slight 

prestructuring. To summarize, the levels differ in whether the tasks require a transfer 

between the part-whole and other subconstructs. Further, the degree of task 

prestructuring is a central criterion for level characterization in the paper-based setting. 

THE PRESENT STUDY 

This contribution focuses on a digitized test for knowledge of fraction subconstructs 

that was adapted from the paper-based test from Schadl (2020). Two parallel test forms, 

a long and a short version, were prepared for the intended use in the digital monitoring 

of fraction learning. In this study, we investigate questions of test quality related to the 

transfer of the test into a digital setting and its suitedness for repeated testing:  
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Question 1 (Q1, level modeling): Which levels can be characterized to model 

knowledge of fraction subconstructs from low to high based on the digitized tests? To 

what extent do these levels replicate the ones from the paper-based setting? 

Question 2 (Q2, test parallelization): Are students assigned to similar performance 

levels by both tests indicating their suitability for digital learning monitoring? 

METHOD 

The systematic introduction of fractions is usually done in grade 6 in Germany and is 

not part of the curricula at the primary level. We conducted the study including three 

measurement points from June 2022 to July 2022 after the systematic introduction of 

fractions had been finished with students in grade 6. To answer our research questions 

regarding the suitability for monitoring learning, we repeatedly administered the tests 

within a time frame of about 3 weeks. So, we expected the students’ knowledge to 

remain stable over this period. We used a test with 36 items (called long test) for the 

first and one with 21 parallelized items (called short tests) for the second and third 

measurement points. We used a whole-class setting, either in computer rooms or with 

tablets in classrooms and the sixth graders worked about 45 minutes on the long and 

about 25 on the short tests. Tasks were presented in a randomized order using the online 

platform Levumi (Mühling, 2019). This paper reports preliminary analyses for the long 

and short test forms used in the first and second points of measurement. 

Sample 

N = 231 sixth graders (48.5% female) from 9 German classes for higher education 

(Gymnasium) participated in the first and second points of measurement. 203 students 

(48.3% female) worked on both tests. 

Instrument 

The tests were adapted from the previous paper-based test for knowledge of fraction 

subconstructs (Schadl, 2020). So, the tests included items for the subconstructs part-

whole, ratio, operator, quotient, and measure (see Table 1 for exemplary items). For 

each subconstruct, the items were strongly prestructured (e.g., subconstructs part-

whole and operator in Table 1), slightly prestructured (e.g., subconstructs quotient and 

measure in Table 1), or non-prestructured (e.g., the subconstruct ratio in Table 1) as 

these tasks did not include any answer options. Further, we constructed different 

subtypes for each subconstruct (four subtypes for the part-whole and three for the other 

subconstructs each). Subtype 1 required judging statements as correct or wrong for all 

subconstructs (e.g., operator subconstruct in Table 1) except for the measure 

subconstruct. Regarding the measure subconstruct, subtype 1 required locating 

numbers (1 or fractions) on number lines. Subtype 2 required selecting the correct 

statements from several options for all subconstructs (e.g., quotient and measure 

subconstructs in Table 1) except for the part-whole subconstruct for which subtype 2 

required determining shares in given models. For subtype 3, we used different item 
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formats for each subconstruct. For example, subtype 3 required to color fractions (part-

whole subconstruct in Table 1) or determine ratios (ratio subconstruct in Table 1). 

Subtype 4 required determining the whole for a given part. For test parallelization, we 

systematically varied the iconic models (e.g., subconstruct part-whole in Table 1), the 

numbers (e.g., subconstruct measure in Table 1 where the fractions were replaced in 

the short test; further examples would be the subconstructs operator and quotient in 

Table 1), or the situation presented in the text. For example, regarding the exemplary 

task for the ratio subconstruct in Table 1, we replaced the swimming pool situation 

with a theatre situation and made necessary adaptions (e.g., seats instead of lockers, 

tickets sold instead of closed lockers). Beyond these systematic variations, digitizing 

the paper-based test required some adaptions as we intended to minimize possible 

difficulties when students have to enter their solutions. 

Sub-

construct 

Long test Short test 

Part-whole 

(10; 6) 
Mark the fraction 

1

4
 in the rectangle. 

  

   

  

 

Mark the fraction 
1

4
 in the rectangle. 

   

  

  

 

Ratio 

(7; 4) 

 

 A swimming pool has 60 lockers.  

40 lockers are closed at lunchtime. The 

ratio of open to closed lockers is the 

following: _____ : _____ 

Operator 

(6; 4) 

 

If you multiply a number by five and 

then divide by six, you get the same 

result as if you divide the number by 
5

6
.  

□ correct | □ wrong   

□ you cannot tell 

 

Quotient 

(6; 3) 

7

10
 is the result of 

□ 10 – 7 | □ 7 : 10   

□ 10 : 7 | □ 7 – 10  

□ all of the given calculations are 

wrong. 

 

Measure 

(7; 4) 

How many fractions lie between the 

fractions 
3

5
 and 

4

5
? 

□ None | □ only a few | □ many  

□ infinitely many | □ none of the given 

answers is correct.  

How many fractions lie between the 

fractions 
7

9
 and 

8

9
? 

□ None | □ only a few | □ many  

□ infinitely many | □ none of the given 

answers is correct. 

Table 1: Sample tasks of the long and short test form. The numbers in brackets 

denote the number of items per subconstruct in the (long; short) test, with the long 

test consisting of 36 items and the short test of 21 items in total. 
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So, we replaced some open task formats with closed ones. For example, regarding the 

exemplary task for the measure subconstruct in Table 1, the task was presented without 

the answer options in the previous paper-based test. Typical wrong answers from the 

paper-based setting informed the answer options presented in the digital version. 

Analysis 

We evaluated the psychometric quality with the dichotomous Rasch model (Rasch, 

1960) that allows describing with an additionally applied bookmark method (Mitzel et 

al., 2001) the knowledge of fraction subconstructs in levels. This report presents a 

common scaling for both tests and visualizes the results in a Wright Map. This map 

shows the persons on the left, with low-performing persons (corresponding to low 

person parameters) further down and high-performing persons (large person 

parameters) further up. Items are plotted on the right, with simple items (corresponding 

to low item parameters) plotted further down and difficult items (large item 

parameters) further up. If the person and item parameters are plotted at the same height, 

the corresponding persons are assumed to solve the items plotted at this height with a 

probability of 50%. If person parameters are larger than item parameters, the 

probability increases, and if person parameters are lower than item parameters, the 

probability decreases. Regarding the question of test parallelization, we used a 

graphical model test and plotted the person parameters of the short test against those 

of the long test. In addition, we calculated the correlation between the two test scores 

of the students. 

RESULTS 

We observed good fit parameters of the estimated IRT model with WLE-reliability of 

.81 and infits (weighted fits) ranging from 0.83 to 1.23. Regarding level modeling (see 

Figure 1), level 1 is characterized by the part-whole subconstruct and strongly 

prestructured task formats (subtypes 2 and 3). On level 2, tasks primarily require 

evaluating statements of fractions as correct or wrong (subtype 1). These statements 

refer to the subconstructs part-whole, ratio, and quotient.  

On level 3, these statements also refer to the operator subconstruct or are more complex 

in that they refer to equivalent fractions, for example. Further, this level includes the 

tasks with the slightly prestructured format for the subconstructs ratio and quotient 

(subtype 2) that require selecting correct statements from several given, in the case of 

the quotient subconstruct also for equivalent fractions. Regarding the part-whole 

subconstruct, subtypes 2 and 3 are less prestructured than the tasks of level 1 as models 

are not divided into equal parts, for example (see subtype 3). Further, tasks require 

determining the whole of a given part (subtype 4). Regarding the measure subconstruct, 

tasks require locating the number 1 on number lines with different scalings. 

Level 4 is characterized by subtype 2 for the subconstructs ratio, operator, and measure. 

Regarding the ratio subconstruct, tasks are more complex than in level 3, as ratios have 

to be used on level 4. Regarding the measure subconstruct, tasks also require locating 

fractions on number lines. Tasks of subtype 3 with non-prestructured task formats are 
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characteristic for level 4 regarding the quotient subconstruct and level 5 regarding the 

subconstructs ratio, operator, and measure.  

In sum, the digitized levels are similar to those from the paper-based setting as the need 

to transfer between the part-whole and other subconstructs and the degree of 

prestructuring emerge as central for level characterization. The level models differ in 

the number of levels as we further subdivided the lowest level so that basic part-whole 

knowledge is indicative of the lowest level. Regarding the question of test 

parallelization (Q2), we observed similar mean overall scores in the long (M = 0.40, 

SD = 0.15) and short (M = 0.42, SD = 0.15) tests. Further, the bivariate scatterplot (see 

Figure 2) indicates students to be assigned to similar levels in both tests. This is also 

supported by a strong correlation between the long and short-test achievement of each 

person with r(201) = .63, p < .01. 

 

Figure 1: Wright-map of the IRT scaling results with items ordered according to the 

subconstructs. The first number indicates whether the item is part of the long (1) or 

the short test (2), and the second indicates the subtype. Sample items from Table 1 

are boxed. 
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Figure 2: Bivariate scatterplot with the person parameters of the short test plotted 

against those of the long test.   

DISCUSSION 

The literature provides a range of relevant findings about fraction learning, primarily 

from paper-based studies. Digital technologies might be helpful to use the findings in 

practice to support students’ learning, for instance, to make test materials accessible 

for mathematics teachers. Such access might support teachers in implementing 

formative assessment and allow the digital monitoring of students’ fraction learning. 

The presented study is part of a larger research program to provide digital tests for use 

in practice. The report focuses on two parallel test forms, a long and a short version, 

for knowledge of fraction subconstructs that were adapted for use in a digital setting 

from a paper-based test. We investigated questions of test quality related to the transfer 

of the test into a digital setting and its suitedness for repeated testing. The adaption of 

the test for knowledge of fraction subconstructs to the digital setting was feasible. 

Despite the necessity to adapt test formats and include more parallel items, the analyses 

indicate that the test fits a model of knowledge of fraction subconstructs at different 

levels. We largely observed similarities of the resulting model to the model based on 

the previous paper-based setting, such as that it is central for level characterization 

whether the tasks required transferring between the part-whole and other subconstructs 

and whether the tasks were strongly, slightly, or non-prestructured. So, tasks of the 

part-whole subconstruct and strongly prestructured task formats seem to be easier than 

those that require linking the part-whole with other subconstructs, respectively slightly 

and non-prestructured formats. The quotient subconstruct emerges easier than other 

subconstructs, primarily those of operator and measure. Contrary to the paper-based 

setting, the data from the digitized tests suggests five instead of four levels with a finer 

resolution of basic abilities. Regarding repeated testing, students were assigned to 

similar levels based on the long and short tests in our study, which can be considered 
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first evidence that the theoretically parallel tests are indeed suited for digitally 

monitoring of fraction learning. 

As the next steps, further analyses, including the second short test, are pending, and 

larger piloting studies, including students just learning fractions, are needed. Moreover, 

similar digital tests have to be developed for all facets of fraction knowledge, such as 

fraction arithmetic skills and fraction word problems, as well as their predictors. Even 

though the first research has been published in this context (Schadl & Lindmeier, 

2022), the domain is still in its infancy. Investigations, like reported in this 

contribution, are necessary to ensure the suitability of the approach before the tests can 

be productively used in instruction and support students’ learning. These first 

investigations, however, certainly show the potential that research findings can be used 

to build instruments for digital learning monitoring. 
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In this systematic literature review, we applied a qualitative content analysis to 13 

research articles, comprising 17 external visualization (EV) interventions, published 

between 2018 and 2022. Our aim was to gain insights into the efficacy of EV 

interventions and to identify the EV intervention characteristics that might mediate the 

effect of the intervention on students’ learning. We found that most EV interventions 

reported a positive impact on school students’ understanding and problem solving. On 

the basis of our analyses and the explanations provided by the authors, we 

hypothesized nine characteristics of effective EV interventions, including the 

visualization process, technology use, multiple EVs, visual interaction, metacognitive 

reflection on EV, scaffolding of EV, and EV transfer. 

INTRODUCTION 

Mathematics as a discipline often deals with abstract objects and concepts, such as 

rational numbers or change. External visualization (EV; i.e., the use of physically 

embodied depictional representations (Schnotz, 2005), such as a tape diagram, a 

drawing, or a graph of a function) can be an important medium that supports students’ 

learning (Arcavi, 2003). As two examples, exploring the relationships between the 

graph of a function and its derivative in an interactive learning environment can help 

students understand the concept of change, and translating a Bayes problem into the 

EV of a tree diagram might help them solve the problem. Consequently, mathematics 

instruction should provide students at all educational levels with learning environments 

that focus on EV to support their learning and to develop their abilities in constructing, 

using, and interpreting EV (OECD, 2019). In this systematic literature review, we 

analyze the extent to which recent mathematics education research has addressed EV 

interventions, and we synthesize the characteristics of the interventions and the studies’ 

findings to gain insights into the efficacy of these learning environments. 

THEORETICAL BACKGROUND 

EV in mathematics education 

In a previous scoping review (Schoenherr & Schukajlow, under review), we identified 

visualization components, tools, and purposes as three key characteristics of EV in 

recent mathematics education research: First, EV includes two visualization 

components (Arcavi, 2003). The process component includes all physical and mental 

activities and processes related to selecting, constructing, using, and interpreting EVs. 

The product component describes the resulting visual depiction (e.g., type, appearance, 

and accuracy of EV). EV interventions can focus on one or both components. For 
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example, Kobiela and Lehrer (2019) had students experience and reflect on the process 

of generating a rectangle by asking students to sweep paint on a ceramic tile with a 

squeegee. Second, students made use of tools to interact with EVs, including paper-

pencil, hands-on objects, gestures, or technology. EV interventions can give students 

opportunities to use one or several tools. Third, students use EV for diverse purposes 

(e.g., understanding, problem solving, and applying proofs in various mathematical 

content domains). Although EV seems to be most obvious in the domain of geometry, 

as geometry often relies on spatial reasoning, students can use EV in other domains, 

such as calculus and algebra (Arcavi, 2003). An open question is: To what extent does 

the efficacy of EV interventions depend on the intended purpose and content domain? 

Learning environments that focus on EV 

We define an EV intervention as any school, classroom, or learning environment in 

which students are provided with a set of activities aimed at promoting mathematics 

learning with or through the use of EV in an empirical study (e.g., a teaching sequence 

given to a class of Grade 12 students on the concept of change using an interactive 

graphing tool). Due to the variety of different kinds of EVs and different ways of 

implementing these interventions in learning settings, EV interventions can differ 

greatly. To the best of our knowledge, previous findings on the impact of EV 

interventions have not yet been synthesized. By systematically synthesizing recent 

intervention studies and their findings in the current review, we aim to describe 

learning environments that have focused on EV in recent mathematics education 

research and offer insights into their impact on student learning. 

Characteristics of learning environments 

Previous reviews in other research areas have revealed various mediating 

characteristics of powerful learning environments. For example, in a meta-analysis of 

84 studies, Dignath and Büttner (2008) identified duration of training and 

metacognitive reflection on learning amongst others as characteristics of effective 

learning environments targeting self-regulated learning. As another example, Duijzer 

et al. (2019) compiled characteristics of embodied learning environments from 44 

research articles, including the real-world context, multimodality, multiple 

representations, student control, and attention capturing. Besides these EV-unspecific 

characteristics of learning environments, little is known about the characteristics that 

are specific to EV for learning mathematics. As one example, Fiorella and Zhang 

(2018) discussed the scaffolding of EV and metacognitive reflection of EV as 

characteristics that potentially influence the efficacy of self-generated drawing for 

STEM learning. As another example, Presmeg (1986) concluded from an analysis of 

teaching styles that the generalization of specific EV is important for students to be 

able to learn with EV. An open question is: Which EV-specific and EV-unspecific 

intervention characteristics mediate the effects of recent EV interventions on student 

learning in mathematics? 
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RESEARCH QUESTIONS 

We systematically reviewed recent empirical studies that were published in the last 5 

years and investigated EV interventions that were designed to support school students’ 

mathematics learning. Our aim was to address the following research questions: (a) 

What does the research literature on EV interventions report on their efficacy? (b) 

Which EV-specific and EV-unspecific characteristics might mediate the impact of 

these interventions on students’ learning? 

METHOD 

Literature search and selection of studies 

On April 26, 2022, we searched the high-ranked data bases Web of Science Core 

Collection, Scopus, Eric, PsycInfo, and Taylor & Francis Online Journals for the search 

terms diagram*, draw*, visual*, image*, sketch*, representation*, or graph* in the 

title, and math* in the whole text. In addition, we searched for peer-reviewed articles 

published between 2018 and 2022 in the English language for reasons of topicality and 

accessibility to the international community. 

Our search identified 3,128 potentially relevant articles. To be included in the review, 

articles had to meet the following inclusion criteria: (a) the study focused on school 

mathematics learning or teaching with or through EV, (b) the study investigated an EV 

learning environment, (c) the study used a (quasi) experimental pre-posttest design or 

a posttest-only design to analyze the impact of an EV intervention on school students’ 

mathematics learning. By screening Titles, Abstracts, and Keywords for inclusion 

criteria, we excluded 267 duplicates and 2,521 articles. Screening of the remaining full 

texts resulted in the exclusion of another 239 articles. We identified 41 articles that 

examined an EV intervention, out of which 12 articles met all the inclusion criteria. In 

the 12 articles, the authors investigated 17 EV learning environments by contrasting 

them against conventional learning or another EV learning environment. 

Data extraction and analysis 

We applied a qualitative content analysis to the full texts to systematically extract data 

on (1) reported efficacy, (2a) EV-unspecific characteristics of the learning 

environments, and (2b) EV-specific characteristics of the learning environments. 

To describe the reported efficacy, we deductively coded cognitive dependent measures 

with the characteristics understanding and problem solving (including mathematical 

modelling) and inductively added perception, interpretation, and mental rotation. In 

addition, we coded whether taking part in the EV intervention had a positive, zero, or 

negative effect on learning compared with the comparison condition. 

To extract EV-unspecific characteristics of the interventions, we first deductively 

applied the categories school level, content domain, and intervention duration. As EV-

specific characteristics, we coded the visualization component (with the characteristics 

process and product) and tool use (with the characteristics paper-pencil, technology, 

gestures, and hands-on objects), on the basis of a previously developed coding scheme 
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(Schoenherr & Schukajlow, under review). To identify further characteristics, we 

applied a deductive-inductive procedure by first recording and then clustering 

characteristics mentioned by the authors into categories and assigning them to the EV-

specific or EV-unspecific type. In this way, we added the EV-unspecific characteristics 

metacognitive reflection on learning, scaffolding of learning, and student control and 

the EV-specific characteristics multiple EVs, visual interaction, metacognitive 

reflection on EV, scaffolding of EV, and EV transfer. 

As an indicator of coding reliability, two coders independently coded 25% of the 

included EV interventions on reported efficacy and EV-unspecific and EV-specific 

characteristics with a substantial percentage of agreement between 67% and 100%. 

RESULTS 

Efficacy of EV interventions 

Comparing EV interventions with conventional learning, seven out of 12 EV 

interventions had a positive effect on student understanding and problem solving (e.g., 

Bernard & Senjayawati, 2019; Chen, 2019; Ke, 2019). For example, sixth and seventh 

graders who played an architecture simulation game including schematic EV 

outperformed students who were exposed to conventional learning in a problem-

solving test on ratio, proportion, and area. Five EV interventions did not increase 

student learning compared with conventional learning (Ott, 2020; Rellensmann et al., 

2021; Schoevers et al., 2020). As one example, providing students with an EV 

intervention on characteristics of accurate drawings did not result in increased 

modelling performance in geometry (Rellensmann et al., 2021). In studies comparing 

different EV interventions, findings were mixed with two studies reporting a positive 

effect (Aldalalah et al., 2019; Liang & She, 2021), one study reporting a positive effect 

for high-achieving students (Lee et al., 2018), and two studies reporting a null effect 

(Rellensmann et al., 2021; Soni & Okamoto, 2020). For example, Soni and Okamoto 

(2020) found that using number lines in a digital math game or in a paper-pencil 

workbook were equally effective at helping students learn fractions. Regarding visual 

perception, one study reported a positive effect after geometry training (Schoevers et 

al., 2020). No effects were found for non-geometry graphic interpretation (Lowrie et 

al., 2019) and mental rotation tasks (Ke, 2019; Ke & Clark, 2020). 

Characteristics of effective EV interventions 

On the school level, the majority of EV interventions addressed secondary school 

students (n = 10). The duration of EV interventions differed widely from four sessions 

of 15 min (Soni & Okamoto, 2020) to nine sessions of 60 to 90 min (Schoevers et al., 

2020). The predominant content domain targeted in the EV interventions was geometry 

(n = 8), but other topics—for example, algebra (n = 3), probability (n = 1), and fractions 

(n = 1)—were also addressed. As we found positive and null effects across these 

characteristics, we cannot develop a conclusive hypothesis about the significance of 

the EV-unspecific characteristics educational level, intervention duration, and content 

domain for the efficacy of the EV interventions in this review. 
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A coding of the visualization component indicated that most studies (n = 9) included 

visualization processes. As one example, Lowrie et al. (2019) encouraged students in 

their EV intervention to mentally transform and manipulate 2D and 3D objects. Two 

studies that exclusively addressed visualization products did not find a positive effect 

on student learning (Ott, 2020; Rellensmann et al., 2021). For example, Ott (2020) 

addressed the product component by encouraging third-grade students to reflect on 

ready-made drawings in class. This led us to derive the hypothesis that addressing the 

visualization process component in EV interventions (i.e., all physical and mental 

activities and processes related to selecting, constructing, using, and interpreting EVs) 

is an important EV-specific characteristic for their efficacy. 

In this review, seven studies used (amongst others) technology as a tool to construct or 

use EVs, two studies used hands-on objects, and four studies used paper-pencil only. 

Examples of technology used are Augmented Reality learning on mobile devices (e.g., 

Chen, 2019), an architecture simulation game (e.g., Ke & M. Clark, 2020), and 

dynamic geometry software (e.g., Lowrie et al., 2019). All studies using technology 

reported a positive effect on student learning, indicating that technology use might be 

an important EV-specific characteristic of effective EV interventions. 

In addition, we extracted three EV-unspecific and six EV-specific characteristics that 

were considered potentially effective: The EV-unspecific characteristics consisted of 

scaffolding of learning (n = 3; e.g., Soni & Okamoto, 2020), student control of learning 

(i.e., individual learning pace and difficulty levels; n = 3; e.g., Chen, 2019), and 

metacognitive reflection on learning, including reflection on mathematical content, 

procedures, knowledge, and skills (e.g., Schoevers et al., 2020). 

One frequently mentioned EV-specific characteristic (n = 7) was that the learning 

environment forced students to transfer information between multiple EVs (e.g., 

Bernard & Senjayawati, 2019; Liang & She, 2021), including concrete (Lowrie et al., 

2019) and symbolic representations (Liang & She, 2021). Another EV-specific 

characteristic was visual interaction (n = 5), that is, the learning environment enabled 

students to visually observe, elaborate, explore, manipulate, and transform EVs (e.g., 

Ke, 2019). In addition, the authors proposed metacognitive reflection on EV (n = 2; 

Ott, 2020; Rellensmann et al., 2021), scaffolding of EV (n = 3; Ke & Clark, 2020), and 

transfer of EV across tasks (n = 3; e.g., Rellensmann et al., 2021) as promising factors 

that might increase the efficacy of EV interventions. 

DISCUSSION 

Of the 130 studies on EV in mathematics education research, a small proportion of 

studies (n = 12) used experimental designs to investigate EV interventions in schools. 

Our review of these studies showed a mixed—but mostly positive—impact on student 

learning in different mathematical topics, underlining the theoretically assumed benefit 

of EV as a medium for mathematics thinking and learning (e.g., Arcavi, 2003). The 

small number of experimental intervention studies indicates that more experimental 

studies are needed to obtain evidence for the effects of EV interventions on student 
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learning. Still, evidence of efficacy depends strongly on the choice of control condition 

and outcome measures. Findings indicate that EV interventions might be particularly 

effective in comparison with conventional learning (i.e., without EV) with respect to 

near transfer tasks that measure students’ understanding of the learning topic (e.g., Soni 

& Okamoto, 2020). 

Mixed findings on the efficacy of EV interventions have highlighted the need to gather 

information on the characteristics of effective EV interventions. An important novel 

contribution of this review is that we identified three EV-unspecific and six EV-

specific intervention characteristics that might influence the efficacy of EV 

interventions. 

Theoretically, our findings on the EV-specific intervention characteristics contribute 

to the framework of EV in mathematics education, as they point to key characteristics 

of EV in learning environments. As such, the EV process component (i.e.,  learning 

how to construct, generate, use, and interpret EV; Arcavi, 2003) seems to be important 

for learning with or through EV. 

Empirically, the characteristics we identified confirm and add to previously identified 

characteristics from EV research and other research areas. For example, our analyses 

supported the previously identified characteristics metacognitive reflection on learning 

(Dignath & Büttner, 2008), student control of learning and multiple EVs (Duijzer et 

al., 2019), metacognitive reflection on EV and scaffolding of EV (Fiorella & Zhang, 

2017), and transfer of EV to different tasks to help students generalize characteristics 

of specific EV tasks (Presmeg, 1986). An important new contribution is that our 

analyses also uncovered the EV-specific characteristics visualization process, 

technology use, and visual interaction. This means, for example, that we hypothesize 

that providing students with opportunities to visually explore, manipulate, and 

transform EVs will increase student learning in learning environments that focus on 

EV. Further research is needed to determine the differential impact of the 

characteristics in order to contribute to a better understanding of how they influence 

the efficacy of EV interventions. As one example, technology use appeared to be 

positively related to the intervention’s efficacy, a finding that might be explained by 

the use of individual learning sessions that provided students with scaffolding and 

opportunities for visual interaction. 

Practically, as most of the characteristics have been supported by prior research, the 

EV-specific and EV-unspecific characteristics we identified can help practitioners 

design EV learning environments. 

Limitations 

In this review, we applied an extensive automatic search strategy to identify a wide 

range of studies that investigated EV interventions. Still, we might have missed some 

relevant studies that may have been framed differently. Our analysis of the learning 

environments was based on the information provided in the papers. To increase the 

objectivity of our coding, we relied on the terms used by the authors whenever possible 
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(e.g., problem solving). However, different interpretations by the authors might bias 

this review’s findings. Also, we analyzed a wide variety of learning environments to 

gain insights into EV intervention research and to determine the extent to which 

different interventions support student learning. For these reasons, it is difficult to 

generalize our results, and more research is needed on the benefits and boundaries of 

learning with or through EV. In this review, we focused on intervention characteristics. 

In addition, recent research has pointed to learner characteristics that influence the 

impact of EV interventions (e.g., mathematical abilities; Lee et al., 2018). More 

research is needed on learner characteristics and their interplay with intervention 

characteristics in promoting students’ learning in EV learning environments. 

REFERENCES 

Papers included in this review have been highlighted (*). 

*Aldalalah, O., Ababneh, Z. W., Bawaneh, A. K., & Alzubi, W. M. (2019). Effect of 

augmented reality and simulation on the achievement of mathematics and visual thinking 

among students. International Journal of Emerging Technologies in Learning, 14(18), 

164–185. https://doi.org/10.3991/ijet.v14i18.10748 

Arcavi, A. (2003). The role of visual representations in the learning of mathematics. 

Educational Studies in Mathematics, 52(3), 215–241. 

https://doi.org/10.1023/A:1024312321077 

*Bernard, M., & Senjayawati, E. (2019). Developing the students’ ability in understanding 

mathematics and self-confidence with VBA for Excel. Journal of Research and Advances 

in Mathematics Education, 4(1), 45–56. 

https://journals.ums.ac.id/index.php/jramathedu/article/view/6349/4440 

*Chen, Y. (2019). Effect of mobile augmented reality on learning performance, motivation, 

and math anxiety in a math course. Journal of Educational Computing Research, 57(7), 

1695–1722. https://doi.org/10.1177/0735633119854036 

Dignath, C., & Büttner, G. (2008). Components of fostering self-regulated learning among 

students. A meta-analysis on intervention studies at primary and secondary school level. 

Metacognition and Learning, 3(3), 231–264. https://doi.org/10.1007/s11409-008-9029-x 

Duijzer, C., van den Heuvel-Panhuizen, M., Veldhuis, M., Doorman, M., & Leseman, P. 

(2019). Embodied learning environments for graphing motion: A systematic literature 

review. Educational Psychology Review, 31(3), 597–629. https://doi.org/10.1007/s10648-

019-09471-7 

Fiorella, L., & Zhang, Q. (2018): Drawing boundary conditions for learning by drawing. 

Educational Psychology Review, 30(3), 1115–1137. https://doi.org/10.1007/s10648-018-

9444-8 

*Ke, F. (2019). Mathematical problem solving and learning in an architecture-themed 

epistemic game. Educational Technology Research and Development, 67(5), 1085–1104. 

https://doi.org/10.1007/s11423-018-09643-2 



Schoenherr & Schukajlow 

4 - 170 PME 46 – 2023 

*Ke, F., & M. Clark, K. (2020). Game-based multimodal representations and mathematical 

problem solving. International Journal of Science and Mathematics Education, 18(1), 

103–122. https://doi.org/10.1007/s10763-018-9938-3 

*Lee, C.‑Y., Lei, K. H., Chen, M.‑J., Tso, T.‑Y., & Chen, I.‑P. (2018). Enhancing 

understanding through the use of structured representations. Eurasia Journal of 

Mathematics, Science and Technology Education, 14(5), 1875–1886. 

https://doi.org/10.29333/ejmste/85424 

*Liang, C.‑P., & She, H.‑C. (2021). Investigate the effectiveness of single and multiple 

representational scaffolds on mathematics problem solving: Evidence from eye 

movements. Interactive Learning Environments. 

https://doi.org/10.1080/10494820.2021.1943692 

*Lowrie, T., Logan, T., & Hegarty, M. (2019). The influence of spatial visualization training 

on students’ spatial reasoning and mathematics performance. Journal of Cognition and 

Development, 20(5), 729–751. https://doi.org/10.1080/15248372.2019.1653298 

OECD. (2019). Pisa 2018 Assessment and Analytical Framework. PISA. OECD Publishing. 

https://doi.org/10.1787/b25efab8-en 

*Ott, B. (2020). Learner-generated graphic representations for word problems: An 

intervention and evaluation study in grade 3. Educational Studies in Mathematics, 105(1), 

91–113. https://doi.org/10.1007/s10649-020-09978-9 

Presmeg, N. (1986): Visualisation in high school mathematics. For the Learning of 

Mathematics, 6 (3), 42–46. http://www.jstor.org/stable/40247826. 

*Rellensmann, J., Schukajlow, S., Blomberg, J., & Leopold, C. (2021). Does strategic 

knowledge matter? Effects of strategic knowledge about drawing on students’ modeling 

competencies in the domain of geometry. Mathematical Thinking and Learning. Advance 

online publication. https://doi.org/10.1080/10986065.2021.2012741 

Schnotz, W. (2005). An integrated model of text and picture comprehension. In R. E. Mayer 

(Ed.), The Cambridge handbook of multimedia learning (pp. 49–69). Cambridge 

University Press. 

Schoenherr, J., & Schukajlow, S. (under review). Characterizing external visualization in 

mathematics education research: A scoping review. ZDM – Mathematics Education. 

*Schoevers, E. M., Leseman, P. P., & Kroesbergen, E. H. (2020). Enriching mathematics 

education with visual arts: Effects on elementary school students’ ability in geometry and 

visual arts. International Journal of Science and Mathematics Education, 18(8), 1613–

1634. https://doi.org/10.1007/s10763-019-10018-z 

*Soni, M., & Okamoto, Y. (2020). Improving children’s fraction understanding through the 

use of number lines. Mathematical Thinking and Learning, 22(3), 233–243. 

https://doi.org/10.1080/10986065.202



 

2023. In M. Ayalon, B. Koichu, R. Leikin, L. Rubel & M. Tabach (Eds.). Proceedings of the 46th Conference of 

the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 171-178). PME 46. 

TEACHERS’ DIAGNOSTIC ACTIVITIES DURING TASK-BASED 

ASSESSMENTS IN A DIGITAL SIMULATION 

Christian Schons1, Andreas Obersteiner1, Frank Fischer2 and Kristina M. Reiss1 

1Technical University of Munich, Germany 

2Ludwig-Maximilians-University of Munich, Germany 

 

Teachers need to be able to assess students’ learning outcomes accurately. While 

teachers’ assessment competencies have long been conceptualised solely as accuracy 

of assessments, recent research also focusses on situation-specific processes. 

However, conceptualising and assessing such processes reliably is still a challenge. 

We analysed 76 pre-service teachers’ diagnostic activities during task-based 

assessments in a digital simulation. Categories of diagnostic activities were derived 

from a model of scientific reasoning and argumentation. Participants mostly evaluated 

the available evidence and rarely stated hypotheses or drew conclusions. There were 

pronounced individual differences in the frequencies of these activities. The results 

provide a basis for individualising support of pre-service teachers’ diagnosing. 

THEORETICAL BACKGROUND 

Assessing individual students’ learning outcomes is a challenging task for teachers 

(Südkamp et al., 2012). While many studies focused on the quality of teachers’ 

assessments (most prominently, their accuracy), there is still a lack of understanding 

of situation-specific assessment processes in complex assessment situations – which is 

necessary to foster assessment competencies effectively (Heitzmann et al., 2019; Loibl 

et al., 2020). In mathematics lessons, teachers often assess their students’ mathematical 

competencies by interpreting students’ solutions to mathematical tasks. While several 

studies focused on teachers’ task selections in learning situations, only few empirical 

studies investigated teachers’ competencies in task-based assessment situations. In 

task-based assessments, teachers should be able to evaluate students’ task solutions 

appropriately (e.g., to notice students’ errors) and to draw the right conclusions (e.g., 

interpret any systematic errors in terms of the students’ underlying misconception). 

Currently, there is still a need for conceptualising and measuring reliably situation-

specific processes during task-based assessments, and little is known about (pre-

service) teachers’ individual differences in these processes. 

In this study, we analysed pre-service mathematics teachers’ assessment processes in 

a task-based assessment situation, using a digital simulation. We aimed at 1) describing 

pre-service teachers’ diagnostic activities during the interpretation of students’ task 

solutions based on a model of scientific reasoning and argumentation and 2) identifying 

different groups of pre-service teachers based on these activities. 
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Teachers’ Assessment Competencies 

Teachers need assessment competencies for accurately assessing students’ outcomes 

(Leuders et al., 2022). Teachers’ assessment competencies include individual 

dispositions (e.g., professional knowledge) and situation-specific processes (i.e., the 

actual behaviour in assessment situations) that influence performance in assessment 

situations (Blömeke et al., 2015; Heitzmann et al., 2019). In contrast to professional 

knowledge, which can be measured by paper-pencil tests, measuring situation-specific 

processes requires practical challenges that allow for observation of behavioural 

processes. Several studies have focused on such processes during assessments of task 

features, while only few studies investigated more complex assessment situations. 

Research on Situation-Specific Assessment Processes 

Some researchers investigated teachers’ ability to perceive and interpret task 

difficulties (e.g., Rieu et al., 2022) or instructional features of tasks (e.g., Schreiter et 

al., 2021). These studies manipulated participants’ professional knowledge in 

experimental studies, and they conceptualised assessment processes as cognitive 

information processing (Loibl et al., 2020). Results indicated that direct instruction of 

specific pedagogical content knowledge had a positive impact on pre-service teachers’ 

perceiving and interpreting of task features (Rieu et al., 2022) in various content 

domains (e.g., fractions and functions). Other studies described teachers’ assessment 

processes in terms of eye-movements (e.g., Schreiter et al., 2021). Fixation frequencies 

and fixation durations were used as indicators of efficiency of information processing, 

and inducing specific pedagogical content knowledge caused higher efficiency. 

In classroom situations, teachers not only need to analyse task features, but also to 

assess students’ mathematical competencies. Studies that investigated teachers’ 

assessments of students’ mathematical competencies used video-vignettes of students 

in authentic situations (e.g., Sommerhoff et al., 2023). They analysed pre-service 

teachers’ reasoning about students’ mathematical competencies by coding participants’ 

written notes that were recorded during a simulation. Results indicated that pre-service 

teachers mostly described superficial observations of students’ solutions, whereas they 

rarely integrated pieces of evidence to draw conclusions for getting a larger picture of 

students’ competencies. Other studies used qualitative interviews to explore teachers’ 

interpreting of students’ task solutions (Philipp & Leuders, 2014; Son, 2013). One 

finding was that (pre-service) teachers differed in their argumentation skills and their 

ability to create artefacts (e.g., mathematical tasks) in order to test specific hypotheses 

about student thinking.  

For investigating more complex assessment situations, concepts from the theory of 

scientific reasoning and argumentation that occur in task-based assessment situations 

are promising to complement existing approaches to analyse situation-specific 

assessment processes (Fischer et al., 2014; Heitzmann et al., 2019). 
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Diagnostic Activities 

A framework for scientific reasoning and argumentation by Fischer et al. (2014) 

describes a set of epistemic activities that people engage in while creating knowledge. 

Making assessments based on task solutions includes a process of creating knowledge 

about students’ mathematical competencies and Heitzmann et al. (2019) specified the 

epistemic activities for assessment situations (diagnostic activities). The following 

activities are likely to occur during task-based assessments:  

Evidence Evaluation. A teacher describes characteristics of one specific task solution. 

Stating Hypotheses. A teacher states a hypothesis about a student’s competencies or 

systematic errors based on several task solutions. 

Drawing Conclusions. A teacher draws a conclusion about a student’s competencies 

or systematic errors based on several task solutions. 

There is yet little empirical evidence about how often pre-service teachers engage in these 

diagnostic activities during task-based assessments and which individual differences can be 

observed among pre-service teachers. 

RESEARCH QUESTIONS 

In this study, we aim at analysing pre-service teachers’ diagnostic activities during 

task-based assessments of students’ mathematical competencies in a digital simulation. 

We also aim at identifying individual differences in the occurrence of these activities 

among pre-service teachers. The specific research questions were: 

1) Can we measure pre-service teachers’ diagnostic activities from their written notes 

they make during task-based assessments in a digital simulation with sufficient 

reliability? 2) Which diagnostic activities do pre-service teachers engage in during 

task-based assessments? 3) Are there different groups of pre-service teachers based on 

their patterns of diagnostic activities? 

To address the first research question, we evaluated a coding scheme for assigning 

participants’ written notes in a digital simulation to the categories Evidence Evaluation, 

Stating Hypotheses and Drawing Conclusions (Heitzmann et al., 2019). For the second 

research question, we expected that pre-service teachers mostly evaluate evidence and 

rarely state hypotheses or draw conclusions (Sommerhoff et al., 2023). We investigated 

the third research question on an explorative basis, expecting individual differences in 

pre-service teachers’ diagnostic activities. 

METHODS 

Sample 

Participants were 76 pre-service primary school mathematics teachers (61 female) 

studying at a German university. Their mean age was 21.60 years (SD = 2.53) and their 

median semester of university study was three (IQR = 3–2).  
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The Digital Simulation 

To examine participants’ diagnostic activities, we used a digital simulation (Wildgans-

Lang et al., 2022) that provided a task-based assessment situation. Based on 

mathematical tasks and its real solutions, the digital simulation provided different 

student cases differing in their competencies and systematic errors.  

The Tasks. Tasks were developed within a framework of mathematical competencies 

of third graders and validated from a theoretical and empirical perspective. Their real 

solutions were taken from a pilot run of a national large-scale assessment among third-

graders in Germany (VERA-3). The tasks varied in their difficulty levels and in their 

potential to reveal students’ systematic errors. 

Simulated Student Cases. The simulation provided six different student cases. Each 

student case consisted of a set of tasks and corresponding solutions, some of which 

showed typical errors. The student cases varied in their mathematical competencies 

and the tasks of each student case included one systematic error (e.g. in multi-digit 

subtractions, see Figure 1). To assess one student case in the digital simulation, 

participants first selected a blank task, whereupon the corresponding student’s solution 

appeared. After interpreting a solution, participants could select another task to 

generate more information about the same student case. Participants could repeat this 

process multiple times and terminate anytime in order to come to a final conclusion. 

During the presentation of a task solution, a text box was shown in which participants 

took notes that were recorded in the log data (see Figure 1). 

 

Figure 1: Overview of the assessment of a student case in the digital simulation with 

an exemplary task and the corresponding student solution. 

Procedure 

Participants took part in this study within a 90-minute seminar session which was part 

of their regular curriculum. Before the session, participants were informed about the 

aim of their assessments, that is, to assign student cases to a competence level and to 

identify their systematic errors. Participants were instructed to continue as long with 

the assessment of a student case until they were sure about their assessment. They were 

instructed to note their thoughts in the text box provided while they were assessing.  
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Coding of Diagnostic Activities 

For analysing participants’ written notes during their assessments, we derived three 

activities that likely occur during the interpretation of task solutions from Heitzmann 

et al.’s (2019) model of diagnostic activities. Table 1 provides an overview of the 

categories and typical examples. 

Category Explanation Typical Example 

Evidence Evaluation Description of apparent 

features in one of a student’s 

solutions. Statement solely 

refers to salient features of a 

solution. 

„S1 is adding instead of 

multiplying“ 

„Dividing by 4 is correct“ 

Stating Hypotheses Stating hypotheses about a 

student’s potential 

systematic error. Statement 

contains an expression of 

uncertainty.  

„S2 interchanged 340 and 

430, which might indicate 

difficulties in shifting 

between spoken and written 

numbers.” 
 

Drawing Conclusions Drawing conclusions about 

student’s systematic error. 

Statement contains no 

expression of uncertainty. 

 

„She lacks understanding of 

the decimal system“ 

„The student has many errors 

because of a misconception of 

the place-value-system“ 

Default Notes that cannot be 

assigned any category 

„?“ 

 

Table 1: Summary of the coding scheme with typical examples for the categories 

Describing, Stating Hypotheses and Drawing Conclusions. 

Data Analysis 

For the identification of different groups of pre-service teachers’ based on their 

diagnostic activities, participants were clustered on their activities in the digital 

simulation using the k-means algorithm. To this end, standardised mean scores were 

used. First, we determined the optimal number of clusters using Euclidean distance 

and the Ward method. We continued our analyses with the number of clusters 

suggested by the majority of the stopping rules to build the final cluster structure by 

assigning the participants in our sample to the determined number of clusters.  

RESULTS  

Overall, participants made 313 assessments in the digital simulation and took 3458 

notes during their assessments. Two research assistants applied the coding scheme (see 

Table 1) to pre-service teachers’ written notes and had substantial agreement (Cohen’s 
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κ = .76). This means that we succeeded in reliably assessing participants’ diagnostic 

activities based on their written notes. 

 

Figure 2: Relative frequencies of diagnostic activities during assessment processes in 

the digital simulation across all participants  

Regarding the diagnostic activities participants performed during the interpretation of 

students’ task solutions, we found that participants mostly evaluated evidence (60.1% 

of the coded activities) and drew conclusions (31.7%), whereas they rather rarely stated 

hypotheses (8.1%, see Figure 2).  

The third question asked whether we could identify groups of pre-service teachers 

based on their activities. According to the majority rule, the number of clusters that 

represented the data best was three. We describe these three clusters in relation to the 

whole sample (see Fig. 2): The first cluster (baseline) consisted of 52 pre-service 

teachers who had comparably few activities of all three types while making 

assessments. The second cluster (drawing conclusions) consisted of 10 pre-service 

teachers who relatively often drew conclusions about students’ competencies and 

systematic errors, but rarely evaluated evidence or stated hypotheses during the 

assessment process. The 14 pre-service teachers in the third cluster (stating hypotheses) 

often evaluated evidence or stated hypotheses, but rarely drew conclusions.     

 

Figure 2: Cluster centers of the three identified clusters resulting from a cluster 

analysis of 76 pre-service teachers based on their diagnostic activities. 



Schons, Obersteiner, Fischer & Reiss 

PME 46 – 2023 4 - 177 

DISCUSSION 

This study aimed at analysing pre-service teachers’ situation-specific assessment 

processes in task-based assessments, conceptualised as diagnostic activities. To this 

end, we developed a coding scheme to measure diagnostic activities based on pre-

service teachers’ written notes in the simulation. We succeeded in reliably coding these 

notes. In line with the results reported by Sommerhoff et al. (2023), participants mostly 

engaged in describing features of students’ solutions to mathematical tasks, and rarely 

integrated different pieces of evidence to get a larger picture of students’ mathematical 

competencies. Going beyond previous studies, we identified pronounced individual 

differences among our sample. This might have implications for including instructional 

support measures to foster teachers’ assessment competencies in the simulation. 

Specifically, the majority of participants (those in the “baseline” and the “drawing 

conclusions” cluster) may benefit from prompts that encourage them to state 

hypotheses about students’ competencies and misconceptions, which could make their 

diagnosing more systematic. Participants in the “stating hypotheses” cluster, on the 

other hand, may benefit from prompts that encourage them to draw conclusions, based 

on their observed evidence and their hypotheses. Preliminary data from a follow-up 

study suggest that such prompts may lead to more efficient diagnostic processes and, 

eventually, more accurate diagnoses. 

A limitation of the present study is the measurement of diagnostic activities based on 

their written notes, because participants may not have noted all their thoughts. 

Moreover, expanding the analysis to include qualitative categories might provide a 

quality measure of teachers’ assessment competencies beyond accuracy. 

ACKNOWLEDGEMENTS 

This research is part of the COSIMA research group, funded by German Research 

Foundation (FOR 2385, Project: 5150171 DG RE 1247/12-2) 

REFERENCES 

Blömeke, S., Gustafsson, J.-E., & Shavelson, R. J. (2015). Beyond Dichotomies. Zeitschrift 

Für Psychologie, 223(1), 3–13. 

Fischer, F., Kollar, I., Ufer, S., Sodian, B., Hussmann, H., Pekrun, R., Neuhaus, B., 

Dorner, B., Pankofer, S., Fischer, M., Strijbos, J.-W., Heene, M., & Eberle, J. (2014). 

Scientific Reasoning and Argumentation: Advancing an Interdisciplinary Research 

Agenda in Education. Frontline Learning Research, 2(3), 28–45.  

Heitzmann, N., Seidel, T., Opitz, A., Hetmanek, A., Wecker, C., Fischer, M., Ufer, S., 

Schmidmaier, R., Neuhaus, B., Siebeck, M., Stürmer, K., Obersteiner, A., Reiss, K., 

Girwidz, R., & Fischer, F. (2019). Facilitating Diagnostic Competences in Simulations: A 

Conceptual Framework and a Research Agenda for Medical and Teacher Education. 

Frontline Learning Research, 7(4), 1–24. 

Loibl, K., Leuders, T., & Dörfler, T. (2020). A Framework for Explaining Teachers’ 

Diagnostic Judgements by Cognitive Modeling (DiaCoM). Teaching and Teacher 

Education, 91, 103059. 



Schons, Obersteiner, Fischer & Reiss 

4 - 178 PME 46 – 2023 

Philipp, K., & Leuders, T. (2014). Diagnostic competences of mathematics teachers – 

processes and resources. In P. Liljedahl, S. Oesterle, C. Nicol, & D. Allan (Eds.), 

Proceedings of the 38th Conference of the International Group for the Psychology of 

Mathematics Education (Vol. 4, pp. 425–432). PME. 

Rieu, A., Leuders, T., & Loibl, K. (2022). Teachers’ diagnostic judgments on tasks as 

information processing – The role of pedagogical content knowledge for task diagnosis. 

Teaching and Teacher Education, 111, 103621.  

Schreiter, S., Vogel, M., Rehm, M., Dörfler, T. (2021). Through the eyes of prospective 

teachers: Judging task difficulties in the domain of fractions. In M. Inprasitha, N. Changsri, 

& N. Boonsena (Eds.), Proceedings of the 44th Conference of the International Group for 

the Psychology of Mathematics Education (Vol. 2, pp. 191-198). PME. 

Sommerhoff, D., Codreanu, E., Nickl, M., Ufer, S., & Seidel, T. (2023). Pre-service teachers’ 

learning of diagnostic skills in a video-based simulation: Effects of conceptual vs. 

interconnecting prompts on judgment accuracy and the diagnostic process. Learning and 

Instruction, 83, 101689. 

Son, J.‑W. (2013). How preservice teachers interpret and respond to student errors: Ratio and 

proportion in similar rectangles. Educational Studies in Mathematics, 84(1), 49–70. 

Südkamp, A., Kaiser, J., & Möller, J. (2012). Accuracy of teachers' judgments of students' 

academic achievement: A meta-analysis. Journal of Educational Psychology, 104(3), 743–

762. 

Wildgans-Lang, A., Scheuerer, S., Obersteiner, A., Fischer, F., & Reiss, K. (2022). Learning 

to Diagnose Primary Students’ Mathematical Competence Levels and Misconceptions in 

Document-Based Simulations. In: Fischer, F., Opitz, A. (Eds.) Learning to Diagnose with 

Simulations. Springer.



 

2023. In M. Ayalon, B. Koichu, R. Leikin, L. Rubel & M. Tabach (Eds.). Proceedings of the 46th Conference of 

the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 179-186). PME 46. 

STATISTICAL THINKING AND VIEWING PATTERNS WHEN 

COMPARING DATA DISTRIBUTIONS: AN EYE-TRACKING 

STUDY WITH 6TH AND 8TH GRADERS 

Saskia Schreiter and Markus Vogel 

Heidelberg University of Education, German 

 

Many students tend to perceive a data distribution as a collection of individual values 

rather than as a conceptual entity (local vs. global view of data). These difficulties 

seem to persist even after instruction in statistics. This study uses a methodological 

triangulation of eye-tracking and stimulated recall interviews to examine and contrast 

6th and 8th grade students’ (N = 49) viewing patterns and statistical thinking when 

comparing data distributions. Results showed no significant differences between 6th 

and 8th graders. Regardless of students’ grade level, the empirical data confirmed our 

theoretically derived hypotheses for differences in certain eye-tracking measures 

(fixation count, saccade amplitude, saccade direction) between students with a local 

and global view of data. 

THEORETICAL BACKGROUND 

Perspectives on data distributions: local vs. global view 

Distribution comparisons provide motivating learning opportunities in schools to 

initiate statistical thinking already before formal procedures of inferential statistics are 

known (Konold & Higgins, 2003). Many studies use the context of distributional 

comparison to examine students’ conceptions of data distributions and how they relate 

to their data-based decisions regarding distributional comparison (e. g., Ben-Zvi & 

Arcavi 2001; Frischemeier, 2019; Gal et al., 1989; Watson & Moritz, 1999). The 

results of these studies have shown that students often struggle to understand a data 

distribution as a conceptual entity. These difficulties seem to persist statistics 

instruction and are reflected in students’ tendency to focus on local details of the 

distributions without paying attention to the differences between the two distributions 

as a whole (local vs. global view of data; Bakker & Gravemeijer, 2004; Ben-Zvi, 2004). 

Table 1 provides an overview of the global and local characteristics of distributions 

that can be considered when comparing data distributions. This framework is based on 

Bakker and Gravemeijer (2004) and has been adapted for the objectives of this study 

with an explicit focus on visually determinable features of distributions. The structure 

of the framework can be read in two directions: It is typical for the upward perspective 

(local view of the data) that students see the distribution as a collection of individual 

data points from which they can determine, for example, the mean, range, or quartiles. 

However, this does not necessarily mean that students view these characteristics as 

measures of mean and range or as representatives of a group (Konold & Pollatsek, 

2004). Therefore, it is important that students also develop the downward perspective 

(global view of the data) that is considered essential for statistical data analysis (Ben-
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Zvi, 2004). While many studies have focused on students' statistical reasoning when 

comparing data distributions, little is known about the underlying perceptual and 

attentional processes that guide students in choosing or dismissing features.  

 

Table 1: Perspectives on data distributions: local vs. global view 

(Schreiter & Vogel, in press) 

Eye-Tracking measures as indicator for a local vs. global view of data 

Numerous studies in mathematics education research have shown that eye-tracking has 

a high potential to provide new insights into students’ mathematical thinking and 

learning (for an overview, see Strohmaier et al., 2020). Recent studies in statistics 

education illustrated that eye-tracking is an effective method to study students’ 

strategies and difficulties when interpreting and comparing statistical graphs such as 

histograms (e.g., Boels et al., 2019) 

In a first step of our ongoing research project, hypotheses for differences in certain eye-

tracking measures (fixation count, saccade amplitude, saccade direction) between 

students with a local and global view of data were theoretically derived and empirically 

investigated with a sample of 25 6th grade students (Schreiter & Vogel, in press). The 

results confirmed our hypotheses by showing that students with a global compared to 

a local view of data had on average significantly fewer fixations, longer saccade 

amplitudes and a higher relative number of horizontal saccades. Figure 1 illustrates the 

meaning of these eye-tracking measures by two exemplary gaze plots of students: the 

gaze plot on the left side shows a high number of fixations, and many saccades in 

vertical direction with short amplitudes. These are indicators for a local view of the 

data distribution, where local features (i.e., individual data points) are perceived and 

processed. In comparison, the gaze plot on the right side shows a smaller number of 

fixations, and more saccades in the horizontal direction with longer amplitudes within 

the data distributions. These are indicators of a global view of the data distributions, 

where global features that relate to the distribution as a whole are perceived and 

processed. 
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Figure 1: Exemplary gaze plots of two students comparing data distributions 

In this paper, we pursue two research aims: First, we aim to replicate the findings of 

our study with 6th graders with empirical data from a sample of 8th graders. Our first 

research question is: Is a global view (compared to a local view) in the 8th grade sample 

also associated with on average significantly fewer fixations, longer saccade 

amplitudes and a higher relative number of horizontal saccades? (RQ1) Second, we 

aim to compare the 6th and 8th graders regarding potential differences in viewing 

behavior and statistical thinking. Our second, two-fold research question is: Do 6th and 

8th graders differ in terms of viewing behavior (RQ2a) and statistical thinking (with 

regard to the perception and processing of local vs. global distributional features) 

(RQ2b) when comparing data distributions?   

METHODS 

Sample. The results reported here are based on data from n = 25 6th grade students 

(56% female) and n = 24 8th grade students (58% female). On average, 6th grade 

students were 11.6 years old (SD = 0.57) and 8th grade students were 13.6 years old 

(SD = 0.65). The students were recruited from three German secondary schools of type 

Gymnasium and Realschule. According to their curriculum, students were formally 

introduced to determine specific local distributional features (e.g., maximum, 

minimum) and global features of center (e.g., arithmetic mean) in grades 5/6, and to 

determine measures of spread (e.g., range, quartile) in grades 7/8. 

Material. Four items on distribution comparisons were created. All items included 

authentic comparison situations and an explicit request to draw a conclusion from the 

data presented in the task. Between items, certain features in which the distributions 

differ (such as center, spread or shape) were varied. In addition, sample sizes were 

varied (one item with very different sample sizes, two items with slightly different 

sample sizes, and one item with equal sample sizes). This systematic variation was 

chosen to test whether students switch flexibly between local and global strategies 

depending on certain features of the distributional comparison. For example, while 

comparing absolute frequencies of dots in certain intervals is a valid local strategy to 

compare samples of equal sizes, it is incorrect to do so when sample sizes are unequal. 

To assess the comprehensibility of the items and study procedure, a pilot study was 

conducted with N = 20 6th grade students. 
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Procedure. The study was conducted at the children's schools. An example item was 

used to explain the procedure of the study. The four items were presented individually 

and in randomized order on a 24-inch computer screen (Fujitsu B24T-7 LED, 

1920 × 1080 pixels). Eye-tracking data was collected using a monitor-based eye-

tracker (Tobii Pro Fusion) that captured binocular eye movements at a sampling rate 

of up to 120 Hz. For adjusting the eye-tracker, a 9-point calibration was performed 

before each task. An eye-tracking stimulated recall interview was conducted directly 

following each task to avoid loss of memory. Eye-tracking stimulated recall interviews 

have shown to be an effective method to examine students’ cognitive processes by 

asking them to retrospectively describe their own thoughts and actions as precisely as 

possible based on a video of their own gaze movements (Schindler & Lilienthal, 2019). 

For the recording of the interviews, the software OBS was used, which recorded screen 

contents including sound, so that the videos of the eye movements with the 

corresponding comments of the subjects were available for the later analysis. 

Data analysis. Tobii Pro Lab software was used to analyze the eye-tracking data. In 

each task, two Areas of Interest (AOIs) were defined that covered the two distributions. 

Fixations and saccades within the AOIs were detected using the Tobii I-VT Fixation 

Filter. This filter classified eye movements either as part of a fixation if the velocity is 

below the threshold of 30°/s, or as part of a saccade if the velocity is equal to or higher 

than this threshold. To determine the saccadic measures (saccade amplitude, saccade 

direction), raw gaze data was analyzed. Only saccades that have the immediately 

preceding and consecutive fixations within the same AOI were considered for the 

analysis. Saccade direction was defined as the absolute angle of a saccade (in degrees) 

measured to the horizontal and calculated based on the coordinates of the immediately 

preceding and consecutive fixations using basic trigonometry (cf. Holmqvist & 

Andersson, 2017). Saccades were classified as horizontal if this angle was between 0 

– |44|° and classified as vertical if it was between |45|°– |90|°. In total, four recordings 

had to be excluded due to data loss or insufficient accuracy.   

The data of the stimulated recall interviews was coded both deductively and 

inductively using qualitative content analysis. As the focus of the research presented 

here was on students’ statistical thinking while comparing data distributions, the 

coding procedure only referred to the process until the distribution comparison decision 

was made. Students’ utterances were analyzed in terms of perceived and processed 

distributional features and were assigned to two main categories (local feature/global 

feature) and several sub-categories (based on the framework presented in table 1). In 

total 196 videos were coded. Seven recordings were excluded due to technical 

problems with audio or screen recording. All transcripts were coded independently by 

two raters with high interrater reliability (Cohen's kappa = .84). 
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RESULTS  

Statistical thinking when comparing data distribution 

To gain information on students’ statistical thinking with regard to the perception and 

processing of global and local distributional features, we analyzed the stimulated recall 

interviews in a qualitative manner. Figure 2 gives an overview of the results regarding 

the relative number of items in which at least one global feature was perceived and 

processed. The majority of the 6th grade students (68%) and about half (52%) of the 8th 

grade students did either not consider global features in any of the items or in all four 

items (figure 2). The students who did not consider any global characteristics across 

all items are to be classified as problematic in this context. These students remained 

with local strategies (e.g., comparing absolute frequencies of dots in certain intervals 

or comparing the value of certain intervals of dots), even if sample sizes are unequal, 

which is an incorrect strategy in these cases. Overall, results showed that there was no 

statistically significant difference between the 6th graders and 8th graders in terms of 

the relative number of items in which at least one global feature was perceived and 

processed, t(46) = 9.41, p = .352. 

 

 

 

 

 

Figure 2: Students’ statistical thinking in terms of the relative number of items in which 

at least one global feature was perceived and processed 

Regarding global features, students’ utterances were assigned to the three categories 

center, spread/density, and shape. For both 6th and 8th graders, the spread/density 

category was often assigned when students compared areas with particularly many dots 

(so-called modal clumps) or divided the distributions into three groups (of low, middle, 

and high values). Sometimes, students also referred to range or compared how “spread 

out” or how “close together” the data points of the distribution are. Regarding center, 

it was observed among both grade levels that students mostly identified and compared 

the modal values of the two distributions. Visual estimation of the arithmetic mean 

rarely took place. Regarding shape, students’ utterances were very different, comparing 
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the shape of the distributions for example to geometric shapes like triangles or 

pyramids or to objects from their everyday life such as stairs that go up and down. 

Viewing patterns when comparing distributions 

Based on the analysis of the stimulated recall interviews, the sample was split in those 

students who perceived and processed at least one global feature in half or more of the 

items (from now on referred to as students with a global view) and those students below 

that threshold (from now on referred to as students with a local view). Table 2 provides 

an overview of the collected eye-tracking measures separated by students with a local 

and global view and by 6th and 8th graders. To address potential group differences in 

the collected eye-tracking measures, a MANOVA with the two between subject factors 

view of data (local/global) and grade level (6/8) was calculated. 

Results showed a statistically significant difference between students with a local and 

global view on the combined dependent variables, F(3, 42) = 7.827, p < .001, partial 

η² = .359, Wilk’s Λ = .641. This effect is independent of students’ grade level (no 

significant interaction between view of data and grade level, p = .872). Regardless of 

grade level, students with a global compared to a local view of data showed on average 

significantly fewer fixations, longer saccade amplitudes, and a higher relative number 

of horizontal saccades. These effects were highly significant (all p < .01) with high 

effect sizes (all η² > .20). 

No significant effect was found between 6th and 8th graders on the combined dependent 

variables, F(3, 42) = 1.157, p = .338, partial η² = .076, Wilk’s Λ = .924.  

ET measures Local Global 

 Grade 6 

M (SD) 

Grade 8 

M (SD) 

Grade 6 

M (SD) 

Grade 8 

M (SD) 

Number of 

fixations 

232.63 

(144.66) 

173.86 

(83.39) 

95.58 

(67.64) 

82.53 

(56.51) 

Saccade 

amplitude (pix.) 

78.12 

(17.43) 

96.35 

(46.12) 

124.68 

(30.85) 

132.84 

(29.40) 

Rel. number of 

horiz. saccades 

0.51 

(0.09) 

0.54 

(0.15) 

0.63 

(0.08) 

0.62 

(0.09) 

Table 2: Descriptive statistics for eye-tracking measures of students with a local 

(grade 6: n = 10, grade 8: n = 7) and global view (grade 6: n = 15, grade 8: n = 16) 

DISCUSSION 

This study investigated 6th and 8th grade students’ visual attention and statistical 

thinking while comparing data distributions.  

With regard to our first research question, we analyzed if the findings of the 6th grade 

sample can be replicated with empirical data of an 8th grade sample. Results showed 

that the differences in certain eye-tracking measures (fixation count, saccade 
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amplitude, saccade direction) between students with a local and global view of data 

existed regardless of their grade level. In line with our theoretically derived hypotheses 

(Schreiter & Vogel, in press), both 6th and 8th grade students had on average 

significantly fewer fixations, longer saccade amplitudes, and a higher relative number 

of horizontal saccades with a global compared to a local view of data. These results 

suggest that eye-tracking data can help to identify students’ conceptions and difficulties 

related to a local vs. global view of data. Knowledge about what features students focus 

their visual attention on and what is going on in students' minds as they visually focus 

on these features may provide further insight into how tasks and instruction should be 

designed to guide students from a local to a global view on data, which is considered 

an important goal of statistics education (Ben-Zvi & Arcavi, 2001). In addition, the 

results of this study provide an initial basis for the potential of eye-tracking as a 

diagnostic tool for detecting student conceptions and difficulties in distributional 

comparison. 

Addressing our second research question, we analyzed potential differences between 

6th graders and 8th graders in terms of viewing behavior and statistical thinking. The 

results of the stimulated recall interviews revealed that half or more of the 6th as well 

as the 8th graders considered global features either in none of the items or in all four 

items. Thus, both samples have in common that students showed a certain consistency 

in their statistical thinking across all items. No significant difference was found 

between 6th and 8th graders in terms of the relative amount of items in which at least 

one global feature was perceived and processed. Likewise, the analysis of the eye-

tracking measures did not reveal any significant differences between both groups. 

Essential for statistical data analysis is that it is mainly about describing global features 

of data distributions (e. g., Bakker & Gravemeijer, 2004; Ben-Zvi, 2004). Against this 

background, the students who did not or only rarely considered any global 

characteristics across all items are to be classified as problematic. These students 

remained with local strategies (e.g., comparing absolute frequencies of dots in certain 

intervals), even if sample sizes are unequal, which is an incorrect strategy in these 

cases. These findings are consistent with existing research describing students’ 

difficulties in understanding a distribution as a whole, which appear to persist even 

after instruction in statistics (e. g., Ben-Zvi & Arcavi 2001; Watson & Moritz, 1999). 

Although 8th graders, according to the curriculum, should be more advanced in 

interpreting data distributions (e.g., in terms of spread/density), there were no 

significant differences between 6th and 8th graders in our sample, neither in their gaze 

behavior nor in their statistical thinking in terms of perceiving and processing global 

distributional features.  

This study is a first step towards enhancing our understanding of students’ visual 

attention and associated statistical thinking when comparing data distributions. Future 

research is necessary to examine potential influencing factors on the part of students 

(e.g., topic specific pre-knowledge) and performance differences within the groups of 

local and global viewers in more detail. In addition, the results of this study may also 
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build a starting point for future research investigating the potential of eye-tracking as 

a diagnostic tool that can be used in teacher training or school practice to detect and 

learn about students' conceptions and difficulties in distributional comparison. 
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HOW DO MATHEMATICS TEACHERS LEARN TO CREATE A 

MATHEMATICAL STORYLINE IN PROBLEM-BASED LESSONS? 

Gil Schwarts, Patricio Herbst and Amanda Brown 

University of Michigan, USA 

 

Building on student work (SW) in mathematics classroom discussion requires complex 

decision-making from mathematics teachers. Previous literature on problem-based 

lessons recommends selecting and sequencing pieces of SW in a way that creates a 

mathematical storyline, but there is rarely any empirical evidence on how mathematics 

teachers can master such practices. We use the case of StoryCircles, a lesson-based 

professional development program, to show how iterative processes in which teachers 

were engaging with SW assisted them in developing heuristics for a careful selection 

and sequencing of SW. The results show that these processes involved 1) the teachers’ 

emerging awareness of features of SW; and 2) an evolving capacity to relate these 

features to the lesson goal. We discuss design features that fostered these changes. 

BACKGROUND AND RATIONALE 

Building on student thinking in mathematics lessons is a core aspect of responsive 

teaching. Instructional practices purported to support teachers’ attempts to foreground 

student ideas include posing mathematically rich problems, monitoring students as they 

work on such problems, and then selecting several students to share work in a sequence 

that can be leveraged to support a productive whole-class discussion. The latter two 

practices are known as selecting and sequencing (Smith & Stein, 2011). The literature 

recommends that teachers select and sequence in ways that create “mathematically 

coherent storylines” (ibid, p. 44). Like any other good story, a crucial component of a 

mathematical storyline is its culmination, which, in the case of mathematics lessons, 

means that the discussion of a problem leads to the mathematical goal of the lesson 

(Kazemi & Hintz, 2014). Despite the importance of the lesson goal, empirical studies 

show that teachers tend to overlook it when justifying how they select and sequence 

(Ayalon & Rubel, 2022; Dunning, 2022). This suggests that attending to the lesson 

goal when selecting SW is part of teachers’ tacit knowledge (Herbst & Chazan, 2011). 

For these reasons, we suspect that teachers’ learning of such practices may be enhanced 

through participation in “infrastructures that support the interplay of knowledge and 

knowing” (Cook & Brown, 1999, p. 381). Below, we describe how a collaborative 

practice-based professional development (PD), StoryCircles (details below), supported 

teachers in sharing and expanding their ways of knowing related to a careful selection 

of SW. Compared to the abundance of literature about classroom discussions, the 

practices of selecting and sequencing are under-researched, despite their importance. 

Our contribution to this burgeoning body of research is in unpacking the notion of 

“mathematical storylines” by exploring how geometry teachers became explicit and 

deliberate about their decisions related to SW. We ask:  
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What justifications for selecting and sequencing SW do teachers make available when 

participating in StoryCircles? How do teachers’ justifications evolve over time? 

THEORETICAL FRAMING  

To explore how teachers make decisions about SW we draw on some of the key ideas 

of the practical rationality framework (Herbst & Chazan, 2011). First, we build on the 

idea that teachers’ actions are always related to the norms of the instructional situation 

in which they operate. Instructional situations are events in classrooms that teachers 

recognize as familiar and mentally categorize as a situation of a particular type (Herbst 

& Chazan, 2011). In the US high-school context, common instructional situations in 

geometry include construction and proof (Herbst et al., 2018). It follows that the norms 

which are related to particular instructional situations are subject-specific, that is, 

allude to the mathematical content that is being taught. Second, we apply this idea to 

describe categories of teacher perception (Herbst et al., 2021), namely, aspects to 

which mathematics teachers attend when they examine and make decisions upon SW: 

the category of normativity alludes to the SW alignment with the teacher expectations, 

based on how the teacher framed the instructional situation. For example, if a problem 

is framed as one expecting students to do a construction, teachers may consider a 

sketched figure as less normative than a SW where construction tools were used. A 

second category is the serviceability of the SW, which attends to the alignment with 

the lesson goal. That is, a sketch that suggested a connection to the lesson goal might 

be considered more serviceable (even though it is less normative) than a construction 

that provides no leverage for progress. This emerging framework enables us to discern 

subject-specific aspects of teachers’ decisions.  

METHODS 

The design of the PD environment 

StoryCircles is a collaborative PD where secondary mathematics teachers anticipate a 

lesson through iterative phases of scripting, visualizing, and arguing about it (Herbst 

& Milewski, 2018), in online synchronous and asynchronous activities. Inspired by 

Japanese lesson study, each StoryCircle focuses on participants’ attempts to improve 

one lesson, initially sketched in a storyboard, as they see fit. Importantly, the goal of 

StoryCircles is to foster teachers’ peer argumentation about practice (and not, for 

example, to direct them to teach a specific lesson or to include specific moves).  

At the beginning of a StoryCircle, participants view one version of the storyboarded 

lesson. Over six weeks they are engaged in various activities where they discuss key 

decision points in the lesson and script more scenes accordingly. The constants of the 

lesson-to-be-revised are the posed problem (the first frame of the storyboarded lesson, 

see Figure 1a) and the culminating institutionalization of the instructional goal (last 

frame, Figure 1b). In the particular StoryCircle considered here, the pool problem 

lesson (in geometry) was represented with nine frames, that showed the arc of the 

lesson as a sequence of phases: Problem Posed (Phase 1); Getting Your Feet Wet 

(Phase 2); Whole Class Check-In (Phase 3); Redirecting the Work (Phase 4); Whole 
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Class Discussion (Phase 5); Goal Statement (Phase 6). The lesson starts with a problem 

that US teachers tend to frame as a construction (Figure 1a) and culminates with 

arriving at the theorem stating that “the midpoint of the hypotenuse of any right triangle 

is equidistant from its vertices” (See Figure 1b). A main resource for the participants’ 

work on the lesson is a collective examination of samples of SW, as will be further 

detailed. The facilitator was an experienced geometry teacher who previously 

participated in StoryCircles. A diverse group (in terms of gender, ethnicity, experience, 

institutions, and more) of seven teachers participated in the entire PD cycle.  

 

1a 

 

1b 

Figure 1. Scenes at the beginning and the end of the pool problem lesson (© 2021, 

The Regents of the University of Michigan, used with permission) 

Data sources and analysis 

Focusing on participants’ decision-making when interacting with SW, the data sources 

used for this analysis are videos and transcripts from two synchronous meetings in 

which SW was the focus: the second meeting (M2) and the fifth (M5). To identify how 

participants’ justifications were made available to peers through discussions, we 

performed a content analysis guided by the categories of normativity and serviceability 

(Herbst et al., 2021). The code “normativity” was used when participants referred to 

the norms of the instructional situation of construction (e.g., when mentioning tools or 

precision) to justify a decision to select or sequence SW in particular ways. The code 

“serviceability” was used when they referred to the lesson goal (mediated by 

mentioning mathematical ideas or objects) to justify a decision to select or sequence 

SW. The process included: (a) segmenting the transcript into sets of utterances 

associated with each SW sample and then into idea units that include justifications; (b) 

coding the segments using the top-down categories together with bottom-up themes; 

(c) comparing the analyses of M2 and M5, focusing on the place of the instructional 

goal – namely, attention to serviceability – in participants’ justifications; (d) 

identifying key moments in the talk that illustrate the evolution of justifications.  
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FINDINGS 

The analysis identified that participants’ focus on serviceability shifted across their 

participation in StoryCircles, with them hardly attending to serviceability in M2 (30% 

of codes) while serviceability became a core aspect of their arguments in M5 (74% of 

codes). The following processes were identified: (1) The group’s emerging awareness 

of serviceable aspects of SW; and (2) an evolving capacity to relate these aspects to the 

lesson goal, while disregarding other aspects. Below, we illustrate these processes. “F” 

is short for facilitator, and all of the participants’ names are pseudonyms. 

 

2a 2b 2c 2d 

Figure 2. Samples of student work that were discussed in M2 (© 2021, The Regents 

of the University of Michigan, used with permission) 

WEEK 2 MEETING (M2): OVERLOOKING THE LESSON GOAL 

Prior to M2, the teachers participated in an introduction session and two asynchronous 

activities in which they perused and annotated an initial version of the pool problem 

lesson and nine pieces of SW, respectively (see examples for the SW in Figure 2). M2, 

which was aimed at focusing participants’ attention on the practices of selecting and 

sequencing SW, began with the question: “What pieces of work catch your attention? 

[...] Are there ideas that you particularly want to make sure that you brought out?”. The 

participants mainly attended to the first question, discussing SW that were unexpected 

(Figure 2a) or non-normative (Figure 2b), and then coalesced toward selecting Figure 

2b as the first work they want to be shared on the board:  

246 Ira: There'd be more than one person who just draws the rectangle, puts the 
swimmers there, [I’d] say okay where are your tools? What did you do? 

273 Ran: I'd rather start with this [Figure 2b], because I think everyone would 
understand [...] I think it's better to start out with a more general one.  

We hear the participants as claiming that selecting 2b would be justifiable on account 

of their perceiving that piece of work as accessibile, general, representative, and non-

normative – the latter aspect suggests that the SW was partly selected as a non-example 

that is used to direct students to follow the norms of the situation (using construction 

tools). Notably, none of the justifications mentioned the lesson goal. The facilitator 

then asked which SW could be useful, a move that led to the first emergence of 

serviceability in a justification; one participant suggested Figure 2c, “Obviously, 
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because that's a perpendicular bisector, that gets right to where you're trying to go.” 

The word “obviously” suggests that justification for selecting SW that aligns with the 

lesson goal seems to her as taken-as-shared knowledge that might not be worth 

mentioning. Following the failed attempts to discuss the lesson goal based on features 

of the SW, the facilitator tried again:  

 341 F: What would be the mathematical ideas that we want to make sure got out 
on the table? Can you imagine bringing up SW to pull these ideas out?  

Here, the facilitator illustrates a heuristic for a mindful selection of SW: First thinking 

about the mathematical ideas that are needed for the discussion, and then selecting SW 

that includes these ideas or that can be used to prompt discussions about them. 

Nevertheless, participants mostly suggested ideas that they noticed in the SW such as 

Mentions “equidistant”; Properties of a rectangle; Right triangle; and Circle, 

overlooking the hypotenuse, midpoint, and perpendicular bisectors. As the discussion 

evolved, participants gradually attended to serviceable aspects (such as the generality 

of the theorem). Yet, the facilitator noticed that they were still not prioritizing any SW, 

wishing to be attentive to each and every mathematical idea and SW. 

454 F: Are these all equally important ideas or do we want to make sure we're 
prioritizing some of these over others? The goal is to be able to have the 
students have a discussion that ends up with them discovering this theorem. 

458 Clader: It kind of already is in order [...] talking about the equidistant part first, 
recognizing the rectangle […]. The only thing that obviously would be a 
little thrown off is if you were going to do the circles piece, I think that 
might not naturally lead into it, but maybe too [...]  

This exchange shows the emergence of the understanding that presenting all pieces of 

SW, and discussing all related ideas, could impede the coherence of the lesson (“a little 

thrown off”). A few minutes later, the group made further progress in this direction: 

496 Clader: What we need to decide is, like, which direction we're going, because there 
are so many different entry points to this […] Now we have all these ideas, 
and that's kind of where I'm stuck because […] once we decided a way [...] 
I think it'd be easier to determine what drawing next I'd want to lift. 

501 Ira: Yeah that's where I'm stuck too [...] what if someone use the tools that found 
the midpoint and found the right answer and have no clue how they got it, 
but they're putting up the correct drawing?  

This exchange shows the processes in which the participants realize the need to 

prioritize, an insight that emerged together with the understanding that there are 

multiple storylines that could be developed and focusing on one of them requires 

making decisions. The word “stuck” suggests that the participants’ conflict is not only 

about what decision to take, but also about identifying that this moment involves 

complex decision-making that takes account not only of the features of a particular 

piece of SW, but also of how those features serve the goal of the lesson. That leads to 

an evolving awareness of more features of SW (Turn 501), where the participant claims 

that not all of the SW which is correct and/or normative is also useful for the whole 

class discussion. Overall, we identified two constraints for the creation of a 
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mathematical storyline: 1) adherence to normativity; 2) a desire for full attentiveness, 

including making sure that all givens are used, instead of focusing on the question.  

WEEK 5 MEETING (M5): ATTENDING TO SERVICEABILITY 

M5 was conducted after the group further engaged with the samples of SW in several 

asynchronous activities which included, for example, scripting classroom dialogues. 

The meeting described below focused on the last two phases of the lesson, where the 

second whole class discussion (Phase 5) leads to the discovery of the theorem (Phase 

6). The meeting began with the facilitator asking “What would you like to have on the 

table going into that last class discussion?”. This time, the conversation was ample with 

arguments mentioning the lesson goal: 

267 Ran: Most of what we had [in previous phases] had to do with rectangles, and 
nothing to do with hypotenuse [...] , and even the radii and the arches, those 
are ideas to measure, maybe, but not necessarily conducive to the 
conclusion that we're looking for. 

The facilitator then asked what kind of work the participants imagine can help generate 

this conversation. That led to a discussion about the normativity of the work. One 

participant, instead of imagining, attended to his reality, saying: “I think students would 

draw it [the pool] rather than construct it, unless you told them to construct it” [272]. 

The facilitator then asked if the group thought it was important that the students 

construct. While in M2 participants had expressed their expectation for constructions 

without providing an explanation why, in this meeting most of their comments implied 

that construction is important for the sake of achieving the lesson goal. In other words, 

they saw construction as a valid alternative to proof for arriving at the theorem. The 

following is an illustrative exchange: 

303 Clader: Towards the very end I would like to see something more formal.  

309 Ran: Without doing a construction, there has to be a [different] way, because 
otherwise we're just theorizing. How do we know that it’s equidistant? [...] 
At least my students, [...] if I say it's equidistant they will agree, but that 
does not prove. It's conducive to them to conclude that on their own. 

315 Llara: I agree, I think […] that would be where you can now show them why a 
construction is used instead of just answering question 23 on the test. So 
they can actually see that the construction now will verify. 

324 Ran: And I’m thinking that what we say at the class discussion, I think there 
has to be something in their work that is what we're going to discuss about. 

338 Labrona: I would kind of hope [that] some of the work included a perpendicular 
bisector so that might be something we can carry into the story, because 
for me this is the justification for the eventual goal about the midpoint 
of the hypotenuse.[...] I think there were a couple pieces of work that 
either alluded to a perpendicular bisector or more explicitly had one. 

The group then selected Figure 2c and discussed how it could be further used in a 

discussion. Then, they returned to the issue of which student solutions are considered 

valid for them. In this discussion, they were not adhering to normativity anymore: 
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494 F: I wonder if you've got feelings about the idea of a formal or informal proof, 
or what would make for just a valid conversation that would satisfy? 

496 Ran: I like the idea of allowing them to explore different avenues, so I'm not set 
on formal or informal. […] if one wants to write a proof and the other one 
wants to use a compass, then that's okay, as long as they do learn the 
concept that I want them to learn. 

501 Llara: At least for me, as long as the students can explain it, that's the most 
important thing, I mean it doesn't have to be formal or informal, [...] what's 
important [is] that it's correct in the way they explained it for us. 

532 Clader: we're trying to emphasize specific vocabulary to get them to the end [...] 
the pieces of vocabulary just have to be threaded throughout each 
example to get them to our final conclusion. I don't think it's a problem 
of how they got there as long as we can emphasize those specific pieces. 

This exchange illustrates awareness of more features of SW, as well as an increased 

ability to set aside the procedures to solve the problem and emphasize, instead, the 

achievement of the instructional goal. In the participants’ justifications, there is an 

emerging recognition of the importance of emphasizing the serviceable aspects of SW. 

Overall, in this session teachers could better justify why they selected or disregarded 

SW, by recognizing features that allude to the lesson goal. Consequently, their choices 

created a blueprint for a coherent mathematical storyline.  

DISCUSSION 

This paper examines how teachers’ justifications for selecting and sequencing were 

made available and evolved during their participation in StoryCircles. We showed how 

teachers’ decision-making became more explicit and deliberate, that is, related to the 

lesson goal (as Kazemi & Hintz, 2014; Smith & Stein, 2011 recommend). We highlight 

two notable findings: 1) by noticing more features in SW teachers were able to better 

justify their choices; and 2) teachers adopted the idea that creating a mathematical story 

involves prioritizing work that attends to the lesson goal. Although such prioritization 

could be in tension with attentiveness to all students (Ayalon & Rubel, 2022), teachers 

reconciled this tension by letting the lesson goal guide their decisions.  

The following elements contributed to the emerging focus on serviceability: 1) The 

phase structure of the storyboarded lesson. Based on previous iterations of 

StoryCircles, the design of the current cycle provided teachers with the arc of the lesson 

– that is, a structure that conveyed the sense of what is happening in each phase and 

how particular moments are related to the larger context of the lesson. This feature 

enables zooming in and out and relating decisions into larger goals; 2) Iterative 

engagement with pieces of SW. The teachers had diverse opportunities to engage with 

the SW, with peers and alone, in iterative activities in which the lesson goal has 

gradually become more salient in their interpretations. We maintain that developing 

heuristics for purposeful decision-making in an environment of reduced complexity is 

essential for a later adoption of such heuristics; 3) Responsive facilitation. The 

facilitator was attentive and hardly provided input, yet she was deliberate on building 
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a coherent storyline in her navigation of teachers’ talk. Moreover, she was modeling 

how to lead a discussion that builds on learners' ideas and is goal-oriented.  

The contribution of this work is in unpacking how teachers can be supported in creating 

a mathematical storyline (Smith & Stein, 2011), by using a subject-specific lens that is 

sensitive to the mathematics at the core of teachers’ decision-making.  
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not represent the views of the Foundation. 
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The study examines how mathematical reasoning is socially gendered among 

Palestinian/Arab Israeli teachers. Middle and high school mathematics teachers 

(n=49) in Arabic-language schools participated by first classifying five solutions to 

each of five mathematics questions according to: procedural (school algorithm), 

creative-logical (non-standard), or guess-and-check. Participants then were prompted 

to attribute each solution to four provided categories: high/low achieving girl or boy. 

Participants attributed most (68%) of the creative/logical solutions to high-achieving 

boys, most (69%) of the procedural solutions to high-achieving girls, and most (66%) 

of the guess-and-check solutions to low-achieving boys. 

INTRODUCTION 

We conducted this study within the social context of Palestinian/Arab-Israelis (P/AIs), 

who represent about 21% of Israel’s citizenry.1 There are contradictions related to 

gender and mathematics education in this context. P/AI women are marginalized–as 

women, as Arabic speakers, as Israeli citizens– and the various intersections of these 

dimensions. This marginalization is evident in how, for example, in 2018, only 50% of 

P/AI women between the ages of 18-22, were employed or in school (Haj-Yahya et al., 

2018). At the same time, in Israel’s Arabic-language schools, girls tend to outperform 

boys–on state and international mathematics tests and at all school levels– and are 

better represented in advanced mathematics, physics, and computer science 

coursework (Pinson et al., 2020). This latter trend has attracted research attention by 

challenging the dominant pattern in Israel of a gender gap in mathematics favoring 

boys, with questions as to whether and how mathematics has been socially constructed 

in the P/AI context (e.g., Forgasz & Mittelberg, 2008).  

School success of P/AI girls and women is socially constrained and has not yet 

translated for girls and women into participation in related professional (and more 

lucrative) fields. Instead, even though there is a surplus of teachers in Arabic-language 

schools, P/AI girls and women who excel in mathematics at the secondary and 

university levels tend to become mathematics teachers (Fuchs & Wilson, 2018). 

Gender norms around childcare, familial pressures, and the conduciveness of working 

in schools to remaining within P/AI communities are influential (Rubel & Ehrenfeld, 

2020). However, ways in which success in mathematics is socially gendered could be 

another factor that explains why the majority of high-achieving P/AI women become 
                                                           
1 Categorized formally Israel as “Arab Israeli,” the authors instead opt for the term Palestinian/Arab 

Israeli. This acknowledges the local identifier and accounts for increasingly prevalent public 

expressions of Palestinian identity and solidarity. 
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teachers rather than continuing to mathematics-related professions. Prior research has 

documented gendered narratives in circulation in the United States and Europe, for 

example, in which boys who are successful in mathematics are cast as brilliant, in 

contrast with girls as diligent (Heyder et al., 2019). The social construction of success 

in mathematics as being shaped by diligence rather than brilliance, but only for women, 

acts as an obstacle, in terms of identity formation and how they view their own success 

as well as how it is viewed by others. The current study explores the gendering of 

mathematics in terms of various types of mathematical reasoning.   

PRIOR RESEARCH 

Despite social advances towards gender equity, gender-related biases continue among 

teachers with respect to a range of everyday classroom practices, around the world. 

Studies in the United States and Ireland, for example, show teachers’ estimation of 

boys’ mathematics ability as higher than girls, relative to the same mathematical work 

(Copur-Gencturk et al., 2020; McCoy et al., 2022). In Lebanon, teachers were shown 

to tend to attribute boys’ success to ability but girls’ success to effort (Sarouphim & 

Chartouny, 2017). In Israel, by comparing classroom mathematics grades with 

standardized national exam scores, by student, teachers tended to give boys higher 

grades relative to the same level of work (Lavy & Sand, 2018).  

The findings of these studies collectively reflect social narratives that connect ability 

in mathematics, writ large, to maleness. Others have looked more specifically at the 

social gendering of mathematics in terms of specific mathematical reasoning types. We 

can distinguish between creative and imitative mathematical reasoning (Lithner, 2008): 

creative reasoning is marked by novelty, plausibility, and mathematical logic, whereas 

imitative reasoning consists of memorization or implementation of algorithms. 

Creative reasoning is seen to be indicative of mathematical smartness, while imitative 

reasoning is considered to be a form of compliance or rule following.  

At the outset, it is important to note that across time and contexts, there is a pattern of 

girls being more likely than boys to use concrete, familiar strategies (Cimpian et al., 

2016). We view gender as socially constructed, and our’s is not a study of biological 

tendencies with respect to mathematical reasoning. Rather, we understand such a 

pattern to be a product of socialization processes, wherein teachers are important 

mediators. Sumpter (2016), for example, found that teachers in Sweden tend to 

attribute guessing to boys and algorithmic reasoning to girls, with unclear results about 

gendering of creative/logical reasoning, which they had anticipated might be attributed 

to boys. In Authors’ previous study, when P/AI teachers were prompted as to whom 

they would select to present their mathematics work to the class, they mostly selected 

a girl to present a direct model solution and a boy to present a creative solution. The 

instrument from the previous study included only one mathematical task, prompting 

the need for a follow-up, broader study. Here we pursue this research question: In what 

ways do teachers relate different types of mathematical reasoning to gender and why? 



Shahbari, Rubel & Kabha 

PME 46 – 2023 4 - 197 

METHODS  

We recruited participants by distributing an online questionnaire using contact groups 

of teachers, summing to 49 in-service P/AI mathematics teachers (Table 1).  In a second 

phase, we interviewed 10 participants (eight women and two men).  

Table 1.  Participants’ background characteristics 

Background 

Characteristics 

 Women Men Total 

Gender  32(65%) 17(35%) 49(100%) 

School Level Middle (Grades 7-9) 14(67%) 7(33%) 21(43%) 

High (Grades 10-12) 18(64%) 10(36%) 28(57%) 

Data Sources, Procedures and Analysis 

We designed an instrument in Arabic consisting of five mathematics questions that 

lend themselves to be solved using various strategies. For example, one problem read: 

A farm has chickens and cows. All together, among them, there are 70 heads and 186 

feet. How many chickens and how many cows are on the farm? (Tabach & Friedlander, 

2013). For each question, we presented five different solutions (examples in Table 2). 

A team of experts (consisting of the authors and four other experienced mathematics 

teachers) classified the solutions according to: procedural, creative or logical, and 

guess-and-check. The procedural solutions are standard, school-taught algorithms. 

Creative solutions are those that use novel or unconventional strategies, oftentimes 

relying on logical reasoning. Guess-and-check reasoning indicates an educated guess 

about a possible solution with iterative tests and improvements to each guess. 
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Table 2. Examples of solutions to Chicken/Cow problem (translated to English) 

Procedural  Creative or Logical Guess-and-Check  

X= number of cows 

y=number of chickens 

2x= legs of cows 

4y=legs of chickens 

 

𝑥 + 𝑦 = 70          

4𝑥 + 2𝑦 = 186     

 

 2𝑥 + 2𝑦 = 140    

 4𝑥 + 2𝑦 = 186  

 

   −2𝑥 = −46      

   𝑥 = 23     cows 

 

23 + 𝑦 = 70      

𝑦 = 47    chickens 

Group= 

 

70: 3 = 23
1

3
 

We build 23 groups, and 

each group contains a cow 

and two chickens, so we 

have 23 cows and 46 

chickens, and the number 

of legs is: 

23 ∙ 4 + 46 ∙ 2 = 92 + 92

= 184 

186 − 184 = 2 

The last animal is a 

chicken and has two legs 

Cows=23 

Chickens= 46+1=47 

Suppose the number of cows is 

equal to the number of chickens, 

35 of each.  

The number of legs will be: 

35∙2+35∙4=70+140=210 

Since the answer is more than 

186, we  should reduce the 

number of cows and increase the 

number of chickens until we get 

to 186. 

# of 

legs 

# of 

cows 

# 

chicke

ns 

210 35 35 

208 34 36 

186 23 47 

 

We prompted participants to classify each solution according to categories: school 

procedure, creative or logical, or guess-and-check. In total, there were 392 (8 x 49) 

procedural solutions and responses, 539 (11 x 49) creative-logical solutions and 

responses, and 294 (6x49) guess-and-check solutions and responses.  

We prompted participants to select whom they assess has solved the problem in each 

way, from among the four categories: high-achieving boy/girl or low-achieving 

boy/girl. We are aware that in classifying people as boys or girls, our instrument 

reinforces a false gender binary, yet this is a social order that carries meaning and 

practicality in the local context (see Hall, 2014). The instrument did not make available 

a response of “there is no way to tell who solved the problem in this way,” which 

possibly would have been favored by some participants. 

In a second phase, we interviewed ten participants using a structured protocol in which 

we presented the quantitative results from the group of participants and asked each 

interviewee to interpret the results. We recorded and transcribed the interviews and 

used qualitative thematic analysis (Braun & Clarke, 2006). 

3 animals 

cow= 2 chickens 
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FINDINGS 

Classification of solutions 

Participants’ classifications mostly matched the expert team’s (75% of the procedural, 

84% of the creative/logical, and 77% of the guess-and-check). We discarded all 

instances in which a participant’s classification did not match the expert team’s. We 

applied this matching as a filter as a way to be sure that participants viewed a particular 

solution as indicative of the corresponding form of reasoning. This filtering resulted in 

974 (80%) cases. The 974 resultant cases include 294 procedural, 455 creative/logical, 

and 225 guess-and-check solutions. 

Participants' attributions of solutions  

Overall, participants attributed solutions to boys (60%) more often than girls (40%). 

Participants attributed creative solutions and guess-and-check solutions much more 

often to boys and standard procedural solutions much more often to girls (Table 3). A 

chi-squared test shows that the association between mathematical reasoning types and 

attribution by gender is statistically significant, 𝜒² (4, N = 974) =192, p < .001. 

Table 3. Attributions of solutions by gender 

  Girls Boys Total 

Procedural (standard) 215(73%) 79(27%) 294 

Creative or Logical 

(non-standard) 

110(24%) 345(76%) 455 

Guess-and-Check 66(30%) 159(70%) 225 

Total 391 (40%) 583(60%) 974(100%) 

 

Participants attributed solutions to each of the four student categories but not uniformly 

so (Table 4). The high-achieving categories (boys or girls) were selected most often 

(70%). High-achieving boys were noted with the highest frequency, and most (68%) 

of the creative or logical solutions were attributed to them. In contrast, most (69%) of 

the procedural solutions were attributed to high-achieving girls. Finally, most (66%) 

of the guess-and-check solutions were attributed to low-achieving boys. Overall, low-

achieving girls were selected with the lowest frequency, receiving only 9% of all 

attributions. A chi-square test shows that the relationship between solution type and 

student achievement level with gender is statistically significant 𝜒²(6, N = 974) 

=782.34, p < .001. 

Table 4. Attributions of solutions by gender and achievement  
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 High-achieving Low-achieving  

 Girl Boy Girl Boy Total 

Procedural  203(69%) 57 (19%) 12(4%) 22(8%) 294 

Creative / Logical  96(21%) 307 (68%) 14(3%) 38(8%) 455 

Guess-and-check 5(2%) 11(5%) 61(27%) 148(66%) 225 

Total 304(31%) 375 (39%) 87(9%) 207(21%) 974 

Explanations 

In general, interviewees were not surprised by the summary frequencies of the 

attributions by achievement and gender. Most (seven) explained these trends by 

retelling essentialist narratives, such as “Boys are exposed to more things than girls. 

That’s why boys are more creative” or ”girls prefer to follow step-by-step procedures 

even if they are laborious” or “girls are hesitant to guess because they fear getting a 

wrong answer.”  One interviewee related these results to an achievement gap that 

favors girls: “In class, boys demonstrate greater creativity. But on exams, girls are more 

successful because of their ability to solve questions using taught strategies.“ Three 

interviewees challenged the findings in various ways: one said that these patterns vary 

by mathematics topic; another questioned that the group attributed guess-and-check 

specifically to boys. One interviewee emphasized that she thinks that gendered 

reasoning types are cultivated by teachers and not innate to any group of students.  

DISCUSSION  

Participants tended to attribute creative or logical solutions to high-achieving boys, 

procedural solutions to high-achieving girls, and guess-and-check solutions to low-

achieving boys. Explanations in the interviews revealed gendered narratives about 

mathematical reasoning that explain these patterns. The patterns of attributions suggest 

that P/AI teachers tend to view boys as more capable of independent thought and able 

to invent their own strategies, but view girls as more likely to apply previously learned 

algorithms. Guess-and-check solutions were attributed most often to low-achieving 

boys, in correspondence with views of guessing as risk-taking and different from 

“safer” forms of procedural reasoning. Low-achieving girls were the most 

underrepresented, consistent with previous research in other contexts (Jones, 2005). 

Gender gaps in mathematics among P/AIs (and across the Middle East) persistently 

favor girls, different from most of the world. Previous studies have suggested that one 

possible interpretation is that the social gendering of mathematics is different in this 

region (e.g., Forgasz & Mittelberg, 2008). Our findings, however, align with those of 

previous studies in other contexts (e.g., Copur-Gencturk et al., 2020; McCoy et al., 

2020; Sarouphim & Chartouny, 2017). Social narratives about mathematical reasoning 

as gendered like these do not help us to understand the relative success of girls in school 

mathematics, but shed light on the later under-representation of P/AI girls in 

mathematics-related professions. School success in mathematics might possibly 
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reinforce or even exacerbate the positioning of girls as holding imitative, rather than 

creative, reasoning abilities, meaning that their success at the school level is being 

undercut by this and other social processes.  

This research was supported by the Israel Science Foundation (grant No. 2747/21). 
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Dynamic visualizations have the ambition to show the students the relation between 

mathematical inscriptions, such as a unit circle and a sine graph. Alternatively, the 

action-based embodied design approach proposes that the students need to explore 

and discover this relation based on continuous feedback. In a contrasting multiple-

case study, we analyze the opportunities and limitations of those two approaches. We 

show that higher-performing students can learn well with both design types. Yet, for 

the lower-performing students, an opportunity to actively discover the relation between 

the unit circle and sine graph is critical for incorporating this relation into their 

understanding of the sine graph construction.   

INTRODUCTION 

Imagine, a student is about to learn how to build a sine graph from the unit circle. A 

variety of dynamic visualizations have been designed to show the students the relations 

between a point on the unit circle and a correspondent point on a sine graph (e.g., 

DeJarnette, 2018). In these technological solutions, as in many other dynamic solutions 

for mathematics learning, the connection between two representations is already 

embedded into technology (e.g., Yerushalmy, 1991). Even if a student is free to 

manipulate one of the visual representations, the other one automatically adjusts to the 

student’s manipulation (Rolfes et al., 2020).  

In these educational activities, the students need to observe mathematical relations 

embedded in a digital environment. Visualizations show something to students and 

designers expect students to be able to distinguish target aspects of the visualizations 

and discern their relations (e.g., an arc length and the distance on the x-axis and their 

correspondence). However, a cultural-historical claim that perception develops 

(Radford, 2010; Vygotsky, 1997) and a radical embodied claim that perception serves 

action (Abrahamson & Sánchez-García, 2016; Maturana & Varela, 1992) point out that 

students need to acquire the ability to noticing the target relations.  

Contrary to dynamic visualizations, in action-based embodied designs (Abrahamson, 

2014), mathematical relations are delivered in a form of a motor problem (Bernstein, 

1967), thus fostering the development of moving in a new way. Embodied interactive 

activities provide continuous feedback to students’ movements similar to an everyday 

environment (think of a young skater who learns to skate based on continuous feedback 

from gravity and ice). Aiming at positive feedback, the students learn to maintain visual 

scene in the target state and develop new sensory-motor coordinations. The core 

difference between dynamic visualizations and action-based embodied designs can be 

explained by answering the question, “Who gets to constrain the student’s interaction 
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with the virtual objects: the software or the student?” (Abrahamson & Abdu, 2020). 

By constraining/maintaining new cultural forms of action, students develop new forms 

of perception: new perceptual structures emerge for them as helpful in maintaining 

their performance (Abrahamson et al., 2015)  

Theoretically, we expect that dynamic visualizations are helpful for students who 

already have target perceptual abilities and are able to discern target aspects of the 

visual environment. Action-based designs provide opportunities to develop such 

perceptual ability within sensory-motor coordinations that students spontaneously 

develop while exercising within specially designed environmental constraints without 

"showing". In this study, we aim to investigate opportunities and limitations in the use 

of action-based embodied design in comparison with dynamic visualizations.    

THEORETICAL BACKGROUND  

In this paper, we exploit an idea of a body-artifacts dynamic functional system (Shvarts 

et al., 2021); this theoretical approach joins and creatively adapts cultural-historical 

ideas on higher psychological functions as systemic entities mediated by artifacts 

(Vygotsky, 1997) with radical embodied ideas on cognitive functions as emergent 

entities within complex dynamic systems of sensory-motor processes in brain and body 

(Chemero, 2009). The idea of functional dynamic systems comes from physiology and 

means spontaneous emergent unity of neuronal and peripheral elements (e.g., muscles) 

activated to fulfill a particular physiological function, such as breathing, or locomotion 

(Kazansky, 2015). Unlike physiological functions, higher psychological functions 

(including mathematical thinking) are mediated by cultural artifacts (Vygotsky, 1997). 

We understand this mediating functionality of the artifacts as a direct extension of a 

body-brain functional system (Shvarts et al., 2021). While such direct extension is easy 

to imagine for a fork or scissors when talking about visual or audial notations, we need 

to take into account the interconnection with the artifacts through the air. Yet, the 

specificity of eye movements when using mathematical visuals shows that our body is 

directly involved in operating with mathematical artifacts, just like a hand is involved 

in operating a fork.  

The fundamental mechanism of a functional system lies in continuously anticipating 

of the environment as it will appear when the body moves (feedforward) and adjusting 

actions based on feedback that may match or not match anticipation (Bernstein, 1967). 

Logically, attaching an artifact to the body transforms the horizon of anticipation and 

moves the border between an agent and an environment to the end of artifact (Shvarts 

et al., 2021). This way, we anticipate how a fork would behave when moving it. Let us 

now apply those ideas to trigonometry learning.  

Trigonometry knowledge requires interconnecting diverse inscriptions (artifacts) in 

one system so that they can be flexibly operated: triangle, unit circle, and graphs are in 

the list of visual inscriptions (Presmeg, 2008); radians and degrees presents two types 

of notations that incorporate different measurement actions; additionally, algebraic and 

verbal notations for trigonometric functions need to be acquired.  
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From the body-artifacts functional system perspective, we expect that the differences 

between dynamic visualization and an action-based embodied design approach are the 

following: When students manipulate a dynamic visualization, it extends the students' 

hand and the student might learn to anticipate its movement as a whole. Technological 

environments interconnect inscriptions, and students operate with their readily 

interconnected system. Think of pedalling on a bike: moving legs, we only anticipate 

the movements of the wheels but are ignorant of interconnections between the pedals, 

gears, and chain. In the case of embodied action-based design, the students need to 

build interconnection of different inscriptions themselves. The functionality of 

interconnection develops within their body.  

In this paper, we specifically focus on the sine function on a unit circle, the construction 

of the sine graph in connection with the unit circle, and finding algebraically expressed 

sine values on those visualizations As we aim to compare two design genres using the 

body-artifacts system's idea, our research question is: 

What are the differences and similarities in the appropriation of trigonometric 

inscriptions in the body-artifacts functional systems of the students who learned with 

action-based embodied designs or dynamic visualizations?  

METHODOLOGY 

We conducted a contrasting multiple-case study (Miles & Huberman, 1994) comparing 

the gained knowledge and reasoning of the students who passed through action-based 

embodied design (ED) and interactive dynamic visualization (DV).  

Learning materials  

In both conditions, there were four parts: (1) sine value on a unit circle; (2) relation 

between an arc of a unit circle and the x-coordinate of a sine graph; (3) relation between 

a sine value on a unit circle and y-coordinate on a sine graph; (4) constructing a sine 

graph by relating an arc and a sine value on the unit circle to x- and y-coordinates of 

the sine graph (see Figure 1). Each part consisted of (a) an interactive sensory-motor 

task, in which the students studied the relations between a point on a unit circle and a 

point on a sine graph; (b) a reflection task on writing down their observations and then 

choosing the correct explanations from the multiple-choice tasks, and (c) a 

quantification or algebraic task on estimating the argument and value of the sine 

function on the graph and unit circle. See details in Shvarts& van Helden (2021). 

Contrasting conditions: embodied design and interactive dynamic visualization 

Students from ED condition studied the target relations in the form of a motor problem 

as they manipulated two points: a point on the unit circle and a point on the Cartesian 

coordinates. Continuous feedback from the system informed them when the points 

were in the corresponding positions by changing the color from red to green. Students 

from DV condition moved only one point on the unit circle, while the point on the 

Cartesian coordinates was automatically moved in correspondence with the first point. 

In part 4 (shown in Figure 1), in both conditions a line was drawn. In ED condition it 
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would appear only in case of correct hand movements; in DV condition it would appear 

automatically when moving around the circle. The reflection and quantification and 

algebraic tasks were the same in both conditions. 

Figure 1.  Embodied design, (a) and (b); Dynamic visualization (c)   

 

Participants and research procedure 

16 students (14-15 years old) had no pre-knowledge in trigonometry beyond 

trigonometric relations in a right triangle. The procedure consisted of a pre-test, a 

learning stage, a post-test, and an interview. In the pre-test, we asked students to 

estimate the sine value on a unit circle and draw a sine graph. In the post-test, those 

tasks were repeated (with different values); additionally, we asked students to estimate 

the sine value on a sine graph. In the interview, explained how they solved the post-

test tasks.  When needed, we scaffolded them in solving post-test tasks, thus 

investigating their reasoning. All stages were done online.  

Analysis 

Firstly, we coded the success in passing tests and performance in each type of task 

during learning (see Table 1). According to the pre-test, the students in both groups 

had very limited prior knowledge; based on the post-test results, we distinguished four 

higher-performing students and four lower-performing students in each condition. 

Further, we compared the students who showed similar success according to the 

posttest across different conditions. We analyzed their performance in learning in 

relation to the learning outcome and multimodal reasoning in the interview. We 

focused on how they interconnect the sine graph, unit circle, and sine values and 

include them in their bodily functional systems.  

Results 

The higher-performing students in both conditions could successfully draw the sine 

graph, explain the construction of its period and amplitude almost without any 

guidance, and use the sine graph and unit circle for estimating sine values. 

Interestingly, in both conditions, higher-performing students used gestures while 

explaining their understanding of the sine graph construction. However, based on their 

different learning experiences, students used gestures differently. DV students gestured 

with one hand while verbally explaining the relation between UC and graph. Gestures 

along the UC were followed by gestures along the graph (i.e., Pier, Cindy) or vice versa 

(i.e., Pier, Pjotr, Steve). ED students gestured with two hands; they explained the 

relation between UC and graph by words and also gestured the movement of the 

corresponding points simultaneously (Lucy, Eva) or subsequently (Erika, Lukas). 
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Table 1:  Performance in tests and learning tasks. Black: full score; white: low score. 

  Pre-test Task Series per three types of the tasks Post-test 

  Sine 

 

Sine 

graph 

Sensory- 

Motor task 

Reflection task: 

written & multiple-choice 

Algebraic task/ 

Quantification 

Sine Sine  

graph 

ED:    1  2  3  4  1  2  3  4  1  2  3  4  1  2  3  4    

Lukas  0.3 1 3.5 3.5 3 3.5 3 0 3 2 3 2 3 1 1 1 0.8 1 1 3 

Eva  0 0 3.5 3.5 3 3.5 1.5 1.5 3 1 1 2 3 3 1 0.7 0.3 0.3 0.8 3.5 

Erika  0 0 3.5 3.5 3 3.5 3 2 3 3 1 2 3 0 1 1 1 1 0.9 3.5 

Lucy  0 0 3.5 3 3 3.5 2 3 3 3 2 3 3 2 1 1 0.8 0.3 0.8 4 

Janice  0 0 3.5 3.5 3 3.5 3 3 3 3 0 0 3 3 0.8 0 0.2 0 0.2 3.5 

Jessy 0 0 3 3 2 2.5 2 1 3 1 2 3 3 0 0 1 0.5 0.2 0 2 

Said  0 0 3 3.5 4 3.5 3 3 3 2 0 3 2 0 1 1 0.5 0.7 0 3 

Jade 0 0 3 3 4 3.5 3 1 3 0 1 0 0 0 0.5 1 0.8 - - - 

DV:                     

Steve 0 0 - - - - 3 3 3  2 3 3 3 0 1 1 0.7 0.3 1 4 

Cindy 0 0 - - - - 3 3 3 3 0 2 2 2 0.5 1 1 1 0.8 3 

Pjotr 0 0 - - - - 2 3 3 3 1 3 2 3 1 1 1 1 1 3.5 

Pier 0 0 - - - - 3 3 3 1 1 3 3 2 1 1 1 1 0.7 4 

Sem 0 1 - - - - 2 1.5 1 3 0 2 0 3 1 1 1 1 0.6 1 

Floor  0 0 - - - - 2 1 1 3 0 0 1 0 1 1 1 0.5 0.3 1 

Lola 0 0 - - - - 3 0 2 1 0 0 0 0 0.8 0 0.5 0 0.2 1 

Fema  0 0 - - - - 0 1.5 3 0 0 3 1 0 0 1 0.5 0.5 0 1 

Max: 1 4 4 4 4 4 3 3 3 3 3 3 3 3 1 1 1 1 1 4 

For example, Pier (DV) supported his verbal explanation with gestures: Uh... well I 

just knew that, if uh uh... at around half of pi [gesturing around top half UC], when the 

x-axis [gesturing x-axis], it would reach the top [gesturing], so that would be 1. 

 

Figure 2.  Pier (DV) at first gestured out the unit circle and then the sine graph.   

Lucy (ED) relied on the gestures to explain her drawing: Uh I drew it uh... regarding 

the points A and C that went up the circle like this [gesturing both points 

simultaneously for half circle/period]… 

 

Figure 3.  Lucy (ED) gestured the unit circle and sine graph simultaneously.  
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The post-test results of the lower-performing students are quite contrasting for DV 

and ED students (see Table 1): while ED students seem to perform better in drawing a 

sine graph, DV students tend to be better in the tasks of estimating sine value based on 

the unit circle and sine graph. Table 2 presents sine graphs drawn in the post-test by 

the lower-performing students in each group. Apart from Jade (who never reached the 

post-test), all ED students grasped that the graph starts from the origin and that it has 

equal waves up and down; Janice and Said grasped the amplitude correctly, and Janice 

also grasped the period. All DV students drew some kind of general waves, without 

specifically caring about amplitude and period.   

Table 2.  Sine graph in a posttest drawn by students from ED and DV groups  

Janise (ED) Jessy (ED) Said (ED) Jade (ED) 

  
 

 

Simon (DV) Floor (DV) Lola (DV) Fema (DV) 

    

In their explanations of graph construction, ED students referred to the unit circle. For 

example, although not fully correct, Said said: “I knew the circle passed about half arc 

at two”. The DV students lost the connection with the unit circle, e.g., Lola and Floor 

directly said that they tried to copy the line that appeared in dynamic visualization 

without intruding on how exactly it was constructed.  

Analysis of the learning process might shed light on these differences in post-test and 

interviews. Janice and Said were the most successful (among lower-performing 

students, see Table 1) in their written reflections on the relation between the point in 

the unit circle and the sine graph. These and other ED students refer to their actions 

and what they should do. For example, Said (ED) wrote: “I keep the points at the same 

height, next to each other”; “I care that two points would be at the same distance in 

comparison to each other from the cross point of the circle and the line”. DV students 

reported on the relation of the points detached from their experience or honestly stated 

that they could not grasp the relation (never appeared in ED). Lola (DV): “Point S is 

on the same height as point A”; Floor “no, I don't really have an explanation”; “point 

C equals the height of A, and point B equals the distance that A has traveled”. 

DISCUSSION AND CONCLUSIONS 

The differences between design types are firstly vivid for low-performing students. ED 

students had an opportunity to discover the connections between the visualizations in 

their sensory-motor actions. As we expected, those connections were part of their 

personal experience (as interviews evidenced) and formed their functional bodily 
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systems. In DV condition, the connection between inscriptions was initially embedded 

into the environment, and, as students' reflections evidenced, stayed outside of their 

body-artifacts systems: their post-test sketches and explanations did not expose any 

interconnection with unit circles. Sometimes, students reported difficulties in 

perceiving interconnection (as theories of enculturated perception would expect; 

Radford, 2010); in other cases, they did not follow their own descriptions while 

drawing. As interviews evidence, students tended to mimic the system, thus grasping 

an artifact (the sine graph) as ready-made, without understanding its construction.  

At the same time, the DV version appeared to be beneficial for quantifying sine values. 

ED students were drawn into exploring the interconnection between different visual 

relations and could not make the next step in distinguishing which distance needs to be 

estimated as an argument or value of the sine function. Contrary, DV students could 

step away and operate with UC and the sine graph as ready-made entities and build on 

them towards further algebraization. Overall, the choice between those two designs 

particularly matters for the students who might struggle with mathematics and might 

be determined by an educational aim: dynamic visualizations might be more helpful in 

teaching to use ready-made mathematical artifacts; embodied designs might help in 

questioning and re-discovering the construction of mathematics.  

At the same time, some students could understand the sine graph construction and learn 

to estimate sine values on the unit circle and sine graph independently from the design 

type. Theoretically, we could say that visual inscriptions and their interconnection were 

appropriated into the body-artifacts functional systems of higher-performing students 

and could take part in their further mathematical reasoning. Remarkably, the way of 

learning (ED or DV) fostered different involvement of the body in reasoning: ED 

students would directly interconnect two artifacts by their bodies (two hands gestures), 

while DV students would switch between operating with two artifacts through speech.   

For ED students, the interconnection of the unit circle and sine graph was established 

as new motor coordination of two hands (Abrahamson & Sánchez-García, 2016). How, 

theoretically, could this interconnection have been uncovered by the functional bodily 

systems of DV students who did not manipulate both inscriptions? We assume that DV 

students could establish this interconnection coordination between a hand and an eye: 

they needed to find a way to anticipate the dynamics on the sine graph while 

manipulating the point on the unit circle with their hand.  

Our study certainly has a limitation of a small sample and may only be considered as 

hypothesis generating. Yet, we think that such a comparison makes a step in specifying 

the potential of educational technology beyond interactive dynamic visualizations 

(Rolfes et al., 2020). Embodied action-based design (Abrahamson, 2014) might help 

in overcoming the limitations of the multiple representations software that require 

essential teaching effort to support conceptual understanding (Yerushalmy, 1991).  

Acknowledgments: We thank Rosa Alberto for the collaboration on the design 

sequence. The research was supported by the NWO-652.001.004 grant. 
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The number line (NL) is an important tool in mathematics education. Students with 

mathematical difficulties (MD) tend to have difficulties in NL tasks, as indicated by 

qualitative analyses of eye-tracking data. However, these qualitative analyses are 

laborious especially for large amounts of data. Our paper uses an innovate approach 

to facilitate the analysis of student strategies: AI is used to support the human 

researchers. We use student gaze heatmaps in combination with AI, in particular a 

clustering algorithm, to identify strategies of 140 fifth-grade students on the NL. 

Through AI-enhanced analysis, we found, first, a set of student NL strategies different 

from previous research. Second, we found that students with and without MD—at 

certain numbers—differed in strategy use, which was not found in this way before. 

INTRODUCTION 

Central to learning arithmetic in primary school is to develop a number sense, including 

an ordinal understanding of numbers (Fuson, 1988). To this end, the number line (NL), 

where numbers are represented in a linear arrangement, is often used (Diezmann & 

Lowrie, 2007). For being able to use the NL, it is necessary to understand and interpret 

numbers in relation to each other. It has been shown that students’ performance on NL 

tasks is closely related to their overall mathematical achievement (Schneider et al., 

2018), which highlights the significance of the NL for students’ number sense. 

Mathematical difficulties (MD) are an important topic in mathematics education 

(research). Students with MD typically show difficulties in learning basic arithmetic at 

the primary school level that can persist into secondary school (e.g., Moser Opitz et al., 

2017). Previous research has shown that students with MD tend to have difficulties in 

NL tasks, such as lower accuracy in locating numbers and lower flexibility in using 

strategies (e.g., van’t Noordende et al., 2016). Eye tracking (ET), in particular, the 

analysis of ET videos, has been shown to be for investigating student strategies on the 

NL (Simon & Schindler, 2022). However, since qualitative analyses of ET videos can 

be laborious, more efficient analysis methods are needed, especially for large amounts 

of data. Research has shown that Artificial Intelligence (AI) can help identifying 

student strategies from ET data, particularly from gaze heatmaps, which are visual 

representations displaying gaze distribution and intensity (Schindler et al., 2020, 2022).  

The aim of this paper is twofold: First, we investigate fifth-grade students’ strategy use 

in locating numbers on a NL. Second, we investigate differences of students with MD 

as compared to students without MD in their use of NL strategies. We use AI-enhanced 

analysis of gaze heatmaps, specifically a clustering algorithm (unsupervised machine 
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learning) to find strategies. This approach provides an independent perspective on the 

data. For a qualitative analysis the AI suggestions were interpreted by a human expert 

who can verify meaningful student strategies. For analyzing group differences in 

strategy use, we analyze how the strategies are represented in the cluster analysis. 

THEORETICAL BACKGROUND 

Number line 

The NL is a fundamental tool in teaching and learning mathematics, particularly at the 

primary school level. As it represents the basic idea of the number series, it is used to 

develop number sense and to deepen an ordinal understanding of numbers (Diezmann 

& Lowrie, 2007). In addition to the ordinal understanding of numbers, the relational 

interpretation of numbers is an important way to make numbers accessible on the NL. 

There are different types of NL, e.g., those that have only labeled beginning and 

endpoints (empty NL) and others that have more hatch marks, e.g., for ones or tenths 

represented on the NL (marked NL). NL have changeable elements (e.g., different 

ranges of number represented in NL) so that different interpretation of distances and 

hatch marks on the NL is required (Teppo & van den Heuvel-Panhuizen, 2014). Thus, 

students need to interpret numbers on the NL according to the given structuring 

features. The NL can be used in different ways and needs to be interpreted and filled 

with mathematical meaning, which can cause difficulties for students, especially if not 

all numbers on the NL are marked and labeled (Schulz & Wartha, 2021). Studies have 

found that school-age students’ performance with NL is correlated with overall 

mathematical achievement, indicating that students who struggle with mathematics 

may have difficulties using the NL as well (Schneider et al., 2018). 

Mathematical difficulties 

Not least since implementation of the inclusive school system, MD have been an 

important topic in practice and research. MD are characterized by difficulties in 

understanding basic arithmetic concepts (e.g., Moser Opitz et al., 2017), e.g., in basic 

quantity-number competencies such as developing basic ideas of numbers and 

operations. These difficulties typically become apparent at the beginning of primary 

school, can persist into secondary school level (e.g., Moser Opitz et al., 2017), and can 

lead to difficulties even beyond school years, e.g., in job contexts. To support students 

with MD adequately, it is necessary to identify students’ individual strengths and 

difficulties in mathematics. Students with MD tend to have difficulties, among others, 

in NL tasks. Previous studies have shown that students with MD tend to be less accurate 

in locating numbers on the NL and tend to have difficulties in the use of adequate 

strategies as compared to students without MD (e.g., van’t Noordende et al., 2016). 

Eye tracking and the use of AI to support analysis of eye-tracking data  

ET, the recording of eye movements (Holmqvist et al., 2011), has been used in several 

studies in mathematics education research (Strohmaier et al., 2020). Analyzing ET data 

has been shown to provide information about student strategies in different 
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mathematical tasks, and ET has also been shown to be useful in analyzing students’ 

strategies in NL tasks (e.g., van’t Noordende et al., 2016). In a previous ET study using 

marked NL tasks similar to the present study, ET videos (i.e., videos where gazes are 

visualized as a semi-transparent dot) were analyzed qualitatively (Simon & Schindler, 

2022) and it was found that students use counting or direct strategies. However, 

qualitative analysis of such gaze patterns is challenging and time-consuming, and 

requires advanced domain knowledge. To reduce the effort of qualitative analysis, we 

use AI, specifically a clustering algorithm based on gaze heatmaps as input. Previous 

research has already shown how differences in strategy use for enumeration tasks 

between different groups of students can be analyzed using cluster analysis (Schindler 

et al., 2022). It showed how AI can work together with human researchers as an AI 

colleague making suggestions about ways to categorize the data based on similarities 

in appearance, while the human experts then interpret and verify these suggestions. 

We ask the following research questions: (1) What strategies for locating numbers on 

a marked NL do fifth grade students use? (2) Do students with MD differ from students 

without MD in their use of these strategies? 

THIS STUDY 

Participants. The study took place at a German comprehensive school at the beginning 

of fifth grade. All students participated in a standardized arithmetic test, the HRT 

(Haffner et al., 2005), to diagnose MD. Students whose performance shows a PR≤10 

are classified as having MD (with MD). Students whose performance shows a PR>25 

are classified as not having MD (without MD). Students with a PR of 11-24 are 

considered “at risk” for MD. Based on the design of the NL and the distance between 

hatch marks, we chose to exclude students with ET data accuracy ≥2° from further 

analysis, so N=140 students (mean age: 10.6 years, SD: 0.6 years) were considered. 

Tasks, procedure, and eye tracker. We used a marked NL with two different ranges of 

numbers. For position-to-number-tasks (Fig. 1), where students are shown a position 

on the NL and asked for the corresponding number, we used the numbers 40, 55, and 

70 on NL 0–100, and the numbers 250, 650, and 800 on NL 0–1000. Tasks were 

presented on a computer screen in the same randomized order for every student. 

   

Figure 1. Examples of NL tasks (number 40, left; number 250, right). 

Students were tested in a quiet room at school. Each student sat about 60 cm in front 

of a 24’’ full HD monitor. Students received instructions through a headset, but also 

had the opportunity to ask questions if they did not understand instructions. Before the 

above-mentioned tasks, the students were shown an instruction video and a trial task 

to ensure they understood the instructions. Students were asked to type the correct 

number on a number pad and, in between the tasks, to fixate a star in the upper left 

corner of the screen. The students received no feedback whether their answers were 

correct. To record students’ gazes, we used the remote eye tracker Tobii Pro X3-120 
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(infrared, binocular, 120 Hz). The eye tracker was calibrated for each student before 

the work on the tasks. The average accuracy of the ET data was 0.90° (SD = 0.31°). 

Heatmaps and clustering. In general, student gaze patterns may differ in several ways, 

e.g., in terms of locations, durations, and the order of gazes on the NL. For the analysis 

of student strategies, we chose heatmaps as input (Holmqvist et al., 2011). Heatmaps 

are visual representations that display the spatial distribution of gazes for each task. 

They represent the duration of gazes on certain areas in relation to the total duration of 

the task but no sequential information. In our study, heatmaps were generated based 

on raw data provided by the eye tracker and the noise was technically reduced with a 

method presented by Asghari et al. (2023) to facilitate clustering of heatmaps.  

In this paper, we use ET in combination with AI to investigate students’ strategies in 

NL tasks (similar to Schindler et al., 2020, 2022). In particular, we used unsupervised 

machine learning which is a set of methods that tries to “find ‘interesting patterns’ in 

the data” (Murphy, 2012, p. 2). In particular, we used a clustering algorithm, which 

separates the data (here: gaze heatmaps) into a number of meaningful clusters. As 

clustering algorithm, we used Self-Organizing Maps (SOMs, Kohonen, 2001) (for a 

detailed description, see Schindler et al., 2020, 2022). Briefly stated: In the clustering 

process, each heatmap is assigned together with similar heatmaps to a cluster. Since 

the number of clusters is predefined, clusters can remain effectively empty. Given that 

the heatmaps in each cluster are similar in appearance, we assume that the different 

clusters represent specific strategies. We computed average heatmaps as prototypical 

examples of strategies for each cluster. As similarity metric, we use the cosine distance, 

which measures the similarity between the direction of two vectors, regardless of their 

magnitude. This metric is used, e.g., in image processing to measure the similarity 

between two documents, or two images.  

Qualitative analysis of clusters. Using SOMs, the gaze heatmaps were separated into 

a maximum of twelve clusters for each of the six tasks (“AI-colleague”). For each of 

the twelve clusters per task, we then interpreted the average heatmaps (“human 

expert”) (Fig. 2). We assigned strategies to the average heatmaps based on a category 

system inductively developed in a previous study (Simon & Schindler, 2022) with six 

different strategies for locating numbers on a marked NL. To rule out that students just 

guessed the answers without considering the given information seriously, only 

heatmaps of correctly solved tasks were considered for analyses. This resulted in 

slightly different numbers of considered heatmaps for each task. For clustering, we 

used heatmaps of all fifth-graders to have the largest possible data set for identifying 

NL strategies (RQ 1). The average heatmaps of clusters with at least five heatmaps 

were then assigned a strategy. Clusters with fewer heatmaps were not considered, since 

a meaningful interpretation was not possible due to the possibly low similarity of 

individual heatmaps within these clusters (clusters not shown in Fig. 2). For statistical 

analyses of possible differences in strategy use between students with and without MD 

(RQ 2), students “at risk” for MD were not considered, since they cannot be assigned 

either of the two groups. 
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Figure 2. Clusters for number 40 and strategy assignment to average heatmaps  

(¬MD represents students without MD). 

Statistical analysis. To investigate differences in strategy use between students with 

and without MD, we conducted chi-squared tests using SPSS 29. For chi-squared tests 

that showed significant group differences, we calculated cell tests to examine group 

differences in more detail. Effect sizes were calculated using Cramérs V. 

RESULTS 

To answer research question 1 (What strategies for locating numbers on a marked NL 

do fifth grade students use), we investigated student strategies based on the clustering 

of heatmaps. We found four strategies that reflected the orientation of the students on 

the NL (examples of average heatmaps for strategies shown in Fig. 3). 

 

Figure 3. Examples of the strategies visualized by average heatmaps. 

We found that the number of strategies used for each task varied in the following way: 

(I) For 250 on the NL, we found strategies 1 and 2. (II) For 40, 55, and 650 on the NL, 

we observed strategies 1, 2, and 3. (III) For 70 and 800 on the NL, we found strategies 

1, 2, 3, and 4 that were used by the students. Based to these results, tasks with the same 

number of strategies used by the students were combined for the statistical analyses.  
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To answer research question 2 (Do students with MD differ from students without MD 

in their use of these strategies?), chi-squared tests were conducted. There was no 

difference in strategy use between students with and without MD for (I) number 250 

(χ² (1) = .03, p = .864), and also for (II) numbers 40, 55, and 650 (χ² (2) = .49, p = .785). 

Chi-squared test for (III) numbers 70, and 800 revealed significant differences in the 

use of strategies between students with and without MD, with medium effect size: χ² 

(3) = 14.70, p = .004, V = .28. In detail, cell tests revealed that students with MD used 

orientation from the beginning (i.e., strategy 2) significantly more often (small effect 

size) than students without MD (χ² (1) = 5.89, p = .015, V = .18), and that students 

without MD used orientation from the endpoint (i.e., strategy 4) significantly more 

often (small effect size) than students with MD (χ² (1) = 11.20, p = .003, V = .24) 

(Bonferroni-Holm adjusted p-values). 

 

Figure 4. Students’ strategy use for conditions (I), (II), and (III) (significant 

differences are marked with *). 

DISCUSSION 

The aim of this paper was to investigate (1) fifth-grade students’ strategy use in locating 

numbers on a marked NL and (2) differences of students with MD as compared to 

students without MD in their use of these strategies. To pursue this aim, we analyzed 

gaze heatmaps with the help of AI, in particular a clustering algorithm. We investigated 

students’ strategy use based on average heatmaps representing different NL strategies. 

(1) We found a set of NL strategies different from previous findings: In previous 

studies, strategies on a marked NL were mainly classified based on whether the 

strategies involved counting or rather direct attention to certain points (Simon & 

Schindler, 2022). Through our AI-enhanced analysis the strategies were clustered 

rather by the areas of the NL that were attended to most, which relates to the reference 

points the students used for orientation. Although previous research has looked into 

reference points in students’ strategies also, in this study the use of reference points 

was emphasized much more through the AI-enhanced heatmap analysis. This might be 

due to the fact that heatmaps represent the gaze distribution and intensity, but no 

temporal information about students’ gazes, i.e., about their order.  Looking at the set 

of four strategies found through the help of AI, it is interesting that they were not only 
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meaningful from a mathematics education perspective, but also categorized along cases 

of reference points as known from previous research: direct orientation, or orientation 

from the beginning, midpoint, or endpoint (Simon & Schindler, 2022). Looking into 

the use of strategies found by help of AI, it is also meaningful that for numbers at the 

beginning of the NL (here: 250), only two strategies were found (i.e., direct orientation 

and orientation from the beginning), while for numbers at the end of the NL (e.g., 800), 

also the midpoint and endpoint of the NL were used for orientation. This shows that 

the AI-enhanced research design, where AI provided clusters that were interpreted by 

a human expert, provided insightful results that were meaningful from a mathematics 

education perspective and contributed to the state of research. 

(2) We found significant differences in strategy use between students with and without 

MD—even for the small number of different NL strategies. These significant 

differences occurred only for specific numbers on the NL: for numbers near the 

endpoint of the NL, i.e., 70 on NL 0-100, and 800 on NL 0-1000. Students with MD, 

in order to locate numbers near the endpoint of the NL, were more likely to be oriented 

towards the beginning of the NL, and less likely to be oriented towards the endpoint of 

NL as compared to students without MD. This is in line with previous findings on the 

difference in strategy use in empty NL tasks between students with MD and without 

MD (e.g., van’t Noordende et al., 2016). New to our findings on the orientation of 

students on a marked NL is that especially the orientation towards the endpoint of the 

NL of students without MD appears to make the difference to students with MD, who 

less likely use the end of the NL for orientation purposes. 

In addition to these empirical findings, our results indicate that the use of AI for 

providing an independent view on ET data by making category suggestions is a 

promising tool for supporting human researchers in mathematics education in the 

analysis of gaze heatmaps.  
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Novice mathematics teachers often find the initial years of classroom teaching 

demanding. In this paper, we follow a novice teacher, Laura, the first 18 months of her 

teaching career and investigate the development of her professional identities from a 

participatory perspective. Laura’s case is interesting as her identities change 

dramatically, due to her participation in an induction programme and to a change of 

school. Our analysis shows that she loses her professional balance and almost leaves 

the profession during the first year, and that she regains her professional confidence 

and even coaches her colleagues on reform-oriented teaching in the second year. We 

argue that our participatory approach helps explain Laura’s identity trajectory.  

INTRODUCTION 

Professional identity is a significant field in research on and with teachers (Darragh, 

2016; Lutovac & Kaasila, 2018). In comparison with for instance research on teachers’ 

knowledge and beliefs, identity studies tend to adopt a more participatory stance that 

moves beyond individual cognition as the main focus of attention (Skott, 2022). Like 

other participatory fields, it “seek[s] to place thinking agents in their larger social, 

physical, cultural, and historical contexts” (Russ et al., 2016, p. 403). It follows, that 

identities are seen as multiple, fluctuating and contextually dependent. 

Our study is in line with this approach. We followed a Danish lower secondary teacher, 

Laura, for the first 18 months of her career. She got her first job at a municipal school, 

Southbank, at which she was challenged by resistance from students and parents, by 

lack of leadership support, and by limited collegial collaboration. After six months, 

Laura became involved in an induction programme in which she worked with two other 

novices, their school mentors, and three teacher educators (including the first author). 

At the end of the year, she got a job at nearby a private school, Blackheath. Our aim is 

to describe and explain Laura’s identity trajectory over these 18 months. 

Defining Laura’s identities as her professional experiences of being, belonging and 

becoming and using a framework called Patterns of Participation (PoP), we address the 

questions of (1) how Laura’s identities change over the first 1½ years of her career and 

(2) what seems to promote these changes.  

LITERATURE: IDENTITY – EMOTION AND RETENTION/ATTRITION 

Much of the scholarship on professional identities focus on novice teachers’ challenges 

with their new profession (e.g. Jong, 2016; Skott, 2019). Pillen et al. (2013) point to 

how conflicts between professional requirements and “what they personally desire or 
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experience as good” may become emotional challenges to their professional learning 

and reciprocally related to their identity development (p. 660-661). Based on 

qualitative interviews, Pillen et al. found three main themes in the tensions the 

participants experienced, namely those between  (1) being a student and a teacher, (2) 

desired and actual support to students, and (3) teaching-learning processes favoured by 

the participants themselves and by their mentors. Participants learnt from the tensions, 

but often reacted with “helplessness, frustration, or anger” (p. 674).      

Another but related theme in the literature links identity to teachers’ decision to stay in 

the profession or not (e.g. Cochran-Smith et al., 2012; Hong, 2010). This question of 

teacher retention and attrition “refers to the need to prevent good teachers from leaving 

the job for the wrong reasons” (Kelchtermans, 2017, p. 965, emphasis in original). 

Arguing that teaching depends on contextual conditions, Cochran-Smith et al. (2012) 

describe possible connections between teacher quality and teachers’ propensity to stay 

or leave. As aspects of teacher quality, they include the character of the classroom 

environment, “the scope, sequence, and substance of what is taught” (p. 854), and “the 

richness and cognitive complexity” of students’ learning opportunities (p. 856). Based 

on a multiple case study, they found five constellations of practice and career decisions, 

for instance one that combines high teacher quality and a decision to stay and another 

in which weak teachers move to a new school.  

As we shall see, emotional tensions and questions of quality instruction are prominent 

aspects of Laura’s professional experiences at the beginning of her career. We interpret 

these experiences with reference to social and cultural perspectives on the profession 

not unlike the ones mentioned by Cochran-Smith et al. However, we shift the focus 

from teacher quality to teaching quality by means of the PoP framework.  

THE POP FRAMEWORK 

Like other participatory fields, most identity research takes the individual-in-social-

practice as its unit of analysis. There are multiple interpretations of what this means in 

studies of identity. However, Skott (2022) has suggested that there is a core to the 

identity construct as used in field, an identity triad consisting of structure, situatedness 

and agency, which may be used to distinguish between different approaches to 

Individualities in Context (Figure1).  

In the identity triad, structure concerns issues that are external to the current situation 

(e.g. public discourses on education; administrative/political decisions). Approaches 

that foreground situatedness emphasize what and how professional identities emerge 

as teachers participate in local practices at a school or in a professional development 

programme. Identity studies that emphasise agency, acknowledge that structures and 

local situations orient teachers’ actions, but “do so in open-ended ways, leaving space 

for professional decision-making and agency” (Skott, 2019, p. 470).  
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PoP is located near the link between agency and situatedness. It focuses on the 

emergence of identities in the locally social (e.g. Skott, 2019) by drawing on symbolic 

interactionism (SI) (e.g. Blumer, 1969) and social practice theory (e.g. Holland et al., 

1998; Lave, 2019; Wenger, 1998). Relevant constructs from SI include those of 

interaction and self. As people interact, they see themselves from other’s perspectives, 

including the perspectives of generalised others such as communities and discourses.  

Key constructs from social practice theory include those of practice and figured worlds 

(FWs). An FW is a social and cultural “realm of interpretation, in which particular 

characters and actors are recognized, significance is assigned to certain acts, and 

particular outcomes are valued over others” (Holland et al., p. 52). PoP is not oblivious 

to the significance of structural issues and argues that they may function as FWs that 

play the role of generalized others in interaction. In the process, teachers’ professional 

experiences of being, becoming and 

belonging may change. In identity 

research, PoP is to shed light on how and 

why this is so.   

METHODOLOGICAL APPROACH  

We selected Laura for the study because 

of marked changes in her professional 

identities during and after her teacher 

education programme. She enrolled in 

the programme almost by accident and 

chose mathematics because she did not 

want to do Danish or in English, the only 

alternatives. However, she developed an interest in mathematics in the course of the 

programme and gained confidence in teaching it.  

Danish teacher education for primary and lower secondary school is a 4-year 

Bachelor’s programme. Prospective teachers specialize in three subjects, one of them 

being Danish, English or mathematics. The mathematical specialization includes the 

subject itself and the related educational issues, and it models teaching-learning 

processes (e.g. inquiry) that teachers are expected to initiate upon graduation.  

In Denmark, no systematic support is provided to new teachers. Therefore, the first 

author and her colleagues designed a one-year induction programme for mathematics 

teachers inspired by lesson study (cf. C. K. Skott et al., 2021). In 2019, Laura 

participated in the programme together with two other females, all of whom graduated 

recently from prestigious Danish colleges. They participated in:  

1) A pre-interview (1 hour) (referred to as [1]) that focused on their challenges as 

novice teachers; they emphasised inquiry-based teaching as a significant challenge;  

2) Two individual lesson studies, in which each novice teacher planned and conducted 

inquiry-based lessons with her mentor and the teacher educators;  

Figure 4. The Identity Triad, from Skott (2022) 

Agency 

Situatedness 

Structure 

Individualities 

in Context 
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3) One joint lesson study in which the three teachers, the mentors and the teacher 

educators jointly planned a lesson on What natural numbers can be written as a sum 

of consecutive natural numbers? The teachers took turns teaching the lesson, observed 

by her mentor and the educators. Finally, all participants met to revise the plan ([2]).  

Our data material consists of video- and audio-recordings of the above activities. In 

addition, we conducted two individual interviews with Laura ([3] and [4] respectively), 

one in 2019 after the pre-interview and one in 2022. These interviews focused on her 

experiences from the teacher education programme and from working at Southbank 

and Blackheath.   

We conducted the analysis in two steps. In the first step, inspired by grounded theory 

(Charmaz, 2014), we empirically inferred the figured worlds and practices that played 

prominent roles for Laura’s experiences. We constructed initial codes, for instance 

‘Using tools to regulate student behaviour’. Comparing our initial codes, we 

constructed focused codes, such as ‘Managing classrooms by regulating behaviour’, 

which we assembled into different figured worlds, e.g. one of ‘Teaching mathematics 

as regulating student behaviour’, which was prominent at Southbank. Similarly, we 

constructed a world of reform-oriented teaching, which encompassed the practices, 

characters and valued outcomes related to inquiry-based teaching that Laura 

encountered at college.  

In the second step, we used the figured worlds and practices resulting from the first 

step as an analytical lens to explore Laura’s initial experiences and identity formation. 

We did so for two separate phases, her first year at Southbank, which we call A lonely 

struggle – losing professional balance, and her the second year at Blackheath, called 

Regaining confidence – merging structure and inquiries.    

RESULTS AND ANALYSIS 

A lonely struggle – losing professional balance 

Although educated as a lower secondary teacher, Laura taught mathematics in grade 3 

at Southbank. Often, Danish students have the same mathematics teacher in grades 1 

to 3, but Laura was the fourth mathematics teacher of her class. She experienced the 

classroom atmosphere as harsh and referred to the students’ attitude to the teachers as 

a matter of “seeing who we [the students] can kick out the fastest” [3]. Initially, Laura 

drew on reform-oriented ideas from her pre-service education, but she experienced 

resistance from the students: “I have many good ideas on paper, but in the classroom 

… they turn out to be really bad” [1]. Gradually, she yielded and entered the classroom 

with a plan A, consisting of investigative tasks, and a plan B, based on textbook 

exercises. However, “the more playful approach to mathematics [plan A] disappeared 

rather quickly” [3]. Increasingly, Laura distanced herself from the reform-world and 

criticized it for not providing sufficient structure for the tasks and students’ activities.  

Laura also experienced her interactions with the parents as challenging. They refused 

to recognize problems with their children and accused her of being too inexperienced. 
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At one point, she says, “they even reported me to the police” [4]. However, Laura’s 

older colleagues had similar problems with the class and together they asked the 

leadership for help. For a period, they even refused to teach the class without further 

support, but the leadership ignored them and did nothing to address the problems.  

Laura turned to her colleagues. They tried to help, but did so by suggesting how to 

structure the classroom by applying regulating tools, which kept the students calmer, 

but positioned them as more passive learners. In other terms, the suggestions helped 

Laura solve disciplinary problems and make the students stay on task, but did so by 

drawing on a world of regulating student behaviour that dominated Southbank. 

However, she lost her passion for teaching and experienced not being good at the job 

or becoming better. She began to blame herself and asked “is it because I am not able 

to do it at all [teach mathematics]?” [4]. She expected her first year as a new teacher to 

be hard, but realised that for her “it has been quite a bit harder than the norm … there 

were months, when I cried […] every day” [4]. The result of it all was, that Laura 

experienced not being valued as a teacher at Southbank and not belonging to a 

community of colleagues, as the relations were only professional.  

In relation to her professional belonging, Laura’s participation in the induction 

programme became important. She found that she was not the only one, who struggled 

with disciplinary problems, who had given up on inquiry-based teaching and who felt 

left to fend for herself. She experienced belonging to this group of novice teachers. 

At the end of the year, Laura turned down job interviews, because she was afraid to 

experience yet another set of failures under new circumstances, which would force her 

to accept that she was the failure. However, she, somewhat reluctantly, accepted a job 

at Blackheath Private School, primarily due to her relationship with one of the teachers.  

Regaining confidence – merging structure and inquiries 

Laura’s professional experiences, including those related to mathematics, change 

dramatically in her second year of teaching. After moving to Blackheath, she teaches 

grades 6-9, the levels she was educated for, and with whom she is more comfortable: 

“I don’t want to comfort 3rd grade students, when they cry” [4]. There are fewer and 

less severe conflicts with the students, and the parents and the leadership are 

supportive. In contrast to her old school, “student learning is a joint venture between 

three parties: the teachers, the parents and the leadership” [4]. Finally, she now works 

with colleagues, who are closer to her own age, who are less focused on regulating 

student behaviour, and with whom she develops personal as well as professional 

relationships. Laura positions herself with confidence among them, and her ambition 

is to promote inquiry-based teaching: “This is my personal aim, to show that inquiry-

based mathematics teaching is manageable” [2]. To pursue this aim, she two years later 

applies for and is appointed to the formal position of coach in mathematics.  

It is remarkable how Laura regains her confidence with inquiry-based teaching at 

Blackheath. Her general experience of being a valued colleague and of belonging at 

the school is certainly conducive to that. The subject-specific elements are a result of 
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merging the world of regulation from Southbank with that of the reform-world, leading 

Laura to interpret the term of inquiry-based teaching differently and to reconsider the 

need to structure teaching-learning processes, also when students are involved in 

mathematical investigations. Both of these experiences relate to her involvement in the 

induction programme. Already in the individual lesson study at Southbank, Laura 

questions her prior understandings and says that she had “a wrong image of inquiry-

based teaching. I thought it should be huge, wild … that we had to explore [real-world] 

things without using real maths” [2]. In contrast, she now says that it does not have to 

be investigations of real-world phenomena, it can also be pure mathematical 

investigations, but that the focus must be on the mathematics. Second, when planning 

the joint lesson study on the problem mentioned previously, Laura repeatedly asked 

for suggestions on how to structure the students’ work “it’s difficult to introduce the 

problem so I don’t give them too much but still give them something” [2]. She panics 

before teaching the lesson in grade 6 at Blackheath, worrying that “it is going to be like 

before … chaos where nobody understands the objective and just does something” [2]. 

However, she succeeds in structuring students’ work and her interactions with them, 

by using, among other things, two suggestions from the mentors: introduce the problem 

as a claim that the students shall confirm or disprove and visually represent and discuss 

students’ ideas by using a chalk-drawn number board on the floor. In the programme, 

then, and at Blackheath, Laura develops a strong sense of professional belonging.  

DISCUSSION AND CONCLUDING REMARKS  

In this paper, we show how Laura’s identities develop over the first 18 months of her 

career from struggling alone and losing her professional balance at Southbank to 

regaining professional confidence by merging structures and inquiries at Blackheath. 

We suggest that participation in the induction programme and her shift to Blackheath, 

which offered her a different context for her professional life, fuelled the changes.    

Laura’s first year in teaching turned out to be highly emotional, and her mainly 

negative feelings of helplessness and frustration at Southbank almost led her to leave 

the profession. These feelings were in particular fuelled by a conflict that resembles 

the one identified by Pillen et al. (2013) between teaching-learning processes favoured 

by herself and those promoted by her mentor and colleagues, the latter also supported 

by the students, their parents and the leadership. Having left her pre-service education, 

Laura felt uprooted and struggled alone for her reform-oriented ideas. In terms of 

identity, she lost her professional balance, as she experienced not being valued, not 

belonging to a professional community, and becoming worse, not better, at her job.  

Laura, however, did not leave teaching, and in terms of the constellations of practice 

and career-decision that Cochran-Smith et al. (2012) found, she – at this stage – 

combined weak teaching with moving on. At Blackheath, Laura regained her 

professional confidence, and 18 months into her career, her teaching may be 

characterised as substantial in contents and rich in learning opportunities, that is, as 

relatively strong in Cochran-Smith et al.’s terms. She merged the world of regulation 
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from Southbank with that of the reform-world, which enabled her to structure the 

students’ inquiry activities and interact differently with them. These developments 

were fuelled by the induction programme, and the programme as well as the new school 

constituted significant contexts for her experiences of becoming a valued colleague 

and of her professional belonging. 

Laura appears, then, to be one of the teachers, who should be prevented “from leaving 

the job for wrong reasons” (Kelchtermans, 2017, p. 965, emphasis in original). The 

reasons that almost made her leave were contextual and highly dependent on 

emotional, social and cultural aspects of schools and classrooms, as were the ones that 

later made her stay. For instance, the Southbank students’ harsh attitude to their 

teachers influenced Laura’s contributions to classroom interactions and thus to the 

quality of the teaching-learning processes. Therefore, we suggest shifting the emphasis 

from teacher quality (cf. Cochran-Smith et al., 2012) to teaching quality as co-

constituted by classroom interactions and by cultures at the school and beyond, if we 

are to understand identity as it relates to teachers decision to stay or leave. We argue 

that an experiential approach to identity allows us to develop such understandings.  
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DIDACTIC SUITABILITY CRITERIA IN TEACHERS’ 

PRACTICAL ARGUMENTATION IN THE PHASE OF DESIGN OF 

A LESSON STUDY CYCLE ABOUT FUNCTIONS 

Telesforo Sol, Alicia Sánchez, Adriana Breda and Vicenç Font 

University of Barcelona, Spain. 

In this study eight teachers, who know the Didactic Suitability Criteria, participate in 

a cycle of Lesson Study and the aim is to identify the use of Didactic Suitability criteria 

in the practical argumentation of teachers during the design of a didactic unit of 

functions for students between 15 and 16 years old in compulsory education in Spain. 

The model proposed in Pragma-dialectics and the Toulmin's model are used to identify 

the practical arguments. Some uses of the criteria in the teachers’ argumentation in 

the design are shown, in particular the epistemic and cognitive criteria. 

INTRODUCTION 

Some research on reflection conducted in Lesson Study (LS) experiences has identified 

the following phenomenon: when teachers reflect on their practice, they agree on 

criteria to guide it, which can be reinterpreted as Didactic Suitability Criteria (DSC), 

even when teachers are unaware of this theoretical construct (Hummes, 2022); but 

there is little research in which LS participants are previously aware of this construct. 

In the framework of a LS experience in which participants know and use the DSC 

construct, our research question is the following: how do teachers use DSC in their 

argumentation to justify the group design of a class on functions? In accordance with 

this question, the objective of this paper is to analyze the use of DSC in the practical 

argumentation that supports the agreements that emerge in the design phase of a LS 

cycle on the topic of functions. To answer this question, we first identify episodes of 

practical argumentation (Lewiński, 2018) in the design of the functions lesson, and 

then, we analyze them using the ideal model considered in Pragma-dialectics (Eemeren 

& Grootendorst, 2003) and the Toulmin's (2003) model as a theoretical reference. 

It is observed that some teachers go beyond using the criteria as a guideline for the 

design of a class, showing a broader reflection. Also, the epistemic and cognitive 

criteria are the most present criteria in the teachers' argumentation. 

THEORICAL FRAMEWORK 

Argumentation 

We analyzed the argumentation of this study from the pragma–dialectical perspective 

(Eemeren & Grootendorst, 2003). Since pragma–dialectic proposes an ideal model for 

critical discussion, four stages can occur (or not) in this technique, namely: 1. 

Confrontation stage: Establishes the difference of opinion. In a non-mixed difference 

of opinion, this simply means that one party’s point of view is not immediately 

accepted by the other, but instead is met with doubt or criticism. In a mixed difference 
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of opinion, the other party advances its opposing point of view; 2. Opening stage: 

Refers to the starting points of the discussion and assigns the roles of protagonist and 

antagonist (in a mixed difference of opinion there are two protagonists and two 

antagonists). Moreover, the rules of the debate and the starting points are agreed upon; 

3. Argumentation stage: The protagonist defends his/her point of view against the 

antagonist’s persistent criticism, advancing arguments to meet the antagonist’s 

objections or to remove the antagonist’s doubts; 4. Concluding stage: The parties 

evaluate the extent to which the resolution of the difference of opinion is reached and 

in favor of whom. If the protagonist withdraws the point of view, the difference of 

opinion is resolved in favor of the antagonist; if the antagonist abandons his/her doubts, 

it is resolved in favor of the protagonist. 

For the argumentation phase, since we are interested in knowing the use of DSC to 

justify actions that guide teaching practice, we consider practical argumentation, 

“argumentation aimed at deciding on a course of action” (Lewiński, 2018, p. 219). 

Gómez (2017) understands practical argumentation as that happening in social contexts 

that is oriented towards choosing an action to solve a practical problem. Practical 

argumentation answers questions such as ‘what should a do in a situation x?’, where a 

is the name or the description of an agent and x is the description of a problem situation. 

The argumentative model of Toulmin (2003) works this way: from some evidence 

(data), a claim is formulated. A warrant connects data with the claim, which is based 

on a theoretical, practical or experimental foundation: the backing. The modal 

qualifiers (surely, definitely, etc.) indicate how the claim is interpreted as true, possible, 

or probable. Its possible rebuttals or objections are also considered. 

Didactic suitability 

The didactic suitability of a teaching and learning process is defined as the degree to 

which such process (or a part of it) meets certain characteristics that allow it to be 

qualified as optimal or adequate to reach the adaptation between the personal meanings 

achieved by the students (learning) and the intended or implemented institutional 

meanings (teaching), considering the circumstances and available resources 

(environment). A teaching and learning process will achieve a high degree of didactic 

suitability if it is capable of articulating, in a coherent and systematic way, the 

following six partial criteria of didactic suitability, referring to each of the six 

dimensions involved in the teaching and learning process (Breda, et al., 2017): a) 

Epistemic criterion. To assess whether the mathematics that is taught is ‘good 

mathematics’; b) Cognitive criterion. To assess, before starting the instructional 

process, whether what is intended to be taught is at a reasonable distance from what 

the students know; and after the process, what they have learned; c) Interactional 

criterion. To assess whether the interaction solves students’ doubts and difficulties; d) 

Mediational criterion. To assess the adequacy of resources and time used in the 

instructional process; e) Affective criterion. To assess the students’ involvement 

(interest, motivation) in the instructional process; f) Ecological criterion. To assess the 
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adaptation of the instructional process to the educational project of the school, the 

curricular guidelines, the conditions of the social and professional environment, etc. 

Each didactic suitability criterion (DSC) has its respective components, and their utility 

requires defining a set of observable indicators that allow assessing the degree of 

suitability of each dimension of the teaching and learning process. Error! Reference s

ource not found. presents the components of each DSC, based on Breda et al. (2017). 

Suitability criterion Components 

Epistemic 
Errors; Ambiguities; Richness of processes; Representativeness of the 

mathematical object complexity. 

Cognitive 
Prior knowledge; Curricular adaptation to individual differences; 

Learning; High cognitive demand. 

Interactional 
Teacher-student interaction; Student interaction; Autonomy; 

Formative assessment. 

Mediational 
Material resources; Number of students, class schedule, and classroom 

conditions; Time. 

Affective Interests and needs; Attitudes; Emotions. 

Ecological 
Curriculum adaptation; Intra and interdisciplinary connections; Social 

and labour usefulness; Didactic innovation. 

Table 2: Didactic suitability criteria and components. 

Breda et al. (2017) present rubrics with the components and indicators of each criterion. 

For instance, Table 2 is the rubric for the epistemic suitability. 

Components Indicators 

Errors Practices that are mathematically incorrect are not observed. 

Ambiguities Ambiguities that could confuse students are not observed; 

definitions and procedures are clearly expressed; explanations, 

evidence and demonstrations are suitable for the target level of 

education, the use of metaphors is controlled, etc. 

Richness of 

processes 

Relevant processes in mathematical activity (modelling, 

argumentation, problem solving, connections...) are considered in the 

sequence of tasks. 

Representativeness 

of the complexity 

of the 

mathematical 

object to be taught 

The partial meanings (constituted of definitions, properties, 

procedures, etc.) are representative samples of the complexity of the 

mathematical notion to be taught.  

For one or more partial meanings, a representative sample of 

problems is provided and a representative sample of different modes 

of expression (verbal, graphic, …) is provided. 

Table 3: Components and indicators of epistemic suitability. 
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The DSC and their components are based on the principles and standards of the 

National Council of Teachers of Mathematics, trends in Mathematics Education and 

research in this area (Breda et al., 2017). Therefore, they constitute a consensual tool, 

which is used to structure teachers' reflection in teacher training programs in Spain, 

Chile, Brazil, Panama, Mexico, Argentina, and Ecuador (e.g. Hummes, 2022).  

Lesson Study (LS) 

The LS is the collaborative and detailed design of a lesson, its implementation and 

direct observation in the classroom, and its joint analysis after the implementation 

(Fernández & Yoshida, 2004). A group of teachers and experts with a common concern 

about their students’ learning gather, plan a lesson and analyse and discuss what they 

observed in the implementation. A LS cycle should follow these phases: study of the 

curriculum and goals, when participants choose a content to teach and establish the 

learning goals; lesson planning, when participants set the objectives of the lesson and 

describe its development; implementation and observation of the lesson, when the 

impact of the planning on the students’ learning is recorded and data generated from 

the observation are collected; joint reflection on the data collected, when participants 

use the data from the observation to reflect on the lesson implemented, the students’ 

learning and the previous planning. For each phase of the cycle, some criteria should 

be considered in order to complete a LS cycle. 

METHODOLOGY 

This is a qualitative/interpretive research involving eight teachers (of mathematics and 

mathematics education) who are familiar with the DSC, with the purpose of designing 

a lesson on functions for 15-16 year old students of secondary school in Spain. The 

eight sessions of the first phase of the LS cycle (carried out so far) have been 

videotaped. In theme, the learning objectives, the number of sessions, some activities 

to work with students on the concept of function, previous knowledge, among other 

aspects, have been defined. 

The analysis of argumentation is carried out considering the Pragma-dialectic model, 

the Toulmin's model and the characterization of practical argumentation. Following 

these phases: i) Review of videos to identify episodes of practical argumentation that 

show the use of DSC in the design of the class. ii) Identify the different ideas that 

teachers express when they participate. iii) Relate the ideas identified with the DSC. 

iv) Identify words that account for the existence of arguments, such as: then, therefore, 

for example, if, that is, etc.; and words that account for teachers' knowledge, values or 

beliefs: I believe, as far as I know, I understand that, we are supposed to, it is said, etc. 

v) Describe the dialogue to show the use of DSC in the design of the tasks for the class. 

vi) Apply the pragma-dialectic model. vii) In the argumentation stage, present the 

identified arguments, considering the Toulmin's model. viii) Describe the arguments 

taking into account the DSC.  

The initial analysis of the arguments was performed by one researcher and 

subsequently triangulated by the rest of the researchers to clarify interpretations. 
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ANALYSIS 

The following dialog is an example of how DSC are considered in the LS design phase 

of the didactic unit on functions: 

T4: T6 says that we are making inputs [for design] without following the DSC. 

T8: Yes, but we could make them according to the following criteria. 

T1: I think that more or less. For example when we looked at the textbooks, we made a 

first analysis. Then we made some discussions based for example on the 

processes that are present in the textbook, on the meanings that are 

contemplated in the textbook. So just the fact of thinking about that I think 

that already comes from a knowledge we have of the DSC. For example, in 

the meetings we have had, in the discussions, I think they were. Well, many 

things were mixed.... many of the comments we made were related to the 

criteria, at least the first thing I looked at was to see which meanings were 

contemplated in the textbook and this is a knowledge that I have of the 

criteria, of the criterion of representativeness of the epistemic facet. 

T8: Yes, but we can make comments that refine or improve some of these criteria, as 

something more than the use of a guideline. For example, I understand that 

we have looked at the different meanings that functions have and we talk 

about at least three meanings: Functions as a relation between quantities, 

first meaning, second, functions as a relation between variables and, third, 

a subset of the cartesian product. We concluded that we would start with a 

relation between magnitudes and we would arrive at a relation between 

variables, without marking well the difference between both meanings. 

That is, we would start with problems of relation between magnitudes, and, 

from a certain moment on, we would call these magnitudes variables, this 

is what I thought we agreed upon. So from the point of view of the criterion 

of the use of different meanings, there are at least two meanings. And maybe 

if we talk about the domain, we could make a little foray into the third 

meaning as a subset of the cartesian product. So we have made an analysis 

of the different meanings. It must be said that the current discourse on 

functions emphasizes the use of different representations, an indicator of 

the representational component of the meanings. Regarding the functions, 

it is always said that different representations must be worked, therefore we 

will put problems where the students have to handle tables, statements, 

graphs, that they have to find formulas. The subject of functions is taught 

this way nowadays, with the use of different representations. And then we 

were left with the indicator of using a variety of problems, ensuring that the 

problems are not always the same, and I would like to add an extension to 

this. For example, to relate it to cognitive suitability, it is assumed that we 

should try to make students learn the functions. Then there are all 

neuroscience studies that tell you that variation is important. This means 

that the student learns more if you vary than if you repeat, so they say that 

you have to vary the examples and you have to vary the tasks. So somehow 

here we would have a cognitive support, which would come in this case 
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from neuroscience, about the fact of using different problems, that the 

problems are varied, that there is a variation of problems, we would have a 

support with the cognitive aspect. I don't know if you understand what I 

mean, but it is an example of how I go a little beyond what the guideline 

strictly says. [Three teachers agree with the comments among them T6.] 

The dialogue presented is an example of how the DSC are part of the argumentation to 

justify the actions that are considered in the design of the different tasks for a class on 

the concept of function. In this particular case, teacher T4 stated that the contributions 

that were being made for the design of the class were not guided by the DSC. Professor 

T1 counterargued with two examples in which they were being used, in the first one 

she referred to the epistemic criterion (components richness of processes and 

representativeness of complexity), in the second one she commented that in the 

discussions many comments were made thinking about the DSC. Professor T8 

presented an example of how the DSC are being used in the design. In his example, he 

mentions the epistemic criterion, keeping in mind the component of representativeness 

of complexity, considering three meanings for working in class, working with different 

representations and the consideration of a variety of problems. The latter is related to 

the cognitive criterion in its learning component. 

Next, the above dialogue is presented from the perspective of Pragma-dialectics, and 

in the argumentation phase, the Toulmin's model is taken into account. 

Confrontation: T6 states that DSC are not being considered as a guideline. 

Opening: T1 and T8 consider that they are being considered. 

Argumentation: T1’s arguments: Argument 1: a) Data: Textbooks were analyzed; 

Discussions were made about the textbooks based on the processes that are present in 

the textbook and the meanings that are contemplated; b) Warrant: In the analyses and 

discussions, components of the DSC are considered; c) Backing: Understanding the 

DSC is to look at the meanings contemplated in a textbook; d) Claim: The DSC are 

being used in the design of the classes. Argument 2: a) Data: In the discussions, from 

the class design meetings, many things were mixed up; b) Warrant: Many of the 

comments were related to DSC; c) Claim: DSC are being used in class design. 

To show the use of knowledge about the DSC in the analysis and discussion of the class 

design, T1 in her arguments exemplifies the use of the components of the epistemic 

criteria for the analysis of the textbook and its discussion. From this, it is inferred that 

a belief of T1 is that knowledge of the appropriateness criteria serves as a guideline in 

class design for analysis and discussion. 

T8’s arguments: Argument 1: a) Data: We have looked at different meanings of 

functions; from the DSC different meanings are being worked on; b) Warrant: Different 

meanings of mathematical objects should be taught; c) Claim: We would start with 

problems of relationship between magnitudes, and from a certain point on, these 

magnitudes will be called variables; d) Claim: We would start with problems of 
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relationship between magnitudes, and then these magnitudes will be called variables; 

e) Claim: We would start with problems of relationships between magnitudes. 

In this practical argument, the "different meanings" component of the epistemic 

criterion serves to justify the order and the way of working different meanings of the 

function concept in class. This shows that T8 positively values designing a class 

considering the different meanings to be taught.  

T8’s arguments: Argument 2: a) Data: All discourse on functions considers the use of 

different representations; the different representations is an indicator of the 

representational component of the meanings; b) Warrant: We must work on different 

representations of the functions; c) Claim: We will set problems where the students 

will have to handle tables, statements, graphs and formulas. 

In this practical argument T8 justifies working on the different representations of 

functions and relates it to the indicator "different representations" of the epistemic 

criterion and to the current trend in the educational discourse on functions.  

T8’s arguments: Argument 3: a) Data: The indicator of variety of problems is 

considered; We are supposed to try to make students learn the functions; b) Warrant: 

We must vary the examples and we must vary the tasks; c) Backing: There are 

neuroscience studies that say that the variation of examples and tasks is important; d) 

Claim: We must vary the examples and we must vary the tasks about functions. 

To justify the variation of examples and tasks on functions, in this practical argument 

T8 uses two DSC. First, the epistemic criterion with its indicator "variety of problems" 

and, second, the cognitive criterion with its indicator "learning", supporting the 

relationship between these two indicators with results from neuroscience.  

DISCUSSION AND CONCLUSIONS 

This work has the particularity that the teachers participating in the LS cycle are aware 

of the DSC, unlike previous research where most or all of them are unaware of them. 

Moreover, an increase in the time dedicated to the design phase has been observed with 

respect to the LS in which the participants are not aware of the DSC. A plausible 

explanation, although not the only possible one, is that knowledge of the DSC allows 

teachers to broaden the design discussion and structure arguments, which contain the 

DSC, to justify the actions to be considered.  

The research objective is to analyze the use of DSC in the practical argumentation that 

occurs in the design phase of a LS cycle on the topic of functions. The following uses 

of DSC were identified: a) their application for the analysis of textbooks, in particular 

the processes and meanings contemplated by the book on the teaching of a 

mathematical object; b) to discuss about the design of the class, in particular they are 

used to generate guarantees to justify the proposed actions, and c) they are used as data 

in the practical arguments.  
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While there are arguments in which only one DSC is used, in others, several are used 

and related to justify the proposed actions, which we could interpret as stronger 

arguments because they are more difficult to attack in the discussion. 

The analysis of the videos shows that the most used criterion for the design of the class 

on functions is the epistemic criterion, followed by the cognitive criterion. It is also 

observed how the DSC are particularized for the design of the class on the notion of 

function (for example, the component that states that a variety of meanings of the 

mathematical object must be taken into account is specified in three meanings of the 

notion of function: relation between magnitudes, between variables and subset of the 

cartesian product). 
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FOSTERING STUDENTS’ KNOWLEDGE ABOUT PROOF  

Femke Sporn, Daniel Sommerhoff and Aiso Heinze 

IPN - Leibniz Institute for Science and Mathematics Education, Kiel, Germany 

 

Empirical research has underlined difficulties regarding knowledge about proof for 

learners of all ages. As knowledge about proof can indicate an individual’s 

understanding of proof, it is thus mandatory to find means to support students 

effectively. In an intervention study with 61 9th grade students, we examined to what 

extent it is possible to foster students’ understanding of proof by explicitly addressing 

knowledge about proof principles. The intervention covered five lessons integrated in 

regular mathematics classes distributed over a half school year. The positive effect 

suggests that the intervention could foster students’ knowledge about proof principles 

using only a short amount of time. However, the results also raise questions regarding 

the explicit formulation of rules and criteria for mathematical proof. 

INTRODUCTION 

In their mathematics education, learners are repeatedly confronted with argumentative 

challenges, mathematical proofs, and related activities. Thus, it can be assumed that 

learners (are expected to) form an understanding of proof throughout their schooling, 

which can be understood as an understanding of the way evidence is generated in 

mathematics (Sporn et al., 2022). Individual’s understanding of proof has various 

aspects and, for example, includes learners’ knowledge about proof and their need for 

proof. Building an adequate understanding of proof is relevant for learners (i) because 

they are expected to learn about mathematics as a deductive system and how evidence 

is generated in mathematics as well as (ii) because there is repeated evidence that an 

adequate individual’s understanding of proof improves performance in handling proof 

(e.g., Chinnappan et al., 2012). Still, prior research indicates that learners of different 

ages show an inadequate understanding of proof (e.g., Healy & Hoyles, 2000). 

Currently, there is still insufficient knowledge on how an individual’s understanding 

of proof (or single aspects of it) is formed throughout mathematics education, which 

factors influence its formation, and how it can be explicitly supported. It seems likely 

that the learning opportunities regarding mathematical proof throughout mathematics 

education and regarding various proof activities, such as validating or constructing 

mathematical proofs, play a role in building an individual’s understanding of proof. 

Opportunities for reflection on and discussions about proof in mathematics are also 

possible, likely especially useful learning opportunities (e.g. Davis, 2000). However, 

there is insufficient information on such learning opportunities and their impact so far. 

Since learners repeatedly show difficulties in their proof performance and an 

inadequate understanding of proof, our focus was on designing and evaluating a 

teaching intervention aiming to foster 9th grade students’ understanding of proof. We 

focused on students’ knowledge about proof (as one aspect of their understanding of 
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proof) to investigate to what extent such an intervention is indeed effective in fostering 

students’ knowledge about proof and thus their understanding of proof. 

THEORETICAL BACKGROUND 

Learning Opportunities Regarding Mathematical Proof in Secondary Education  

Reasoning and proving are integrated in mathematics curricula worldwide (e.g., 

CCSSI, 2010). Often, proofs are explicitly focused on in geometry classes from grades 

7 and 8 onwards. Thus, learners repeatedly encounter learning opportunities for 

mathematical proof. While there is a lack of empirical evidence if and to what extent 

those learning opportunities impact on learner’s understanding of proof in specific, it 

can be assumed that the formation of an individual’s understanding of proof is 

positively affected by such (different) learning opportunities regarding mathematical 

proof (Sporn et al., 2022). 

An objective evaluation of such learning opportunities and, thus, also of the (learning) 

output is only possible to a limited extent since a generally accepted definition of a 

valid mathematical proof is missing in mathematical practice (Stylianides et al., 2017). 

In particular, the social context (e.g., a course) and the norms and criteria established 

therein – possibly initiated by the teacher and oriented to the mathematics standards – 

are of a certain influence (Sommerhoff & Ufer, 2019). Thus, a specific argumentation 

might be considered a valid mathematical proof in one context and, at the same time, 

be rejected in another context (e.g., Inglis et al., 2013). 

Students’ Knowledge About Proof (Principles) as one Aspect of Their 

Understanding of Proof 

While there are certain social aspects related to the norms and criteria for mathematical 

proof, there are also many aspects of mathematical proof that are widely agreed upon 

and which learners should learn, including also knowledge about the way evidence is 

generated in mathematics (i.e., knowledge about proof). This includes criteria that must 

be fulfilled for a valid mathematical proof independently of the social context (e.g., the 

argumentation must be based on already proven statements). Such criteria, that a 

mathematical proof must definitely fulfill, can be summarized as proof principles. 

As part of the formation of an individual’s understanding of proof, learners build up 

knowledge about proof principles, which has been addressed, for example, by Heinze 

and Reiss’ (2003) research on proof scheme, proof structure, and chain of conclusions, 

and which has shown that 8th grade learners have difficulties regarding proof principles. 

The findings of Sporn et al. (2022) suggest that students’ knowledge about proof 

principles may develop slightly positively over the course of mathematics education. 

However, it is not yet known, which kinds of learning opportunities explicitly allow to 

foster students’ knowledge about proof principles, and thus to what extent these allow 

to specifically support students’ development of understanding of proof. 

Prior research shows two different ways of operationalization (Sporn et al., 2021): 

(i) knowledge about proof principles in an explicit and general form, that is without 
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reference to a specific proof-related action situation (concept-oriented knowledge 

about proof principles; e.g., Heinze and Reiss (2003)), and (ii) knowledge about proof 

principles with a focus on a specific mathematical action situation regarding proof, for 

example, the construction or validation of a specific proof (action-oriented knowledge 

about proof principles; e.g., Andersen (2018)). That a distinction between the two foci 

is theoretically and also empirically meaningful for investigating knowledge about 

proof principles was shown by Sporn et al. (2021). Figure 5 shows an example item 

for an action-oriented focus on knowledge about proof principles. Here, students are 

required to validate a purported proof that does not follow the established proof 

principles (i.e., proof by authority). 

 

Figure 5: Example item used in the study for measuring action-oriented knowledge 

about proof principles (translated; Sporn et al., 2022). 

In comparison, evaluating the statement “If the most important mathematicians in a 

field consider a statement to be true, then it can be considered valid, even if there is no 

complete proof yet.” addresses concept-oriented knowledge of proof principles. 

RESEARCH QUESTIONS 

Since (i) prior research has highlighted students difficulties regarding their knowledge 

about proof principles (e.g., Healy & Hoyles, 2000) and that the desired development 

of students’ knowledge about proof principles in school could not be verified (Sporn 

et al., 2022) and (ii) research and information on whether, how exactly, and how 

effectively their knowledge about proof principles can be fostered is missing, the 

question arises whether it is possible to explicitly foster students’ (concept- and action-

oriented) knowledge about proof principles. To examine this question, learning 

opportunities regarding mathematical proof were developed that induce, for example, 

explicit discussion and reflection on proof principles. In the context of an intervention, 

the aim was to investigate whether these learning opportunities have a positive effect 

on students’ (concept- and action-oriented) knowledge about proof principles as well 

as their justifications regarding the acceptability of proofs. The research questions thus 

focused on: (RQ1) How does an intervention on mathematical proof and proof 

principles affect the concept- and action-oriented knowledge about proof principles of 

9th grade students? (RQ2) How does an intervention on mathematical proof and proof 

principles foster 9th grade students’ ability to use criteria aligned with proof principles 

to justify their judgments of incorrect purported proofs? 

Regarding RQ1, it was expected that discussing and reflecting on proof principles 

during the intervention would lead to an explicit formulation of proof principles, thus 
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directly addressing a concept-oriented knowledge about proof principles and thus 

causing increased knowledge (H1.1). By elaborating and explicitly reflecting on these 

criteria while working on specific proofs, it was expected that action-oriented 

knowledge about proof principles would improve (H1.2). Regarding RQ2, students 

were expected to judge purported proofs using criteria aligned with proof principles 

more often (H2), as these were explicitly introduced to students in the intervention. 

METHOD 

Study Design & Sample 

In total, 61 students from four 9th grade classes of a German Gymnasium participated 

in a quasi-experimental intervention study with an intervention and a control group. A 

questionnaire was used to assess their concept- and action-oriented knowledge about 

proof principles at the beginning of the second half of 9th grade (pre-test). Two of the 

four classes received an intervention on mathematical proof (intervention group; 

NInt = 30). Both other classes received no specific intervention (control group; 

NCon = 31). At the end of the second half of the 9th grade, students’ concept- and action-

oriented knowledge about proof principles was assessed (post-test), again. 

Design of the Intervention on Mathematical Proof  

The intervention included five lessons (one double lesson (T1) and three single lessons 

(T2-T4); each of which included additional homework), which were distributed over 

the second half of the school year with in-between intervals of about 3-4 weeks. The 

intervention focused, for example, on discussing and reflecting on proof principles 

based on the treatment of different (purported) proofs and thus focused on students’ 

knowledge about proof principles. Proofs for mathematical statements were selected, 

which are part of the 9th grade curriculum anyway. At T1, the focus was on the role of 

proof in mathematics and on the distinction between premises and conclusion. Students 

were supposed to become familiar with proofs (as objects - cf. Reid & Knipping, 2010) 

quite consciously and their need for proof was encouraged. Problematization took 

place at the end of T1: students developed the central question whether and how to 

decide when a purported proof can be judged as a valid or invalid mathematical proof. 

Answering this question was the focus of the three single lessons T2-T4. At T2 and 

T3, the focus was on reflecting on proof principles (based on proof scheme, proof 

structure, and chain of conclusions; Heinze and Reiss (2003)). Students used purported 

proofs to elaborate in which cases one can be sure to say that a purported proof is 

invalid (i.e., when proof principles were not followed) and then abstracted the proof 

principles in explicit and general terms (i.e., argumentation should not be based on 

experience; using only single examples to show an assertion is not sufficient, etc.). 

Like this, students elaborated on the proof principles (action-oriented focus on 

knowledge about proof principles) and formulated them in explicit and general terms 

(concept-oriented focus on knowledge about proof principles) (knowledge integration, 

see Linn et al., 2013). Following up on the problematization from T1, the aim at T4 

was to clarify if or when it can be decided that a purported proof represents a valid 
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mathematical proof. For this, the insights on proof principles from T2 and T3 were 

integrated by stating that while there is no way of judging the acceptability of a proof 

absolutely, there is at least no reason to judge a purported proof as invalid if all proof 

principles are followed (e.g., Davis, 2000). Again, students used purported proofs to 

discuss and reflect on proof principles with the aim of finding a general formulation on 

the fact that it finally depends on the social context when a purported proof is judged 

as a valid mathematical (i.e., depending on prior knowledge, one course may require 

more intermediate steps in the proof than another course to accept it; Yackel and Cobb 

(1996)). At the end of each lesson, the results were saved on the whiteboard and sent 

to the project team. The results were checked for correctness, and the beginning of the 

following intervention lesson was slightly adapted to these results (for example the 

wording of the respective class is used; e.g., “The purported proof is invalid, if it is 

based on the statement of a book.”). Results were also saved on a poster in the 

classroom to have the elaborated explicit formulations available at any time and to 

repeat them before continuing with the new content. The poster was visible to the 

students throughout the school year (except at the time of the post-test). The teachers 

of the intervention group were provided with the same materials and received very 

detailed instructions on how to implement each lesson. The control group did not 

receive any additional materials but followed the regular mathematics curriculum. 

Items & Analyses 

The employed questionnaires were based on prior studies (see Sporn et al., 2022). At 

the beginning and at the end of the intervention, an (identical) questionnaire was used, 

which included 18 statements on concept-oriented knowledge about proof principles. 

These included valid and invalid statements about proof principles, which had to be 

evaluated on a 6-point Likert scale (“Not true at all” (1) to “Totally true” (6)). The 18 

statements were combined to a mean score ScoK and rescaled to a range from 0 to 6 for 

better comparability. Action-oriented knowledge about proof principles was assessed 

by asking students to validate six purported proofs in each of which certain proof 

principles were disregarded. Figure 5 shows an item example. For each judgment, 

students scored 1 point if they correctly judged the purported proof to be invalid. In 

each other case, they scored 0 points. A sum score was formed from the judgments of 

the six purported proofs (SaoK; range: 0 to 6). In addition, students were asked to provide 

a justification for their judgment about the validity in an open text box for each 

purported proof. For the justification of their judgment, students scored 1 point if they 

justified the correct judgment (i.e., invalid purported proof) using criteria aligned with 

proof principles. They scored 0 points if they justified their judgment in a way that was 

not aligned with proof principles or if they made an incorrect judgment (i.e., valid 

purported proof). Again, a sum score was formed (SaoK-Justification; range: 0 to 6). To 

answer the research questions, ANCOVAs were calculated for each of the three scores 

(ScoK, SaoK, SaoK-Justification). 
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RESULTS 

Figure 6 shows the descriptive results of the intervention and control group regarding 

the three scores (ScoK, SaoK, SaoK-Justification) in the pre- and post-test. The graphs indicate 

cross-over interactions for each score, implying that the intervention group achieved 

better learning results than the control group. 

 

Figure 6: Descriptive results (Mean, SD) for ScoK, SaoK, SaoK-Justification. 

Descriptive data for ScoK show a (non-significant) decrease for both groups. The 

ANCOVA for ScoK shows that after adjusting for the pre-test, post-test ScoK does not 

differ statistically significantly between both groups (F(1, 59) = 0.11, p = .744, 

𝜂𝑝
2 = .002). Although the students were encouraged to explicitly formulate proof 

principles as part of the intervention, this does not seem to have impacted their concept-

oriented knowledge about proof principles. While SaoK was low in the pre- and post-

test, the intervention appears to have a positive effect, at least for some students. The 

ANCOVA for SaoK shows a significant difference between both groups 

(F(1, 58) = 5.82, p = .019) in the post-test with a medium to large effect (𝜂𝑝
2 = .091) in 

favor of the intervention group. The ANCOVA for SaoK-Justification shows similar results: 

again, the intervention group scored significantly higher than the control group 

(F(1, 58) = 5.91, p = .018, 𝜂𝑝
2 = .092) in the post-test. Thus, with intervention, students 

were more likely to evaluate the incorrect purported proofs correctly as invalid and 

were also more likely to do so based on criteria aligned with proof principles. 

DISCUSSION & OUTLOOK 

Prior research has repeatedly shown that learners have shortcomings regarding 

multiple aspects of their understanding of proof (e.g., Chinnappan et al., 2012), for 

example regarding their knowledge about proof (Heinze & Reiss, 2003). It thus appears 

essential to find ways to effectively foster such knowledge about proof and by this 

students’ understanding of proof. As information about how to foster students’ 

knowledge about proof (principles) is currently missing, an intervention on 

mathematical proof (principles) was designed and evaluated. By using specific 

mathematical action situations regarding proof to elaborate on proof principles (action-

oriented focus on knowledge about proof principles) and by developing formulations 

of proof principles in explicit and general terms (concept-oriented knowledge about 

proof principles), 9th grade students were encouraged to discuss and reflect on proofs 

(Davis, 2000; Linn et al., 2013).  
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Contrary to expectations, empirical results show no significant difference between both 

groups regarding their concept-oriented knowledge about proof principles in the post-

test (H1.1). As elaborating and formulating proof principles in explicit and general 

terms appears to be a reasonable approach to support concept-oriented knowledge 

about proof principles, it remains unclear why no effects could be observed. For further 

insights, either qualitative approaches would be needed or longitudinal studies with 

more measurement points, which would allow observing direct and cross-lagged 

effects between time points to better understand the longitudinal relations between 

gains action- and concept-oriented knowledge. Moreover, the results may also indicate 

measurement issues regarding concept-oriented knowledge, as students were possibly 

not able to see the equivalence of the formulations of proof principles in the tests and 

their formulations in classroom. As students created their own formulations for proof 

principles (verified as correct) in class, they may not have recognized that they 

corresponded to the statements presented in the questionnaire. Thus, such an item 

format may not be useful for assessing concept-oriented knowledge about proof 

principles specified in the context of the intervention. Prompting learners for proof 

principles in an open item may be more appropriate (Andersen, 2018). Even though 

action-oriented knowledge about proof principles is low in the pre- and post-test 

(corresponding to results of prior research, e.g., Heinze & Reiss, 2003), a ANCOVA 

shows a significant positive effect of the intervention on the action-oriented knowledge 

about proof principles, as expected (H1.2). Thus, even a relatively short intervention 

(albeit over a longer period of time) including, for example, some encouraging 

opportunities for discussion and reflection on proof principles, seems to have a medium 

to large effect on students’ action-oriented knowledge about proof principles. This 

suggests that fostering students’ knowledge about proof is possible within half of a 

school year. Regarding RQ2, as expected, the intervention students are significantly 

better at using criteria aligned with proof principles to justify their judgments of 

incorrect purported proofs. This supports the results on the significant positive effect 

of the intervention, and shows that students from the intervention group are more likely 

to be able to formulate criteria aligned with proof principles. This result may also 

indicate that they learned the proof principles, even if not in the form of the statements 

presented in the questionnaire for concept-oriented knowledge about proof principles.  

As with every research, the presented study has some limitations, for example 

regarding the number of participants and the restriction to one school in one country. 

Further, it was not possible to control instruction in the control group. Albeit these 

limitations, empirical data suggests that it is useful for students to explicitly elaborate 

proof principles within discussion and reflection using different (purported) proofs and 

within various proof activities. Further research is necessary to examine, if other 

learning opportunities might lead to (even higher) effects on students’ knowledge about 

proof and which modifications (length, arrangement of the sessions, methods, etc.) of 

the current intervention could be made to also foster concept-oriented knowledge. 

Furthermore, it would be interesting to investigate, to what extent such an increase in 

knowledge has an impact on students’ performance in handling proof. 
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FROM 2D TO 3D: SUPPORT OF A 3-DIMENSIONAL DYNAMIC 

GEOMETRY ENVIRONMENT IN LEARNING PROOF 
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Dynamic geometry environments support the learning of proof in plane geometry. 

Researchers have studied this process by using theoretical frameworks that allow us 

to understand how these environments provide such support. However, there is scarce 

research carried out on 3-dimensional dynamic geometry environments, which rise 

questions about the ways in which the learning of proof occurs in this scenario and 

how those environments intervene in the process. Based on the case of a 

mathematically gifted student, we analyze the development of the student’s proving 

skills while solving a sequence of construction-and-proof problems in a 3-dimensional 

dynamic geometry environment and the way in which the environment stimulated those 

skills through utilization schemes put to work by the student to use some tools. 

INTRODUCTION 

Research on the influence of dynamic geometry environments (hereafter, DGE) is 

notable and has a long history. One of the several aspects of teaching and learning 

geometry with DGE on which research has been developed in recent years (Sinclair et 

al., 2016) is learning of proof (Sinclair & Robutti, 2013). However, this research has 

been carried out mainly in two-dimensional DGE (2D-DGE) and there is a lack of 

related research on three-dimensional DGE (3D-DGE) (Gutiérrez & Jaime, 2015). 

Particularly, it’s necessary to carry out research informing on the influence that 3D-

DGE can have in the learning, by ordinary and mathematically gifted students, of 

spatial geometry and, in this mathematical context, the learning of mathematical proof. 

Research on the influence of DGE in the learning of mathematics has used different 

theoretical frameworks to interpret this process through the actions that individuals 

perform when using a technological artifact (mainly software in a computer, tablet, 

etc.). Some of these frameworks are based on the premise that, through the actions of 

a person with an artifact, the cognitive activity that occurs in that person’s mind can be 

understood, so it is possible to provide observable evidence about the mental processes 

performed by the students (Drijvers et al., 2009). 

We have carried out a case study research where four mathematically gifted students 

solved a sequence of construction-and-proof problems in a 3D-DGE based on 

GeoGebra (i.e., problems asking to create a geometrical figure and then prove that the 

figure fulfils the conditions required by the problem). The objective of that research 

was to analyze the students’ reasoning processes and their progress in learning to do 

deductive proofs, to get information about mathematically gifted students’ learning 

trajectories and different styles of mathematical reasoning. This paper focuses on one 

of those students, with the research objectives of i) analyzing the improvement of his 
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proving skills when he solved the mentioned sequence of problems and ii) showing the 

way the 3D-DGE helped promote this change, through the utilization schemes put into 

action by the student when he used some GeoGebra tools. 

THORETICAL BACKGROUND 

Construction-and-proof problems and the learning of proof 

DGEs support the learning of proof (Mariotti, 2012). We consider a proof as a 

mathematical argument, either empirical or deductive, aimed to convince someone of 

the truth of a mathematical statement (Fiallo & Gutiérrez, 2017). In our study, we 

emphasize the learning of proof through construction-and-proof problems. These 

problems ask i) to create on the DGE a geometric figure having some properties 

required by the problem, that must be preserved under dragging, and ii) to prove that 

the procedure used to create the figure is correct, by explaining and validating the way 

of construction (Mariotti, 2019). The statement to be proved is that the sequence of 

actions of the construction fits the conditions of the problem. 

By using DGE tools in the construction of geometric objects, personal meanings are 

produced thanks to the dependency interrelationships that are discovered and verified 

through dragging. These tools are also related to theoretical elements of the Euclidean 

geometry which can support students when they develop proofs for the constructions 

(Mariotti, 2012). Solving construction-and-proof problems allows students to take 

advantage of the DGE possibilities and the logical system that underlies it. Therefore, 

geometric constructions have also a purely theoretical nature, where their validity is 

linked to prove that a set of constructions steps provide a specific result, so solving this 

kind of problems can make students evoke theoretical meanings of the tools they have 

used in the solutions (Mariotti, 2019). 

From artifacts to instruments: instrumentalization and instrumentation 

An artifact is any object used as a tool to perform a task (Rabardel, 1995). When a 

subject establishes a relationship with an artifact to do a specific task, in which the 

artifact is used in a particular way for a specific purpose, the artifact becomes an 

instrument. An instrument is a theoretical notion, the combination of an artifact and 

some mental schemes developed by the user, to which they refer when using the artifact 

to perform a task (Rabardel, 1995). A scheme is an invariant organization of mental 

habits for a group of situations, a stable way of dealing with specific tasks (Vergnaud, 

1996). For Rabardel, the transition from an artifact to an instrument requires two 

intertwined processes that come from the individual’s relationship with the artifact: 

instrumentalization, seen as the recognition of the components of an artifact, its 

limitations, and possibilities to solve a task; and instrumentation, seen as the 

emergence and development of utilization schemes on the artifact when solving tasks. 

Due to their nature, the schemes are not directly observable, so it is necessary to have 

an observable counterpart to be able to refer to them. We describe the schemes in terms 
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of students’ behavior while are using the artifacts provided by a DGE, like dragging, 

construction tools, etc. 

METHODOLOGY 

We present a case study drawn from a broader research project where we analyze the 

learning of proof, in the context of a GeoGebra 3D-DGE, by four Spanish 

mathematically gifted students (11 to 14 years old) in grades 1 to 4 of secondary school. 

The identification of the students as mathematically gifted is because, for several years 

before our experiments, the students had participated in special out-of-school programs 

of attention to generally gifted students (AVAST) and mathematically gifted students 

(ESTALMAT) where they attended mathematics workshops. 

We designed a sequence of 18 construction-and-proof problems which involved the 

equidistance relationship between points and between points and lines. Some problems 

requested the construction of a geometric object satisfying certain properties associated 

with equidistance (e.g., construct an equilateral triangle), first in 2D and then in 3D. 

Other problems requested first the construction of a 2D object and then the construction 

of an analogous object in 3D (e.g., construct the center of a circle in 2D and a sphere 

in 3D). These problems were implemented in several 60-minute sessions. The students’ 

solutions of each problem provided instrumental and conceptual elements useful to 

solve subsequent problems. Students solved each problem and then discussed their 

solution with the first author of the paper, who led the conversation to justify the 

results. These sessions were audio and video recorded. As students were in different 

school grades and had different previous knowledge, the experimental sessions were 

organized as individual clinical interviews. 

In this paper we present episodes of the solutions of three problems by a student named 

Hector (pseudonym). We chose those episodes because they show the development of 

Hector’s skills for the elaboration of proofs and how he benefited from utilization 

schemes of some GeoGebra tools he created. 

Table 1: Indicators of instrumentalization  

Code Indicator Description 

Tsa1 Discover possibilities 

of a tool 

Previously unknown possibilities and functions of a 

tool (or set of tools) that allow solve the task are 

discovered 

Tsa2 Identify limitations of a 

tool 

An inadequate result is identified when using a tool 

with a defined purpose and such a purpose is ruled out 

for the tool. 

Tsa3 Customize and adjust a 

tool to personal 

interests 

Various uses of a tool are identified, according to 

specific interests. The tool is used in different schemes 

according to the requirements of the task. 

Tsa4 Appropriate the 

artefact 

The user becomes aware that the artifact is useful to 

obtain a specific result in a particular context. 
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Code Indicator Description 

Sas1 Identify a scheme 

associated with one or 

more tools 

A set of steps with one or more tools is recognized as 

effective to obtain a particular result. The set of steps 

was not known before. 

Sas2 Elaborate a scheme to 

obtain a particular result 

A scheme is elaborated/defined when using the tool 

that leads to obtain the same result. 

Sas3 Adapt a scheme when 

solving a problem 

A scheme is improved by including or removing some 

steps, to give it more scope or refine it. 

Sas4 Use the same scheme in 

different tasks 

The scheme that has been elaborated/modified is 

routinely used when solving different problems. 

Table 2: Indicators of instrumentation 

To analyze Hector's instrumental activity, we use an adaptation of the indicators of 

instrumentation and instrumentalization proposed by Sua and Camargo (2019) (Tables 

1 and 2), which offer an analytical device to characterize both processes and come from 

the interpretation of their corresponding definitions in the specialized literature. The 

indicators of each process suggest a possible trajectory followed by a subject who uses 

artifacts to solve different tasks, leading them to become progressively instruments. 

THE CASE OF HECTOR: THE CONSTRUCTION OF A BISECTOR PLANE 

The episodes presented below report the evolution of the drawing of the perpendicular 

bisector of a segment with ruler and compass, which was transformed into a procedure 

with 3D-DGE that allowed the construction of the bisector plane of a segment. Solving 

previous problems had allowed introducing the definition of circle, sphere, and bisector 

plane as locus, as well as the definition of perpendicular bisector as a perpendicular 

line to the segment through its midpoint, the equidistance property of this line and that 

the bisector plane of a segment contained its perpendicular bisectors and therefore each 

point in this plane was equidistant from the ends of the segment. Problems that we 

present below used these properties and definitions. Before solving the problems, 

Hector already knew the definitions of sphere, circle, and perpendicular bisector. The 

other properties and definitions were obtained by solving previous problems. 

Problem 7: Construction of an equilateral triangle in 2D and 3D 

The first part of this problem asked to construct in GeoGebra 2D an equilateral triangle 

having the given segment GH as a side. To construct this triangle, Hector created the 

circles with centers on G and H and radius GH (Figure 1a). 

To prove the validity of the construction, Hector expressed that he did not know why 

it worked, but that was the way he had been taught at school. However, the 

conversation with the teacher led him to look for support in the congruence of the radii 

of the circles, to state that the sides of the triangle were congruent because: ... as these 
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two circles are equal... as we have created the circles, so that the radius is this 

[pointing at GH], these two sides [IG and IH] are the same… so, they are all the same. 

a)  b)  c)  

Figure 1. Construction of an equilateral triangle in 2D and 3D 

The second part of the problem asked to construct an equilateral triangle in GeoGebra 

3D having the given segment AB as a side. Hector created the midpoint C of AB, the 

spheres with centers on A and B and radius AB, and a point D at the intersection of 

these and the line CD (Figure 1b). Hector first described the construction: ... I have 

done the same as in the 2D version, only that instead of circles I have used spheres ... 

I learned the process that I used before for the equilateral triangle to make the 

perpendicular bisector with a compass on the subject of arts ... I have used that same 

technique to make the perpendicular bisector. 

Hector proved the result of his construction considering that the point [D] is on the 

perpendicular bisector... that is, these two sides [AD and BD] are equal. I have used 

spheres of radius AB, so these two segments here [pointing to AD and BD] are radius 

of circles [he means spheres] with radius AB. So, they’re all the same. 

Although Hector had built the requested triangles, at the end the professor talked to 

him about the mechanism with ruler and compass that had been used by Hector, but it 

was not known why it worked. The objective of this conversation was to provide an 

explanation about that mechanism, given its relevant role in the actions carried out by 

the student. Hector made the construction showed in Figure 1c and, although it was not 

easy to him at first, he proved that line CD is perpendicular to segment AB, by using 

the fact that ADBC is a rhombus, because its sides are congruent, so its diagonals bisect 

each other and are perpendicular. 

Problem 10: Construction of the bisector plane of segment AB 

The objective of this problem was to discover that, given three points A, B and C, the 

intersection of the bisector planes of A, B and A, C was contained in the bisector plane 

of B and C. Therefore, it was necessary to construct the first two mentioned planes and 

drag point A to different places in space. This was the first time Hector had built this 

plane in a robust way. Previously the construction that had been made was soft. 

He first tried to construct several perpendicular bisectors of segment AB by using the 

corresponding tool or with a perpendicular line to AB through its midpoint D, but it 

was not possible to follow this procedure in GeoGebra 3D. For this reason, he decided 

to build two spheres with centers in A and B and radius AB (Figure 2a). Then he created 
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three points at the intersection of those spheres, as well as the plane determined by 

these points (figure 2b). In the conversation with the teacher, Hector tried to validate 

his construction of this plane arguing that it is a bisector plane... because this plane is 

perpendicular bisector of AB, so it is perpendicular to AB. 

a)  b)  c)  

Figure 2. Construction of the bisector plane 

Problem 17: Constructing a point equidistant from four non-coplanar points 

This problem gave four non-coplanar points A, B, C, and D and asked to construct a 

point equidistant from all of them. Hector built the bisector planes of points A, D and 

B, D (green planes, Figure 2c), by using the scheme he created when solved problem 

10, and the line intersection of these planes. He then built the bisector plane of points 

A, C in the same way (purple plane, Figure 2c), determined the point K of intersection 

between the last bisector plane and the line previously created. Hector stated that point 

K was the solution to the problem. 

To prove the correctness of the construction, Hector assured that any point in the 

intersection line of the green bisector planes is equidistant from A, B, and D: I knew 

that, on this line, these three points [A, B, D] would be at the same distance from K ... 

Because it was the intersection of the bisector planes of A, D and D, B). Then, he 

mentioned that his reason to build the third (purple) bisector plane was to determine a 

set of points equidistant from A and C: ... I have made the perpendicular bisector 

[bisector plane] so that C and A were [at] equal [distance from any point in the bisector 

plane]. Hector stated that point K was also equidistant from C, since If C [distance CK] 

is equal to A [distance AK], A is equal to B [distance BK] and A is equal to D [distance 

DK], then C is equal to B, C is equal to D… 

ANALYSIS AND DISCUSSION 

We have presented a trajectory that began with the procedure that Hector elaborated to 

build the perpendicular bisector of a 2D segment. Solving problem 07, he recreated on 

GeoGebra a well-known construction with ruler and compass with the help of the 

Circumference (Center-Radius) artifact [Sas1]. This procedure was also used for the 

construction of an equilateral triangle, which led Hector to discover new possibilities 

for this artifact [Tsa1]. Although this procedure came from his school experience and 

he did not know why it was valid, the conversation with the teacher and his geometric 

knowledge allowed him to elaborate a proof of the construction of the perpendicular 

bisector with circles, as well as that of the equilateral triangle. 
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When Hector moved to GeoGebra 3D and tried to build an equilateral triangle given 

one of its sides, he discovered that the scheme that had been useful in 2D was now not 

available, due to the limitations of the tools in GeoGebra 3D [Tsa2]. To overcome this 

difficulty, Hector modified the 2D scheme by replacing the circles by spheres, and he 

obtained a way to construct perpendicular bisectors in 3D and the requested triangle 

[Sas3]. Hector justified that that construction was correct, using an explicit 

correspondence between circles and spheres properties, as support for his deductions.  

In problem 10, Hector had to modify the scheme again when he built the bisector plane 

because he did not have the tools used in 2D [Sas3]. This construction, however, was 

based on the scheme that Hector had elaborated to obtain a perpendicular bisector in 

3D and the characterization of this plane as a set of all perpendicular bisectors of the 

segment. The latter is evidenced in the argumentation he made for the validity of the 

construction. Hector was modifying the utilization scheme to adapt it to the 

requirements of each new problem [Tsa3]. 

Hector’s solution to last problem (17) showed a joint use of the modified schemes and 

the properties of the geometric objects represented through them: on the one hand, the 

geometric properties of the constructed planes allowed him to guarantee the 

equidistance of a set of points with respect to three other points; on the other hand, it 

is the equidistance provided by this scheme what mobilizes the construction of another 

bisector plane with which the problem was solved. 

Hector’s solutions to the problems presented, and others that we cannot mention due 

to the limited length of this paper, show the uses he made of utilization schemes to 

build bisector planes and perpendicular bisectors, according to the proposed problems 

[Sas2]. The recurrent use of those schemes to solve different problems [Sas4] and the 

confidence with which Hector referred to the results obtained through the schemes 

[Tsa4], revealed in a global way the relationship between him and the circle-sphere 

artifact. It provides elements to ensure the emergence of an instrument. 

The case that we have analyzed provides evidence showing that solving construction-

and-proof problems in a 3D-DGE induced the development of proving skills in this 

mathematically gifted student (we have also obtained similar results with the other 

students participating in the research experiment). We have showed some glimpses of 

Hector’s advance in his instrumental activity with GeoGebra 3D and the ways it 

supported the development of his proving skills, since it allowed him to evoke 

mathematical meanings of represented objects on screen to prove the validity of his 

constructions. 

The nature of this study does not allow generalize its results, but it opens a direction of 

research to better understand the differentiating characteristics of the processes of 

learning to prove by mathematically gifted students. A natural continuation of this 

study is to make similar experiments with average students of the same ages or grades 

as the mathematically gifted students participating in this experiment. On the other 
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side, it is necessary to experiment with other 3D geometric relations as well, to provide 

a broader view of the influence of 3D-DGE on the learning of proof. 
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This exploratory study has been designed to investigate Chinese language learners’ 

(CLLs) reading comprehension when solving additive word problems. 200 primary one 

students (including 59 CLLs) in eight Hong Kong mainstream schools were asked to 

translate five Chinese word problems into diagrams or arithmetic forms (number 

sentences or equations). Results show that local Cantonese-speaking students 

generally outperformed CLLs in translating the word problems correctly to a diagram 

and/or mathematical expression. We argue that there is a need for early intervention 

to support CLLs to acquire reading comprehension skills in mathematics learning. 

INTRODUCTION  

In Hong Kong, most ethnic minority (mainly South-East Asian) students attend 

mainstream schools, which largely use Chinese as the language of instruction (that is, 

the Cantonese dialect as the spoken form and traditional Chinese characters as the 

written code). These linguistic minority students speak different home languages other 

than Chinese, and we refer to them as Chinese language learners (CLLs) in this study. 

Most teachers were not trained in Second Language (L2) pedagogies (Tsung et al., 

2010), and they mainly use traditional methods of teaching Chinese as first language 

(L1) with “one size fits all” pedagogy. CLLs have frequently reported to encounter 

great difficulties in acquiring Chinese language (Ku et al., 2006; Shum et al., 2016), 

and learning mathematics in a second/additional language (Sum et al., 2022; Tse & 

Hui, 2012). They are learning mathematics in Chinese while simultaneously learning 

Chinese as L2 at school.  

Moreover, in mathematics classrooms, the colloquial Cantonese used in teaching and 

the Chinese characters in textbooks are sometimes different. The choice of lexical 

items reflects the level of formality of utterances, for instance, 食咗/吃了 (ate), 剩返/

還剩下 (left). “[T]he colloquial form that they grow up speaking and occasionally see 

being written but are not explicitly taught to speak, read, or write” are different from 

“the formal, standard variety that they are taught to read and write at school” (Bauer, 

2016, p. 121). This creates problems for CLLs and contributes to the complicated 

language situation in schools. Chinese is an ideogram, which is substantially different 

from alphabetical orthographies used in English and some South-East Asian languages. 

In this context, this study investigates students’ reading comprehension, and analyses 

the language aspects of solving mathematical word problems. 
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LITERATURE REVIEW 

In order to succeed in solving word problems, students require more than arithmetic 

computational skills, and reading comprehension has long been found as a critical 

factor (Cummins et al., 1988; Fuchs et al., 2018; Vilenius‐Tuohimaa, 2008). Previous 

research also suggests that working with word problems presents additional challenges 

for language learners (Barwell, 2005), including language complexity (vocabulary, 

sentence structure) (Abedi et al., 2000); and unfamiliar background or sociocultural 

knowledge of the word problems (Martiniello & Wolf, 2012). 

Mathematical word problem is a linguistic genre, characterised by having a pragmatic 

structure – a set-up, an information, and a question (Gerofsky, 1996). Morgan (2006) 

used Halliday’s Systemic Functional Linguistic (SFL) to analyse the nature of 

mathematical language. The ideational function of the text within the transitivity 

system is “the types of processes, the participants in those processes and the 

representation of actors” (Morgan, 2006, p. 227) and the notion of mathematics register 

is “the meanings that belong to the language of mathematics” (Halliday, 1978, p. 195).  

Research shows that Hong Kong students had difficulties in writing number sentences 

when solving word problems (Wong & Ho, 2017). The language demand towards 

comprehending the word problems is high, even for native Cantonese speakers (Ng et 

al., 2021). At primary one, students would encounter lexical items identifiable as 

mathematical. For instances, 加法 (addition), 加號 (addition sign), 符號 (symbol), 等

號 (equal sign). Each character in these words represents a distinct morpheme (加 

means add, 等 means equal, 號 means symbol). The words 加號 and 等號 share the 

same orthographic form of 號, but their meanings are inferred from their respective 

component morphemes (addition sign / equal sign). Students need to understand the 

morphological structure within the compound words, which is unique to the Chinese 

language (Mathews & Yip, 2011). Also, Cantonese is a numeral classifier language, in 

which modification of count nouns with numerals always requires a classifier. When 

solving word problems, classifiers, categorical in nature, provides students with a 

meaning for the numbers and a better sense of different numbers in the problem 

situation (Sum & Kwon, 2018). 

While there is an increased attention to the issues related to the teaching and learning 

of mathematics for English language learners over the past 30 years (de Araujo et al., 

2018), little has been done in relation to the Chinese language, and even less 

empirically explored in the Cantonese-speaking context. CLLs’ reading 

comprehension of word problems remains unexamined in the current literature. 

Considering that, as a field of study in language and communication in mathematics 

education, the case of Cantonese Chinese as L2 is worthy of attention. We thus pose 

the following research questions in this study: 
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RQ1: What is the performance gap of local Cantonese-speaking students and CLLs’ 

reading comprehension of word problems, if any? 

RQ2: What are the linguistic features of word problems in Chinese language that may 

affect the way meaning is constructed by Cantonese-speaking students and CLLs? 

RESEARCH METHODS 

Participants 

Participants were 200 primary one students (59 of whom were CLLs) from eight 

schools in Hong Kong, with Cantonese as the language of instruction. This grade level 

is selected because policy document indicates that “ethnic minority students were very 

much weaker in Chinese and slightly weaker in Mathematics than their Chinese 

counterparts at the point of Primary 1 admission” (Kapai, 2015, p. 27). Therefore, 

primary one is a good starting point to examine the gap, if any, between local students 

and CLLs.  

Data collection and analysis 

The research began in June 2022 with the collection of data related to students’ initial 

reading comprehension of additive word problems. Students were asked to read and 

interpret the sentences mathematically, translating the problem text into drawings or 

diagrams, and/or writing down the associated number sentence or equation. The written 

context consisted of five additive word problems, which are classified based on the 

semantic structure of the arithmetic word problems (Riley et al., 1983). The test items 

were derived from a primary one mathematics textbook. They included one Combine 

question, one 1-step and one 2-step Change questions, and two Compare questions. 

The number sentences of the word problems were in standard form, i.e., 𝐴 + 𝐵 = ( ) 

and 𝐴 − 𝐵 = ( ). All word problems were written in traditional Chinese characters. 

We asked the students to indicate which word(s) they did not understand by underlining 

the words/phrases, and then to draw a picture/diagram or write down a number 

sentence/equation to represent the mathematical content of the word problems. 

Students were not required to calculate the numerical answers to the problems as it is 

beyond mathematising the problem text. 

Each word problem was analysed using traditional grammar (lexical, syntactic, and 

semantic features) and the SFL framework (Halliday, 2014) – the ideational function 

and the grammatical resources that realise its meanings – to illustrate the language 

features of Cantonese language (Shum & Mickan, 2019). Our focus was on how 

language is integrated with content, analysing the linguistic challenges CLLs encounter 

in comprehending the text in the word problems, and extracting the numbers and 

relating them through arithmetic operations. 

Descriptive statistics of, and comparison (chi-square tests) between, the key measures 

of the study were calculated. Two repeated measures ANOVAs were conducted to 

examine the correct response rate across the five mathematical word problems for local 

students and CLLs, respectively, with Question as the within-subject independent 
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variable and Correct Response Rate as dependent variable. To further investigate 

students’ comprehension of the word problems using different methods, a series of 22 

repeated measures ANOVA was conducted for each question to examine the correct 

response rate of using different methods to represent the problem text between local 

students and CLLs for each item, with Method (diagram, equation) as the within-

subject independent variable, Home Language (Chinese, Non-Chinese) as the 

between-subject independent variable, and Accuracy Rate as dependent variable. 

RESULTS AND DISCUSSION 

Students’ performance  

Table 1 shows the correct response rate of each word problem. There were large 

differences in correct response rates between different types of problems. In solving 

Combine problem, local students performed significantly better than CLLs, χ2 (1) = 

14.47, p < .001, either by drawing a correct diagram, writing a correct number 

sentence/equation, or working out a correct answer. Yet, no significant differences 

between local students and CLLs were found in Change and Compare problems. 

 Correct Response Rate (%) 

Question Type 

Local 

(n=141) 

CLLs 

(n=59) χ2 p 

1 Combine (value unknown) 86.5% 62.7% 14.47 < .001 

2 Change (result unknown) 72.3% 62.7% 1.82 .177 

3 Change (result unknown) 57.4% 47.5% 1.67 .196 

4 Compare (difference unknown)  37.6% 33.9% .244 .621 

5 Compare (compared quantity unknown) 52.5% 52.5% .00 .994 

Table 1: Percentage of correct response between local students and CLLs 

Across the five word problems, local students and CLLs showed similar patterns in 

their correct response rates, with highest correct response rate for Q1 and lowest correct 

response rate for Q4. The results of repeated measures ANOVAs revealed significant 

effect for Question for local students, F(4, 137) = 38.90, p < .001, ηp
2 = .53, and for 

CLLs, F(4, 55) = 4.56, p = .003, ηp
2 = .25. For local students, pairwise comparisons 

showed that the correct response rate of Q1 was higher than that of the other four 

questions (ps < .01), while the correct response rate of Q4 was lower than that of the 

other four questions (ps < .05). For the remaining three questions, the correct response 

rate of Q2 was higher than that of Q3 and Q5 (ps < .05), while the correct response 

rates of Q3 and Q5 were comparable (p = 1.000). For CLLs, pairwise comparisons 

showed that the correct response rate of Q4 was lower than that of Q1 and Q2 (ps < 

.05), while the correct response rates of other questions were comparable (ps > .05). 
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A series of 22 repeated measures ANOVA was conducted for each question to further 

investigate local students and CLLs’ comprehension of mathematical word problems 

using different methods. Table 2 summarises the results. 

  F p ηp
2 

Q1   Method F(1, 198) = 114.05 < .001 .37 

  Home Language F(1, 198) = 2.24 .136 .01 

  Method  Home Language F(1, 198) = 6.04 .015 .03 

Q2   Method F(1, 198) = 93.01 < .001 .32 

  Home Language F(1, 198) = .58 .449 .003 

  Method  Home Language F(1, 198) = 4.83 .029 .02 

Q3   Method F(1, 198) = 72.56 < .001 .27 

  Home Language F(1, 198) = 1.83 .178 .01 

  Method  Home Language F(1, 198) = 4.34 .038 .02 

Q4   Method F(1, 198) = 72.32 < .001 .27 

  Home Language F(1, 198) = .09 .770 < .001 

  Method  Home Language F(1, 198) = .05 .817 < .001 

Q5   Method F(1, 198) = 72.65 < .001 .27 

  Home Language F(1, 198) = .21 .648 .001 

  Method  Home Language F(1, 198) = .79 .374 .004 

Table 2: Summary of repeated measures ANOVAs for comparisons of correct 

response rate of local students and CLLs 

As shown in Table 2, for all items, the main effect for Method was significant (ps < 

.001), while the main effect for Home Language was non-significant (ps > .05). 

Specifically, for each question, students applying equation to represent the text had 

higher accuracy rate than students applying diagram to represent the text. Significant 

interaction effect of Method  Home Language was only found for Q1, Q2, and Q3 (ps 

< .05). The interaction patterns were slightly different across the three questions and 

the pairwise comparisons will be discussed in the following section. 

The ideational function and grammar of the word problems 

For Q1 Combine problem, local students (Mean = .70, SD = .46) had significantly 

higher accuracy rate than CLLs (Mean = .53, SD = .50) when using equation, p = .027. 

In this problem, one clause used relational process to describe the initial quantity, with 

an additive conjunctive cohesion 和 (and), followed with a question of relational 

process asking the combined value. 5.67% of local students and 11.86% of CLLs 
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indicated that they did not know the mathematical vocabulary 共有 (together) but made 

good use of the morphological cue, 和 (and), in the sentence to decode the problem. 

For Q2 one-step Change problem, local students (Mean = .59, SD = .49) and CLLs 

(Mean = .46, SD = .50) who used equation had comparable accuracy rate, p = .142. 

However, for Q3, two-step Change problem, local students (Mean = .48, SD = .50) had 

marginally significant higher accuracy rate than CLLs (Mean = .34, SD = .48) when 

using equation, p = .072. In these problems, there were two to three clauses starting 

with either relational or existential process of the initial quantity, followed by a 

material process to describe the change of quantity, and ended in a question of 

existential process to find the resulting quantity. The words indicating the change in 

quantities, such as 吃了 (ate), 還剩下 (left), 多買 (bought), and 再買 (bought again), were 

not colloquial Cantonese, and some students have difficulties recognising these 

characters to comprehend the meaning conveyed in the text, and to mathematise the 

additive situation of the problems. 15.60% of local students and 18.64% of CLLs 

indicated that they did not understand the phrase 還剩下 (left). Also, students found it 

more difficult when there were multiple ways of saying the same operation, including 

but not limited to 和, 共有 and 現有, all of which can refer to finding the sum, especially 

when they share the same morphemes (有 in 共有, 現有). 

In Q4 and Q5 Compare problems, there were two to three clauses in either relational 

or existential process to show the initial quantity, followed by a comparison 

circumstance in material process to illustrate the differences between the qualities, and 

ended with a question of relational process. Significant effect was found for Method in 

these Compare problems, in which students who used equation had higher accuracy 

rates than students who used diagram. The accuracy rates for both questions were 

similar for both local students and CLLs. This may be due to “the knowledge needed 

specially for compare problems develops later than the specific knowledge involved in 

the combine and change problem” (Riley & Greeno, 1988, p.71). Another possible 

explanation is that the comparative adverbs such as 相差 (difference) and 比 … 多 (more 

than) used were not easy to understand. Specifically, 9.93% of local students and 

16.95% of CLLs expressed that they did not know the phrase 相差 (difference). The 

language complexity of Compare problems is not only at the word level, but sentence 

level (syntactic structures) as well, given that word order is crucial for interpretation in 

Chinese (Chang, 1992). It is worth noting that students who did not understand the 

comparative adverb 相差 (difference) in the material process might have 

miscomprehended it for the presence of the conjunction 和 (and) and therefore chose 

the wrong operation. 

CONCLUSION 

To conclude, Hong Kong local students’ reading comprehension in solving 

mathematical word problems is generally better than CLLs’. When compared to 

Cantonese-speakers, more CLLs have difficulties in understanding the ideational 

functions of the problem text in order to mathematise the additive situations. Early 
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intervention to support CLLs to acquire reading comprehension skills in mathematics 

learning is thus needed. Despite having no information on students’ strategies in 

translating the words into arithmetic forms, the findings of the present study provide 

important directions for further research to support intervention approaches, which are 

to identify the characteristics of Cantonese that impact on CLLs’ meaning-making in 

mathematics learning, and to explore how the linguistic/lexical complexity of 

mathematical word problems impacts on the way CLLs process written text. This 

should allow us to maintain the rigor of mathematical problems while providing equal 

access to learning for all students. 
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ENHANCING SPATIAL REASONING THROUGH GEOMETRY 

TRANSFORMATION INSTRUCTION IN GHANA 

Mawuli Kofi Tay, Armando Paulino Preciado Babb 

University of Calgary, Calgary 

Spatial reasoning has been identified as a key factor in learning mathematics; yet, 

efforts to enhance students’ spatial reasoning at the high school level are still scarce. 

This paper reports the results of a study intended to compare the effects of dynamic 

versus static visualization instruction on high school students’ spatial reasoning 

skills(n=77) during a 4-week intervention. While the analysis showed no significant 

differences between the groups, both instructional approaches had a significant impact 

on the three components of students’ spatial reasoning skills (mental rotation, spatial 

orientation, and spatial visualization), suggesting that students’ spatial reasoning can 

be enhanced within the context of geometry transformations when an appropriate 

pedagogical approach informs instruction. 

INTRODUCTION 

The term spatial reasoning has multiple definitions depending on research disciplinary 

perspectives and purposes. However, there is an overarching consensus that spatial 

reasoning involves the ability to mentally manipulate or transform objects being 

visualized (Bruce et al., 2017; Davis & Francis, 2020). It is well documented in both 

educational psychology and mathematics education literature that spatial reasoning 

improves mathematics achievement (Bruce et al., 2017; Davis et al., 2015; Mulligan et 

al., 2018). Collectively, there is consensus that spatial reasoning can be developed 

through training or targeted instruction (Uttal et al., 2013). In doing so, the instruction 

should be tailored towards specific learning objectives. Yet, scholars have paid little 

attention to specific instruction within the mathematics classroom that purposefully 

develops and improves students’ spatial reasoning despite the various calls from 

notable mathematical associations and scholars to integrate spatial reasoning activities 

into K-12 mathematics instructions (Davis et al., 2015; Patahuddin et al., 2020). Even 

though there are comparatively few scholars who are reluctantly trying to incorporate 

spatial reasoning in mathematics classrooms (see Adams et al., 2022; Hawes et al., 

2017), spatial reasoning remains underrepresented in many mathematics instructions, 

as it is the case of education in Ghana. Accordingly, this study seeks to bridge this gap 

comparing the effect of different approaches to visualization—static vs dynamic— on 

students’ spatial reasoning skills in a Ghanaian high school. 

Spatial reasoning and geometric transformations are intrinsically related in terms of 

mental manipulation or transformation of objects. For this reason, this study assumes 

that an instructional unit of geometry transformations has the potential to improve 

spatial reasoning. Arguably, by demonstrating the motions involved in geometric 

transformations (i.e., rotation, reflection, and translation), the teacher might be able to 

provide students with visualization skills for imagining geometric transformations. 
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Earlier researchers have indicated that spatial reasoning is not a single unitary 

construct, but it comprises multiple constructs (Linn & Petersen, 1985; Lohman, 1979). 

In a more recent study, Ramful et al. (2017) categorized spatial reasoning into a three-

tier framework comprising: mental rotation, spatial orientation, and spatial 

visualization. It is worth noticing from these descriptions that spatial visualization, 

spatial orientation, and mental rotation are common among multiple compositions of 

spatial reasoning. For this reason, this study proposes to use Ramful and colleagues’ 

three-tier framework test of spatial reasoning. That will allow us to measure several 

dimensions of spatial reasoning of students in a single test rather than implementing 

separate tests on spatial visualization, mental rotation, and spatial orientation. 

CONCEPTUAL FRAMEWORK 

Figure 1 summarizes both the relationship between variables in the study—type 

visualization as the independent variable and spatial reasoning skills as dependent 

variable—and the pedagogical framework guiding the teaching approach for both 

groups: dynamic and static visualizations. The design for the lessons in both cases was 

based on the Experience-Language-Pictorial-Symbolic-Application (ELPSA) 

framework (Lowrie & Patahuddin, 2015). The experience draws on what the students 

know about the topic in relation to their own experiences within and outside the 

classroom contexts.  The language focuses on how appropriate terminology is used to 

represent mathematical ideas. The pictorial outlines learning around the use of visual 

representations to represent mathematical ideas. The symbolic is aligned with the use 

of symbols to formalize ideas or concepts. The applications focus on how the 

knowledge obtained can be applied in different situations. This study emphasizes the 

experience, the language, and the pictorial. 

Figure 1: Conceptual Framework 
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METHODOLOGY 

Research Design 

A quasi-experimental design with pre-test/post-test control group was employed in the 

study. The study was carried out over a period of 4 weeks using the dynamic 

visualization instructional approach in the experimental group and the static 

visualization instructional approach in the control group. While the independent 

variable was the mode of visualization, the dependent variable was the students’ test 

scores on spatial reasoning skills assessed using Ramful and colleagues’ (2017) Spatial 

Reasoning Instrument before and after the 4 weeks period. 

Participants 

Participants for this study were students (16 – 20 years old) from two classes at Delana 

Senior High School (DSHS) (pseudonym) located at Ho in the Volta Region of Ghana. 

The researcher worked with a sample of 77 students who gave their consents and 

participated in both tests. This number consists of 42 students in the class A and 35 

students in class B who were purposively assigned at the classroom level to either the 

experimental (n = 35) or control (n = 42) group. 

Procedure 

The teaching approach for both experimental and control groups was the same, except 

for the use of dynamic and static representations. The dynamic and static visualization 

instruction to geometry transformation refer to the teaching approaches involving 

teacher-led demonstrations using GeoGebra as a visual instructional material. In 

dynamic visualization instruction, animation and dragging were applied as compared 

to static visualization instruction where no animation or dragging were applied. The 

lessons of the unit were codesigned with the teacher following the ELPSA teaching 

and learning framework. Lessons for both groups were held in the students’ regular 

mathematics classroom using projector and screen. In both instructions, students were 

taught concepts of geometry transformation such as rotation, reflection, and 

translation. Students’ hands-on activities were designed using lived experiences about 

geometry, worksheets hand in hand with the lesson plan by the researcher and teacher. 

This instructional approach for both groups also included collaborative learning. 

Instruments 

Ramful and colleagues’ (2017) Spatial Reasoning Instrument consists of 10 multiple-

choice items for each of the three constructs, totalling 30 points for the overall score. 

The spatial visualization component involves symmetry, patterns, 2D and 3D shapes 

and their relationships, part-whole relationships, reflection, and symmetry; the spatial 

orientation component involves orienting oneself in space, readings, the relationship 

between cardinal points and viewing images or objects from the front, top or side; and 

the mental rotation component involves rotation of 2D and 3D objects, clockwise and 

anticlockwise directions. The instrument was adapted following a pilot study within 

the Ghanaian context. 
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Data Analysis 

Prior to data analysis, erroneous entries and missing values were checked, and data 

were cleaned. The following assumptions (Tabachnick & Fidell, 2019) were verified: 

normality, homogeneity of variance, interval data, independence, homogeneity of the 

regression of slopes, and no outliers. Based on the results of verifying these 

assumptions, a paired sample t-test was used for the pre-test and post-test comparisons 

within the groups and an analysis of covariance (ANCOVA) was used to determine 

differences between the dynamic and static groups. The statistical analysis was 

conducted using IBM SPSS version 28.   

RESULTS 

The paired sample t‐test results, in Table 1, reveal a statistically significant increase in 

students’ performance from the pre-tests to the post-tests within both dynamic and 

static groups across the various spatial reasoning components—mental rotation, spatial 

orientation, and spatial visualization—indicating a large effect size. These results 

implied that after students had gone through the treatment, they improved significantly 

in all three components of spatial reasoning skills. 

Table 1: Paired Sample t‐Test Results of Pre-Test and Post-Test Scores by Group 

Scores Groups Tests Mean SD t df p Cohen’s d 

Mental 

Rotation  

Dynamic Pre 4.37 1.40 8.99 34 <.001 1.52 

Post 7.23 1.66     

Static Pre 4.60 1.88 10.29 41 <.001 1.59 

Post 7.40 1.50     

Spatial  

Orientation  

Dynamic Pre 6.51 1.44 7.32 34 <.001 1.24 

Post 8.46 1.17     

Static Pre 6.31 1.68 5.17 41 <.001 0.80 

Post 7.86 1.65     

Spatial 

Visualization  

Dynamic Pre 3.40 1.67 7.98 34 <.001 1.35 

Post 6.34 1.71     

Static Pre 3.38 1.82 9.07 41 <.001 1.40 

Post 6.02 1.42     

Spatial 

Reasoning 

(Combined 

Scores) 

Dynamic Pre 14.29 2.85 15.30 34 <.001 2.59 

Post 22.03 3.02     

Static Pre 14.36 3.49 12.85 41 <.001 1.98 

Post 21.29 3.45     
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The ANCOVA results from Table 2 show that there was no statistically significant 

mean difference in the gain scores of students in the dynamic and static group with 

respect to the mental rotation [F(1, 74) = 0.08, p = 0.774], spatial orientation [F(1, 74) 

= 2.89, p = 0.093], and spatial visualization [F (1, 74) = 0.90, p = 0.345] where the pre-

tests were used as a covariate. In total, there was no significant mean difference in the 

gain scores of students in the dynamic and static group with respect to the overall 

spatial reasoning test [F (1, 74) = 1.41, p = 0.239] where the pre-test scores of the 

overall test were used as a covariate. 

Table 2: ANCOVA of Spatial Reasoning by Group 

Spatial 

Reasoning  

Source Sum of Squares df Mean Square F Sig. 

Mental Rotation Pre-test 26.43 1 26.43 12.24 <.001 

Group 0.18 1 0.18 0.08 0.774 

Error 159.86 74 2.16   

Total 4318.00 77    

Spatial 

Orientation 

Pre-test 14.91 1 14.91 7.72 0.007 

Group 5.58 1 5.58 2.89 0.093 

Error 142.92 74 1.93   

Total 5254.00 77    

Spatial 

Visualization  

Pre-test 11.42 1 11.42 4.93 0.030 

Group 2.09 1 2.09 0.90 0.345 

Error 171.45 74 2.32   

Total 3115.00 77    

Spatial 

Reasoning 

(Combined 

Scores) 

Pre-test 189.75 1 189.75 23.10 <.001 

Group 11.56 1 11.56 1.41 0.239 

Error 607.79 74 8.21   

Total 36811.00 77    

 

DISCUSSION AND CONCLUSION  

The present study sought to determine whether there is a difference between students’ 

spatial reasoning test scores through the implementation of in-class activities and 

lessons using dynamic and static visualization instructional approaches to a unit 

geometry transformation. The results showed no statistically significant difference 

between the student’s spatial reasoning test scores when taught with dynamic or static 

visualization instruction. These findings are consistent with previous studies that 



Tay & Preciado Babb 

4 - 264 PME 46 – 2023 

showed non-significant difference between dynamic and static visualization instruction 

(Hegarty, 2004; Tversky et al., 2002). These studies attributed non existing significant 

difference to transient information nature of dynamic visualization which does not give 

permanent information as compared to static visualization. Even though the mean 

difference between dynamic visualization and static visualization groups was not 

statistically significant, there was statistically a significant improvement in student’s 

spatial reasoning test scores within each group. The baseline results showed that 

students within each of the dynamic and static groups, demonstrated far-reaching 

improvements across the three separate measures of spatial reasoning —spatial 

orientation, mental rotation, and spatial visualization—suggesting that their 

improvements were not specific to a particular spatial reasoning element. This result 

concurs with previous studies that found a significant influence of dynamic and static 

visualization instruction on developing spatial reasoning skills (Baki et al., 2011; 

Güven & Kosa, 2008). The significant effect on students’ spatial reasoning skills might 

be attributed to the fact that spatial reasoning could be improved through training or 

targeted instruction (Hawes et al., 2017; Uttal et al., 2013). This possibility is supported 

by the implementations of geometry transformation lessons that involve identifying 

rotation, reflection, and symmetry of objects which indirectly demands mental 

manipulation of spatial information. Engaging students with lived experiences about 

rotating, translating, reflecting, visualizing changes, and imagining the position of two-

dimensional objects after being rotated—which were included in the instructional 

approach for both groups—could directly be linked to developing students’ mental 

rotation skills. 

Another key factor that could influence the significant positive effect of dynamic and 

static visualization instruction on students’ spatial reasoning could be credited to the 

implementations of the ELPSA pedagogy framework (Lowrie & Patahuddin, 2015) in 

designing geometry transformation lessons. Several researchers investigating the 

impact of interventions on transfer between student’s spatial reasoning and 

mathematics achievement do implicitly incorporate a pedagogical framework into 

planning lessons activities (Mix et al., 2020; Sorby et al., 2013; Xu & LeFevre, 2016). 

Some of these studies do not find a significant positive transfer between student’s 

spatial reasoning and mathematics achievement (e.g., Xu & LeFevre, 2016). Studies 

that found a narrow or broader impact involved research participants in various spatial 

tasks prolonged for more extended periods (Mix et al., 2020; Sorby et al., 2013). 

However, it is interesting to know that studies that considered a particular pedagogy 

for the design of lesson activities, such as the present study, had a significant positive 

transfer on students’ spatial reasoning skills (Adams et al., 2022; Hawes et al., 2017; 

Lowrie et al., 2019). These findings suggest that integrating an appropriate pedagogical 

framework into designing mathematics classroom interventions could develop 

students' spatial reasoning skills. 

In general, instruction with dynamic and static visualization positively affects students’ 

spatial reasoning skills across all the sub-components. This current study contributes 
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significantly to the existing literature on improving spatial reasoning among students 

and methods of training for spatial reasoning. This study’s approach to fostering 

students’ spatial reasoning within the context of geometry transformation instruction 

varies from usual approaches to enhancing students’ spatial reasoning skills. Most 

spatial reasoning training interventions have been comparatively short in duration 

involving building blocks, paper folding, and cutting, and playing digit games (Uttal 

et al., 2013). These interventions are primarily designed and implemented by 

researchers themselves. In contrast, this study was conducted within school 

mathematics instruction periods for four weeks in duration (16 hours) with varieties of 

geometry transformation activities that inherently connect to spatial tasks. The lessons 

were designed in collaboration with the students’ regular mathematics teacher and 

implemented by him. Recognizing these differences helps expound the important 

descriptions of this study that might have contributed to the observed findings. 

The findings from the present study have implications for mathematics educators and 

curriculum developers: (i) students’ spatial reasoning skills can be enhanced in the 

context of a geometry transformation instruction, (ii) using both dynamic and static 

visualization instructions with an appropriate teaching and learning framework can 

enhance students’ spatial reasoning skills (iii) mathematics instructional materials 

could consider teaching and learning activities that encourage students’ spatial 

reasoning skills. However, these implications and generalization cannot be extended 

beyond the school where the study was conducted, but schools with similar features. 

Also, the study only focuses on one specific element of geometry and a particular 

pedagogy (ELPSA). This again indicates that results from this study may not be 

generalized to other teaching approaches and other topics in geometry. In the further 

studies, other teaching approaches with difference mathematics content that influence 

students’ spatial reasoning in different grade schools can be explored. Moreover, the 

relationship between geometry transformation and spatial reasoning is still under 

investigation. 
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CONNECTING MATHEMATICS LEARNING TO LEARNING 

ABOUT STRUCTURAL RACISM IN THE UNITED STATES 

Eva Thanheiser and Molly Robinson  

Portland State University 

 

In this paper we examine the experience of mathematics majors enrolled in a course 

focused on examining mathematical concepts while learning about structural racism 

in the United States. Tasks were designed/modified to address both the deep conceptual 

understanding of mathematics in context (such as the meaning of ratio, rate, slope on 

a graph) as well as an understanding of systemic racism in the United States. Students 

developed a deeper understanding of mathematics in context, a deeper understanding 

of structural racism, and a broader understanding of what mathematics is.  

INTRODUCTION & FOCUS OF THE PAPER 

There are long-standing and ongoing calls for making mathematics meaningful, 

relevant, and applicable outside the classroom at all levels of education including the 

university classroom (Consortium for Mathematics and its Applications [COMAP] & 

Society for Industrial and Applied Mathematics [SIAM], 2016; National Council of 

Teachers of Mathematics [NCTM], 1989, 2000, 2014). To prepare democratic citizens 

requires going beyond “everyday” and “abstract” contexts and including the analysis 

of complex social and political issues in the mathematics classroom. In such 

classrooms mathematics becomes a tool for understanding, analysing, and changing 

the world (Freire, 1970; Freire & Macedo, 1987; Gutstein, 2006). This perspective, of 

mathematics as a tool for understanding and critiquing our socio-political world, along 

with other equity and justice concerns, has been endorsed by a number of professional 

organizations in the United States (AMTE, 2017; Larson, 2016; NCSM & TODOS, 

2016; NCTM, 2000, 2014). In this paper we examine the experience of a group of 

mathematics majors who engaged in a course titled The Mathematics of Racism which 

addresses the calls to make math more meaningful and relevant. Students explored 

tasks that addressed both the deep conceptual understanding of mathematics in context 

(such as the meaning of ratio, rate, slope on a graph) as well as an understanding of 

systemic racism in the United States. The focus of this paper is on the following 

question: How did engagement with such tasks effect the students understanding of 

mathematics, understanding of structural racism, and experience in the course? 

THEORETICAL FRAMING & BACKGROUND 

Frames For Mathematics 

Making mathematics meaningful, relevant, and applicable outside the classroom 

requires framing, or reframing, mathematics as a tool for making sense of the world 

and human activity. Lakoff explained “frames are mental structures that shape the way 

we see the world” (Lakoff, 2014, p. ix). Every word evokes at least one frame, but 
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some words can evoke multiple frames. “Most frames are unconscious and have just 

developed naturally and haphazardly and have come into the public’s mind through 

common use.” (Lakoff, 2006, p. 2). Author (blinded for review) lays out three 

interrelated frames for the word mathematics that are in use in the mathematics 

education community: Frame 1: Mathematics as an abstract body of knowledge/ideas, 

the organization of that into systems and structures, and a set of methods for reaching 

conclusions. Frame 2: Mathematics as contextual, ever present, as a lens or language 

to make sense of the world. Frame 3: Mathematics as a verb (not a noun), a human 

activity, part of one’s identity. Each frame has a different implication for what is 

cantered in a mathematics classroom. Of note is that Frames 2 and 3 are both 

necessarily contextual; Frame 2 views math as sense-making in context, while Frame 

3 views math as a contextual human activity.  

Definition of Structural/Institutional Racism  

Structural racism in the United States has been defined by Bailey et al. (2017) as “the 

totality of ways in which societies foster racial discrimination through mutually 

reinforcing systems of housing, education, employment, earnings, benefits, credit, 

media, health care, and criminal justice,” (p. 1453). It has also been defined by 

Lawerence and Keleher (2004) as “ 

the normalization and legitimization of an array of dynamics – historical, cultural, 

institutional and interpersonal – that routinely advantage whites while producing 

cumulative and chronic adverse outcomes for people of color. ( p. 1).  

Taken together, these “patterns and practices in turn reinforce discriminatory beliefs, 

values and distribution of resources,” (Bailey et al., 2017, p. 1453). Structural racism 

is often invisible (Bailey, 2017) because it is everywhere and thus hides white 

supremacy. Another word for structural racism is institutional racism, which has been 

defined as  

patterns, procedures, practices, and policies that operate within social institutions so as to 

consistently penalize, disadvantage, and exploit individuals who are members of nonwhite 

racial/ethnic groups” (Better, 2008, p. 11)  

Institutional racism is “unquestioned, self-perpetuating, and powerful.” (Carroll et al., 

1975, p. 16). Structural/institutional racism (from now on referred to as structural 

racism in this paper) permeates all facets of life including higher education, and 

especially STEM (McGee, 2020), and is the root cause for the opportunity gap (Merolla 

& Jackson, 2019). Structural racism is often invisible to students, especially students 

with privilege. One goal of the Mathematics of Racism course is to make structural 

racism more visible.  

Critical Race Theory & Underlying Assumptions  

This paper draws on Critical Race Theory (CRT) (Ladson-Billings & Tate, 1995; 

Solórzano & Yosso, 2002; Tate, 1997) and its underlying assumptions that race is 

socially constructed (Solórzano & Yasso, 2002). Two definitions of racism guide our 
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work (aligned with Solórzano & Yasso): “the belief in the inherent superiority of one 

race over all others and thereby the right to dominance” (Lorde, 1992, p. 496) and “a 

system of ignorance, exploitation, and power used to oppress African-Americans, 

Latinos, Asians, Pacific Americans, American Indians and other people on the basis of 

ethnicity, culture, mannerisms, and color” (Marable, p. 5). Our methodology is 

informed by several of the CRT tenants developed in the field of education, including 

(a) centrality of racism; (b) commitment to social justice; and (c) interdisciplinary 

perspectives (Davis & Jett, 2019; Delgado & Stefancic, 2001; Solórzano & Bernal 

2001), to examine systems and spaces for white supremacy using mathematics. We 

approach this paper with an understanding of the sociohistorical and political contexts 

of slavery in the US, white supremacy, and antiblackness (Bell, 2018; DiAngelo, 2018; 

D’ignazio & Klein, 2020; Kendall, 2021; Kendi, 2016; Love, 2019; Rothstein, 2017; 

Saad, 2020; Steele, 2011; Tatum, 2017; Wilkerson, 2020) which result in 

overrepresentation of BIPOC (Black, Indigenous, and People of Colour) in certain 

contexts, such as remedial math classes, and underrepresentation of BIPOC in others, 

such as advanced math classes. The underlying assumptions in this paper are that if 

things were fair, everyone would have the same opportunities, and the population 

across all contexts would represent the population at large.   

Seeing/Concretizing Structural Racism Through Exploring Math. 

When teaching with a focus on making sense of both structural racism and a 

mathematics concept the focus of the mathematics classroom expands from Author’s 

(blinded for review) Frame 1 to Frames 2 and/or 3 in which the focus of the context is 

to better understand structural racism. The tasks implemented in this paper all have 

dual, interrelated goals: broadening the students’ understanding of mathematics and 

developing students’ understanding of structural racism in the United States.  

METHODS USED 

The study took place in a mathematics course titled The Mathematics of Racism for 

mathematics majors at a large urban state university. In this course, we used various 

contexts such as the Impact of the 1965 Voting Rights Act (proportional reasoning, 

ratio, rate, percent) on representation in Congress (based on Munter & Haines, 2022) 

and Majority & Power (based on Wolfe & Amidon, 2022).  

Students were asked to examine the contexts with interrelated mathematics content and 

social and political context goals. In addition, we read the book Weapons of Math 

Destruction (O’Neil, 2016). The participants in the study were 12 students enrolled in 

the Mathematics of Racism, a university capstone course. As such all students were 

seniors (in their last term before graduating). Of the 12 students 10 were men and 2 

were women. Of the 12 students 2 identified as Asian and 10 as white. Of the 10 one 

identified as Hispanic while the other 9 identified as non-Hispanic. The focus of this 

course was described as: We will explore how mathematics can be used to understand, 

explore, and investigate racial and social injustices in the United States. We live in a 
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society where mathematics is at the foundation of many injustices. We will use 

mathematics to explore and examine various topics that allow us to understand 

systemic racism in the United States. The first author was the main instructor of the 

course. The course was a 6-credit course that met for 4 hours each week for 10 weeks 

(40 contact hours) and had 2 extra hours for a community project. Students typically 

worked on each task for a two-week period. The first week they examined the task and 

the mathematics, the second they explored further and made predictions. Data sources 

for the study are video recorded interviews conducted in the first week of class with 

each student and a video recorded final presentation presented by each student during 

the last week of class. Questions/Prompts for the interview included: What is math? 

And How would you define structural racism? Can you give an example? Sample final 

presentation prompts included: I used to think math is … Now I think math is …. And 

I used to think structural racism is … Now I think structural racism is … In addition, 

all class activity and student artifacts (Google Slides) were recorded.   

Data was analysed initially by two researchers independently identifying themes for 

student responses, meeting to discuss and agree on a joint set of themes, returning to 

individually code by agreed on themes, meeting to discuss coding. All disagreements 

were resolved through discussion.  

RESULTS 

The students view of mathematics 

The students’ views of mathematics changed from the beginning to the end of the 

course. In the beginning of the course 8 of the 12 students described mathematics as a 

rigid and well-defined set of courses (sequence of topics), objective/neutral, or for 

smart people. The other 4 described it as being about understanding number and 

quantity, deductive reasoning, or getting solutions. At the end of the course all 12 

students stated that math can be applied to anything, is context based, can used for 

good, or misused. We share some sample responses in Tables 1 and 2. 

Table 1: Student responses to what is math. 

 Before the Course: What is math? 

Andrew Umm, I'd say it's like the study of logic and patterns. 

Gunther Math is the study of I mean I guess you could say it's the study of numbers, but I 

guess it's kind of focused on the study of quantities 

Martha Math is using numbers, symbols, and letters to explain and solve problems. 

While the student’s views of mathematics aligned with Frame 1 at the beginning of the 

term, it broadened towards Frames 2 and/or 3 at the end of the course. Broadening the 

view of mathematics majors is particularly important as they are going to be the ones 

who might create new mathematics that could potentially create harm or teach 

mathematics.  
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Table 2: Student responses to I used to think math is … now I think math is … 

 After the course: I used to think math is … Now I think math is …. 

Andrew I used to think math was rigid and well defined. Initially my understanding of math 

was limited to calculus, geometry, algebra, etc. and there wasn’t much more than that 

mathematically. That topics in math could only have specific uses. Now I think math is 

applicable to abstract things and has many interpretations. There are complexities that 

can be interpreted mathematically and often the mathematical approach provides an 

accurate description of an event or occurrence. 

Gunthe

r 

I used to think math was carefully applied to real life in order to avoid getting 

obstructed by the roughness of the real world and causing harm from extrapolation. 

Now I think math is often carelessly harnessed and trusted implicitly. 

Martha I used to think math was the language of science and a neutral tool for solving 

problems. Now I think math is the language of everything and specific care must be 

taken to ensure that the models we make don’t cause harm and unfairness. 

The students view of structural racism 

Table 3: Student responses to what is structural racism 

 Before the Course: How would you define structural racism? 

Luis Structural racism exists throughout our government politics, our legal system. 

Steven I mean I the first thing comes up to me … involves different social classes. I don't 

know if that's true or not. 

Thomas It's like a legacy of racist policies, of like consciously racist policies that, yeah, yeah. 

And then, and then, it's you know it's the unconscious biases that people have on the 

cultural scale, like that everyone has because of that history of pervasive racism 

Table 4: Student responses to I used to think structural racism is … now I think 

structural racism is 

 After the course: I used to think structural racism is … Now I think structural racism is  

…. 

Luis I used to think structural/systemic racism was only seen within government institutions 

that continue to find ways to keep racism alive. Now I think structural/systemic racism 

is everywhere in my life. With the use of math models in private industry, law 

enforcement, and government these models are adding to the structural/systemic racism 

that already existed. 

Steven I used to think structural/systemic racism was discrimination and prejudice against 

different hieratical social class. Now I think structural/systemic racism is unconscious 

prejudice that’s deeply rooted in our institutions, rules, practices or social customs, that 

are not beneficial to people of color. 

Thomas I used to think structural/systemic racism was real, but subtle and difficult to define or 

prove the existence of Now I think structural/systemic racism is a well-defined 

phenomenon for which there is ample data-based evidence. 
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… 

With respect to structural racism the students’ understanding grew from a rough 

understanding of the concept that was limited to some institutions to a broader 

understanding of it being everywhere and being able to give more and more specific 

examples (see Tables 3 and 4) 

After the course, students had a more detailed understanding of structural racism which 

makes it more visible to them, both as mathematics majors and as participants in the 

United States. 

What was this course about? 

When asked at the end of the course what students thought the course was 11 out of 13 

stated that it was about understanding systemic racism with math, the connection of 

math to our world, and how misunderstanding math can have huge impacts on our 

lives. The two who did not mention this focused on visualizations to communicate 

math, which was also a large part of the course.  

CONCLUSIONS 

The dual goals of this course was to broaden mathematics majors’ view of what 

mathematics is and develop a lens for seeing structural racism in the United States. 

Both goals were achieved, thus showing that it is possible to teach math in a way that 

allows students to understand the world they live in, even at the college level, and 

broaden their understanding of what mathematics is.  
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APPLETS AND PAPER & PENCIL TASKS AS RESOURCES FOR 

WORKING WITH MATHEMATICAL REPRESENTATIONS 
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Integrating applets into mathematics lessons is a challenge for elementary school 

teachers. The current study aims to evaluate to what extent applets chosen by the 

teachers functioned as resources, as compared to paper & pencil resources in 

mathematics lessons. In this study 42 teachers used, for the first time, applet activities 

in their lesson as well as paper & pencil tasks. The analysis focused on two 

mathematical aspects: the mathematical content and the required competence when 

engaging with representations. The findings show that teachers tended to prefer the 

applet activity over the paper & pencil task regarding representations. Furthermore, 

teachers preferred activities that move from the concrete to the abstract and not the 

opposite, regardless of the resource type. 

INTRODUCTION AND THEORETICAL BACKGROUND   

Visual representations can be classified into static or dynamic representations. In 

school, static representations include pictures in books, drawings, or sketches. 

Dynamic representations are presented in digital environments. Representations in 

digital environments were regarded as dynamic only when the user could interact with 

the objects on the screen (Moyer-Packenham & Bolyard, 2016). The user can 

manipulate the object on the screen in ways similar to manipulating concrete 

manipulatives. The user can slide, flip, and turn objects by using the computer interface 

almost as if they were concrete 3D objects. Moyer, Bolyard & Spikell (2002) 

emphasize that the added value of these dynamic representations lies in their allowing 

the user to derive meaning based on their actions. The virtual manipulative 

environments enable users to engage in an activity in a way that helps them discover 

and construct mathematical principles and relationships (ibid). Calder & Campbell 

(2016) add that the visual and dynamic elements of digital technologies change the 

way knowledge and understanding occur in learning.  

Computer technologies have become powerful educational tools, leading many 

countries and individuals to turn them into solutions for educational needs (Meziane, 

et al.,1999). A wide variety of educational applets are available today over the internet 

(Kay, 2018), many of them being designed purposefully for education.  

Mathematics resources can extend beyond the material object to incorporate human 

and cultural aspects, requiring teachers to shift from focusing on 'what' the resources 

are to 'how' they function in the classroom. (Adler, 2000). Previous studies have 

examined how applets functioned as resources in different mathematical contents, such 

as whole numbers (Loong, 2014), fractions (Reimer & Moyer, 2005), data and statistics 

(Suh, 2010), or geometry (Ng, Shi & Ting, 2020). Other studies asked to estimate 
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applets' use relative to the mathematics competencies described in the curriculum, such 

as solving word problems (Lantz-Andersson et al., 2009) or higher-order thinking tasks 

(Lingefjard & Ghosh, 2022). 

Two aspects concerning the teaching of mathematics in elementary school are 

discussed in the Israeli curriculum. The first describes the mathematical content that 

should be taught, while the second explains the required competencies and the 

corresponding learning opportunities that should be provided for students (INMPSC, 

2006). The use of the applets and paper & pencil tasks as teaching resources is at the 

heart of this study. Hence, the study focuses on these two aspects. 

RESEARCH QUESTIONS 

In the context of elementary school teachers teaching a lesson for the first time in which 

they choose an applet and a paper & pencil task to implement in their class, we ask: 

1)  What connections may be found concerning the mathematical content between the 

applet activity and the paper & pencil task? 

2) To what extent do the applet activity and the paper & pencil task provide 

opportunities to learn related to the representation competence? 

METHODOLOGY  

Forty-two elementary school teachers participated in a professional development 

program aimed at embedding mathematical applets in their teaching sequences. For all 

the teachers it was their first-time integrating applets into the teaching sequence. 

Two complementary tools were used for data collection: (1) each teacher was asked to 

plan a lesson that used a mathematical applet along with the paper & pencil task, to 

enact the lesson in their class, and write a report about the implementation and a 

personal reflection, and (2) each teacher was asked to provide a short oral report on 

their experience in class, which was video recorded.  

Data analysis 

As mentioned above, the applet and the paper & pencil task were the mathematical 

resources that were used in the lessons. These resources and their mathematical role 

were examined relative to their contents and their required competence. Each lesson 

was classified into one of four general mathematical content areas: whole numbers, 

fractions, data and statistics, or geometry. To determine whether the mathematical 

goals of these resources implemented in the same lesson were similar, the specific 

mathematical content of the applet was compared to that of the paper & pencil task. 

For example, the following applet and paper & pencil task were identified as similar, 

as the two resources both dealt with whole numbers, including place value (3rd grade). 

The activity in the applet was "How many balls (presented visually and dynamically 

on the screen) are on the surface?"; and the activity in the paper & pencil task was 

"Suggest different ways to decompose the number 853. (Use a variety of ways that are 

beyond the decimal decomposing)". The following resources were identified as 
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different. The activity in the applet was "Which part of the birds (presented on the 

screen standing on a wire) is green? Write as a fraction", which dealt with Fraction as 

a part of quantity, operations in fractions (4th grade); while the paper & pencil task 

was "Write a verbal story suitable for the exercise 
2

3
∗ 6", which dealt with Multiplying 

a whole number by a simple fraction (6th grade, or 5th in case they interpreted 

multiplication as repeated addition). 

Whenever representations supported the competence of transition from the concrete to 

the abstract or vice versa, the resource was classified according to the way it was 

utilized and the direction of the transition, as shown in Table 1. 

 

The 

required 

competence  

Description An example of applet 

activity 

An example of a paper & 

pencil task 

Transition 

from 

concrete to 

abstract  

The resource - directs to 

convert visual (and 

dynamic) representations 

into abstractions 
*Tom covered half the 

cake with raspberries 

and ate 1/4 of it. What 

part of the cake did 

Tom eat? 

 

Suggest different ways to 

calculate the area based on 

dividing the rectangles into 

sub-areas.  

Transition 

from 

abstract to 

concrete  

The resource - directs to 

convert abstractions into 

visual (and dynamic) 

representations.  
*Press on all the acute 

triangles. 

On five identical rectangles, I 

will ask the students to draw 
1

4
 

in different ways. 

Table 1: The required competence regarding representations and its reflection in the 

resource. 

Not all visual elements can be considered mathematical representations. When the 

visual element was aimed at motivating the user (Ben-Haim, Cohen & Tabach, 2019), 

it was not considered a mathematical representation. Also, in some cases a quantitative 

representation may express a change in the level of abstraction, but not a change 

between the concrete and the abstract. The analysis did not include such cases. 

FINDINGS  

Table 2 shows a distribution of the 42 lessons according to two aspects: the 

mathematical content and the required competence regarding representations. This 

forms the basis for answering the two research questions.  
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Table 2: The mathematical content and the required competence in the resources.  

The mathematical content of the activities The required competence regarding representations 

Specific  General The applet activity The paper & pencil task 

From 

concrete to 

abstract 

From 

abstract to 

concrete 

From 

concrete to 

abstract 

From 

abstract to 

concrete 

S
im

il
ar

 (
3
2
) Whole numbers (14)* 7 1 3 2 

Fractions (9) 5 2 1 2 

Data and statistics (2) 2 -- 1 -- 

Geometry (7) 4 3 4 1 

D
if

fe
re

n
t 

(1
0
) Whole numbers (3) 1 -- -- -- 

Fractions (7) 5 2 1 2 

Data and statistics  -- -- -- -- 

Geometry -- -- -- -- 

Total (42)  24 8 10 7 

*The numbers in brackets refer to the distribution of 42 lessons according to the 

mathematical content (specific /general). In addition, the numbers in the row(s) do not 

add up to 14. This is because the required competence could be reflected during the 

same lesson in more than one way and through more than one resource. Alternatively, 

in some lessons, it may not appear at all. 

Research question 1: What connections may be found concerning the 

mathematical content between the applet activity and the paper & pencil task? 

As Table 2 shows, in 32 lessons both resources referred to the same specific 

mathematical content. That is, for most teachers the choice of an applet from the 

database was accurate concerning the mathematical content of other resources in the 

lesson. This choice might have been made possible with the aid of the applets' 

classification system, which allowed teachers to identify suitable applets according to 

learning goals. Thus, the teachers could see beyond the interactive elements (visual and 

dynamic) of the applets despite the richness of the computerized environment. 

When classifying all lessons into four general mathematical content areas, most of 

them dealt with whole numbers (17 lessons) and fractions (16 lessons). A small number 

of lessons dealt with geometry (7 lessons) and only two dealt with data and statistics. 

Contrary to expectations, geometry, whose visualization is an integral part of learning, 

was not prioritized when using applets. To make sense of these findings, in elementary 

mathematics curriculum there is a ratio of 1:6 between geometry lessons and all 

mathematics lessons. We found that a similar ratio of 7:42 was maintained in our study. 

We note that for the 42 participating teachers, it was the first time an applet was 

incorporated into the teaching sequence. Hence, it is possible that what led the teachers 
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to choose the applets was the representation’s added value. When it comes to whole 

numbers and fractions, the applets serve as a significant visual support to the lack of 

resources in class in general (concrete manipulatives or textbooks). But in geometry, 

the textbooks include a wealth of relevant representations. 

Research question 2: To what extent do the applet activity and the paper & 

pencil task provide opportunities to learn related to the representation 

competence? 

This question was addressed by comparing between and within the applet and the paper 

& pencil task concerning identifying the transition between the concrete and the 

abstract and vice versa.  

Comparing the two resources, the applet activity provided a more extensive response 

to the required competence relating representations compared to the paper & pencil 

task. In 31 lessons, the representations in the applet supported the required competence. 

For 30 of them, the transition was in one direction, either from concrete to abstract or 

from abstract to concrete. The paper & pencil task supported the required competence 

in only 17 lessons. 

Concerning each part of the required competence separately (from concrete to abstract 

or from abstract to concrete): A total of 24 teachers selected an applet that provided an 

opportunity to learn the transition from concrete to abstract, while only ten paper & 

pencil tasks enabled this transition. It seems that the applet's environment provided a 

visual and dynamic richness that made it ideal for activities that provide a transition 

from the concrete to the abstract. However, in the transition from the abstract to the 

concrete, the applets (8) did not prove superior to the paper & pencil task (7). These 

findings raise questions, particularly since the computerized environment is 

characterized by accuracy in drawing, which might help in moving from the abstract 

to the concrete. Why did the teachers prefer not to use such a visually and dynamically 

rich environment over one that is implemented with paper & pencil? A possible 

explanation for this finding is that the teachers might not consider the accuracy of the 

drawing as significant. Any activity that enables the transition from the abstract to the 

concrete, even if not accurate, may have been seen as sufficient; a different explanation 

might be that teachers may have avoided giving their students activities that were 

visually and dynamically complex within the applet.  

Comparing within each resource, the majority of teachers (24) preferred applets that 

supported students' transition from the concrete to the abstract, and a minority of them 

preferred applets that supported the transition from the abstract to the concrete (8). It 

is difficult to determine whether this ratio of 1:3 reflects the existing ratio of applets in 

the technological environment. For the paper & pencil tasks, teachers also preferred 

the transition from the concrete to the abstract, although the proportion was lower than 

in the applet. We can conclude that teachers preferred a transition from the concrete to 

the abstract, regardless of the resource that was in use. 
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Examining each mathematical content separately, we found that when using the applets 

for whole numbers and fractions, the teachers preferred the transition from the concrete 

to the abstract. For data and statistics, the applets served only the transition from 

concrete to abstract. This may be because this topic is deeply rooted in concrete, 

everyday life. In geometry, there was no difference between a transition from concrete 

to abstract (4) or abstract to concrete (3) when using the applets. It seems that for the 

teachers the applet environment did not offer any significant advantages over the visual 

environment in the textbooks. Teachers might not attribute much mediating value to 

the dynamic applets over paper & pencil tasks in geometry. In the paper & pencil tasks, 

the most noticeable difference was in fractions and geometry. In fractions, there were 

more tasks involving the transition from the abstract to concrete (4) and not from the 

concrete to abstract (2). In geometry, the activities from the concrete to abstract (4) 

were more than the abstract to concrete (1). This might be because the teachers might 

have tried to avoid giving their students tasks that required precise drawings. 

SUMMARY AND DISCUSSION  

Our study examined how applet activities and paper & pencil tasks were used as 

resources in mathematics lessons. This was done by focusing on two mathematical 

aspects: the mathematical content and the required competence when engaging with 

representations. The two research questions guide the discussion. 

Research question 1: What connections may be found concerning the 

mathematical content between the applet activity and the paper & pencil task? 

In this study, most teachers selected both resources so that the specific mathematical 

content in the applet activity was in coherence with the paper & pencil task. We 

assumed that this finding could be explained by the applet classification system the 

teachers used, which was accurate relative to the specific mathematical content. This 

finding is consistent with the study by Cabezuelo (2021). The researcher sheds light on 

the complexity involved in designing those systems. Indeed, it appears that the design 

solution of applet categorization, based on the domain's conceptual system, helped 

locate resources in the database.  

As for the general mathematical content, only a sixth of the lessons dealt with 

geometry. This was contrary to our expectation that the visual richness of the 

technological platform would encourage teachers to conduct geometry lessons 

incorporating applets. Our findings are in line with Polly's study (2017). He found that 

only 9.28% of teachers reported enriching the curriculum with additional resources in 

geometry using internet resources. Hence, we may assume that curriculum contents 

available to teachers in the field of geometry (in textbooks, for example) are sufficient. 
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Research question 2: To what extent do the applet activity and the paper & 

pencil task provide opportunities to learn related to the representation 

competence? 

For the transition from abstract to concrete, teachers showed no preference for a 

resource type. However, for the transition from concrete to abstract, teachers preferred 

applet activities over paper & pencil tasks. This finding may be explained based on 

Lee and Tan (2014). According to the researchers "virtual manipulative (is) narrowing 

(…) the cognitive gap between the concrete and pictorial representations" (p.108). 

They add that the ultimate goal, however, is to move from pictorial to abstract 

representations. Given that, our study may indicate teachers' pedagogical preference 

for dynamic over pictorial representations to scaffold students' ability in abstraction. 

Within each resource, teachers preferred activities that deal with the transition from the 

concrete to the abstract, regardless of the resource used. The teachers' view, in our 

study, is in line with the Concrete-Pictorial-Abstract approach to mathematics 

teaching, which guides planning lessons that enable movement from the concrete to 

the abstract. According to this approach, to reach abstraction, one must first deal with 

the concrete (Lee & Tan, 2014).  

Within each resource when using applets, teachers preferred the transition from the 

concrete to the abstract for three mathematics contents: whole numbers, fractions, and 

data & statistics. In paper & pencil tasks, teachers preferred the transition from concrete 

to abstract only in geometry. Also, they preferred the transition from the abstract to the 

concrete only in fractions. In their study, Divrik and Pilten (2021) examined students' 

performance in paper & pencil tasks on fractions. They found that in two fraction tasks, 

one dealing with the transition from abstract to concrete and the other dealing with the 

transition from concrete to abstract, the students achieved similar levels of success 

(90% and 88% respectively). These findings do not provide a sufficient explanation, 

and this question requires further investigation. 
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In 2022, the Chinese Ministry of Education has released new Standards for primary 

and junior-high mathematics education. The Standards seem rooted in its authors’ 

(expert) mathematical frame of reference, including an organization along a big idea 

of counting-units. Yet, this big idea opens the door for grounding the Standards in a 

constructivist, units-and-operations model that explains mathematical thinking and 

learning from the child’s (inferred) frame of reference. In this theoretical paper, we 

offer brief overviews of the new Chinese Standards, including the big idea of counting-

units, and of the constructivist (mental) units-and-operations model. Then, we propose 

how the latter can serve as a cognitive grounding of the former. Finally, we discuss 

potential benefits and importance of such grounding, as well as its likely challenges. 

 

Mathematics education communities around the world (hence, PME) face a paramount 

issue: Can and how may research become relevant for practice at a national scale? We 

thus address the research problem: How may an empirically grounded, units-and-

operations (constructivist) model guide choices made by curriculum designers, math 

teacher educators, and classroom teachers about (a) goals for students’ learning and (b) 

instructional materials and methods to achieve them? Addressing such a problem in 

the Chinese context seems a conducive start, as it illustrates implementation of such 

choices at a very large national scale. In this paper we provide some preliminary 

insights into this great opportunity and formidable challenge. 

As a theory of knowing and learning (not of teaching), constructivism can inform 

curriculum and teaching practices (Simon, 1995; Steffe, 1990). It helps ground 

mathematics teaching as it addresses two central questions that underlie research and 

practice: (a) what does it mean to know (or not) a mathematical concept and (b) how 

may a person come from not knowing to knowing it? We contend that such answers 

can underlie mindful, effective teaching aiming to accomplish mathematical standards, 

by explaining why selected instructional methods and materials may foster intended 

conceptual advances. Such answers are instrumental when, as it often happens, some 

or all students fail to make the intended advance despite their teachers’ earnest efforts. 

Simply put, grounding mathematical standards in a constructivist theory can provide 

teachers with a lens through which to examine, and continually improve, their practice. 

Our focus on the Chinese context is motivated by two lines of work. First is the plethora 

of recent mathematics education research by Chinese and international researchers. 
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Chinese student outcomes on international comparative studies (OECD, 2020) seemed 

a major incentive for this growth in scholarly interest. Researchers thus undertook 

studies to examine aspects of Chinese students’ learning of mathematics as well as of 

teaching practices used to achieve these outcomes (Ding et al., 2022).  

We are also motivated by the recent commitment in China to reform and enhance its 

mathematics education, manifested through the publication and revision of its national 

Standards (Ministry of Education of the PRC, 2001, 2011). These Chinese Standards 

indicated a unique integration of reform foci (e.g., reasoning, critical thinking, problem 

solving) into a national system. The new, national Standards (Ministry of Education of 

the PRC, 2022) for mathematics in Chinese primary and junior-high schools further 

showed this continual enhancement effort. These new Standards included a major 

revision of primary school mathematics around big ideas, among them “counting-

units” (Gong et al., 2022; Ma, 2022). Next, we turn to key aspects of this revision. 

CHINESE NEW STANDARDS FOR PRIMARY SCHOOL 

A major thrust for the recently revised Standards (2022) has been to create a structured 

integration of curricular contents by enhancing the mathematical integrity, consistency, 

and stages of learning themes in grades 1-9 (Ma, 2022). The Standards’ authors 

endeavoured to find big ideas that can help integrate learning themes in four main 

fields: number and algebra, geometry, statistics and probability, and synthesis and 

practice (i.e., problem solving, project-based learning). They chose counting-units as 

one such organizing big idea. Using it enabled, for example, to revise six previous 

(scattered) themes in Number and Algebra into two themes organized through the lens 

of counting-units: (a) Numbers and Operations and (b) Quantitative Relationships.  

The counting-units big idea seems rooted in the Standards authors’ (expert) frame of 

reference. Ma (2022) noted that “operations in primary school are all number 

operations, including integer, decimal, and fraction operations. Numbers and 

operations are inseparable … Every subsequent [natural number] (+1) is added from 1 

to get a new number, which contains the operation of addition” (pp. 35-36). When 

claiming that an expert’s mathematical knowledge serves as the frame of reference, we 

underlie an issue: “For whom” does the big idea make sense? For example, Gong et 

al.’s (2022) characterisation of numerical operations does not seem (to us) to reflect an 

elementary student’s frame of reference: “One is the borrowed definition. For example, 

we define 2 = 1 + 1 and 3 = 2 + 1 (Peano's system of arithmetic axioms), so that 1 + 1 

= 2 and 2 + 1 = 3 …” (p. 47; italics added by this paper’s authors). Such an expert’s 

stance also seems a reason to claim that the meaning of all arithmetical operations “can 

be reduced to additive operations” (p. 45) and that “[t]he search for the arithmetic and 

algorithm of multiplication can, of course, be simply reduced to addition” (p. 48).  

Most importantly, for us, is the underlying, expert’s understanding that the operations 

are on numbers with the same counting-units: “The addition calculation of integers, 

decimals, and fractions can be understood as the addition of numbers in the same 
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counting-unit” (Ma, 2022, p. 36). Gong et al. (2022) further explicated the assertion 

that the essence of counting activities is to create counting-units:  

There are two main lines in the development of … counting activities: one is the generation 

and development of counting symbols, that is, from physical symbols to pictographic 

symbols, and then to abstract symbols; The second is the development of counting 

methods, that is, from "one by one" (non-carry system) to "group by group" (carry system, 

进位制), from [a] counting symbol representing the same value at different places (non-

place value system) to representing different values (place value system) … [It] can be 

seen that fractions are no less dependent on counting-units than integers. (pp. 46-47) 

Another example of this assertion is given by Ma (2022) regarding the meaning and 

expression of numbers as abstract symbols of counting-units: “35 indicates three tens 

(TENS) and five ones (ONES), 3/5 denotes three 1/5s (fractional units), -35 denotes 

the amount opposite to 35, and so on.” (p. 40).  

To recap, the new Chinese Standards emphasise the big idea of counting-units as a 

useful, expert’s lens for integrating numbers and operations into a whole that can serve 

as a basis for students to grasp substantial aspects of required mathematical knowledge. 

We emphasise the expert’s frame of reference as an asset of what standards can and 

should do: provide aims for mathematics teaching. We now turn to a useful tool for 

explaining how 1-9 students may experience and come to grasp mathematics in their 

frame of reference – and thus for grounding Standards in a theory of learning. 

A CONSTRUCTIVIST UNITS-AND-OPERATIONS MODEL 

A constructivist research program, led by Steffe and colleagues (Norton, 2018; Steffe, 

1992; Steffe & von Glasersfeld, 1985), has been creating models of children’s 

mathematical thinking and learning. These researchers explicated that such models 

strive to explain mathematics from the child’s frame of reference as inferred by the 

researchers. To distinguish between the two frames of reference, Steffe (2000) coined 

the terms first-order and second-order models. A first-order model consists of the 

mathematical ways one uses to explain their reality, whereas a second-order model 

consists of explanations of someone else’s mathematical (experiential) reality. 

A core premise of this research program is Piaget’s (1985) construct of assimilation. It 

entails that any person can only interpret and act in their milieu by using mental 

structures – schemes – that are already available to them. Glasersfeld (1995) postulated 

that assimilatory schemes consist of three inseparable parts: a situation (“recognition 

template”) that interprets perceptual and/or mental ‘input’ and sets a goal, a mental 

activity (i.e., operation) triggered to accomplish that goal, and a result brought about 

by that goal-directed activity. Using this three-part construct, models of children’s 

mathematical thinking and learning focus on what is inferred to be the child’s 

intentions (goal) and operations (activity) on units that the mental system constructs 

and on the effect(s) of those operations that the child notices and explains. The premise 

of assimilation underlies the “for whom” issue we emphasised above. For example, the 

phrase “35 indicates three tens (TENS) and five ones (ONES)” may be obvious to an 
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adult (or a child) who has constructed a scheme for coordinating these two types of 

units. However, for many children, such a phrase may only indicate an anticipation of 

a collection of thirty-five ONES, or a less advanced, retroactive anticipation after 

having counted 35 objects in a 1-to-1 correspondence, or a much less advanced 

anticipation of “35” being the result of rote counting from 1 to 35. 

Units-and-operations models of children’s mathematics have explained conceptual 

progressions from prenumerical, through numerical (additive and multiplicative), to 

fractional and algebraic reasoning (for a summary, see Tzur, 2019b). In this paper, we 

focus on three main characterisations that underlie those specific models. The first 

pertains to the nature of units (perceptual, figural, or abstract). The second pertains to 

the “size” of units (singletons or 1s), composite units (larger than and composed of 1s 

or other units), and compilations of composite units. The third pertains to the operations 

one uses with units (e.g., iterating, disembedding, distributing) and the levels of units 

one can coordinate upon assimilating a task (Norton et al., 2015). 

For space reasons, we illustrate those three characterisations with an example of a child 

who was asked to build 5 towers of 3 (red) cubes each and 7 towers of 3 (blue) cubes 

each. Then, a researcher covered the first set (red) with a piece of paper on which “5 

towers, 3 cubes each” is written and the second set with another, similarly written piece 

of paper and asked: How many red cubes are there? If only operating on perceptual 

units, the child would say, “I cannot tell unless lifting the paper.” With permission to 

do so, the child will point to each cube while counting from 1 to 15. If operating on 

figural units, the child may leave the cubes covered and use right-hand fingers as 

substitute items (1s) for the hidden cubes (1-2-3; 4-5-6, etc.) while keeping track of the 

triplets (composite units) on their left-hand (1-2-3-4-5). A child who operates on 

abstract units may say: “1 tower is 3 cubes, … 5-is-15,” likely coordinating accrual of 

both unit “sizes” – 1s and composite. The child may then be asked: How many more 

blue cubes are there than red cubes? The child may first find the total of 1s in each 

compilation and then subtract (e.g., 7x3=21; 5x3=15; 21-15=6), or first find the 

difference in composite units between compilations (subtracting 7-5=2) and then 

operate multiplicatively on the resulting 2 composite units of 3 cubes each (2x3=6). 

McClintock et al. (2011) and Wei (2022) postulated that a scheme coordinating those 

total-first and difference-first strategies, called unit differentiation and selection 

(UDS), provides a cognitive basis for the fundamental, distributive property.  

Critically for the units-and-operations model, at issue is not mainly or just the fact the 

child obtained a correct answer to all tasks. Rather, it is the child’s intentions and 

actions in terms of the nature, size, and operations used to solve it. Thus, for example, 

using this model leads to clearly distinguishing between additive and multiplicative 

reasoning. The former involves no change in units (e.g., 3 cubes + … + 3 cubes = 15 

cubes). The latter involves operating on units by distributing items of one composite 

unit over items of another, very different composite unit to find a total of yet another 

type of unit (e.g., “3 cubes-per-tower” x “5 towers” = “15 singletons”). Explaining 

multiplication this way means coordinating at least two levels of units, whereas the 
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response to the difference between two compilations (7-5) likely involves three levels 

(1s, composite units, and compilations). Thus, whereas a two-level units coordination 

may be sufficient to operate with 10s and 1s (e.g., to consider 35 as 3 TENS and 5 

ONES), operating simultaneously on three levels of units is needed to meaningfully 

operate with 100s, 1000s, and larger units. In fractions, similar characterisations (see 

Tzur, 2019a) include unit fractions as multiplicative relations – not just/mainly parts 

of whole (e.g., 1/5 is a unit that the whole is 5 times as much of it), composite fractions 

as dual multiplicative relations (e.g., 3/5 is a unit that is 3 times as much as 1/5), and 

fractions of fractions (e.g., 1/6 is 1/3 of 1/2 of the whole and 1/4 of that unit fraction is 

1/24 of the whole – a 3-level unit coordination).  

GROUNDING CHINESE NEW STANDARDS IN UNITS-AND-OPERATIONS 

MODEL 

The units-and-operations model is rooted in the constructivist scheme theory 

(Glasersfeld, 1995). In it, the answer to what it means to know a concept is to have an 

anticipation of the relationship between a mental, goal-directed action – operation 

on/with some units – and the effects of that mental operation. For example, in the task 

about 7 and 5 towers (3 cubes each), constructing a UDS scheme entails having an 

anticipation that total-first and difference-first sequences of operations on composite 

units and 1s in them necessarily produce the same answer. Such an anticipation 

provides a cognitive basis for sensibly using the distributive property. 

The units-and-operations model is situated in a constructivist stance on conceptual 

change. To explain how a person may advance to knowing a new (to them) concept, 

the theory builds on Piaget’s (1985) premise of reorganization, which has profound 

consequences for teaching. According to this premise, a concept that someone does not 

yet know cannot be simply “transmitted” or “added-up” to what they already know. 

Rather, reorganization entails that all new knowledge is constructed through a person’s 

active process, termed reflective abstraction, of mental changes to schemes that are 

already available to them. Simon et al. (2004) elaborated on it, postulating a 

mechanism termed reflection on activity-effect relationships (Ref*AER), so it could 

inform teaching. In a nutshell (for details, see Tzur, 2019a), the mental system uses 

two types of reflections and advances through two main stages, while beginning from 

an available scheme and reorganizing the anticipation of effects linked to previous 

goal-directed operations on units into a new anticipation. To illustrate how a units-and-

operations model can provide grounding for the Chinese Standards, we use an example 

corresponding to those found in Ma (2022) and Gong et al.’s (2022) papers. 

Tzur et al. (2013) postulated a 6-scheme conceptual progression in multiplicative 

reasoning; the UDS scheme discussed above is the third. Wei (2022) explained that the 

UDS scheme is a reorganization of the first two schemes, albeit in a reverse order: A 

person first finds the difference in composite units (second scheme, e.g., 7-5=2 towers) 

and then the total of 1s just in those two composite units (first scheme, e.g., 2*3=6 

cubes). UDS can then be reorganized into a fourth scheme, mixed-unit coordination 
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(MUC), a basis for mindful operations in a place value, base ten system. Consider this 

task (bag = 10 oranges; box = 10 bags): School A has 2 boxes + 4 bags + 19 oranges; 

School B has 1 box + 16 bags + 11 oranges. Which school has fewer oranges and by 

how many? A first-order model of an adult likely includes coordinating multiplicative 

operations on composite units containing 10 bags of 10 oranges each. This seems to 

underlie an “obvious” solution that involves “counting units” of 1 in each of the given 

quantities separately (e.g., box=100, bag=10), and adding the 1s before comparing 

them (e.g., School A: 2*10*10+4*10+19=259; School B: 1*10*10 + 16*10 + 11=271).  

However, using a new (validated) assessment of multiplicative reasoning, our data 

about Chinese primary students’ solutions to such problems (forthcoming) showed that 

~50% of them gave erroneous answers. In those students’ frame of reference, it made 

sense to count (add) units of different magnitude (e.g., School A has 2+4+19=25, 

School B has 1+16+11=28). They likely assimilated the task into a scheme in which 

composite units (e.g., bags) are yet to be distinguished from compilations of those units 

(e.g., boxes), whereas operating multiplicatively on such different-magnitude units 

requires three-levels of coordination (e.g., a box is 10 bags of 10 oranges). That is, 

operating on and distinguishing units seems necessary for them to properly count units. 

Grounding Standards pertaining to relevant concepts (e.g., place value) would entail 

helping teachers develop a second order model that includes understanding why such 

erroneous answers make sense to the student and how instruction may foster 

reorganization of available schemes, so they construct a proper anticipation.  

DISCUSSION: POTENTIAL BENEFITS, IMPORTANCE, AND LIKELY 

CHALLENGES 

In this paper, we attempted to make a modest contribution to the potential impact that 

mathematics education research and theory may have on practice. Specifically, we 

examined how the Chinese new Standards (2022) may be linked with and grounded in 

a constructivist, units-and-operations model. Such grounding can strengthen linking of 

Standards content coherence with stages in students’ mathematical development. We 

contend that such grounding can enhance large-scale efforts to reform practices at a 

national level. In this way, our paper also contributes to attempts of linking research in 

diverse social-cultural settings to benefit students’ learning (see Ding et al., 2019). 

We recognize three challenges that our approach introduces. First, Chinese colleagues 

in our team noted the use of “didactics” as a term used in their country in reference to 

cognitive development. However, as discussed in this paper, a key challenge they point 

to is how to promote the necessary distinction between students’ and experts’ frames 

of reference, among the authors of the Standards and ultimately among teachers. 

Teachers’ construction of second-order models can be very difficult and require 

substantial, targeted professional development (PD). A second challenge is the 

additional work required of mathematics educators (e.g., in China) to both distinguish 

and explicitly link conceptual progression frameworks (see Steffe & Cobb, 1988; 

Steffe & Olive, 2010; Tzur, 2019b) with curricular sequencing proposed in the new 
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Standards (2022). Our examples of two schemes (UDS and MUC) in the progression 

of multiplicative reasoning give a hint at this direction. A third and perhaps the most 

serious of all challenges is the work required, with mathematics educators and teachers, 

to revise their practices to reflect what Tzur (2013) called student-adaptive pedagogy. 

Such a pedagogical approach embraces a mindset and practice of tailoring curricular 

goals and activities to students’ conceptual whereabouts. To this end, substantial PD 

efforts will need to focus on providing teachers with instructional materials and 

methods that not only augment the Standards with conceptual underpinnings (e.g., of 

the counting-units big idea) but also let teachers go beyond “following” the examples 

of expert teachers to flexibly and mindfully foster learning as a reorganization of what 

students do know, that is, to have agency in implementing their practice. 
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This paper reports a study investigating the quality of advanced mathematics lectures, 

in particular regarding the presentation of theorems and proofs. We compare the 

presentation of theorems and proofs given in two real analysis courses by two different 

lecturers using a structured observation tool. The results show, that informal parts of 

theorems and proofs were underrepresented in both lecture courses. Nevertheless, we 

could identify differences in the ways theorems and related proofs were presented with 

regard to different phases of the processes of proof construction. Thus, students might 

have developed different proving skills as well as different understanding of proof 

construction and methods of proving by both lecturers. Finally, we discuss implications 

for future investigations based on our results. 

INTRODUCTION 

Advanced mathematics lectures are challenging for many students. This could be one 

reasons why many first-year students drop out from their mathematics study programs 

or change to another subject (Geisler, 2020). Paoletti et al. (2018, p. 2) state that 

mathematics lectures “have been unsuccessful in promoting student learning”. 

Nevertheless, lectures are still the most common teaching mode at many universities 

(e.g., Artemeva & Fox, 2011). Despite the critical responses to lectures, Fritze and 

Nordkvelle (2003, p. 328) say: “[T]he lecture survives, probably because it serves 

many functions not so well observed in the present research”. Because lectures remain 

a dominant teaching format in advanced mathematics, more research analysing the 

quality of mathematics lectures is necessary. Actually, we have found only a few 

empirical studies concerning characteristics and quality of mathematics lectures (e.g., 

Viirman, 2014; 2021; Rach et al., 2016).  

Weber (2004, p. 116) describes mathematics lectures as a “definition-theorem-proof” 

format. Moreover, mathematics lectures usually consist of “chalk talk” (Artemeva & 

Fox, 2011): a lecturer writes mathematical content on the board or a screen and makes 

some oral comments concerning this content. In this paper, we present results of an 

observation study concerning the presentation of theorems and proofs in mathematics 

lectures – as a possible quality criterion – supported by a structured observation 

protocol. In the following, we describe our theoretical framework for quality criteria 

of mathematics lectures as well as previous research regarding the presentation of 

theorems and proofs in mathematics lectures. 
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THEORETICAL PERSPECTIVE 

Quality criteria of mathematics lectures 

There is no common shared definition of quality regarding advanced mathematics 

courses or university teaching at all. Kiendl-Wendner (2016) states that university 

quality can be characterized according to the following features: forms including macro 

level (whole university) and micro level (single courses), and dimensions including 

process quality (clearly defined processes with standardized procedures), result quality 

(achievement of the goals set) and structural quality (adequacy of resource allocation). 

Because German and international undergraduate mathematics courses usually consist 

of lectures (e.g., Pritchard, 2015; Artemeva & Fox, 2011), we take a closer look at the 

micro-level-quality of mathematics lectures and investigate their process quality. 

We use a synthesis of two definitions to describe a lecture. Viirman (2021, p. 467) 

defines a lecture as “a teaching mode involving one teacher and a large group of 

students with communication mainly directed from the teacher to the students [...]”. In 

addition, lecturers give their lectures usually “on a pre-announced topic […]” 

(Bergsten, 2007, p. 48).  

Theoretical conceptualizations concerning the quality of mathematics lectures are 

scarce. Lamm et al. (2022) have already evaluated the quality of instruction in post- 

secondary mathematics courses. Because their framework is tailored towards 

community college mathematics courses, it seems less adequate for proof-based 

mathematics courses at university. Therefore, we consider frameworks with regard to 

quality of advanced mathematics lectures from Bergsten (2007) and Rach et al. (2016). 

For our investigation, we use a framework from Rach et al. (2016). According to Rach 

et al. (2016), the quality of mathematics lectures consists of two aspects: general 

criteria and mathematical criteria. General criteria include components such as learner 

orientation, cognitive activation, instructional efficiency as well as clarity and 

structure. As afore mentioned, most advanced mathematics lectures have a definition-

theorem-proof format. Likewise, theorems and proofs play an important part in 

mathematics lectures (e.g., Paoletti et al., 2018) and are therefore also of major 

relevance for the quality of a mathematics lecture. Thus, mathematical quality criteria 

include the presentation of definitions, theorems and proofs. In this paper we decided 

to focus on presentation of theorems and proofs. 

Presentation of theorems and proofs in mathematics lectures 

Boero (1999) describes theorem production and proof construction as a process that 

consists of the following phases: production of a conjecture, formulation of the theorem 

statement, exploration of the content, selection and enchaining of arguments, 

organization of enchained arguments into a proof, and approaching a formal proof. 

Thus, processes of theorem production and proof construction consist of rather formal 

aspects (e.g., formulation of the theorem) as well as rather informal aspects (e.g., 

exploration of the content).  
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Davis & Hersh (1981) note, that in many mathematics lectures only rigorous theorems 

and related finished proofs are presented. Many researchers argue that presentation of 

only formal aspects of mathematics does not enhance students´ learning (e.g., Leron & 

Dubinsky, 1995). Indeed, according to previous studies, many students struggle to 

handle theorems and proofs (e.g., Stylianides et al., 2017). One of the reasons might 

be that lecturers invest not enough time in presentation of informal aspects of theorems 

and proofs like justification of selection and enchaining of arguments during proof 

construction or they don’t highlight mathematical claims and methods that can be used 

in future proofs (Fukawa-Connelly, 2014). However, researchers could observe 

presentation of formal mathematics like theorems and proofs as well as presentation of 

informal mathematics like informal reasoning processes for proof construction in 

mathematics lectures (e.g., Fukawa-Connelly & Newton, 2014; Gabel & Dreyfus, 

2017). Rach et al. (2016) found that lecturers present formal definitions almost 

correctly, whereby they pay less attention to formal argumentation. At the same time, 

the study from Rach et al. (2016) indicates underrepresentation of informal aspects of 

theorems and proofs like production of a conjecture (e.g., motivation of a theorem), 

exploration of arguments (e.g., collecting ideas to an informal proof) or significance 

and summary (e.g., highlighting of central decisions and giving an outlook). Using 

observations, Viirman (2014) indicates that some lecturers even do not use any 

theorems or proofs in first-semester mathematics courses. Moreover, students get too 

few opportunities to participate in advanced mathematics courses (Paoletti et al., 2018) 

and are not involved in construction of proofs during lectures (Alcock & Weber, 2005).   

THE PRESENT STUDY 

Research question 

Empirical research regarding the characteristics of advanced mathematics lectures, 

especially “based on observations of actual lecturing” (Viirman, 2021, pp. 467), is rare. 

Our goal is to use a structured instrument to enable comparisons of mathematics 

lectures given by different lecturers on the same topic. In our ongoing project, we plan 

to observe a large number of mathematics lectures to be able to give an overview of 

quality of advanced mathematics lectures.  

For this paper, we conducted a pilot study with two lecturers on the quality criteria 

“presentation of theorems and proofs” following Boero’s (1999) phases of theorem 

production and proof construction. The main purpose of the study was to check 

whether it is possible to differentiate between lectures concerning this quality criteria 

using a structured observation tool. In particular, we want to answer the following 

research question:  

Is it possible to identify differences with regard to the presentation of the phases of 

theorem and proof construction processes in advanced mathematics lectures given by 

two different lecturers and which differences can be found? 
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METHODOLOGY 

The analysis of the study regulations in linear algebra and real analysis from several 

universities in Germany has shown that the topics in real analysis are quite similar 

across different universities. Therefore, we have decided to observe lectures in real 

analysis especially to the very common topics sequences and series. Typical for these 

topics are definitions for sequence, series and convergence as well as convergence rules 

like the Bolzano-Weierstrass theorem.  

To ensure comparisons between different real analysis courses and to make our 

investigation systematic, we decided to use a standardized observation protocol as a 

measuring instrument. Rach et al. (2016) developed a structured observation protocol 

based on Boero´s (1999) framework. First studies from Rach et al. (2016) have shown 

that their observation tool is able to reliably collect data with regard to presentation of 

formal and informal parts of theorems and proofs in advanced mathematics lectures. 

We have merely adapted it slightly for our own research.  

 

Figure 1: Observation protocol for the category Giving of a formal theorem  

(following Rach et al., 2016). 

The standardized observation protocol describes the presentation of theorems and 

proofs in five categories that correspond to the phases proposed by Boero (1999): 

Production of a conjecture (presentation of a problem and motivation of a theorem to 

solve it), Giving of a formal theorem (formulation of a formal theorem), Exploration 

of arguments (preliminary considerations to prepare a formal proof), Organization of 

arguments (formal proving of the theorem), Significance and summary (highlighting 

central decisions and perspectives, e.g., giving an outlook on other theorems that can 

be proved in a similar way). The categories Giving of a formal theorem and 

Organization of arguments cover formal aspects, the other three categories cover rather 

informal aspects of theorems and proofs. Each category can be evaluated in four 

grades: 1 – not presented, 2 – presented poorly, 3 – presented, and 4 –presented well. 

For every grade of evaluation in each category there is an exact coding description in 

the observation protocol. Figure 1 shows an example how the category Giving of a 

formal theorem must be coded. According to the observation protocol, every presented 

theorem and related proof in the lecture, whether presented only verbal or written on 

the board, has to be coded in all five categories. For analysing presentation of theorems 

and proofs, we viewed written and verbal statements as a unit. 
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In this paper, we present the results of the observation of two video recorded lecture 

courses presented by two different lecturers (we call them Lecturer A and Lecturer B) 

from the same large public university in Germany and the same mathematics programs. 

Both lecture courses were designed for pure mathematics students and upper secondary 

pre-service teachers. As previously mentioned, we coded only theorems and related 

proofs that are part of the topics sequences and series. Because both lecture courses 

were video recorded, we have had a good opportunity to stop or to repeat the recordings 

and to make some notes. Moreover, to be sure that the observation protocol is reliable, 

we asked another mathematics education researcher to code presented theorems and 

proofs in one lecture by each lecturer. We calculated the Spearman correlation 

coefficient in order to check the interrater reliability. The correlation of 𝜌 = .68, 

indicates a medium but sufficient correlation between both codings.  

First of all, we analysed which theorems and related proofs were presented by the 

lecturers. We noticed that there are some similar theorems and proofs presented by 

both lecturers and built two groups: common theorems and proofs (presented by both 

lecturers), and additional theorems and proofs (presented by only one lecturer). We 

expect, that those so-called common theorems and proofs are canonical for the topics 

sequences and series and those so-called additional theorems and proofs are less 

canonical. Moreover, both lecturers gave “chalk talk” lectures.  

RESULTS  

Lecturer A presented only common theorems and related proofs in his lecture course. 

Lecturer B presented common theorems and proofs as well as additional theorems and 

proofs. 

Table 1: Comparison of the observed lectures (means and standard derivations of the 

coded categories, ratings from 1 – not presented to 4 – presented well). 

 Lecturer A 

common 

(n = 13) 

Lecturer B  

common 

(n = 13) 

Lecturer B 

additional 

(n = 22) 

M SD M SD M SD 

Production of a conjecture 2.55 1.07 1.31 0.60 1.14 0.45 

Giving of a formal theorem   4.00 0.00 3.54 0.84 3.55 0.83 

Exploration of arguments 3.37 0.48 2.24 0.69 1.60 0.93 

Organization of arguments 4.00 0.00 3.31 1.26 2.37 1.49 

Significance and summary 2.46 1.30 1.85 1.29 1.41 0.83 

We analysed 13 common theorems and related proofs presented by both lecturers as 

well as 22 additional theorems and related proofs presented by Lecturer B (see Table 

1). The values in columns Lecturer A common and Lecturer B common include only 

the results concerning common theorems and proofs presented by Lecturer A and 

Lecturer B. Lecturer B additional includes results concerning additional theorems and 

proofs presented by Lecturer B.  
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The results suggests that both lecturers achieve the best ratings in categories Giving of 

a formal theorem and Organization of arguments. All formal theorems and proofs in 

both lectures mostly were presented correctly. According to the ratings of both 

lecturers, the motivation for presented theorems (category Production of a conjecture) 

was weakly or not presented at all in both courses.  

First, we compared the results of presentation of common theorems and proofs given 

by both lecturers using Wilcoxon tests, revealing that the differences concerning 

Production of a conjecture and Exploration of arguments are significant (𝑝 < .05) and 

those regarding Giving of a formal theorem are weakly significant (𝑝 < .10).  

Second, we compared the ratings for presentation of common and additional theorems 

and proofs of Lecturer B using the Mann-Whitney-U-Test. According to the results, 

only the differences regarding Exploration of arguments are significant (𝑝 < .05) and 

those regarding Organization of arguments are weakly significant (𝑝 < .10). Overall, 

Lecturer B achieves for presentation of additional theorems and proofs lower ratings 

than for presentation of common theorems and proofs. According to the rating for the 

category Organization of arguments, there was some incompleteness regarding the 

organization of arguments to formal proofs of additional theorems. Moreover, Lecturer 

B achieves in the category Exploration of arguments low ratings regarding the 

presentation of additional theorems and proofs. Thus, both in additional and common 

theorems and proofs Lecturer B presents informal aspects only seldom.  

CONCLUSION AND DISCUSSION 

We could observe that both lecturers gave definition-theorem-proof (Weber, 2004) real 

analysis lectures in typical “chalk talk” style (Artemeva & Fox, 2011). Regarding 

presentation of common theorems and proofs, both lecturers pay much attention to 

presentation of formal aspects (e.g., Giving of a formal theorem) but it seems that they 

do not invest much time in presentation of informal aspects of theorems and proofs. 

These results are in line with Fukawa-Connelly (2014) and the observations from Rach 

et al. (2016). 

Furthermore, we analysed presentation of additional theorems and proofs given by 

Lecturer B. It seems that Lecturer B pays less attention to presentation of formal and 

informal aspects of additional theorems and proofs then of common theorems and 

proofs. Furthermore, it is noticeable that the results in the categories Exploration of 

arguments as well as Organisation of arguments differ to a large extend concerning 

presentation of common and additional theorems and proofs. An explanation for these 

results is that Lecturer B presented some additional theorems completely without 

related proofs.   

According to these results, we expect that although Lecturer B presented more 

theorems and proofs in his lectures, students might have viewed more ways and 

methods concerning production and motivation of theorems as well as construction of 

proofs in the course given by Lecturer A because Lecturer A presented more informal 

aspects of theorems and proofs in his lecture course than Lecturer B. Summarizing, 
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students taught by different lecturers probably develop different understanding and 

sense of proof construction and methods of proving even if they attend a course in the 

same university and study under the same study regulations in the same study program. 

A study that investigates the quality of presentation of theorems and proofs in lectures 

and students’ actual developed skills concerning proof construction could confirm 

these assumptions.  

There are some limitations in our study. The sample of our study consists of only two 

different lecture courses. To substantiate our results, a larger sample is necessary. In 

addition, the correlation between our coding and coding of the second coder is only 

medium. Therefore, a revision of the observation protocol prior to further 

investigations is necessary. Nevertheless, the use of a structured observation protocol 

enabled a structured observation of mathematics lectures and a first comparison of their 

quality regarding the presentation of theorems and proofs. We could identify 

differences in the presentation of formal and informal aspects of theorems and proofs 

by both lecturers as well as presentation of formal and informal parts of common and 

additional theorems and proofs by Lecturer B.  

The next step of our ongoing research is to extend our observation protocol to general 

criteria. Future observations supported by an extended structured observation protocol 

should help to generate a broader picture regarding the quality of mathematics lectures 

at German universities. We expect that future studies could help us identifying possible 

connections between the quality of mathematics lectures and performance of students 

in their mathematics programs. 
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The current study aims to provide a first exploration of the strategy that learners 

employ when they estimate fractions on a number line, and the extent to which they 

adapt their choice of strategies to features of the items, i.e. the specificities of the 

fractions that need to be estimated. In individual interviews 69 sixth graders estimated 

18 fractions on a number line. Their accuracy and the strategies employed were 

registered. Results showed that learners with higher mathematical ability used a 

greater variety of strategies, and that – regardless of mathematical ability – a greater 

variety of strategies used across the item set results in greater accuracy. Higher ability 

learners also use the more accurate strategies more often, and there are indications 

that they adapt their strategy use more to specific item features.  

THEORETICAL AND EMPIRICAL BACKGROUND 

In the last two decades, research has amply shown that learners struggle to understand 

rational numbers, and particularly more than natural numbers. Even adults seem to 

struggle with a number of aspects of the rational number concept (Vamvakoussi & 

Vosniadou, 2004; Van Hoof et al., 2017). One of the main obstacles that research refers 

to is that rational numbers essentially differ from natural numbers, and that the prior 

knowledge of natural numbers – which is acquired first, and is extensively practiced – 

interferes with the learning of and reasoning about rational numbers. We exemplarily 

elaborate on the understanding of the magnitude of rational numbers, as this is also the 

focus of the current paper: Numerous studies (e.g., Vamvakoussi et al., 2018) have 

shown that the magnitude of natural numbers is understood better than that of rational 

numbers. For instance, when comparing 0.53 and 0.7, learners may judge that 0.53 is 

larger than 0.7 because it is longer (a technique that would work for natural numbers), 

or that 8/13 is larger than 4/5 because 8 and 13 are larger than 4 and 5.  

A good understanding of the magnitude of numbers is considered important for the 

later development of mathematics. Generally speaking, scholars (e.g., Booth & Siegler, 

2006) assume that learners mentally represent numbers as ordered on a mental number 

line from small to large, and a better mental representation of numerical magnitudes is 

predictive of later mathematical achievement. Research on numerical magnitude 

understanding often uses number line estimation (NLE) tasks (Schneider et al., 2018), 

and most often the number-to-position task whereby a segment of the number line with 

a beginning and endpoint are given and a specific target number needs to be positioned 
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on that number line. The accuracy of the estimates is then an indication of the numerical 

magnitude representation.  

While NLE tasks have been extensively used to measure the understanding of natural 

numbers (e.g., Booth & Siegler, 2006; Siegler & Opfer, 2003), it is more recently also 

used with rational numbers (fractions and decimals) and in comparing natural and 

rational numbers. For instance, Iulcano and  Butterworth (2011) found that both 

children and adults made less accurate estimates of fractions than of natural numbers 

and decimals. The current paper therefore takes a closer look at the estimation of 

fractions on the number line.  

In recent years, researchers have come to understand that estimates on a number line 

do not occur directly, but are highly strategy based. Ashcraft & Moore (2012), for 

instance, saw that accuracy is higher for numbers close to the endpoints and to the 

midpoint, suggesting that learners use benchmarks. Peeters et al. (2017) documented 

this strategy use and its role in estimation accuracy in detail.  

Some studies also looked at the strategies that are employed when estimating fractions 

on the number line. Zhang et al. (2017) identified a segmenting strategy where the 

number line is divided into a number of equally large segments (often the denominator) 

and then counting the required number of segments (the numerator). They also 

identified a numerical transformation strategy, whereby a fraction is transformed in a 

decimal number, which is then mapped to a number line with benchmarks, of which 

the main ones are the endpoints, midpoint, and quarters. Zhang et al. (2017) also 

focused on inaccuracies and errors when implementing such strategies. Siegler & 

Thompson (2014) roughly distinguished the same strategies, but additionally focused 

on a strategy that focused on the endpoints (e.g. 95/98 being nearly 1).  

RATIONALE AND GOAL OF THE CURRENT STUDY 

While number line estimation with natural and rational numbers has shown the 

importance of a good magnitude understanding for later mathematical performance, 

and while the strategic aspects of number line estimation have been documented for 

both kinds of numbers as well, the importance of a good strategy choice in estimating 

fractions on a number line has not yet been investigated. Still, given the wide range of 

features of fractions, it may be that specific strategies are more suitable for estimating 

fractions, and other strategies for other fractions. This can be linked to the notion of 

adaptive strategy use, as elaborated by Verschaffel et al. (2009): Depending on the 

specific features of an item that needs to be solved, a certain strategy may be more 

suitable (more accurate and/or faster) than another strategy. Additionally, the most 

appropriate strategy may differ from learner to learner, as certain learners may be better 

at implementing a specific strategy than others.  

The current study therefore has the goal to provide a first exploration of the way in 

which learners estimate fractions on a number line, and the extent to which learners 

adapt their choice of strategies to features of the items, i.e. the specificities of the 

fractions that need to be estimated. We decided to conduct this study with learners 
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from the 6th grade of primary school, as these learners already gained some 

understanding of fractions (that are taught gradually from the 2nd grade on), while still 

showing sufficient variation among learners. We also took into account that among 

these learners, there would be a range of mathematical abilities, and thus we could also 

explore whether the choice of strategies and the adaptation of these strategies to item 

features would differ across learners with different mathematical abilities.  

METHOD 

This study received approval of the SMEC-Ethical Committee of KU Leuven (G-2021-

3036). A sample of 69 learners from 6th grade of primary school participated, after 

obtaining an informed consent from their parents. We received background 

information on their general mathematical competency, based on the standardized, 

curriculum-wide test system that is administered by schools to monitor students. It 

divides learners in four main levels (22 learners belonged to level A, 18 to level B, 15 

to level C and 14 to level D) with A-level students being the highest achieving ones. 

This information was obtained from the participating schools.  

All learners were individually interviewed. They solved a number-to-position number 

line estimation task, with number lines ranging from 0 to 1 and no additional 

benchmarks provided. The length of the number line was 200 mm. A set of 18 items 

(see below) was administered in a random order. Learners were asked to think aloud 

while conducting the estimation, and when necessary, the experimenter would ask 

further questions about the strategy used, such as “how did you do this estimation” or 

“can you tell which steps you took when making the estimation?” The interviews were 

audiotaped for later analysis.  

Analysis 

Accuracy. The accuracy of learners’ estimates was quantified by the most commonly 

used measure in the number line estimation literature, i.e. the percentage of absolute 

error (PAE). The fraction 2/11 is situated at 36.36 mm on the 200 mm number line. If 

a learner marks the fraction at 40mm, the PAE score is 1.82%, which is calculated as 

follows: 

 

Strategy. For every trial, the strategy that the learner has used was coded. In a first step, 

we eliminated all trials (8.6%) where a learner clearly did not attempt to estimate the 

actual fraction size (for instance, when a learner estimated 4/65 somewhere above 0.5, 

saying that (s)he estimated 65 on a 0 to 100 number line). In the remaining trials, we 

applied a 3 step coding scheme, thereby coding (1) whether learners initially 

transformed the given fraction (e.g. to another nearby fraction, to its exact decimal 

representation, to an approximate decimal representation),  (2) the actual estimation 

strategy (benchmarking, segmenting, stepwise segmenting, and no strategy), and (3) 

whether a further correction happened in the finalisation stage.  
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Given length restrictions, this paper focuses on the second stage, i.e. the actual 

estimation strategy. The estimation strategies used in coding were defined as follows: 

 Segmenting: Dividing the number line in a number of equal parts, which are 

dependent on the fraction that is being estimated (e.g., estimating 4/7 by dividing 

the number line in 7 equal parts and counting 4 of them, while dividing it in 5 

equal parts to estimate 3/5) 

 Stepwise segmenting: Dividing the number line in a number of equal parts, after 

which one or more of the parts are divided further in equal parts (e.g. estimating 

2/9 by first dividing the line in 3 equal parts, and then further dividing the first 

part in 3 equal parts and counting 2 of them) 

 Benchmarking: Halving the number line and when necessary halving it once 

more to obtain the 0.25, 0.5 and 0.75 values (or even  halving further to obtain 

the octiles). These are then used as benchmarks to estimate the value of a given 

fraction. The decimal value of these benchmarks is present in students’ 

reasoning, and unlike with (stepwise) segmenting, item characteristics to not 

meaningfully alter the procedure.   

 No strategy: learners immediately mark the position of the target fraction, 

without previously using any additional marks (either physically or mentally) 

The interrater reliability of this coding was checked for a subset of 180 trials, which 

provided a 88.6% correspondence between two independent raters.  

Design of item set 

In order to see adaptive strategy use, the choice of an adequate item set was of crucial 

importance. We designed an item set based on a rational task analysis and previous 

studies on strategy use in number line estimation involving fractions, thereby 

maximally trying to predict that certain items would be more easily estimated with a 

specific strategy rather than another one. Some fractions were close to the benchmarks 

and endpoints (0, 0.25, 0.5, 0.75, 1), assuming that a benchmark strategy would be 

more helpful them: 0: 4/65, 0.25: 3/11, 15/61, 0.5: 29/63, 0.75: 9/13, 45/58, 1: 51/53. 

For some fractions with a small denominator being a prime number, we expected 

segmenting to be a helpful strategy: 2/11, 1/3, 3/5, 4/7. Other fractions had a small non-

prime denominator, which would allow stepwise segmenting: 5/6, 3/14, 5/12, 8/15. 

An important comment is that there is no one-to-one correspondence between fractions 

and these strategy categories. Fractions unavoidably have features that would make 

more than one strategy (but typically not all strategies) helpful. For instance, 4/7 may 

elicit segmenting the number line in 7 equal parts, but it may also be seen as a fraction 

close to 0.5. 

MAIN RESULTS 

Table 1 provides an overview of the frequency with which each strategy was used, as 

well as the median PAE for each strategy. Segmenting is by far the most popular 
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strategy across all items and participants, while stepwise segmenting occurs very 

rarely, and benchmarking and no strategy are in between. However, stepwise 

segmenting is substantially more accurate than the other strategies, and ‘no strategy’ is 

substantially less accurate. A one-way ANOVA showed a significant effect of strategy 

on accuracy, F(3, 1130) = 16.01, p <.001, but post hoc contrasts showed only a 

difference between ‘no strategy’ and the others. 

A first, rather general, way to investigate whether adaptive strategy use is related to the 

accuracy of estimations is correlating the diversity in strategy use (i.e. the number of 

strategies used by one learner, varying between 1 and 4) and the median PAE of that 

learner. This correlation was Spearman Rho = -0.41, p <.001. This correlation indeed 

indicates that the more strategies a learner employs throughout data sets, the better the 

performance (i.e. the lower the PAE) is.  

Second, learners with a higher mathematical ability generally use more strategies 

(Spearman Rho = 0.26, p =.04). This is also reflected in their performance: A-level 

learners had a median PAE of 2.73%, while this was 3.17%, 3.33% and 4.84% for B, 

C, and D level learners, respectively.  

Combining both factors (learners’ mathematical ability and the diversity in strategy 

use) in a single linear regression model (F(2, 62) = 15.87, p<.001) shows that 25.3% 

of the PAE can be explained by mathematical ability, while an additional 8.6% of the 

variance is added by including the diversity in strategy use. This implies that even 

within a level of mathematical ability, learners who use more strategies across all items 

generally are more accurate  than learners who use fewer or even just one strategy.  

Third, the explanation for the higher accuracy of higher mathematical ability students 

may not just be situated in the greater number of strategies that individual learners 

employ. It is possible that learners with a higher ability level make more use of the 

more accurate strategies. This can be checked with the data in Table 2.  

This table first of all shows that the most accurate strategy (stepwise segmenting) is 

indeed used more often by A- and B-level learners, and the least accurate strategy (no 

strategy) is used more often by D-level learners. However, while overall segmenting 

 Strategy Frequency Median PAE  

 Segmenting  43% 3.17%  

 Stepwise 

segmenting 

  7% 1.93%  

 Benchmarking  28% 3.33%  

 No strategy  22% 4.54%  

 Total 100% 3.25%  

Table 1: Frequency of strategy use and median PAE per strategy 
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and benchmarking are almost equally accurate, it is remarkable that A-level learners 

use segmenting less often and benchmarking more often than the lower level groups. 

So, it may be that they employ it more often with items where this is indeed more 

appropriate, where the other groups still use segmenting for these items. 

Table 2: Frequency of strategy use per mathematical ability level 

A fourth issue to explore is the following: Regardless of the diversity of strategies per 

student and how often they are employed, students with a higher mathematical ability 

may simply apply each of the strategies with greater precision. Table 3 gives an 

overview of the median PAEs for each strategy per ability level. 

Table 3: Median PAE per strategy per mathematical ability level 

  A B C D  

 Segmenting 2.57% 3.30% 3.23% 3.22%  

 Stepwise segmenting 1.87% 2.50% 1.26% 9.64%  

 Benchmarking 2.83% 2.62% 3.47% 4.53%  

 No strategy 3.41% 4.56% 5.20% 5.70%  

Once more this indeed seems the case, at least for some strategies, and trends are less 

pronounced than for the other analyses reported so far: A-level learners are more 

accurate when segmenting than the other learners, and the same goes for using no 

strategy. Further, A- and B-level learners are somewhat more accurate when 

benchmarking. (Note that he data for stepwise segmenting are not very reliable, as D-

level learners almost never used this strategy.) 

As a final step, we exemplarily focus on the strategy use and accuracy of one item. (A 

discussion on all items is impossible due to length restrictions). The fraction 5/12 was 

chosen as part of the item set as it would allow for stepwise segmenting (e.g., first 

halving, then going to fourths or sixths, and then possibly to twelfths). The mean PAE 

for this item is 3.33%. Stepwise segmenting indeed led to a substantially higher 

accuracy, with a  PAE of 1.67%. Benchmarking (basically: using half as a benchmark, 

and then correcting because 5/12 is a bit lower than 0.5) was less accurate (PAE = 

4.33%), and segmenting (directly splitting the number line in 12 equal segments) was 

even less accurate (PAE = 6.00%). There were only 9 learners (6 from the A-level, 3 

  A B C D Total  

 Segmenting 38% 52% 53% 30% 43%  

 Stepwise 

segmenting 

8% 11% 5% 2% 7%  

 Benchmarking 35% 25% 24% 23% 43%  

 No Strategy 19% 12% 19% 40% 22%  
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from the B-level) who applied this stepwise segmenting, while benchmarking was most 

popular overall, and the least accurate strategy (segmenting) was most often used by 

C-level learners.   

CONCLUSIONS AND DISCUSSION 

The central goal of this study was to explore the strategies that 6th grade students would 

use when estimating fractions on the number line, whether this strategy choice would 

in some way relate to features of the items, and whether using different strategies (in 

relation to these item features) would result in a higher accuracy. We additionally 

explored whether students of different overall mathematical ability would differ in their 

strategy use. 

First of all, we found differences in the accuracy of various strategies. Directly 

estimating without using any benchmarks or segments beforehand seems to be the least 

accurate, and in cases where learners used stepwise segmentation, this led to most 

accurate estimations. Another important finding was that there was a rather strong 

correlation between the number of strategies that an individual learner employed and 

his/her estimation accuracy, suggesting that it is indeed good to use more than just one 

strategy for the entire item set. Not surprisingly, learners of higher ability levels 

performed more accurately, but more importantly, the regression analysis showed that 

the use of a larger number of strategies across the item set was positively associated 

with accuracy, regardless of mathematical ability.   

A further analysis showed that learners with higher ability levels indeed make more 

often use of the strategies that generally deliver more accurate estimates (particularly 

the strategy of stepwise segmenting), while it was particularly notable that learners of 

the lowest ability level very often made a direct estimation without any visible or 

reported strategy, i.e. by directly pointing at a position on the number line. Higher 

ability learners are also somewhat more accurate in the execution of the various 

strategies, but these effects were less pronounced, so the better performance seems 

mainly due to the more frequent use of specific more accurate strategies and the use of 

a greater variety of strategies across the item set. 

The item set was created so that specific features would make the use of specific 

strategies more easy or difficult, and consequently would lead to more or to less 

accurate estimations. We found exemplary evidence that learners – especially of higher 

mathematical ability levels – indeed too into consideration such item features in 

choosing among the range of available strategies. Such signs of adaptive expertise may 

be relevant for education, as also lower performing students might benefit from using 

this broader range of strategies, taking into account item features. Instruction that is 

focused on the various strategies to estimate fractions on the number line may also lead 

to an increased conceptual understanding of fractions as such, and therefore be valuable 

beyond the specific context of estimating the size of fractions on a number line.   
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Few studies so far have examined the meaning attributed to zero by students and how 

this can affect the handling of negative numbers. The objective of this paper is to 

analyse the relationship between the understanding of zero and the ability to perform 

integer additions. A paper-and-pencil test was submitted to 166 grade 6 students who 

had not been taught about negative numbers, in order to analyse the meaning they 

attributed to zero in relation to their ability to perform integer additions correctly. The 

results show that these students had two main conceptions of zero: zero as “nothing” 

and zero as a “point on a number line”. We also found that students with this latter 

conception of zero were significantly more likely to succeed in integer additions. 

THEORETICAL BACKGROUND  

Few studies have considered the question of zero in learning, and in particular the 

relationship between understanding zero and the ability to perform operations with 

negative numbers. However, to perform operations with these numbers it is important 

to be able to envisage the existence of numbers below zero. All too often, zero is 

regarded as “nothing” (Wheeler & Feghali, 1983), the “nil” below which no number is 

conceivable; this reflects the idea of “absolute zero” (Glaeser, 1981).  

Like many mathematical symbols, zero has various different meanings. According to 

Volken (2000) and Toma (2008), there are two main uses of zero, which are both 

essential, but also slightly different. The first is as a way of marking an empty place in 

our positional notation system for numbers. Volken (2000) refers to this as a “meta 

sign”, in that it indicates the absence of other signs. The zero in this context therefore 

seems to be of a different nature from the digits 1 to 9. The second use is as a number 

in its own right, in the form that we currently attribute to it, 0. Historically, this use 

took a long time to become established: zero was not a natural candidate to be a 

number, as numbers initially designated sets of objects (Toma, 2008). If there were no 

items to count, there was therefore no need to mention this “nothing”, and even less 

need to give it a symbol (Ruttenberg-Rozen, 2018). The polysemy of zero makes it 

complex to understand and use for today’s students at all stages of schooling (Levenson 

et al., 2007). It can also create obstacles in the extension of the natural number domain 

to the integers (Glaeser, 1981).  

The purpose of this paper is to examine the different meanings attributed to zero by 

grade 6 students who have not yet learned about negative numbers, and to relate these 

meanings to their ability to solve integer addition problems. 
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Zero in history 

Historically, according to Toma (2008), the first trace of a zero was not found until 

around 400 BC, among the Babylonians, who used a special symbol to indicate empty 

space in their positional notation system. This sign can be considered the precursor of 

zero notation. However, Ruttenberg-Rozen (2018) notes that zero as we know it today 

in our base-10 positional system was developed in India from the 5th century AD 

onwards, when mathematicians began to use a small circle to represent the empty space 

in a number. The invention of this symbol by the Hindus made conceptual progress 

possible with regard to zero, whose status changed from that of a mere placeholder to 

that of a number less than one – a number in its own right (Ruttenberg-Rozen, 2018). 

Thus, in a treatise on astronomy in 628, Brahmagupta was able to define zero as the 

subtraction of a number from itself (a  a = 0). However, it was not until the 1600s that 

zero finally held an uncontested place and mathematics could further progress with the 

inclusion of this important number (Toma, 2008).  

From the new understanding of zero as a number, other mathematical understandings 

were able to develop. Volken (2000) emphasises that the “zero” symbol was also the 

starting point for remarkable developments in arithmetic and algebra, resulting in the 

appearance of a new conception of numbers that was more abstract and more unified. 

Numbers gradually acquired autonomy from the pre-existing objects they had hitherto 

been deemed to represent. This abstraction made it possible to consider the numbers 

below zero, the negatives, which are not properties of sets of objects (Toma, 2008). 

Zero thus became “origin zero” (Glaeser, 1981). However, the introduction of negative 

quantities in the West was slow and difficult, due in particular to this ambiguity of 

zero, and many mathematicians throughout history have found it difficult to distinguish 

“origin zero” from “absolute zero” (Glaeser, 1981).  

Zero in school education 

What is zero? When asked, many students will reply that zero is “nothing” (Russell & 

Chernoff, 2011). Primary school teachers in pre-service education also appear 

frequently to use the words “zero” and “nothing” interchangeably or synonymously 

(Levenson et al., 2007). 

Among other misconceptions about zero, it has also been observed that students believe 

that zero is not a number, or that it is only part of the symbol for the number ten, or 

that it “doesn’t do anything” and can therefore be ignored (Russell & Chernoff, 2011). 

Some of this confusion can be attributed to the fact that many students think of zero as 

being “nothing”. According to Levenson et al. (2007), this conception hinders effective 

teaching of the deep and complex structure of zero.  

From the point of view of the relationship between zero and integer operations, Peled 

et al. (1989) carried out a study on addition and subtraction of integers among primary 

school students before they had learned about negative numbers. They examined the 

intuitive models used by students to perform these operations. The authors showed that 

the main mental model used by students was that of the number line, which is in fact 

http://www.maths-et-tiques.fr/index.php/histoire-des-maths/mathematiciens-celebres/brahmagupta
http://www.maths-et-tiques.fr/index.php/histoire-des-maths/nombres/zero
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relatively abstract. However, some students, while referring to the number line model, 

did not necessarily make effective use of it. They displayed the misconception known 

as the “divided number line” (DNL): the numbers were seen as two symmetrical sets 

on either side of zero, which was often thought of as a barrier rather than a number. By 

contrast, other students were already showing the ability to take a unified view of the 

positive and negative numbers and zero as integers, in other words the conception of 

the “continuous number line” (CNL). These students performed calculations smoothly 

by going “to the right” for addition and “to the left” for subtraction, without having to 

create special partitioning rules to move past zero.  

METHOD 

The objective of this paper is to answer the following two research questions. 

What meaning do grade 6 students, who have not been taught about negative numbers, 

attribute to zero? (RQ1) 

To what extent does the meaning attributed to zero go hand in hand with the ability to 

perform integer additions correctly? (RQ2) 

The analyses presented in this paper come from a larger study presented previously 

(Vlassis & Demonty, 2022). A total of 166 grade 6 students in 13 classes at eight 

primary schools in the Grand Duchy of Luxembourg took part in the study by 

completing a paper-and-pencil test.  The students in our sample had not been taught 

about negative numbers, as this topic, as well as the meaning of zero, is not included 

in the Luxembourg primary curriculum (MENFP, 2011). The paper-and-pencil test was 

designed to be taken individually, and took approximately one hour to complete. The 

test had two parts: the first part consisted of decontextualised questions relating to 

integer additions and subtractions, the role of zero, the order of negative numbers, 

opposite numbers, and mental computations in addition and subtraction operations 

with more than two terms, and in subtractions with two terms where the compensation 

strategy would clearly be useful. The second part consisted of contextual problems, the 

solutions to which required operations similar to those in the first part. For the purposes 

of this study, only decontextualised questions relating to (1) integer additions and 

subtractions, and (2) the role of zero were analysed.  

The two questions used for the analyses were as follows: 

Question 1 (Q1.a and Q1.b) 

a) What answer would you give to the problem 0 – 14  = ?  

b) In 0 – 14 =  what does the zero represent? 

More than one answer may be correct. Tick the one answer that seems most appropriate 

to you. 

1. The zero has no real value and could be removed 

2. It represents a position on the number line 

3. It represents a nil quantity 
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4. The zero is used to separate the positive and negative numbers 

5. It represents emptiness 

The five options presented in Question 1.b derive from students’ misconceptions as 

described in the theoretical background: 

 Option 1 refers to the “doesn’t do anything” conception (Levenson et al. 2007); 

 Options 2 and 4 both concern the “origin zero” (Glaeser, 1981), and are based 

either on the CNL (2) or on the DNL (4) (Peled et al., 1989);  

 Options 3 and 5 correspond to “zero = nothing” which refers to the “absolute 

zero” conception (Glaeser, 1981). 

Question 2 (Q2) 

4 – 6 =  

8 +   = 5 

 + 9 = 6 

5 – 10 =  

–3 – 5 = 

 – 3 = –8 

 + 4= –6 

–7 + 4=  

–5 + 8 = 

-12 – 8 =  

4 +(–9) =  

7 + = –3 

In Question 2, some additional items with natural numbers were added to prevent 

students from deducing that all the answers to this question were negative numbers. 

These items show good internal consistency (Cronbach’s alpha: 0.90) (Vlassis & 

Demonty, 2022). 

RESULTS 

The role of zero 

In order to identify students’ conception of zero (RQ1), we have analysed in Table 1 

below the options chosen by students in Question 1.b. 

Table 1: Percentage of choices made by students regarding the conception of zero (Q1.b) 

Conception of zero Choice % of students 

Nothing or emptiness 

(“nothing”) 

1 8 

 3 11 

 5 9 

 more than one option 12 

 Total 40 

Number line (NL) 2 8 

 4 28 

 more than one option 7 

 Total 43 

Mixed conception   9 

No answer given   8 

Total (N=166)  100 
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In Table 1, the five options have been divided into two main categories: the “nothing” 

category consisting of Options 1, 3 and 5 and related to the “absolute zero” conception, 

and the “number line” category (NL), referring to the “origin zero” conception 

(Options 2 and 4). First, as can be seen from the results presented in Table 1, despite 

the instruction asking students to select a single option among the five, some of them 

ticked more than one. It should be noted that most of the students who ticked several 

options did so within the same category, thereby demonstrating some degree of 

consistency. Only 9% of students selected options in both categories (“Mixed 

conception”). Next, it is notable that the students’ choices were evenly distributed 

between the two categories (40% for “nothing” versus 43% for “NL”). It is striking 

that even before any learning about negative numbers, 43% of the students already 

chose the NL conception (exclusively), implying an acceptance of numbers under zero. 

We use the term “implying” deliberately, because the students were not interviewed 

and we do not know what they actually thought on this subject. It is possible that the 

general context of the test, in which most of the questions concerned negative numbers, 

led to this choice being favoured by some students – a choice that they perhaps might 

not have made in a neutral context. Within this category, most of the students selected 

Option 4, referring to the DNL, indicating that their understanding of the integers and 

zero was not yet unified. 

Finally, in the “nothing” category, the majority of choices refer to the “zero = nothing” 

conception, with 19% of the students choosing either Option 3 (zero = nil quantity) 

(11%) or Option 5 (zero = emptiness) (8%). A mere 8% of students ticked Option 1 

only. It might be concluded that the idea of a zero that “doesn’t do anything” was not 

particularly widespread among the students in the sample. However, closer analysis of 

the data (not presented in Table 1) shows that this conception was indeed present 

among the students. Among the 12% of students who selected “more than one option”, 

10% chose Option 1 in combination with Option 3 and/or 5. These students apparently 

thought that the idea of emptiness or nil quantity could be combined with the idea of 

“doesn’t do anything”. 

Relations between conception of zero and operations with negatives 

In order to answer RQ 2, we examined the results of the students relating to operations 

with negatives according to the conception of zero that they revealed. We thus related 

the results for Question 1.b with those for Questions 1.a and 2, hypothesising that 

students presenting an NL conception would succeed better in the operations with 

negatives than those presenting a conception labelled as “nothing+”, this latter group 

including this time not only the main conception of “nothing” (40%), but also the 

“mixed conceptions” (9%) and students who failed to answer the question (8%). Table 

2 below presents the answers given to Q1.a (0 – 14 =) according to the conception of 

zero (Q1.b). 
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Table 2: The relationship between conception of zero (Q1.b) and correct solution to 

the question 0 – 14 = (Q1.a) 

Conception 

of zero 

(Q1.b) 

Correct 

answers (%) 

(Q1.a) 

Incorrect answers (%) 

(Q1.a) 

No 

answer 

given 

(%) 

(Q1.a) 

Total (%) 

 –14 14 -0.86/ 

–16/–6 

0.86/86/

6 

0   

NL 

conception  

73 1 10 - - 16 100 

(N= 70) 

“Nothing+” 

conception  

49 13 4 2 2 28 100 

(N= 96) 

The results in Table 2 show that students with an NL conception of zero were 

significantly more likely (73%) to give the correct solution, –14, than students with a 

“nothing+” conception. The correlation of 0.24 between the results obtained in 

Questions 1.a and 2 confirms this link between the two variables. It is also worth noting 

that all these students, even when they were wrong, gave a negative answer (with the 

exception of one student who answered 14), and were much less likely to fail to answer 

(16%, against 28% of “nothing+” students). Forty-nine percent of the students with a 

“nothing+” conception were able to find the correct solution, –14. However, 17% of 

them did not consider a negative solution: they answered 14 (13%) or 0.86/86/6 (2%) 

or even 0 (2%). A final and somewhat unexpected observation concerns the students 

who, regardless of their conception of zero, put forward solutions such as 0.86, 6, 

86 or even –16, as if they were attributing a numerical value to zero such as 1 or even 

100. 10% of students who displayed NL conceptions and 6% of those displaying 

“nothing+” conceptions fell into this category. These students seem to have considered 

zero as a unit or a hundred and thus to have confused operations under zero with 

operations in the decimal system (Stacey & Steinle, 2001). 

While the results of Table 2 made it possible in particular to examine the type of 

solution given by the students, those in Table 3 below present the students’ success 

rate with a set of integer additions (Q2) according to their conception of zero (Q1.b). 

Conception of zero 

(Q1.b) 

% success with integer additions (Q2) 

NL conception 60 

“Nothing+” conception 46 

Table 3: The relationship between conception of zero (Q1.b) and success with integer 

additions (Q2) 
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In table 2, we observe again that students with an NL conception of zero are also more 

successful at adding integers. The difference is significant (ANOVA: F=9.92; 

p<0.005). 

CONCLUSION 

The “nothing” conception seems to be regarded in scholarship on zero in learning as 

predominant among students (Levenson et al., 2007; Russell & Chernoff, 2011; 

Wheeler & Feghali, 1983). Our results reveal a more nuanced reality. Although some 

of the grade 6 students in our sample – who, it should be remembered, had not yet 

learned about negative numbers – did demonstrate a “nothing” conception, we saw that 

an almost equivalent proportion had a conception that related to the number line (NL). 

The general context of the test about the negative numbers and the MCQ format may 

have favoured this tendency, but the results also suggest that the “nothing” conception 

may be less entrenched among students than might appear to be the case. Within the 

NL conception, the notion of the DNL was especially favoured by the students. While 

not yet reflecting a unified vision of integers, this conception makes it possible to 

accept numbers below zero. Our results showed that an NL conception of zero, 

essentially therefore of the DNL type (in our student sample), was associated with 

significantly higher success than that associated with a “nothing” conception. 

It should be emphasised that a “nothing” conception did not necessarily mean an 

inability to consider numbers below zero and to perform integer additions; however, 

the rate of success in performing such calculations was lower. It is also worth noting 

that, in Q1.a, the correct solution, –14, could also have been arrived at by students who 

thought that zero “doesn’t do anything”, and that therefore 0 – 14 = –14, because zero 

has no effect. A somewhat distinctive conception of zero was apparent in the case of 

students who gave solutions to 0 – 14 = such as 0.86, 86, etc., as if they thought zero 

was equal to a unit or a hundred. Stacey and Steinle (2001) pointed to a similar problem 

with students who became confused between decimal numbers and negative numbers. 

According to these authors, these students were confusing the classical model of the 

number line with the place value columns and treating the spatial arrangement of the 

usual place value numeration as a kind of “number line” along which the numbers were 

distributed. We wonder if this confusion could have arisen from students confusing a 

conception of zero as an empty place indicator with a conception of zero as a number.  

Ultimately, it would seem that among students, as in the history of mathematics, 

working with integers is accompanied by an evolution of the conception of zero 

towards origin zero (NL), so that zero can be regarded as an integer in its own right. It 

is therefore vital in school for the extension of natural numbers to integers to go hand 

in hand with a broadening of the use of zero through a clear explanation of its different 

functions in different contexts. However, learning about the different meanings of zero 

does not seem to be part of the curriculum at either primary or secondary level 

(MENFP, 2011; MENFP, 2008). 
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LINEAR ALGEBRA TASKS 
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We introduce a tool for mapping tasks and their implementation based on the 

commognitive theory and realization trees. This tool, the Discourse Mapping Tree 

(DMT), first maps a priori the subdiscourses involved in solving a task, then, a 

posteriori the discussion of this task in a class. This affords examination of both the 

mathematical potential of tasks and of how an implementation takes up this potential. 

We exemplify the DMT on a lesson about linear transformations in a discussion-based 

linear algebra workshop.  The tool highlighted the students’ and instructor’s role in 

authoring links between subdiscourses. It also displayed that the instructor was more 

responsible for meta-level links, while the students made object-level links more 

readily and easily.   

Teaching mathematics includes posing tasks that may offer more or less opportunities 

for students to engage with mathematical concepts, ideas, and strategies (Sullivan et 

al., 2015). Examining the potential of such tasks can further our understanding of the 

disparity between the potential of tasks and their implementation. This is particularly 

important in the context of cognitively demanding or explorative teaching practices 

(Smith & Stein, 1998). However, usually the ability to distinguish between the 

potential of tasks and the take-up in class is difficult. The literature on task design 

offers a distinction between a priori and a posteriori analysis of tasks (Artigue, 2009). 

This literature points to the usefulness of detecting through a priori analysis features of 

tasks that can support certain types of pedagogical goals (e.g. Kieran, 2019). 

In line with the task-design literature (e.g. Gravesen et al., 2017), we suggest a tool for 

mapping the mathematical potential of a task for explorative instruction, made up of 

two stages: a priori and a posteriori. The a priori stage is independent from the a 

posteriori analysis thus enabling comparison between the potential and the 

implementation. Explorative instruction is instruction that affords students maximal 

opportunities for explorative participation, that is opportunities to author narratives 

about mathematical objects based on their own reasoning (Weingarden et al., 2019). 

Encouraging explorative participation, according to Weingarden and colleagues, 

includes exposing students to multiple realizations of objects and to links between 

different realizations. These authors suggested a tool, named the Realization Tree 

Assessment (RTA), to examine the extent to which students were indeed exposed 

during a whole class discussion to multiple realizations and links between them. 

However, the RTA did not make a clear distinction between a priori and a posteriori 

analysis of a task, nor did it precisely define the mathematical potential of a task.   
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In the present work, we build on Weingarden and colleagues’ work, and extend it by 

defining the mathematical potential of a task in correspondence with the socially and 

historically established mathematical discourse. Inspired by Gee (2015) we distinguish 

between the mathematical Discourse (with a capital D) - the canonical discourse 

accepted by the mathematical community, and the classroom discourse (with a small 

d) - the individualized version of the social Discourse. It is the discourse (with small 

d) that is seen in discussions around mathematical tasks. Similar to Sfard (2008) we 

define learning mathematics as becoming a participant in a certain discourse, yet stress 

that, aligned with Gee, this is a socially and historically established Discourse.  

Mathematical Discourses are hierarchical and recursive, where their objects (e.g. ℚ) 

build upon previously established objects (e.g. ℤ) (Sfard, 2008). New mathematical 

Discourses have historically been created either by several existing Discourses 

coalescing into one Discourse or by a meta-level Discourse subsuming an older one. 

Sfard (2008) claims that an individual’s adoption of a Discourse, that is learning, often 

proceeds similarly to how Discourses developed over centuries. Thus, when learners 

progress from one Discourse to a new subsuming one, the subsuming Discourse 

includes an isomorphic copy of the old Discourse, as well as new objects and narratives 

that can only be realized in the new Discourse (Lavie & Sfard, 2019). Adopting new 

narratives belonging to a familiar Discourse is object-level learning, whereas authoring 

narratives in the new coalesced Discourse is meta-level learning (Sfard, 2008).  

Using this framework, we define the mathematical potential of a task as the potential 

it affords a student to individualize a Discourse and learning linear algebra as 

individualizing the Discourse of linear algebra. This includes individualizing all the 

sub-Discourses of this topic (such as the Discourse of matrices, that of vector spaces, 

etc.), which we term in this context object-level learning. In addition, it includes linking 

the realizations from the various sub-Discourses so that the student’s individual 

subsumed discourses coalesce into one discourse, which is considered meta-level 

learning.  

Weingarden and colleagues’ (2019) RTA tool constructs a visual representation of 

realizations of a mathematical object that is at the center of a task, building on Sfard’s 

(2008) definition of a mathematical object being a signifier together with its realization 

tree. This mapping is constrained, since often multiple mathematical objects are 

mentioned during a discussion. In the present work, we build on the idea of the RTA 

to offer a new tool, named the Discourse Mapping Tree (DMT), which enables 

mapping of a discussion that involves multiple mathematical objects. In addition, we 

add a clear distinction between the a priori and a posteriori stages of the tool. We 

conceptualize the building of the a priori DMT as based on an analysis of the 

mathematical Discourse, whereas the a posteriori stage is based on the classroom 

discourse that was observed in the lesson.  

We apply the Discourse Mapping Tree (DMT) to a single task and to a particular 

implementation of that task to demonstrate this tool.  We ask what the construction of 
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the DMT highlights about the mathematical potential of the task and about the take up 

in a whole classroom discussion. In addition, we ask what can the DMT tell us about 

the potential for and the take up of object-level and meta-level learning? 

METHOD  

Context, Participants and Data 

This study is part of a larger project in which linear algebra workshops were offered to 

students, in addition to the regular lectures and tutorials and held in parallel to them 

(Wallach, 2022). The first author led the workshops. Overall, 13 workshops were held, 

and 7 tasks were designed for them. The tasks were designed by the first and third 

author, instructors of linear algebra with many years of experience. 

The study was conducted at a science and engineering university, where all the students 

have successfully completed advanced level high-school mathematics courses required 

for entrance. Students take a linear algebra course, a requirement for most science and 

engineering students, during their first semester. Participation in the workshops was 

voluntary and the number of students participating in each workshop varied from 7 to 

50. The lesson structure of the workshops was an adaptation of the launch, explore and 

discuss (LED) structure and Smith and Stein’s (1998) suggested practices for 

orchestrating productive mathematics discussions. Data was collected through several 

video cameras posed at the board and at student groups. The session described in this 

paper was one academic hour and 7 students participated.  

Analysis 

Constructing a DMT includes two parts. First, an a priori analysis of the task, as it is 

presented to the students, directs the construction (see Fig. 1). This is carried out by 

experts (mathematicians) who represent the canonical Discourse and is supported by 

textbooks and curricula. This analysis includes determining the root node, which is the 

object at the center of the task, listing this object’s realizations and finally grouping 

together realizations of similar type.  Each type of realization belongs to a certain 

Discourse as it has its own keywords, its own narratives, and its own routines of 

manipulation. Each Discourse (or sub-Discourse) is drawn on a separate branch of the 

DMT. The a posteriori part of constructing a DMT is based on a video recording of a 

whole class discussion around the task. In this stage, each narrative authored in a 

discussion is mapped onto the Discourses identified by the a priori DMT (see Fig. 2). 

This mapping includes drawing the realizations and links mentioned during the 

discussion in class. Similar to the construction of RTAs (Weingarden et al., 2019), the 

components of the DTM demarcate if a student authored it or if the instructor did. Dark 

boxes and solid lines signal narratives that were authored by students and light boxes 

and broken lines signal narratives that were authored by the instructor. This process is 

exemplified in detail in the findings section.  
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FINDINGS 

Mapping the potential of a task  

This section describes the process used to construct a DMT and the potential, as 

revealed by the DMT, for the following task. 

The linear transformation task T: ℤ5
4 → ℤ5

4 is a linear transformation such that 

T(1,2,3,4) = (0,0,0,0). For which values of n ϵ ℕ does there exist such a T so that dim Ker 

T = n? For those values of n give an example of such a T and find a basis of Ker T. 

The first step of constructing a DMT (see Fig. 1) is determining the root node. Solving 

the linear transformation task includes defining a linear transformation with certain 

properties, thus we determined the root node to be a “linear transformation”. 

The next step is listing the object’s realizations and classifying them into sub-

Discourses. We examined the definitions given in textbooks, solutions, and student 

discourse in workshops, in tutorials, in exams, in homework sets and in questions posed 

for realizations. These realizations were classified based on the following discourses. 

A linear transformation is a type of function, thus it can be realized in the Discourse of 

functions. This includes narratives about the image of vectors, such as T(1,2,3) = 

(3,3,3), the image of a vector (x,y,z) is (x+y,x+y,x+y) and the linear transformation is 

injective. A linear transformation can also be realized using vector spaces. Within this 

Discourse, a linear transformation can be realized by its definition on any basis. 

Narratives within the Discourse of vector spaces include the linear transformation is 

uniquely determined by defining it on a basis. Additionally, a linear transformation can 

also be realized by a matrix representation. The Discourse of matrices includes 

narratives such as the linear transformation is invertible since the matrix is invertible. 

Linear transformations can also be realized as elements of Hom(V,W). This notion is 

not included in the curriculum of the linear algebra course examined in this study, thus 

is not displayed on the DMT. Thus, our a priori DMT analysis revealed that, in this 

course, the mathematical object linear transformation could be realized in three sub-

Discourses – functions, vector spaces, and matrices. Typical realizations were drawn 

in boxes on the appropriate branches of the DMT (see Fig. 1). 

The a priori DMT offers a clear image of the object that can be exposed through the 

task and its realizations in three different Discourses. Moreover, the DMT 

demonstrates the opportunity for object level learning and meta-level learning 

available in this task. Object level opportunities include authoring a realization within 

a sub-Discourse or saming between two realizations within the same sub-Discourse. 

For example, the narrative the kernel is spanned by a single vector and thus the 

dimension of the kernel is 1 links between two realizations within the sub-Discourse of 

subspaces. Practicing routines within a sub-Discourse, such as determining the general 

element of the kernel from a spanning set, is also object-level learning available in this 

task. Meta-level opportunities include authoring narratives in the coalesced Discourse 

connecting between two sub-Discourses. For example, the narrative the image of 

(1,2,3,4) is (0,0,0,0) so the dimension of the kernel is not zero connects between a 
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realization in the functions sub-Discourse (T(1,2,3,4) = (0,0,0,0)) and a realization in 

the vector space sub-Discourse (dim Ker T ≠ 0). Such a narrative, if authored during 

the discussion, provides an instance of coalesced discourse which is part of the meta-

level learning sought through this task. 

Figure 7 - DMT for linear transformation task 

 

Mapping the implementation of a task  

We now exemplify how an implementation of the task was mapped onto the DMT. The 

workshop on which we focus started with a short reminder of the basic theorems and 

definitions pertaining to linear transformations. Some of these were in the sub-

Discourse of functions and some were in the sub-Discourse of vector spaces. The 

students were familiar with these narratives from the previous lectures and tutorials. 

After the launch of the task, the students worked on the task in pairs for 15 minutes. 

This was followed by a whole class discussion that was 21 minutes long. We use the 

DMT to map the whole class discussion. There were seven students in the classroom, 

and they all participated in the discussion. Some talked from their seats, and some came 

to the board to write out examples or to point to examples already written. 

The mapping of the implementation commences by deriving the node and the sub-

Discourses from the a priori DMT, described in the previous section. The realizations 

that were used to determine the sub-Discourses for the DMT are removed. They 

indicate hypothetical narratives, that may or may not be authored in the class and are 

only used as examples to map the sub-Discourses and potential links between them. 

The a posteriori DMT analyzes  the discourse in the discussion and maps the narratives 

authored in class onto the sub-Discourses identified and the connections made between 

these narratives. Figure 2 presents the DMT mapping of the whole class discussion. 

The a posteriori DMT in Figure 2 shows that while there were three available sub-

Discourses, the discussion included mostly narratives that belonged to only two of 

them. The sub-Discourse of matrices, mentioned only briefly by the instructor, was not 

used by the students at all. In the other two sub-Discourses, the realizations and links 
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were authored both by the instructor and by the students in a mostly balanced manner. 

Yet there is a noticeable difference between these two sub-Discourses. In the functions 

sub-Discourse, five out of the seven realizations mentioned were authored by the 

students, signalling they favored this sub-Discourse, whereas in the subspace sub-

Discourse the division is more equal.  

Figure 8 - DMT for whole class discussion 

 

We now exemplify the take up of object-level and meta-level learning that occurred 

during the whole class discussion. During the discussion a student said, “We can define 

the linear transformation by its behavior on the basis” and wrote this on the board (see 

Fig. 2, box 3). The instructor agreed and added that the final answer would need to be 

given for a general vector (4) similar to a function. The instructor outlined how to do 

so and connected between the realizations (II). The discussion then turned to the kernel 

of this transformation and a student stated that the kernel is the span of (1,2,3,4) (6, 

A). The discussion that next ensued about the linear transformation on a general vector 

(4) within the function subdiscourse sparked a student’s question does such a definition 

define a function. The student’s explanation of his question and the instructor’s 

statements elicited from other students that the transformation is not surjective (D,11). 

The instructor then asked for a connection to the kernel (6), written on the board 

previously and students authored this (III). 

In the excerpt described there was both object-level learning and meta-level learning. 

The students authored object-level links (A,D) within each sub-Discourse. The 

instructor, in contrast, stressed the meta-level links (II,III) and put less emphasis on the 

object-level narratives. More generally, the DMT displays that the students authored 

more object-level narratives during this discussion. The instructor moved the 

discussion to include meta-level narratives, as seen by the four meta-level inks 

authored by the instructor (II, IV, VI, VII), as opposed to a single object-level link (E). 

Additionally, the links authored by the instructor show that when the discussion was 

in the functions sub-Discourse, the instructor pushed it to the other ones (II, IV, VI). 

The potential for object-level learning was taken up by the students authoring 
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narratives mostly within the function sub-Discourse. The potential for meta-level 

learning was offered mainly by the instructor authoring or supporting the students to 

author meta-level narratives between sub-Discourses.  

DISCUSSION 

This study examined what the construction of the DMT highlights about the 

mathematical potential of the task and about the take up of this potential. The 

mathematical potential of the task was analyzed based on a priori analysis of 

mathematical Discourses involved in the task, and an implementation of the task was 

examined a posteriori based on the discourse that occurred during the classroom 

discussion. We found that constructing the DMT a priori emphasized the opportunities 

for both object-level learning and meta-level learning afforded by the task. 

Additionally, mapping the task afforded a structured look at the various mathematical 

sub-Discourses involved in solving the task. The a posteriori DMT displayed an image 

of the whole class discussion that showed how the potential for object-level learning 

and meta-level learning offered by the task were taken up in an implementation. 

The construction of these DMTs highlighted the difference between the expectations 

from the task and the implementation of the task in terms of the mathematical potential. 

For example, while the DMT of the task showed that the potential for involving three 

sub-Discourses in the discussion was available, the implementation only focused on 

two sub-Discourses. The highlighting of this neglect shows the affordances of a tool 

which can determine the mathematical potential of a task and the take up of this. The 

DMT tool’s examination of the mathematical potential of a task, independent of the 

context in which it will be used, allows analysis of tasks before they are implemented 

in a classroom setting and supports choosing appropriate tasks for use. 

The DMT also helps to differentiate between object-level learning and meta-level 

learning. In the workshop discussion we analyzed, the a posteriori DMT showed that 

the instructor was more responsible for authoring meta-level links. The students easily 

and more readily authored object-level links, with little or no support from the 

instructor. This aligns with Nachlieli and Elbaum-Cohen’s (2021) suggestion that 

student-centered instruction might support meta-level learning when strongly guided 

by an instructor who can explicate the rules of the new discourse and stress the 

limitations of the old, familiar discourse.  

In this paper, we applied the DMT to one lesson, mainly to illustrate its construction. 

Applying the DMT to multiple lessons affords comparison of various aspects of the 

whole class discussion, similarly to was been achieved with the RTA (Weingarden et 

al., 2019). In the larger study, constructing DMTs for multiple workshops strengthened 

the impressions from the present analysis that the links between sub-Discourses were 

dependent on the students’ familiarity with the narratives within the sub-Discourses 

and that there was usually a dominant Discourse which is either more familiar to the 

students or which includes familiar procedures (e.g. the function subdiscourse in this 

study) (Wallach, 2022). Constructing DMTs can thus be productive in examining 
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various aspects of whole class discussions, especially in explorative and learner-

centered forms of instruction. 
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ANSWER PATTERNS OF JAPANESE SECONDARY SCHOOL 

STUDENTS IN TIMSS 2015 MATHEMATICS SURVEY 

Koji Watanabe1 

1Miyazaki International College 

 

This study used secondary analysis of the Trends in International Mathematics and 

Science Study (TIMSS) 2015 eighth-grade mathematics survey data to clarify answer 

patterns of Japanese secondary school students. While these patterns are established 

at the primary school level, they have yet to be set for Japanese secondary school 

students. In this study, to identify students’ answer patterns, we performed an 

international comparative analysis of 15 countries and areas. The results showed that 

Japanese secondary school students had a unique answer pattern in comparison to 

these 15 countries and areas. In particular, the ‘Number’ items, especially those learnt 

at the primary school level, were found to be more difficult for Japanese students than 

for students from other countries and areas. 

INTRODUCTION 

The Programme for International Student Assessment (PISA) and Trends in 

International Mathematics and Science Study (TIMSS) are influential international 

educational assessments in mathematics education in Japan (e.g., Nakayasu, 2016; 

Volante, 2015). They began to accumulate data in 2000, providing resources for 

secondary data analysis, to gain new insights into Japanese mathematics education. 

Previous research on Japanese students’ mathematical achievements such as Suzukawa 

et al. (2008) indicated that Japanese students had unique answer patterns; they did 

especially well at solving questions in the ‘educational’ context of the PISA 

framework, as compared to data from 13 countries and areas (i.e., Australia, Canada, 

Finland, France, Germany, Hong Kong, Ireland, Italy, Japan, Korea, the Netherlands, 

New Zealand, and the United States). Watanabe (2019, 2020) confirmed the unique 

overall answer patterns provided by Japanese students compared to the same 13 

countries and areas. Further, this research identified a partial change: item difficulty in 

the mathematical content ‘uncertainty and data’ decreased between the PISA 2003 and 

the 2015 study. 

Meanwhile, in the secondary analysis of TIMSS mathematics survey data, considering 

the answer pattern, Watanabe and Watanabe (2021) identified the answer patterns of 

Japanese fourth-grade students in TIMSS 2015, for the same 13 countries and areas, to 

show that Japanese primary school students had a unique answer pattern; specifically, 

calculation items were found to be easier for Japanese students than for students from 

the other countries and areas. Although Japan participates in the G8 survey, there is no 

mention of the eighth-grade students’ answer patterns. Thus, this study aimed to reveal 

the answer patterns of Japanese secondary school student using TIMSS eighth-grade 

data. 
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The percentage of correct answers is often used to identify answer patterns while 

focusing on item difficulty. The National Institute for Educational Policy Research 

(NIER, 2017) shows the percentage of correct answers given for each item in the 

mathematics survey. However, simply comparing the percentage of correct answers in 

each country with that in Japan is not sufficient to determine the answer pattern as the 

percentage of correct answers is not only an indicator of the item difficulty; it also 

depends on the group of examinees. Thus, separating the item characteristics from the 

examinee characteristics is necessary to focus on item difficulty and enable the 

identification of answer patterns. Item response theory (IRT) is known as the test 

theory that makes distinguishing characteristics possible (Henard, 2000). The method 

of analysis using IRT conducted by Suzukawa et al. (2008) and Watanabe and 

Watanabe (2021) were referred to in this study. 

METHODS 

As Watanabe and Watanabe (2021) analysed TIMSS 2015 data, this study did the 

same. However, some of the 13 countries targeted by Watanabe and Watanabe (2021) 

did not participate in the eighth-grade mathematical survey. Instead, 15 countries and 

areas (i.e., Australia, Canada, Hong Kong, Hungary, Ireland, Italy, Japan, Korea, New 

Zealand, Russia, Singapore, Sweden, Taiwan, the United Kingdom, and the United 

States) participated in the eighth-grade mathematical survey and reported their results 

in TIMSS 2015, published by NIER (2017). The present analysis targeted 91,256 

eighth-grade students from these 15 countries and areas. 

In TIMSS 2015, 14 different booklets were prepared, and 212 items were given to 

measure achievements in mathematics learned in school. Three items (item codes: 

M062345B, M062342, and M062342) were not applicable and were excluded from 

scaling at the international level. Two items (item codes: M062237 and M052090) 

were not applicable and excluded from scaling at the national level in Sweden (Martin 

et al., 2016), to ensure the precision of comparison. In total, 207 items were included, 

out of which 13 had partial credit; answers with partial credit were treated as incorrect 

to avoid complicating the data analysis. A binary dataset (1 for a correct answer and 0 

for an incorrect answer, non-response, or missing answer), was built for this study. 

Incidentally, items not included in the booklets given to the students were regarded as 

not available (NA) during the statistical analysis that was performed using the 

statistical data analysis software R version 4.0.5. 

This analysis applied the Rasch model of IRT, expressed as follows: 

𝑝𝑖(𝜃) =
1

1+exp{−1.702(𝜃−𝑏𝑖)}
  

where 𝜃 is the latent trait of ability, 𝑝𝑖 denotes the probability of whether an answer to 

the item 𝑖 is correct, and 𝑏𝑖 denotes the difficulty parameter of the item 𝑖. The item 

difficulty parameters 𝑏𝑖 (𝑖 =1, 2, …, 207) of 207 items were estimated for each country, 

using the Rasch model and compared by equating it to the scale of Japan with the mean-

sigma method. More specifically, let the item difficulties of the item 𝑖 for Japan and 
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country 𝑘 (𝑘 =1, 2, …, 15) be 𝑏𝑖𝐽𝑃𝑁 and 𝑏𝑖𝑘, respectively, and let the mean values of 

item difficulties be 𝑏𝐽𝑃𝑁 =
1

207
∑ 𝑏𝑖𝐽𝑃𝑁

207
𝑖=1  and 𝑏𝑘 =

1

207
∑ 𝑏𝑖𝑘

207
𝑖=1 , respectively. Then, 

the item difficulties, equated to the Japanese scale, are defined as 𝑏𝑖𝑘
∗ = 𝑏𝑖𝑘 + (𝑏𝐽𝑃𝑁 −

𝑏𝑘). As 𝑏𝑘
∗ = 𝑏𝐽𝑃𝑁 can be obtained, the mean value of the equated item difficulties is 

combined into 𝑏𝐽𝑃𝑁. Let the mean value of the item 𝑖 in 15 countries be 𝑏𝑖
∗ =

1

15
∑ 𝑏𝑖𝑘

∗15
𝑘=1 . Assuming a country with the difficulty 𝑏𝑖

∗ for each item, it is possible to 

set up a country with an average pattern of item difficulty across 15 countries 

(hereinafter referred to as ‘average country’). Given the difference in item difficulty 

between each of the 15 countries and the average country, 𝑑𝑖𝑘 = 𝑏𝑖𝑘
∗ − 𝑏𝑖

∗, we obtain 

𝑑𝑘 = 𝑑𝑖 = 0. In this manner, 𝑑𝑖𝑘 is obtained as a standardised item difficulty for each 

country and item and is used as an indicator of the uniqueness of an answer pattern in 

comparison to the 15 countries. This analysis focuses on 𝑑𝑖𝑘, to detect the answer 

patterns of 15 countries. The analysis mainly used the packages ‘ltm’ and ‘plink’ in the 

statistical data analysis software R version 4.0.5 (Rizopoulos, 2018; Weeks, 2017). 

RESULTS 

Overall Features of Answer Pattern in 15 Countries and Areas 

Let the standard deviation of 𝑑𝑖𝑘 be 𝑠𝑘 = √
1

207
∑ 𝑑𝑖𝑘

207
𝑖=1 , where 𝑠𝑘 is an indicator of 

the difference in the overall level of item difficulty for the 15 countries and areas. A 

larger 𝑠𝑘 indicates a more divergent answer pattern for the corresponding country. 

Table 1 lists the 𝑠𝑘 values obtained in this study. 

Table 1 indicates that Japan has a high 𝑠𝑘 value, which is less than that of Taiwan and 

Korea. Additionally, we found that East Asian countries, such as Taiwan, Korea, Japan, 

Singapore, and Russia, have divergent answer patterns. Thus, Japan is inferred to have 

a unique answer pattern among the 15 countries and areas in eighth grade TIMSS 2015 

mathematics surveys. 

Table 1: Values of 𝑠𝑘 

Country 𝑠𝑘  Country 𝑠𝑘  Country 𝑠𝑘 

TWN 0.415  SWE 0.359  ENG 0.287 

KOR 0.413  ITA 0.318  NZL 0.265 

JPN 0.409  HKG 0.310  HUN 0.258 

RUS 0.372  IRL 0.299  AUS 0.247 

SGP 0.362  USA 0.290  CAN 0.228 
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Relationship Between Item Difficulty and Item Content 

The items in the TIMSS 2015 are characterised by two aspects: cognitive domains and 

content domains. The characteristics of the Japanese answer patterns were examined 

by focusing on these two aspects. The cognitive domains include three content areas: 

Applying (92 items), Knowing (69 items), and Reasoning (46 items). The content 

domains contain four types of content: Algebra (59 items), Data and Chance (41 items), 

Geometry (43 items), and Number (64 items). The details of these definitions are 

provided in Mullis et al. (2013, pp. 19-27). The distribution of 𝑑𝑖𝑘 for each of these 

two aspects was checked using a boxplot, as shown in Figures 1 and 2. 

        

Figure 1: Boxplots for the cognitive domains 

        

Figure 2: Boxplots for the content domains (DC = Data and Chance) 

Figures 1 and 2 show boxplots of the cognitive and content domains, respectively. The 

boxplots in Figures 1(a) and 2(a) depict the distribution for all 15 countries, while those 

in Figures 1(b) and 2(b) depict the distribution for Japan. The median values for the 

cognitive and content domains were close to 0.0 in both Figures 1(a) and 2(a). This 

feature can only be observed for Japan in Figure 1(b). The box showing the cognitive 

domain content area, listed as ‘Knowing’ in Figure 1(b), is slightly larger than it is in 
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the 15 countries and areas. However, there is no significant difference in the 

distribution of 𝑑𝑖𝑘 across these countries, not even in Japan, as shown in Figure 1(b).  

The differences in the distribution of 𝑑𝑖𝑘 are shown in Figure 2. The distribution of 𝑑𝑖𝑘 

for the content domain listed as ‘Number’ for Japan in Figure 2(b) is higher than it is 

for the 15 countries and the areas in Figure 2(a). This implies that these items are 

relatively difficult for Japanese students. A characteristic of Japanese answer patterns 

was found in the content domain ‘Number’ of the TIMSS 2015 framework. 

Analysis Focused on Released Items 

In total, 93 out of 207 items were released to the public. Based on these, we examined 

the answer patterns of Japan. As the value of 𝑠𝐽𝑃𝑁was 0.409 (Table 1), the released 

items with a larger value of 𝑠𝐽𝑃𝑁 values are given in Table 2.  

Four of the 10 items were not yet been learned by Japanese students when the TIMSS 

2015 was conducted (NIER, 2017). Predictably, these four items would be highly 

difficult for Japanese students.  

Japanese students have already learned the other six items: specifically, five under the 

content domain ‘Number’, and one under ‘Algebra’, at school. The five items 

M042019, M042060, M052209, M042183, and M042302A refer to answering addition 

with an approximate number, providing a fraction that represents a percentage, 

expressing a fraction as a decimal, finding the multiplier, and performing the 

appropriate calculation, respectively. Japanese students learn about these in primary 

schools. Thus, the items studied in primary schools were found to be relatively difficult 

for Japanese students. 

Item code Domain Summary of item content 𝑑𝑖𝐽𝑃𝑁 

M052103* Algebra Finding the value of y: 𝑦 = √𝑥 − 9, when 𝑥 = 25. 1.495 

M052042* Geometry 

Finding the length of the remaining side 

of the triangle. 0.973 

M042264* Geometry 

Triangle A and B are 

homologous.  

Finding a pair of equal angles. 

0.807 

M042019 Number 
Finding the answer for 103+289+475+310+519 to 

the approximate number to the hundredth place. 
0.791 

M042060 Number Finding the fraction representing a 20% discount. 0.584 

M052064 Algebra Finding the value of 
𝑎2

2
− 6𝑎 + 36, when 𝑎 = 3. 0.583 

M052209 Number Finding the closest decimal number in size to 
3

4
 . 0.526 
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M042183 Number 
Finding the number which, when dividing 202.6 by 

that number, gives the answer 2.026. 
0.476 

M042302A Number 

Finding the cost per year for Company X and 

Company Y, if you do not make any calls and do 

not send any emails. 

0.475 

M042248* Algebra Finding the value of n, if 
8

12
=

24

2𝑛
. 0.454 

* Not taught at school at the time TIMSS 2015 was conducted. 

Table 2: The items relatively difficult for Japanese students compared with 15 other 

countries and areas (Source: NIER, 2017) 

DISCUSSION 

We conducted a secondary data analysis of the TIMSS 2015 eighth-grade mathematics 

survey to identify the characteristics of the answer patterns of Japanese secondary 

school students. Standardised item difficulties 𝑑𝑖𝑘 were calculated, based on which an 

international comparative analysis was conducted. 

In summary, the following two points were identified as the main findings. First, the 

overall answer pattern at the eighth-grade secondary school level in Japan was found 

to be unique in comparison to 15 countries and areas, after Taiwan and Korea (Table 

1). Second, using the framework of the TIMSS 2015, we examined these peculiarities 

and found that the content domain ‘Number’ was relatively difficult for Japanese 

eighth-grade students (Figures 1 and 2). More specifically, we examined 93 released 

items and identified ten items that Japanese students found difficult to complete. 

Besides the four items that the students had not learned at school, the five items of the 

content domain listed as ‘Number’ were found to be difficult for Japanese students 

(Table 2). 

Watanabe and Watanabe (2021) reported that, in terms of the answer patterns of fourth-

grade Japanese primary school students in the TIMSS 2015, items such as addition, 

subtraction, and division of integers and decimals, and solving simple equations (for 

example, 0.36+0.77 and 1362÷32), which are taught in primary school, are less 

difficult. Suzukawa et al. (2008) reported that, in the framework of the PISA 2003, 

questions in educational contexts, defined as typical items learned in school, are easier 

for Japanese students. Meanwhile, the three least difficult items in this analysis were 

studied at the secondary school level (see Table 3). 

Based on the previous studies and Table 3, it can be concluded that the answer patterns 

of Japanese eighth-grade secondary students suggest they can easily solve the content 

of items learnt in secondary school, but not those learnt in primary school or those not 
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yet learnt. It is especially necessary to ensure that the content domain listed as 

‘Number’, taught in primary school, is retained through secondary school. 

Item code Domain Summary of item content 𝑑𝑖𝐽𝑃𝑁 

M052126 Algebra 

Finding an expression in 

terms of 𝑥 for the area of the 

shaded portion of the figure. 
-0.960 

M052131 Algebra 
Finding the right process to solve the equation 

4𝑥 − 3 = 2𝑥 − 7. 
-0.799 

M052417 Geometry 

The line PQ and BC are parallel. 
Finding the angle 𝑥. -0.743 

Table 3: The items easier for Japanese students compared to 15 countries  

(Source: NIER, 2017) 

CONCLUSION 

Through this study, we established specific answer patterns of Japanese secondary 

school students using IRT. For example, the items under the content domain ‘Number’, 

are relatively difficult; some items taught at the primary school level are difficult for 

Japanese students at the secondary level. However, they demonstrated decent 

knowledge of the items learned at secondary school. Nevertheless, not having focused 

on items that are easy for Japanese students, we believe that efforts are required to 

capture the characteristics of Japanese answer patterns in greater detail; for example, it 

is necessary to examine the relationship between item difficulty and item content. In 

addition, Watanabe (2020), Watanabe and Watanabe (2021), and this study have 

revealed the Japanese answer patterns in the PISA and TIMSS, especially the PISA 

2015 mathematical literacy survey and the TIMSS 2015 fourth- and eighth-grade 

mathematics surveys. A synthesis of these results is warranted for future work. 

Moreover, the TIMSS is conducted every four years, and its accumulating data makes 

it possible to describe changes over time. For example, it would be interesting to 

identify whether the specific challenge of ‘Number’ items also appeared in TIMSS 

2011 or TIMSS 2007; that is, is this a stable pattern or just an incidental result for 

TIMSS 2015? In addition, the spread of COVID-19 has had a significant impact on 

schooling and is presumed to affect students’ actual achievements. Visualizing its 

impact is also important for future research. While this study provides information on 

students’ achievements before the spread of COVID-19, future research may include 

clarification of changes over time among the TIMSS 2015, 2019, and 2023, 

respectively, the last of which is scheduled to be implemented in 2023. 
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REPRESENTING ‘TALL AND SHORT’ IN DRAWINGS  

– PRE-SCHOOL TO YEAR 2 

Jennifer Way 

University of Sydney, Australia 

The study reported in this paper contributes to the exploration of the development of 

children’s mathematical drawing. 109 Preschool-to-Year 2 Australian children (4 to 8 

years) produced drawings of ‘something tall and something short’. Open-ended 

analysis of the forms and structures of the drawings revealed five categories ranging 

from scribble to the base-line comparison of two objects. The variety in drawing forms 

and the scattering of ages across the five categories suggests that educators should be 

more aware of children’s drawing development in association with their skills in 

creating mathematical representations.  

 

INTRODUCTION AND BACKGROUND LITERATURE 

Drawing is a fundamental form of representation in mathematics, and from the 

commencement of formal schooling there is an expectation that children will 

increasingly make use of conventional drawing techniques and diagrams. However, 

there is little guidance available to teachers about what representational forms to expect 

from children and how to support the early development of mathematical 

representation, particularly drawing (Bobis & Way, 2018). As emphasised by 

Ginsburg, Lee and Boyd (2008), children need to be supported in ‘mathematising’ their 

self-created representations. A currently under-researched aspect of mathematical 

development is how young children transition from natural drawing, to drawing as a 

mathematical representation tool (Way, 2018).  

The emergence of drawing as a representational form 

Young children’s drawing develops in its purpose and form over several years, moving 

in stages from playful scribble and exploration of forms, to pictorial and iconic 

representations of visualizations and real-world objects. Scribble is therefore a natural 

part of drawing development, that gradually takes on more controlled forms such as 

wavy lines, circles and dashes; followed by composite figures including a human 

ideogram around 3-4 years (Carruthers & Worthington, 2005; Machón, 2013). 

Typically, children do not begin deliberately representing external objects (symbols 

and pictures) until 4-5 years. Gradually the emergence of schemas (pictorial structures) 

such as baselines, proportionality and the exploration of perspective can be seen in 

children’s drawings in the 4 to 7 years range (Machón, 2013). At this stage in drawing 

development, children may have the potential to apply ‘natural’ drawing to the 

representation of mathematical concepts and processes, however, it should not be 

assumed that all children can create mathematical drawings without explicit support 

(Way, 2018). Indeed, the role of interactions with adults to support semiotic activity 

(reflecting on the relationship between the sign and its meaning) has been highlighted 



Way 

4 - 332 PME 46 – 2023 

by several researchers (e.g., Papandreou, 2014; van Oers, 1997). With a focus on 

explicitly supporting schematising activities with 5/6-year-olds, Poland and van Oers 

(2007) established significantly better schematising and mathematics skills a year later, 

compared with children who had not received similar support. 

Young children’s drawings of length comparison 

Young children develop a range of contextualised measurement concepts through their 

informal experiences, prior to engaging in more formal instruction at the 

commencement of school (Chigeza & Sorin, 2016; MacDonald & Lowrie, 2011). In a 

rare study of young children’s representation of mathematical ideas through drawing, 

MacDonald (2010) examined the drawings of ‘something tall and something short’, 

produced by 83 children who had just commenced formal schooling at two Australian 

schools (around the age of 5 years). The children were also asked to provide a verbal 

description of the drawings, facilitating richer data and more accurate interpretations 

of the children’s contextualised drawings. The majority of children (80 to 90%) 

produced representations that; a) focused on the specific attribute of length, b) made 

direct comparison of the heights of two objects, and, c) used appropriate measurement 

language, often including comparative terms such as taller and shorter (MacDonald, 

2010). Similarly, Chigeza and Sorin (2016) found that 4/5-year-olds in Australia and 

Canada were able to focus on a selected attribute of objects, such as length, and 

demonstrate comparison through drawings and words.  

Visualization and concept images 

Visualization has become widely accepted as a vital component of mathematics 

education (Acarvi, 2003). Drawing is a form of external visual representation related 

to internal mental imagery and other thinking processes (Papandreou, 2014). In the 

context of exploring young children’s emerging, and highly contextualised 

mathematical understandings, Tall and Vinner’s (1981) notion of ‘concept images’ 

provides an apt theoretical perspective for considering the visual representations 

(drawings) of particular concepts - in this case, height (specifically, tall and short). The 

term ‘concept image’ refers to,  

“… the total cognitive structure that is associated with the concept, which includes all the 

mental pictures and associated properties and processes. It is built up over the years 

through experiences of all kinds, changing as the individual meets new stimuli and 

matures” (Tall & Vinner, 1981, p. 152).  

Different stimuli at a particular time may activate only part of the concept image to 

produce an ‘evoked concept image’. Tall and Vinner (1981) use this to help explain 

students’ conflicting responses to different tasks in relation to the same concept. An 

implication for this paper is that caution is needed when interpreting the mathematical 

aspects of a visual representation created by a child. In addition to accounting for 

drawing development, it might be difficult to distinguish between an incomplete 

‘concept image’ (the source) and the ‘evoked concept image’ (the selected part).  
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Focus of the Study 

The purpose of this paper is to reveal the range of drawings produced by children in 

response to a simple verbal prompt regarding relative height. Although understanding 

of ‘tall and short’ can, to some extent, be inferred from the drawings, the emphasis is 

on the nature of the drawings themselves rather than the assessment of mathematical 

concepts. Therefore, this paper is focused by the question: What types of drawings do 

4- to 8-year-old children create to represent ‘tall and short’? 

METHOD 

The study reported in this paper is part of a larger ongoing research project, Emerging 

Mathematical Drawing that explores the development of mathematical drawing across 

preschool and primary years, with particular interest in the transition from naturalistic 

drawing to mathematical diagrams. The site for this 2022 study was a state primary 

school with an attached preschool in a low socio-economic metropolitan area of a 

major city in Australia. Data collection took place in the 4th month of the school year. 

All the children attending the participating classes on the day were invited to complete 

the drawings (See Table 1), and the drawings from children whose parents provided 

written consent were used as data.  

Table 1. Participant information. Note: ‘Foundation’ is the generic name used by the 

Australian curriculum for the first year of mandatory school attendance. 

School level Approximate age range Number of participants 

Pre-school 4-5 years 10 from 1 class 

Foundation 5-6 years 32 from 3 classes 

Year 1 6-7 years 36 from 2 classes 

Year 2 7-8 years 31 from 2 classes 

The teacher was present, but the instructions were delivered by the researcher as a 

stand-alone activity – that is, the drawings were not contextualised in a play experience 

of imbedded in a lesson on measurement.  

Verbal instructions: “Think about things that are tall (raise hand over head height) and 

things that are short (lower your hand below waist level). Draw something tall and 

something short”. 

An open-ended inductive approach was used to gradually sort the 109 drawings into 

groups as obvious similarities began to emerge on examination, such as the number of 

figures, recognisable objects, scribble etc. These tentative groupings were then 

examined more closely for the use of schemas, that is, pictorial structures such as 

proportion and the use of a baseline. These schemas overlap with the mathematical 

characteristics of depicting of tall/short and the use of a baseline for clear height 

comparison. At this point a second researcher with prior experience in analysing 

children’s mathematical representations reviewed and discussed every drawing, which 

resulted in the refinement and consolidation of five groupings.  
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FINDINGS 

Category A: Incoherent 

The 21 drawings (19.3%) in this category offered no discernible representation of the 

concepts of tall and short, including one ‘no response’. Some of the drawings were 

scribble, in the developmental sense, either freeform scribble or with some form and 

structure (see Figure 1). It is possible that some of the drawings were informed by 

visualised ‘tallness; or ‘shortness’ but such a representation could not be inferred.  

 

Figure 1. Examples of Category A: Incoherent 

Category B: One object 

Only eight drawings (7.3%) were of a single object that could be interpreted as a 

‘known’ tall object (e.g., a tree, giraffe, adult) or a ‘known’ small object (e.g., and 

insect, a cat). In these drawings, no comparison of height was depicted but it was 

assumed that the tallness or shortness of the object was relative to the child’s own 

height (See Figure 2). 

 

Figure 2. Examples of Category B: One object 

Category C: Similar size 

The seven drawings (6.4%) in this category contained two or multiple figures of the 

same or similar height or length and were spread across the four year-levels. These 

drawings suggested awareness of the height/length concept and perhaps of comparison, 

but the drawing did not clearly depict the difference in height expected when 

illustrating tallness and shortness. Some drawings were of lines or geometric shapes 

rather than physical objects (see Figure 3). Some included a baseline.  
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Figure 3. Examples of Category C: Similar size 

Category D: Figures not on a baseline 

The 41 drawings (37.6%) in this category contained representation of two objects (or 

multiple figures) of clearly different heights/lengths but did not include clear base line 

for comparison. Some drawings were lines or geometric shapes, and a few were 

presented horizontally rather than vertically (See Figure 4).  

 

Figure 4. Examples of Category D: Figures not on a baseline 

Category E: Figures on a baseline 

32 drawings (29.4%) represented two (or multiple figures) with at least one 

distinguishably tall and another short. The figures tended to be recognisable objects 

that would logically be regarded as being tall or short, were drawn roughly in 

proportion to each other (See Figure 5).  

 

Figure 5. Examples of Category E: Figures on a baseline 

A key feature of these drawings was the use of a common base line, or at least the 

apparent intention of alignment. The figures were often drawn at the bottom of the 

page, using the edge of the paper as the baseline. Clear representation was made of 

comparison and the difference in height rather than length in general; therefore, figures 

were drawn in vertical orientation. One student drew two columns of numbers (from 1 

to 7 or 8, and the other 1 to 3) – perhaps depicting rulers for measuring length (See 

Figure 5, middle drawing). 
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Distribution of drawing types 

The more sophisticated depictions of tall and short were more prevalent in Year 1 and 

2 than in Preschool and Foundation. 67% of the children created a drawing of 

recognisable objects and made an obvious distinction between their heights. Of note is 

the persistence of incoherent drawings into Year 1. 

Table 2: Number of drawings in each category for each year level 

Drawing 

Category  

Pre-

school 

Foundation Year 1 Year 2 Total for 

category 

Percentage  

n=109 

A: Incoherent 7 8 6 0 21 19.3% 

B: One Object 1 4 2 1 8 7.3% 

C: Similar Size 1 3 1 2 7 6.4% 

D: No Baseline 1 12 18 10 41 37.6% 

E: Baseline 0 5 9 18 32 29.4% 

DISCUSSION 

In the five categories, we can see the parallel development of drawing skills and the 

communication of mathematical concept of height comparison. As expected from 

previous research (Carruthers & Worthington, 2005; Machón, 2013), most of the pre-

school children were still exploring drawing as mark making (Category A). Of some 

concern, are the six Year 1 children (6-7 years) whose drawings were still in Category 

A: Incoherent, at a time when curriculum expectations involve the creation and 

interpretation of basic mathematical drawings and diagrams. Given the links that have 

been made between 5- to 6-year-old’s ability to create schematised drawings and their 

later mathematical performance (Poland & van Oers, 2007), some appropriate teaching 

intervention to support drawing development seems warranted.  

Also as anticipated, the majority of 6- to 8-year-olds had progressed to drawings as a 

representational medium for external objects which can be used to communicate 

mathematical concepts (Categories D & E). The task of drawing something tall and 

something short prompted the children to utilise schemas for proportion and for 

baselines. Interestingly, in the MacDonald (2010) study of 5- to 6 years, 89% of the 

children produced drawings of tall and short that clearly demonstrated “… comparing 

objects directly by placing one object against another” – which would coincide with 

Categories D and E in the present study. In contrast, in this study only about half of 

that age group (Foundation) produced comparison drawings. The MacDonald (2010) 

paper does not mention what the remaining 11% of 5/6-year-old children drew, making 

the interpretation of Category B: One Object, and Category C: Similar Height, 

somewhat isolated.  

Across all year levels, Category B and C drawings were produced by 13.7% of the 

participants. Tall and Vinner’s (1981) theory of concept images offers one 

interpretation. If a drawing of just one object (usually of something known to be tall in 

relation to a child) is accepted as the ‘evoked concept image’, then the drawings may 

indicate the presence of an emerging cognitive structure related to relative length, but 
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the second object of comparison has not been included. On the other hand, the drawings 

of two or more objects of similar height and size might be representations of ‘evoked 

concept images’ that show comparison, but not difference in length. A further 

interpretation of this situation may be that these children are in a transitional phase in 

the development of mathematical drawing and that teacher intervention with the 

purpose of highlighting features of effective representations would be very timely. In 

other words, teachers may be able to boost these children’s drawing skills to better 

communicate their current mathematical understanding. 

Limitations and further research 

The participants in this study came from only one school, so further studies with a 

broader range of participants are needed to establish the applicability of the five 

tall/short drawing categories to different cohorts of children. Studies designed to probe 

the relationship between children’s understanding of comparative length (or 

specifically height) and their ability to effectively communicate those understandings 

through their drawings could provide teachers with valuable advice about supporting 

children’s development. This could be achieved by asking children to talk about their 

drawings to check for knowledge that has not been clearly represented in the drawing. 

Of particular interest would be intervention studies to test the proposition that children 

producing Category B and C drawings are demonstrating a readiness to progress to 

more effective mathematical drawings and that appropriate teacher instruction could 

prompt the transition. 

CONCLUSION 

The explication of the five categories of drawings directly addresses the research 

question:  What types of drawings do 4- to 8-year-old children create to represent ‘tall 

and short’? The findings tentatively suggest a developmental sequence in the 

representation of tall and short concepts through drawing, but the scattering of ages 

across the categories reminds us that children differ in the development rates. The 

simple task of asking children to draw something tall and something short can easily 

be replicated in other research but could also be used by teachers to focus their attention 

on the drawing development needs of their students, in addition to the conceptual 

learning needs for relative height. 
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APPLYING A COMMOGNITIVE-BASED FRAMEWORK TO 

PROMOTE TEACHERS’ COMMUNICATION ABOUT 

REASONING AND PROVING 

Merav Weingarden and Orly Buchbinder 

University of New Hampshire 

 

This study presents how the commognitive-based Opportunities for Reasoning and 

Proving (ORP) Framework, developed for research purposes to analyze mathematical 

tasks, was applied as a learning tool for teachers. Seven novice secondary teachers, 

who participated in a professional learning community around integrating reasoning 

and proving, were introduced to the ORP Framework and engaged in a sorting tasks 

activity. We show how the ORP Framework helped teachers to focus on the ORP 

embedded in tasks, to attend to student mathematical work, and to communicate about 

ORP coherently and unambiguously. We discuss the affordances of using a framework, 

which relies on the operationalized discursive language of commognition, to promote 

teachers’ communication around reasoning and proving.  

REASONING AND PROVING IN MATHEMATICS TEACHING 

Mathematics educators and policymakers outline the vision of mathematics classrooms 

in which students develop proficiency with reasoning and proving (e.g., Hanna & de 

Villiers, 2012; NCTM, 2014). In this vision, teachers have a critical role in designing 

instructional activities that involve reasoning and proving, and teacher educators in 

preparing prospective teachers to design such activities (Buchbinder & McCrone, 

2020; AMTE, 2017). However, what constitutes “reasoning” and “proving” has been 

an elusive topic (Reid & Knipping, 2010). For example, Stylianides (2008) defined 

“reasoning-and-proving” as a set of processes such as identifying patterns, making 

conjectures, and justifying, while others (e.g., Cirillo & May, 2020) focus on deductive 

reasoning and the logical structure of theorems and proofs. Jeannotte and Kieran (2017) 

argued: “what mathematical reasoning consists of is not always clear [and] it is 

generally assumed that everyone has a sense of what it is” (p. 1). Clarifying the notions 

of reasoning and proving in the school setting may aid teachers in providing their 

students with richer opportunities for reasoning and proving.   

In our previous work (Weingarden et al., 2022), we utilized the discursive perspective 

of commognition to develop the Opportunities for Reasoning and Proving (ORP) 

Framework (described below) with which we conceptualized and operationalized the 

notion of reasoning and proving in mathematics classrooms by the opportunities 

provided to students to participate in certain types of discourses. In this study, we apply 

the ORP Framework in the context of teacher education and explore how it can support 

novice teachers in their communication about reasoning and proving. 
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THEORETICAL PERSPECTIVE  

Weingarden et al. (2022) developed the ORP Framework for characterizing 

mathematical tasks according to the ORP embedded in them. The framework draws on 

the robust theoretical tools of the commognitive perspective (Sfard, 2008), which 

views learning mathematics as a special type of discourse, and thus mathematical tasks 

can be characterized according to the type of discourse afforded to students by the task. 

The ORP in a task are determined by the objects at the core of the task: school-based 

(e.g., equation) or logic-based (e.g., conditional statement), and by the processes 

needed for solving the task: school-based (e.g., formulating an equation), logic-based 

(e.g., writing a conditional statement), or reasoning processes (e.g., generalizing, 

justifying). Table 1 presents the four types of ORP revealed in the previous study: 

Limited, Mixed, Logic-based, and Fully-Integrated ORP. The examples of tasks for 

each type of ORP are numbered in the order in which they were used in this study’s 

intervention (see the Method section).    

Tasks’ characteristics Examples [emphasis added] 

Limited ORP 

Tasks that focus solely on 

school-based mathematical 

objects and include school-

based processes. 

3. Solve and graph the equation: 𝑥2 + 4𝑥 − 12 = 0. 

7. Find a perimeter of a rectangle whose one side is 5” and 

whose length is twice its width. 

11. A farmer had some chickens and some cows. She counted 

40 heads and 126 legs. How many chickens and how many 

cows were there? 

Mixed ORP 

Tasks that involve the 

enactment of mathematical 

reasoning processes such as 

pattern identification, 

conjecturing, justifying, etc., 

on school-based mathematical 

objects. 

1. Create equations that one can use to find the number of 

smaller triangles and the number of sticks for any given 

number triangle and explain your reasoning.  

8. Explain how many solutions a quadratic equation can have. 

9. Make a conjecture about the relationship between isosceles 

triangles and equilateral triangles and justify your thinking. 

Logic-based ORP 

Tasks that are characterized by a 

logic-based object and can engage 

students with logic-based 

processes, such as identifying the 

hypothesis and conclusion of a 

given statement, or formulating 

the converse of a given statement.  

2. Underline the hypothesis and circle the conclusion in the given 

statement: If both roots of quadratic function are positive then 

a>0. 

4. Explain in your own words what a counterexample is. 

6. Given a statement: A quadrilateral with two pairs of opposite 

congruent sides is a parallelogram.  Identify the hypothesis and 

the conclusion of the statement and determine if the statement is 

universal or existential.  
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Tasks’ characteristics Examples [emphasis added] 

Fully-integrated ORP 

Tasks that sensibly integrate 

both school-based and logic-

based objects, such that 

students must operate on both, 

applying two types of 

processes: school-based and 

logic-based. 

5. Come up with an example of a conditional statement that 

has to do with linear functions and equations and determine 

whether the statement is true or false. 

10.  Prove or refute the following statement: A quadrilateral 

with two pairs of opposite congruent sides is a 

parallelogram. 

Table 1: The four types of ORP in mathematical tasks 

With the ORP Framework providing a concrete operationalization for how reasoning 

and proving can be integrated in mathematical tasks, we hypothesized that it could be 

helpful for teachers aspiring to implement reasoning and proving in their classrooms. 

This assumption was anchored in two research strands. First, is a strand of research 

that explores the use of research-designed tools (e.g., observation protocols or teaching 

assessments) as pedagogical tools for teacher learning. For example, Candela and 

Boston (2022) examined how teachers using the Instructional Quality Assessment tool 

helped them to reflect on their practice and improve their teaching. The second strand 

relates to teachers’ pedagogical discourse around learning and teaching. While 

pedagogical terms such as “high-level thinking” and “conceptual understanding” 

became ubiquitous in the discourse of teachers and teacher educators, their meaning 

and how it is manifested in mathematics classrooms often have been vague and elusive. 

Thus, the communication about these terms is often incoherent or ambiguous 

(Weingarden & Heyd-Metzuyanim, 2023). This ambiguity is also recognized with 

respect to reasoning and proving, as mentioned above. Thus, introducing teachers to 

the ORP Framework may be beneficial for creating a common language to talk about 

reasoning and proving. This paper begins to explore this assumption, and attends to the 

research question: How does the ORP Framework contribute to novice teachers’ 

communication around integrating reasoning and proving in their teaching? 

METHODS 

This study is part of a larger project investigating how beginning teachers learn to 

integrate reasoning and proving in their teaching. The first stage of this project 

designed a capstone course Mathematical Reasoning and Proving for Secondary 

Teachers (Buchbinder & McCrone, 2020) and examined how prospective secondary 

teachers’ (PSTs’) expertise toward reasoning and proving develops as a result of their 

participation in the course (Buchbinder & McCrone, in press). The second stage of the 

project followed the PSTs, who took the capstone course, into a year-long supervised 

internship; and the third stage followed the same teachers for the first two years of 

autonomous teaching. During the third stage, the teachers participated in an online 

Professional Learning Community (PLC). The PLC met four times per year, each 

meeting lasting 90 minutes. One of these meetings was devoted to identifying ORP in 
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mathematical tasks. Eight teachers participated in this PLC meeting, which included 

three parts. First, the pre-ORP task sorting activity, where teachers worked in three 

groups on sorting 11 tasks (shown in Table 1) in any way they see fit and naming their 

categories. Sorting, modifying and characterizing tasks has been shown to be beneficial 

to teachers’ professional learning (e.g., Swan, 2007). Second, we introduced the ORP 

Framework by describing and exemplifying the objects (school-based and logic-based) 

and the processes (school-based, logic-based, and reasoning) in a separate set of tasks, 

and introduced the four types of ORP (Limited, Mixed, Logic-based, and Fully-

integrated). In the third part, the post-ORP task sorting activity, teachers sorted the 

same 11 tasks again, according to the types of ORP. Data includes the video-recording 

and the transcript of the PLC meeting, and the pre-ORP and post-ORP sortings made 

by each of the three groups. In the pre-ORP and post-ORP episodes, we identified what 

categories of tasks the teachers created, how they named the categories, what sorting 

criteria they used, and their dilemmas or disagreements. We analyzed and compared 

teachers’ pre-ORP and post-ORP discourse, including how they talked about the tasks, 

what they focused on, and whether and how they referred to reasoning and proving.  

RESULTS 

Pre-ORP sorting task activity: Overlooking the logic-based ORP   

In the pre-ORP sorting task activity, teachers mainly focused on the level of thinking 

required from students, the complexity of the tasks, the extent to which the tasks 

involved multiple solution paths or a factual answer, and other pedagogical elements 

such as whether the task belongs to beginning or end of a unit (Table 2 shows the 

sorting of each of the three groups). For example, group 1 (Diane and Olive) sorted the 

tasks according to the assumed level of thinking. The three task categories they created 

were: low-level thinking, moderate-level thinking, and higher-order thinking. The low-

level thinking category included tasks 2, 3, and 7, which they described as 

“straightforward tasks,” “do this tasks,” and “plug-and-chug tasks.” In contrast, the 

higher-order thinking tasks (# 1, 5, and 9), were assumed to require “independent 

thought,” and “explorations,” where students “actually need to think about it” rather 

than being “fed the answer.” Olive and Diane’s discourse and sorting categories did 

not attend to the ORP embedded in the tasks. For example, task 3, which asks students 

to solve an equation, and task 2, which asks to identify the hypothesis and conclusion 

in a conditional statement, were similarly classified as “straightforward tasks” in the 

low-thinking category. This type of sorting did not distinguish between the tasks’ topic 

and nature, the ORP embedded in them, and student mathematical work around them. 

Specifically, this categorization completely overlooked the logic-based ORP of task 2. 

Olive’s comment ”that's a nothing question,” suggests that she did not attend to the 

logic-based characteristics of the task and its importance in explicating the logical 

structure of arguments and proofs. When classifying task 6, Diane and Olive 

contemplated whether it belongs to “low-thinking” or not, since “it starts as like a 

simple task”, similar to task 2, but on the other hand, “it takes it a little bit further than 

just identifying the hypothesis and conclusion.” Eventually, they classified this task as 
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moderate-level thinking, since determining if a statement is existential or universal 

“requires more discussion than graphing an equation,” (c.f., task 3) but did not specify 

what this “more discussion” involves, how these tasks are different in the mathematical 

work students need to do, and how these characteristics relate to reasoning and proving.  

Group Categories names and task numbers 

1: Olive, Diane 
Low-level thinking            

(2, 3 ,7) 

Moderate-level 

thinking              (4, 6, 

8, 10, 11) 

Higher Order Thinking                  

(1 ,5 ,9) 

2: Bella, Nancy, 

Francesca 
Direct Approach 

(3, 4, 8) 

Exploration        (1, 7, 

9, 11) 

Conditional 

Statements/Proving (2, 5, 

6, 10) 

3: Riley, Wendy Direct 

(2, 3, 7, 11) 

Explanation 

(4, 8 ,10) 

Multi-step (1, 6, 9) 

Open-ended (5) 

Table 2: Pre-ORP categories and task numbers by group 

Group 2, in contrast, recognized that some of the tasks are proof-oriented. Right from 

the start Nancy said: “one thing that's starting to jump out at me is that there's a couple 

[of tasks] that look like they're all about conditional statements, like number two, 

five…” This led the group to create a category conditional statements/proving which 

included tasks 2, 5, 6, and 10. All these tasks included the word “statement,” and had 

students prove a statement, identify its hypothesis and conclusion, or produce a 

statement. Group 2’s teachers also suggested a category of tasks that “don’t have 

anything about proving.” This category was further split into exploration (tasks 1, 7, 9, 

and 11) and direct approach (3, 4, and 8). The exploration problem category included 

“open-ended,” and “experimental” questions, where “students have to play around with 

and figure out,” and “need a more solid explanation to back it up.” The direct approach 

category included questions “that have just one answer,” do not imply “multiple ways 

to do it,” and explicitly state “what students have to do.” When discussing task 4, which 

asks students to explain in their own words what a counterexample is, the opinions 

split. Nancy and Bella wanted to categorize it as a conditional statement/proving task 

because “you're finding a counterexample for a conditional statement,” but Francesca 

thought it fits better under the direct approach category. She explained: “I feel like 

counterexample is something that could be put at any level… but it's not asking you to 

necessarily find a counterexample. It's just asking what it is.” This dilemma, similar to 

group’s 1 uncertainty regarding task 6, shows that by classifying tasks into high-level 

(e.g., exploration problems, higher-order thinking) and low-level (direct, low-level 

thinking), the teachers overlooked the added value of tasks like 2, 4, and 6, that 

although are straightforward and require a factual answer, are important for students 

making arguments and proving (logical-based ORP).   
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Post-ORP sorting task activity: Focusing on reasoning and proving  

In the post-ORP sorting activity, the teachers’ discourse changed. First, instead of 

talking about the tasks’ characteristics (e.g., straightforward, open-ended, high level, 

fits to advance students, can be part of a summative assessment), the teachers turned 

to talk about the mathematical work students need to do. For example, Olive suggested 

that task 10 has fully-integrated ORP and explained: “because you have to use the logic 

stuff and the school math content.” She then concisely listed the logic-based processes 

and the school-based processes students need to do in the task. Regarding the same 

task, Bella said: “You need logic because you need to know what prove or refute 

means. But you also need to know what a quadrilateral with two pairs of congruent 

sides is. So that would be fully-integrated.” Like Olive, Bella also clearly referred to 

the objects and the processes embedded in the task, which includes both the school-

based components (“what a quadrilateral with… is”), and the logic-based components 

(“what prove or refute means”). 

The second change identified in the teachers’ post-ORP discourse is that it became less 

ambiguous, and more objectified and concise compared to the pre-ORP discourse. For 

example, during the pre-ORP activity, Francesca described the tasks in the conditional 

statement/proving category as: “you're doing something but without it being an 

exploration. But you're also not proving it.” With these vague terms, she tried to capture 

the essence of the logic-based ORP type of tasks, that can be straightforward (“without 

exploration”) and not require proving, but still related to conditional statements 

(“you’re doing something”). On the contrary, in the post-ORP activity, when sorting 

task 2, which includes logic-based ORP, Francesca explained that students are “just 

underlining [the hypothesis] and circling [the conclusion], but they still have to have 

that logic of it.” That is, Francesca clearly and explicitly indicated what students need 

to do (underlying, circling) and use (“the logic of it”) to solve the task.  

Similar observations were revealed in all other groups, where vague terms and reliance 

on feelings about the difficulty level of the task, were replaced with the precise 

language of the ORP Framework and meaningful sorting of tasks according to types of 

reasoning and proving activity expected from the students engaged with the task.  

DISCUSSION  

We examined how the ORP Framework, developed for research purposes, can be used 

as a learning tool for teachers in a professional development setting. Our findings show 

that the ORP Framework helped teachers to attend to the ORP embedded in the tasks. 

In the pre-ORP sorting activity, the teachers’ discourse was subjectified and was 

lacking a unified and coherent language to describe students’ mathematical work. The 

teachers used vague and ambiguous terms (e.g., “needs discussion,” “play around,” 

“doing something”) and focused on general pedagogical aspects, such as level of 

thinking or task complexity. The teachers also attempted to characterize the tasks by 

the keywords (e.g., “explain,” “find,” or “conditional statement”) rather than focusing 

on the conceptual, mathematical work students need to do in the task. In contrast, 
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teachers’ post-ORP discourse was more objectified, coherent, and focused on student 

mathematical work, and components of reasoning and proving. The operationalized 

characterization of ORP also helped teachers develop an objectified way of talking 

about tasks, including what the task is about, and what students need to do to solve it.   

We find this outcome interesting, because our teachers, although novices, were well 

familiar with proof-related tasks, having developed and enacted many such tasks as 

PSTs in the capstone course (Buchbinder & McCrone, 2020). Yet when it came to 

identifying the potential of a task to engage students with reasoning and proving, the 

teachers lacked the common unambiguous language for describing this potential. The 

ORP Framework, by relying on the discursive language of commognition, provided 

teachers with such a common language.  

The advantage of commognition (Sfard, 2008) is that it enables operationalized 

communication about mathematics teaching and learning. However, communicating 

about teaching through the commognitive lens, especially with teachers, is not a 

straightforward process. The ORP Framework, similar to other tools and mediators 

developed based on commognition (e.g., Weingarden & Heyd-Metzuyanim, 2023), can 

help teachers to communicate about teaching more coherently without their familiarity 

and expertise in the commognitive framework. 

The ORP Framework, developed first as a research tool for characterizing ORP in 

mathematical tasks (Weingarden et al., 2022), was found in this study, to contribute to 

teachers’ emergent development of a common language (shared with teacher educators 

as well) for communicating about opportunities for reasoning and proving embedded 

in tasks. By this, our study contributes to the growing research on using research-based 

tools for teacher education and professional development (e.g., Candela & Boston, 

2022). Moreover, by providing teachers with a coherent and objectified language to 

communicate about reasoning and proving, we step forward to support teachers’ 

practices of identifying, designing, modifying, and enacting tasks that afford students 

ample opportunities for reasoning and proving – a need raised by many researchers and 

teacher educators (e.g., Hanna & de Villiers, 2012).   
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FROM UNIVERSITY TO SCHOOL: EXPLORING BEGINNING 

TEACHERS INTEGRATING REASONING AND PROVING 

Merav Weingarden and Orly Buchbinder 

University of New Hampshire 

 

We follow a beginning mathematics teacher, Olive, from the university-based course 

Mathematical Reasoning and Proving for Secondary Teachers through the supervised 

internship where Olive taught in her cooperating teacher’s classroom. By drawing 

upon Activity Theory, we compare her teaching within the two teaching settings, and 

we examine the opportunities for reasoning and proving she provided to her students 

in each teaching setting. As a prospective teacher, Olive provided her students 

opportunities for reasoning and proving. During the internship, these opportunities 

initially diminished due to institutional and contextual constraints. However, Olive 

gradually carved out unique paths to engage students with reasoning and proving as 

her teaching independence increased. 

BACKGROUND AND OBJECTIVES 

The important role of teachers in supporting student engagement with reasoning and 

proving has long been recognized (NCTM, 2014). While there have been attempts to 

address the calls for enhancing teacher preparation around reasoning and proving 

within university programs (e.g., Buchbinder & McCrone, 2020; Conner et al., 2014), 

little is known about long-term development of proof-related practices of beginning 

teachers and the factors affecting it (Stylianides et al., 2017). Research suggests that 

transitioning from teacher preparation programs to supervised teaching experiences 

(hereafter, internship) is fraught with challenges. Beginning teachers often encounter 

tensions when balancing their commitments to the university and their mentor teachers, 

while also developing their own teaching styles and identity as mathematics teachers 

(Bieda et al., 2015; Smagorinsky et al., 2004). Stylianides et al., (2013) identified three 

specific challenges related to integrating reasoning and proving into mathematics 

teaching: beginning teachers struggle to implement proof-related tasks in real 

classrooms; have low knowledge of students' mathematical conceptions; and face non-

productive classroom norms in mentor teachers’ classrooms that do not promote 

exploring mathematical ideas, including reasoning-and-proving. However, novice 

teachers have been shown to hold on to some of the conceptual tools and practices 

developed during their training, and those tend to resurface by the second year of 

teaching (Grossman et al., 2000). Still, with respect to the complex practice of engaging 

students with reasoning and proving, there is limited knowledge about how prospective 

secondary teachers (PSTs) recontextualize what they learned in their teacher education 

program and apply it in their own mathematics classrooms. This study aims to 

contribute to this line of research by examining beginning teachers’ transition from 
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university to their internship, regarding implementing reasoning and proving, and the 

role of sociocultural contexts in shaping this transition. 

THEORETICAL PERSPECTIVES 

Situative perspective of teacher learning (Borko et al., 2000) is rooted in Vygotsky’s 

sociocultural perspective that individual learning is a social phenomenon, affected by 

physical, social, and cultural contexts in which it occurs. The situative perspective 

places a critical role on teachers’ identities which evolve across multiple and varied 

contexts such as one’s own experiences as a learner, teacher preparation program, the 

internship site, and the school workplace (Thompson et al., 2013). In teacher 

preparation programs, PSTs encounter teaching practices aligned with ambitious, 

student-centered, discussion-rich instruction. However, the school where they teach 

may adopt more traditional instruction, and often explicitly or implicitly encourage 

beginning teachers to adopt the school’s culture and norms. Thus, beginning teachers 

may experience tensions between the teaching paradigms across varied contexts 

(Feiman-Nemser, 2003; Thompson et al., 2013). Specifically, this applies to integrating 

reasoning and proving in teaching mathematics (Stylianides et al., 2013). Thus, it is 

reasonable to expect a dynamic, non-linear progression in the beginning teachers’ 

development regarding the implementation of reasoning and proving from university-

based teacher education programs to their internship sites and beyond.   

To capture these dynamics, we utilize Activity Theory, specifically, Engeström’s 

(1987) collective activity system model, to better understand the complexity of human 

learning from interactions with others, mediated by cultural tools and situated in social 

contexts. Increasingly, Activity Theory has been used to describe teacher learning in 

varied contexts (e.g., Ellis et al., 2019; Potari, 2013). Figure 1 shows Engeström’s 

model overlayed with the description of its application to our study.  

 

Figure 1: The collective activity system of activity theory applied to our study    
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This study is a part of the larger longitudinal project, which takes place in the US and 

examines how beginning teachers’ knowledge, dispositions, and classroom practices 

related to reasoning and proving develop over time. Beginning teachers are followed 

for a one-semester capstone course Mathematical Reasoning and Proving for 

Secondary Teachers (Buchbinder & McCrone, 2020), a yearlong internship, and two 

years of autonomous teaching. In this paper, we focus on one beginning teacher – 

Olive, and compare her teaching, within an activity system, as a PST in the capstone 

course, and as an intern teaching collaboratively with her cooperating teacher. We 

examine how her teaching evolved in this transition. The overarching research question 

of this paper is: How do Olive’s activity systems as a PST and as an intern compare, 

and how does her teaching toward reasoning and proving develop across this shift?   

METHODS 

Olive, a secondary mathematics education major, excelled in both mathematical and 

educational coursework. In Fall 2020 she completed the capstone course where she 

showed herself as an articulate and active participant, demonstrating positive 

dispositions towards proof and strong mathematical knowledge of proof. In this course, 

Olive designed and taught four proof-oriented lessons to a group of students in a local 

high school. After graduation, Olive started her supervised internship, gradually 

assuming teaching responsibilities in her cooperating teacher’s high-school classroom. 

From each teaching setting, we collected 2-4 video-recorded lessons, including the 

lesson plans, written reflections (in the course), and post-lesson interviews.   

Since Activity Theory was not developed specifically for mathematics education, we 

operationalized each node of the activity system (Figure 1) using additional analytic 

tools. The tasks (Tools) Olive enacted during her lessons were analyzed using the 

Opportunities for Reasoning and Proving Framework (Weingarden et al., 2022), which 

identified the types of opportunities for reasoning and proving embedded in the tasks. 

Olive’s teaching actions (Object) were analyzed using three frameworks. The extent to 

which Olive’s moves facilitate student reasoning (e.g., cueing, funneling) was analyzed 

by Teacher Moves for Supporting Student Reasoning (Ellis et al., 2019). The nature of 

Olive’s questions (e.g., requesting a factual answer/ method/ idea) was analyzed by 

Teacher Support for Collective Argumentation framework (Conner et al., 2014). This 

analysis was overlayed with examining the function of Olive’s question and moves 

based on Jeannotte and Kieran’s (2017) Mathematical Reasoning for School 

Mathematics Framework, to capture the reasoning processes (e.g., validating, 

justifying) supported by these teaching actions. Student agency (Division of Labor) 

was identified by determining whether Olive’s task enactment was student- or teacher-

centered. Content analysis of Olive’s reflections and interviews was used to glean 

findings about contextual factors, such as support personnel (Community), regulation 

governing conduct (Rules), and Olive’s teacher identity (Subject), including her valued 

teaching actions regarding reasoning and proving, and the structural and institutional 

factors of her teaching settings. 
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RESULTS 

Due to space limitations, we describe three lessons from the two teaching settings: one 

of Olive’s lessons as a PST, and two of her lessons as an intern. Lesson one was in 

early October, the second lesson was about a month later, during Olive’s “solo-week”. 

Olive as a PST 

In Olive’s lessons as a PST, Olive designed and enacted tasks that provide students 

with opportunities for reasoning and proving, such as identifying patterns, 

conjecturing, and proving (Tools). Figure 2 shows an example of an explorative task 

that Olive used in her first lesson as a PST.  

 

Figure 2: Olive’s task in Lesson 1 as a PST.  

This task asks students to explore a dynamic geometry sketch and to make a conjecture 

about the properties of two sets of perpendicular lines sharing the same intersection 

point and prove the conjecture. The task’s set up, by giving students the time to explore 

and the opportunity to come up with a new narrative on their own, enables a high extent 

of student agency (Division of Labor). Olive’s teaching actions in this lesson were 

mostly posing questions that requested ideas and inviting students to observe the 

relationship and generalize it. Other teaching actions included guiding, conceptual 

scaffolding, and directing student attention towards formulating the conjecture and 

then assisting them in completing the proof (Object). Overall, Olive’s enacted teaching 

was characterized by rich opportunities for reasoning and proving provided to the 

students. In the capstone course, Olive was tasked with developing lessons focused on 

reasoning and proving (Rules) and was supported by her peers and encouraged by the 

instructor (the second author of this paper) to experiment, take risks, and show 

pedagogical creativity (Community). Reflecting on this lesson, Olive wrote:  

This theme was easy to integrate into a lesson plan. The content was properties of lines 

and angles. I was able to turn one of these properties into a situation for students to analyze, 

write a conjecture about, and prove. […] students had to eliminate excess information from 

a situation; they spent time devising a conjecture and determining what information was 

given and what needed to be proved. These are important features of proving. 
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This quote, as well as the other characteristics of the lesson, were typical of Olive’s 

teaching during the course. Her discourse reflected confidence, comfort with designing 

proof-related activities, and recognition of their importance for student learning. 

Olive as an intern 

As an intern, Olive had to adhere to the norms of the school and follow the existing 

curriculum (Rules). Her cooperating teacher (CT), while generally supportive and 

welcoming, expected Olive to adhere to her teaching style and established classroom 

norms (Community). The class time was devoted to note-taking and computational 

practice. During the first weeks of her internship, Olive taught from the lesson plans 

developed by her CT and had limited input into the design and set up of the tasks 

(Lesson 1). With time, she embraced her growing independence and stepped into her 

solo-week teaching, where she was afforded to have more input into lesson planning 

and teaching, while still using her CT’s overall unit plan and worksheets (Lesson 2).  

Lesson 1. The lesson plan, designed by Olive’s CT, was on solving equations. The 

tasks involved solving 12 linear equations, such as 11r+60=16 or 5(n+3)+9=3(n-2)+6. 

Olive looked for volunteers to solve the equations, but when no one did, she modelled 

solving the equations on the board, herself, while asking students about the next steps. 

Her questions included requesting facts (“What is positive 60 minus 60?”) and 

requesting a method (“How am I gonna move the 11 away?”). Her teaching moves 

included mainly cueing (“Are 11 and r [11r] being added?”, “If they're hugging like 

that, are they being added?”). Although students responded to Olive’s questions, their 

agency was restricted, they were not given the opportunity to author new mathematical 

narratives (Division of Labor), and the task they engaged with was characterized by 

limited opportunities for reasoning and proving (Tools). Olive’s teaching actions 

(Object) broke the task into procedural micro-tasks, like identifying operations or 

proving a factual answer (e.g., “What should I move first?”, “my next step is combining 

like terms”) and did not involve requesting an idea and pressing for reasoning.  

In the post-lesson interview, Olive expressed frustration and dissatisfaction with the 

lesson designed by her CT (Subject). She described an envisioned alternative for this 

lesson where students explore the consequences of various operations on both sides of 

an equation. For example, whether adding 24 to both sides of an equation 4p=5 is a 

“helpful” operation, why or why not. This way students could explore more the 

reasoning and sense-making behind the rules for solving equations.    

Lesson 2. This lesson was about inequalities and took place during Olive’s solo-week. 

Olive planned the lesson based on her CT’s notes and worksheets but added an 

“exploration,” as she described it, to the lesson, where students had to discover what 

happens when an inequality is multiplied or divided by a negative number. Olive led 

the whole class discussion, where she invited students to write different inequalities 

and multiply or divide them by positive or negative numbers. She invited students to 

notice patterns and come up with conjectures. Students worked in pairs while Olive 

facilitated their thinking through guiding moves to help them find “a rule that always 
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works.” For example, some students came up with a conjecture “when you divide or 

multiply by a negative number, the numbers will always be positive.” In response, 

Olive offered a counterexample and guided the students toward validating their 

conjecture. Pointing to 72<104 divided by (-2) she said: “but when we divided it here, 

it became negative. Right? So, it's not always gonna become positive.”  

This task involved opportunities for reasoning and proving such as conjecturing, 

justifying, and validating (Tools). Olive’s teaching actions (Object) included 

requesting ideas, directing by providing guidance, and engaging students in validating 

and conjecturing. The task set-up was student-centered resulting in greater student 

agency and authority by producing a new mathematical narrative (Division of Labor).  

The rest of the lesson followed the CT’s lesson plan, which like Lesson 1, contained 

strictly procedural tasks with no opportunities for reasoning and proving. When 

interviewed, Olive explained: “I wish there was more time to dedicate towards that (the 

exploration activity), but I needed to get through the lesson plan.” Further, Olive 

explained that she introduced the “exploration” activity since she was worried about 

her CT’s lesson plan presenting the rule of “flipping the inequality sign without any 

exploration.” She said: “I just was very worried they (students) were going to ask why. 

I wanted them to see it for themselves and to understand why that was the case.” Olive 

was also aware that this exploration does not constitute proof (“Of course, obviously 

an example doesn’t constitute proof”) but felt that it was more advantageous for 

students than merely receiving the rule from the teacher. Reflecting on this activity and 

her teaching more broadly, Olive said: 

They (students) did have opportunity to write, finish a conjecture and explore different 

examples. […] In my head they (students) are doing those explorations all the time... I 

think that that's how [students] learn and so, I would love to dedicate more time to specific 

things like that exploration. […] I always try to think of ways to incorporate it.  

Analyzing Olive’s discourse revealed that although she was expected to adhere to her 

CT’s lesson plan (Rules and Community), she valued teaching actions and learning 

outcomes aligned with reasoning and proving practices (Subject), thus, she found a 

way to include proof-related activity in the lesson.  

DISCUSSION AND SCIENTIFIC SIGNIFICANCE OF THE STUDY 

Our analysis point to a trajectory of Olive’s teaching development toward integrating 

reasoning and proving across two teaching settings. As a PST, the capstone course 

provided a rich teaching experience for Olive: she taught a full-length lesson to real 

students using her own lesson plan. Her enacted lessons (tasks, teacher moves and 

student agency) embedded rich opportunities for student engagement with reasoning 

and proving, suggesting emergent expertise for teaching mathematics via reasoning 

and proving (Buchbinder & McCrone, 2022). The relaxed rules and supportive 

community of peers contributed to Olive’s developing teaching identity, confidence, 

and comfort with engaging students in reasoning and proving.  
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But although the course setting approximated classroom teaching, it did not model it 

entirely (Grossman et al., 2009): Olive did not have to follow a set curriculum nor 

respond to institutional considerations. As an intern, Olive found herself restricted by 

the school rules and culture, having to teach from her CT’s lesson plans which provided 

students with limited, if at all, opportunities for reasoning and proving. This teaching 

style conflicted with Olive’s developing teaching identity, as she repeatedly indicated.  

It has been suggested in the literature that interns tend to abandon ambitious practices 

of their teacher preparation programs for the teaching practices of their CTs (e.g., Bieda 

et al., 2015). Our study provides evidence to the contrary: rather than adhering to her 

CT’s procedural, drill-and-kill style, Olive held on to her desire to implement reasoning 

and proving. In her teaching, she actively sought ways to do so, while navigating the 

challenging institutional context (Herbst & Chazan, 2011).  

In the case study methodology, it is critical to ponder: what is this a case of? Olive’s 

self-selection to participate in this research project suggests a predisposition to 

embracing reasoning and proving as a teaching approach. Nevertheless, we treat this 

case as a proof of existence. We assert that Olive’s case illustrates how beginning 

teachers’ emergent teaching expertise coupled with productive beliefs about teaching 

mathematics via reasoning and proving may be retained, despite an unfavorable 

institutional context, and may begin to resurface in teaching practice over time. As we 

continue to follow Olive’s first steps as an autonomous teacher, this study will provide 

additional insights into how this process unfolds.    
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COMPOSITE BODIES WITH 3D PRINT AS A LEARNING 
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A result of the digitalization of the working world is a change of competence profiles 

graduates need to enter the workplace. Consequently, relevant digital technologies 

should be integrated into the classroom providing opportunities for students to gain 

digital experiences. To facilitate teachers’ acceptance of such instructional 

innovations, digital tools can be used as learning context instead of learning content. 

Following a design-based research approach, we developed a prototypical math unit 

using 3D print as learning context. Results of an evaluation with 101 German students 

in grade 5 to 7 indicate that the teaching unit has a significant effect on behavioural 

and cognitive components of students’ 3D print-related self-concept and that the 

learning context of 3D print does not distract students from learning mathematics. 

 

INTRODUCTION 

The digital transformation of the workplace and consequently the rapid development 

of digital technologies leading to changes in professions is one of today’s central 

challenges. Competence profiles of (future) employees are changing due to the 

transformation from mechanical or analogue to digital, automatized processes (e. g., 

Grundke et al., 2017). Consequently, (future) employees need different knowledge 

than before to be able to work with new machinery and technologies. In addition to 

subject-specific competences, this includes general digital-technological basic 

knowledge to ensure that students are able to enter the digitalized workplace. 

Therefore, not only extracurricular learning opportunities, but also innovative teaching 

concepts in general education schools are needed. An implementation of innovative 

concepts in regular general education is, however, only possible if both subject-related 

and workplace-related competences are focussed. Within the Danish-German DiASper 

project (Digital Working World from School Perspective) 3D print was chosen as an 

example of a relevant technology in the modern world of work that is connected both 

to the curricular contents of mathematics and the digital technologies of the workplace. 

The decisive factor for technologies collected under the umbrella term “3D print” is 

the differentiation from existing formative and subtractive production processes, 

resulting from the additive construction of an object (e. g., Barnatt, 2016). Goal of the 

project is to create learning opportunities for regular mathematics classes that facilitate 

an exploration of the 3D printing process, including an early vocational orientation, 

without interfering with the learning of mathematics. Using a design-based research 
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(DBR) approach, a prototypical unit for mathematics class has been developed (Wulff 

et al., in press). This unit comprises seven geometry lessons and uses the modeling 

phase of the 3D printing process as a learning context for the learning content of 

composite bodies. The unit has been evaluated and progressively adapted after expert 

surveys with industrial representatives and mathematics teachers as well as in a 

laboratory context with 16 students. 

This paper presents first results of the ongoing empirical evaluation study examining 

the effects of the prototypical teaching unit on students’ attitudes towards 3D print as 

a digital tool in grades 5 through 7 in German secondary schools. 

THEORETICAL BACKGROUND 

3D print in mathematics education 

According to the NCTM (2000), mathematics instruction in secondary education 

should, among other things, enable students to transition into the professional world. 

Using 3D printing in regular mathematics education can follow several approaches: 

The technology can be used as learning content (i. e., learning about the technology or 

materials needed for 3D printing), as a tool for visualization (i. e., visualizing 

(complex) mathematics for educational needs) or as learning context (i. e., focusing on 

subject-specific content in the context of 3D printing). Within the two main approaches 

in international research, 3D printing or parts thereof are mainly used as a didactical 

tool for visualization: Either using 3D printed objects for visualization aspects (e. g., 

Dilling, in press) or using the modeling aspect of the digital technology (i. e., the use 

of a CAD software) in geometry lessons (e. g., Lavicza et al., 2020) as well as art-

related mathematical projects (e. g., Menano et al., 2019). 

Students’ attitudes: 3D printing related self-concept 

According to Rosenberg & Hovland (1960), attitudes have three components: 

behaviour, affect, and cognition. Based on this division, Janneck et al. (2014), among 

others, defined a computer-related self-concept (i.e., attitudes related to one’s own 

person in dealing with a computer), subdivided into a behavioural, an affective, and a 

cognitive component: The behavioural component describes the concrete experiences 

with the digital technology, the affective component encompasses emotional motives 

while dealing with computers and the cognitive component refers to the subjectively 

perceived competence and self-efficacy with regard to computers as well as strategies 

for dealing with the digital technology. Based on the computer-related self-concept 

defined by Jannek et al. (2014), the 3D printing related self-concept is for this paper 

understood as being composed of the previously mentioned three components. The 

affective and the cognitive components are both further divided into five 

subcomponents: positive feelings, fearfulness, understanding, designing, and tool 

perspective for the affective and 3D print related subjectively perceived competences, 

self-efficacy, internal attribution, external control beliefs, and strategies for the 

cognitive sub-components.  
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Within this paper, five of these sub-components are considered, as they are deemed of 

high relevance for a (future) engagement with said digital technology: The behavioural 

component, the affective sub-components (positive feelings and fearfulness) as well as 

the cognitive sub-components (3D print related subjectively perceived competences 

and 3D print related self-efficacy). These sub-components combine all three 

components and it is assumed that, in addition to the possibility of direct confrontation 

with 3D printing and, thus, a build-up of action experience, an increase in positive 

feelings and a reduction in fearfulness of digital technology are of particular relevance 

for (future) engagement (Wakefield, 2015). Furthermore, the cognitive sub-

components are focused, since perceived competence and self-efficacy affect 

behaviour (Bandura, 1978). 

Curriculum contents related to composite bodies 

The learning content composite bodies is part of the German mathematical curriculum 

for lower secondary education (MBWK, 2014). Students are expected to be able to 

deal mathematically with composite solids in a variety of ways. Thus, they should be 

able to construct composite bodies from basic solids and name basic solids in 

composite bodies. These constructions are to be executed both by drawing and digitally 

supported. In addition, computational aspects are to be focussed on: Equivalent to 

previous calculations on basic solids, students should be able to perform surface and 

volume calculations on simple composite bodies (i. e., didactically adapted composite 

bodies composed of a reasonable amount of previously known basic solids). 

RESEARCH QUESTIONS 

The present paper reports first results of the last step of the DBR process, that is, the 

evaluation of the developed teaching unit. The main goal of the unit is (i) to facilitate 

an examination of the 3D printing process including an early vocational orientation and 

(ii) to not neglect the learning of mathematical competences. For this purpose, an 

intervention study in a pre-post-design investigating the 3D related self-concept and 

competences regarding composite bodies was conducted.  

Within the lessons, 3D printing itself was not the subject matter, but only a vehicle for 

mathematical learning. More specifically, students worked on various tasks to 

construct prescribed (composite) bodies by using the CAD software TinkerCAD. They 

were informed that (i) the goal of the lesson was to learn the curricular geometric 

content composite bodies and (ii) they would apply a professional CAD software for a 

digital construction process that corresponds to the modeling phase of the 3D printing 

process. Students constructed various composite bodies and also calculated the surface 

area and volume. Of course, in the end, students were allowed to start the 3D printer to 

print a 3D object they had designed according to their own ideas. 

The following research questions were focused: 

(RQ1) To what extent does the teaching unit on composite bodies using 3D printing as 

learning context influence students’ 3D printing related self-concept? 
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(RQ2) To what extent does the teaching unit on composite bodies using 3D print as 

learning context affect students’ mathematical learning of composite bodies? 

Regarding RQ1, it was expected that students’ fearfulness would decrease after the 

initial contact with the digital technology. Furthermore, an increase of the other 

components regarding students’ self-concept was anticipated. With RQ2, we wanted 

to check whether the learning context of 3D printing interferes with the acquisition of 

competences of composite bodies. We expected that the learning context is not 

distracting from learning about the mathematical content within the unit. 

METHOD 

To answer these questions, N = 101 (58 f, 42 m, 1 n. n.) students in grade 5 to 7 

(n5 = 23; n6 = 57; n7 = 21) from four Northern German secondary schools answered 

two online surveys (data collection is ongoing). In between the two surveys, students 

were instructed in the unit on composite bodies using the learning context of 3D 

printing. In collaboration with each individual teacher, the unit was adapted to fit the 

learning groups’ individual needs (e. g., more or less support for students).  

Within the survey, students were questioned regarding the previously mentioned 

aspects of their 3D print related self-concept. To assess their 3D printing related self-

concept, students were asked to evaluate 28 statements on a 4-point Likert scale 

(“disagree” to “agree”). Table 1 shows the internal consistencies of the five used 

subscales. A series of one-sided paired-samples t-tests were conducted to compare pre- 

and post-test data. Effect sizes were measured by Cohen’s d for t-tests to show change 

in students’ self-concept after the intervention. 

Table 1: Reliability coefficients Cronbach’s Alpha (scales with three or more items) 

and Spearman Brown (scale with two items). 
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Behavioural – action experience  

(I have a lot of practical experience in working with 3D printers.) 
3 .62 .58 

Affective – positive feelings  

(3D printing technology fascinates me.) 
2 .75 .82 

Affective – fearfulness  

(I have inhibitions about using 3D printers.) 
3 .83 .86 

Cognitive – 3D print related perceived competences  

(I am more confident in using 3D printers than the average person my age.) 
3 .92 .92 

Cognitive – 3D print related self-efficacy  

(When I face problems in the 3D printing process, I find ways to solve them.) 
4 .86 .94 
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Furthermore, each survey contained three (pre-test) or four (post-test) respectively 

mathematical tasks related to the mathematical content to be fostered (naming 

geometric bodies of a composite body, surface area calculation, volume calculation). 

The mathematical tasks were used to check whether the mathematical content was 

learned during the teaching unit. For this purpose, one task per mathematical content 

and survey was created and used as an indicator in the pre- and post-surveys 

respectively. In task 1, a building was shown from four perspectives (front, right, back, 

and left). Students were asked to name the basic geometric bodies (e. g., prism, sphere, 

cylinder) of which the building was composed. In the pre-test four and in the post-test 

5 bodies had to be named. To ensure comparability, the scoring was normalized (pre: 

0.25 and post: 0.2 points per correctly named body). In task 2 and 3, respectively, 

students were given an inner-mathematical or contextualized task in which they had to 

provide the surface area or volume of a basic solid or a composite body. Table 2 gives 

an impression of the figures. For complexity reasons, students were asked to choose 

from eight given answers in an MC-design. Each of the eight answers could be 

achieved by a mathematical composition of the figure’s given dimensions. Two values 

each corresponded and differed only in the dimension of the unit (e. g., 750 cm² vs. 

750 cm³ for task 3 in the pre-test). Students got one point for the correct solution and 

0.5 points if the number was correct but the dimension was wrong. Since the tasks are 

different in each survey, the responses are not directly comparable. A comparison with 

a control group is planned. Consequently, only a pre-post comparison within the 

experimental group is carried out for this paper.  

Table 2: Sample images from the tasks used in the pre-test and post-test. 

 

RESULTS 

As shown in Table 3, results of paired-samples t-tests reveal a significant difference in 

the behavioural and cognitive components of the 3D print-related self-concept for all 

students between pre- and post-test. The differences correspond to small to medium 

effect sizes. The data also show a weak significant difference within students’ positive 

feelings towards 3D print. 

Task 1 (basic bodies) Task 2 (surface area) Task 3 (volume) 

Pre Post Pre Post Pre Post 

back view: 

 

right view: 
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Table 3: Comparisons of descriptive statistics and paired samples t-test of pre- and 

post-test scores (*** p < .001, ** p < .01, # p < .10). 

As shown in Table 4, results of the paired-samples t-tests reveal a significant difference 

between pre- and post-test in all mathematical tasks with small effect sizes. However, 

there is a negative effect regarding the tasks related to volume calculation.  

Table 4: Comparisons of descriptive statistics and paired samples t-test of Pre- and 

Post-test scores (** p < 0.01). 

DISCUSSION 

The present study reports first results of an evaluation study as a last step of a DBR 

project that developed a prototypical teaching unit on composite bodies connected to 

the learning context 3D print. The motivation of the project is the need for a basic 

preparation of students for digital workplace technology (Grundke et al., 2017; NCTM, 

2000). The results in Table 3 show that the teaching unit positively affected the 

surveyed components of students' 3D printing-related self-concept (RQ1). This is 

relevant for later contact and engagement with the technology in the context of the 

working world (Wakefield, 2015). In summary, it can be said that students gain initial 

experience in dealing with 3D printing technology with the help of the teaching unit 

which positively affects their self-concept. It must be noted that actual skills in dealing 

with the 3D printer were not tested, but only the subjective individual attitudes of the 

 Pre-test 

Mean (SD) 

Post-test 

Mean (SD) 
t (p) 

Cohen’s 

d 

Behavioural – action experience 1.68 (0.60) 2.11 (0.70) 
6.75*** 

(<.001) 
.71 

Affective – positive feelings 2.55 (0.93) 2.71 (0.80) 
1.59# 

(.06) 
.19 

Affective – fearfulness 2.38 (0.89) 2.27 (0.86) 
-1.16 

(.13) 
-.13 

Cognitive – 3D print related 

perceived competences 
1.87 (0.83) 2.21 (0.86) 

3.28*** 

(<.001) 
.39 

Cognitive – 3D print related self-

efficacy 
2.06 (0.87) 2.35 (0.88) 

2.66** 

(.005) 
.34 

 Pre-test 

Mean (SD) 

Post-test 

Mean (SD) 
t (p) Cohen’s d 

Naming geometric bodies .61 (.26) .73 (.19) 3.06** (.002) .41 

Surface calculation  .07 (.22) .20 (.38) 2.64** (.005) .31 

Volume calculation .53 (.43) .37 (.41) -2.70** (.004) -.31 
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students to 3D printing. However, these are considered vital for future engagement 

(Bandura, 1978). 

Since 3D printing was implemented as a learning context and not as learning content, 

the acquisition of competences related to the mathematical content of the unit is also 

of central importance and must not be neglected (RQ2). Nevertheless, our results 

suggest that students gained mathematical competences in two of three content 

domains (Table 4). This is although all three tasks within the post-test can be 

considered more difficult than the pre-test tasks from a mathematics-didactic 

perspective. In task 1, one more body had to be named for the normalized full score (1) 

than in the pre-test. In tasks 2 and 3 of the post-test, figures composed of cuboids 

(staircase and L-shaped body) were considered instead of cuboids (pre-test). This could 

explain the difficulty students had in completing the volume task in the post-test. 

Limitations 

Data for the present study were collected in the school year 2021/22, when schools 

were still reeling from the aftermath of school closures due to the Covid-19 pandemic. 

This may have had implications for students’ prior knowledge regarding geometric 

solids. Furthermore, the unit was taught by the regular teachers. Although the unit was 

previously discussed with the teachers there may have been differences in the 

frequency of exposure to the technology and the 3D printer between the classes. 

Finally, in this preliminary analysis, the check of whether the learning context 3D print 

interferes with the learning of geometry relies only on pre-post-data of the intervention 

group and the comparison within pairs of different pre-post-tasks was used as a 

preliminary approach. The data collection is ongoing and data from a control group 

that received conventional instruction on the content of composite figures without 3D 

printing will be collected. Then a comparison of the pre-post-item pairs in an 

experimental design will be possible which yields more reliable results. 

Outlook 

Despite the limitations, the first promising results suggest a positive evaluation of the 

developed teaching unit in which students were able to gain experiences with 3D 

printing and to develop positive attitudes toward it, but which also does not neglect the 

mathematical content. We expect that these findings will be confirmed when analysing 

the full sample which also includes control group data. Within the project, further 

teaching units on mathematical content (e. g., plane representations, perspectives) were 

constructed within the design-based research project. In future steps, these will also be 

evaluated like the unit presented in this paper. In summary, we think that an implicit 

encounter with 3D printing as a learning context coupled with existing regular 

mathematical teaching content leads to a sustainable encounter with the digital 

technology without restricting mathematics learning. Using 3D print as a learning 

context (instead of a learning content) is an approach that (i) allows students to gain 

experiences with relevant workplace-related digital technologies and (ii) is more likely 
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accepted by mathematics teachers as it allows them to achieve the intended 

mathematical learning objectives in the classroom. 
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TEACHERS’ MULTIPLE AND ADAPTIVE NOTICING                        
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OBLIGATIONS IN THE CONTEXT OF A PROVING ACTIVITY 
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Research on teacher noticing can help us understand teachers’ perception and 

cognition underlining their in-the-moment decisions, but this construct is seldom 

researched in the area of proof-related teaching. In this study we aimed to investigate 

patterns in teachers’ ways of noticing in the context of a proving activity, and we tried 

to explain these patterns using teachers’ framing of professional obligations. The data 

were drawn from semi-structured, vignette-based interviews with twelve Chinese pre-

service and in-service secondary mathematics teachers. The findings showed that 

teachers used multiple ways to notice students’ reasoning, and they adapted their ways 

of noticing to the validity of the presented student arguments. The possible mechanism 

of how their multiple and adaptive noticing was driven by their framing is discussed. 

INTRODUCTION 

Teacher noticing has been increasingly researched to explore teachers’ perception and 

cognition underlining their decisions in teaching (van Es & Sherin, 2021). Yet, this 

construct is seldom studied in the area of proof teaching, which is central in 

mathematics education. Furthermore, research has often assessed teachers’ expertise 

in noticing using a relatively large unit of analysis (e.g., assessing their overall 

performance in noticing a video clip), but this may obscure its dynamics. In science 

education research, Russ and Luna (2013) used a different way to study the dynamics 

of teacher noticing. They explored its local variation (i.e., a teacher’s noticing varied 

across class discussion and lab time) and explained such variation by its relationship 

with teachers’ dynamic epistemological framing (i.e., how a teacher framed what was 

learning in both situations). Inspired by their work, we aimed to explore the dynamic 

nature of teacher noticing in the context of a proving activity at a small grain size (i.e., 

looking at how teachers noticed each single student argument), trying to address two 

main questions: What patterns exist (if any) in teachers’ ways of noticing and their 

framing of professional obligations in the context of a proving activity? To what extent 

can these patterns be explained by teachers’ framing of their professional obligations? 

THEORETICAL FRAMEWORK 

Professional noticing 

Research on teacher noticing (e.g., van Es & Sherin, 2021) generally focused on how 

teachers pay attention to and make sense of subjects ranging from student thinking to 

entire classroom situations. In this study, we focused on teachers’ noticing of student 

thinking to explore the perceptual and cognitive processes underlining their responses 
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to student thinking. Following Jacobs et al. (2010), we defined teacher noticing as 

consisting of three interrelated components: (1) selectively attending to noteworthy 

students’ strategies; (2) interpreting students’ understanding; and (3) deciding how to 

respond to students (differing from giving actual responses). 

Framing of professional obligations 

Teachers’ framing, their sense of what is going on (e.g., what kinds of knowledge take 

place in a situation), influences their noticing (Russ & Luna, 2013). In this study, 

adapting Erickson and Herbst’s (2018) notion of teachers’ professional obligation, we 

conceptualized a specific type of teachers’ framing – teachers’ framing of professional 

obligations – to describe teachers’ sense of what professional obligations they have in 

a situation. According to Erickson and Herbst’s (2018) framework, we expected that 

teachers may potentially frame their obligations as obligations to the discipline of 

mathematics (e.g., to represent mathematical knowledge), the individual student (e.g., 

to serve students’ needs to learn), the class of students (e.g., to support classroom 

interaction), and the institution of schooling (e.g., curriculum requirements, school 

schedule). Given the dynamic nature of framing, we also expected that teachers’ 

framing of their professional obligations may be dynamic across different situations.   

RESEARCH METHODS 

Participants comprised twelve Chinese teachers, including four pre-service teachers, 

four novice teachers, and four experienced teachers, to reflect a diverse teacher profile. 

The novice and experienced teachers respectively had on average 2.75 years and 17.75 

years of experience in teaching junior high school students aged 12-15. They were 

recruited through convenience sampling.  

Using semi-structured individual interviews, we collected data from teachers online. 

Each interview lasted for one hour. Teachers were presented with a comic-style 

scenario which depicted a classroom proving activity. The design of the scenario was 

based on real-world classroom episodes described in prior studies and it reflected 

various elements of proof-related reasoning (see Yang et al., 2022 for more details). 

We designed the scenario in comic-style in order to make the information sufficiently 

realistic, but still abstract enough, aiming to draw teachers’ attention to students’ 

thinking in this proving activity (rather than other extraneous information such as the 

student’s gender) and capture their interpretations in this context  (Herbst et al., 2011). 

The scenario consisted of eleven episodes. Each episode illustrated a student’s 

argument during the proving activity. For example, in an episode, a student examined 

some examples and then confirmed that the conjecture was correct. Among the eleven 

episodes, five episodes depicted invalid arguments and six depicted valid arguments. 

After being presented with each episode, participants were asked to describe (i) what 

they paid attention to, (ii) how they interpreted the students’ understandings, and (iii) 

in what ways they would respond to the students; these questions corresponded to the 

three components of teacher noticing. Then they were asked a follow-up question, 
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“Why would you respond to the students in this way?”, from which we inferred what 

framing of professional obligations drove the teachers’ decisions in that situation. 

In this study, we considered each teacher’s response to each student argument as the 

unit of analysis. This led to a total of 132 units. To analyse the data, we adapted a set 

of frameworks from previous research (e.g., van Es & Sherin, 2021; Lee, 2021; 

Furinghetti & Morselli, 2011), based on which we coded teachers’ responses into 

different categories. Specifically, as to teachers’ ways of attending, codes included: 

focusing on (1) the outcomes (e.g., conjectures), (2) the mathematically superficial 

process (e.g., the student examined more examples), and (3) the essential process (e.g., 

these examples were strategically identified with rationales) of students’ reasoning. 

Note that the latter two ways were differentiated based on whether teachers mentioned 

mathematically important details of students’ reasoning process. As to teachers’ ways 

of interpreting, codes included: (1) the descriptive way to describe what teachers 

observed, (2) the evaluative way to evaluate whether students’ reasoning was valid, 

and (3) the interpretive way to make inferences about students’ reasoning (e.g., why 

students make this argument, etc). Regarding teachers’ ways of deciding, we 

categorized them in three ways: (1) the general pedagogical way which was primarily 

related to pedagogy (e.g., organizing group discussion), (2) the product-oriented way 

that oriented students to produce products of proving (e.g., a proof), and (3) the 

process-oriented responses that oriented students to experience the process of proving 

(e.g., analysing why the conjecture was refuted). Based on the above-mentioned 

Erickson and Herbst (2018) framework, we coded teachers’ framing of professional 

obligations as follows: individual obligation, interpersonal obligation, disciplinary 

obligation, and institutional obligation. Multiple coding was applied for responses that 

reflected more than one category. Based on the coding results, patterns of teachers’ 

noticing and their framing were identified. 

FINDINGS 

Teachers’ noticing 

Teachers used on average 2.17 ways of attending, 1.97 ways of interpreting, and 1.39 

ways of deciding per unit. This suggested that teachers were able to notice students’ 

reasoning in a variety of ways, and they tended to use a mixture of ways to notice. 

Table 1 shows the number and percentage of units which showed each way of noticing. 

Overall, teachers most often focused on the superficial process of students’ reasoning 

(92%), interpreted their reasoning in an evaluative way (90%), and decided to respond 

in a product-oriented way (74%). Still, such high proportions did not exceed 100%, 

which means that sometimes teachers did not notice students’ reasoning in the way 

they most frequently used. Meanwhile, all other ways of noticing were also identified 

(ranging from 17% to 69%). This means that sometimes teachers adopted ways they 

less often used to notice students’ reasoning. Both pieces of evidence may suggest that 

teachers adapted their ways of noticing to the situation. 
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Table 1: Number of units (percentage of total units for type of argument) which 

showed teachers’ different ways to notice students’ arguments 

Way of noticing Invalid argument 

(60 units) 

Valid argument    

(72 units) 

Overall   

(132 units) 

Attending: Outcome 48 (80%) 43 (60%) 91 (69%) 

Superficial process 57 (95%) 64 (90%) 121 (92%) 

Essential process 28 (47%) 47 (65%) 75 (57%) 

Interpreting: Descriptive 38 (63%) 44 (61%) 82 (62%) 

Evaluative 56 (93%) 63 (88%) 119 (90%) 

Interpretive 21 (35%) 38 (53%) 59 (45%) 

Deciding: General pedagogy 9 (15%) 14 (19%) 23 (17%) 

Product-oriented 39 (65%) 59 (82%) 98 (74%) 

Process-oriented 39 (65%) 24 (33%) 63 (48%) 

 

Multiplicity of teachers’ noticing. To examine to what extent teachers used multiple 

ways to notice students’ reasoning, we counted the number of ways (i.e., ranging from 

0 to 3) they used in each unit, and calculated the percent of units in which they used 

different number of ways. As to the Attending aspect, teachers demonstrated a mixture 

of three ways in 37% of the units, and they used a mixture of two ways in 43% of the 

units. A similar pattern emerged in the Interpreting aspect. Teachers respectively 

showed a mixture of three ways and a mixture of two ways in 25% and 47% of the 

units. Although teachers used on average fewer ways of deciding than ways of 

attending and interpreting, they still used more than one way of deciding in 37% of the 

units. These results further indicated that when noticing a student argument, teachers 

were capable of using a variety of ways and they tended to use a mixture of ways to 

pay attention to, interpret, and decide how to respond to the student’s reasoning.  

Adaptability of teachers’ noticing. The high amount of using an evaluative way 

(accounting for 90% of total units) suggested that teachers constantly evaluated the 

validity of student arguments. Then to what extent did teachers adapt their ways of 

noticing to the validity of student arguments? To address this question, we compared 

how often teachers used each way to notice valid and invalid student arguments.  

The second and third columns of Table 1 listed the number and percentage of units 

which showed each way of noticing in both situations (i.e., the Invalid-argument 

situation and Valid-argument situation). Comparing data in both columns, three ways 

were more common in the Invalid-argument situation than in the Valid-argument 

situation: “Focus on the outcome of students’ reasoning” (80% versus 60%), “Interpret 

in an evaluative way” (93% versus 88%), and “Decide to give a process-oriented 
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response” (65% versus 33%). Opposite patterns were observed for the three ways (i.e., 

“Focus on the essential process of students’ reasoning”, “Interpret in an interpretive 

way”, and “Decide to give a product-oriented response”), which were more common 

in the Valid-argument situation. These patterns indicated that teachers may adapt the 

above six ways depending on whether the student argument is valid or not.  

The proportions of the remaining three ways (i.e., “Focus on the superficial process of 

students’ reasoning”, “Interpret in a descriptive way”, and “Decide to respond with 

general pedagogy”) were similar in both situations. Besides, these three ways were 

more often used in combination with other ways rather than alone. This may suggest 

that teachers were less likely to adapt the use of these three ways to the validity of 

student arguments, and they tended to pair these three ways with other ways that were 

more dynamically adapted to notice students’ reasoning.   

Teachers’ framing of their professional obligation 

We identified a variety of teachers’ framing of professional obligations from our data 

(see Table 2). In terms of their obligations to individual students, results showed that 

teachers mentioned four types of reasons that drove their decisions, including “to 

provide the student opportunities to explore how to prove” (8%), “to facilitate the 

student’s thinking” (39%), “to point out limitations of the student’s 

reasoning/methods” (17%), and “to solve the task” (40%). As to their obligations to 

students’ interpersonal interaction, they mentioned relevant reasons in 6% of the total 

units. In terms of their obligations to the discipline of mathematics, teachers mentioned 

their obligations to “demonstrate rigour and the logic of mathematics” (26%) and 

“cultivate students’ mathematics competence” (26%) in mathematics teaching. 

Teachers also mentioned their obligations to the institutions in 8% of the units, 

including their obligations to the department (e.g., curriculum requirement) and the 

school (e.g., class time), etc. 

Multiplicity of teachers’ framing of professional obligations. Similar to what we found 

in the patterns of teachers’ noticing, results showed that teachers on average mentioned 

1.70 types of professional obligations per unit. In half of the units, they mentioned 

more than one type of professional obligation. And in only 5% of the units did they 

explain their decisions as a personal preference (e.g., because of their teaching style) 

without mentioning any professional obligations. This suggested that teachers’ framing 

of their professional obligations constantly played a role in driving their noticing. In 

parallel with the multiplicity of teachers’ noticing, their framing of professional 

obligations in each unit was also multiple. In addition, our identification of teachers’ 

framing was based on teachers’ explanations of why they decided to respond to 

students in a certain way (i.e., an important component of teacher noticing). Therefore, 

the above results may suggest that teachers’ hybrid ways of noticing were driven by 

their hybrid framing of professional obligations. 

Adaptability of teachers’ framing of professional obligations. Table 2 shows that a 

certain type of professional obligation was mentioned in some units, but not in other 
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units. Did teachers adapt their framing of professional obligations? To address this 

question, we compared how often teachers framed each type of professional obligation 

when student arguments were valid and invalid. 

Table 2: Number of units (percentage of total units for type of argument) which 

showed teachers’ framing of their professional obligations in different situations 

Framing of professional obligation Invalid 

argument 

(60 units) 

Valid 

argument    

(72 units) 

Overall   

(132 units) 

Individual obligation (Explore proving)  6 (10%)  5 (7%) 11 (8%) 

Individual obligation (Facilitate thinking) 30 (50%) 21 (29%) 51 (39%) 

Individual obligation (Point out limitations) 19 (32%) 4 (6%) 23 (17%) 

Individual obligation (Solve the task)  7 (12%) 46 (64%) 53 (40%) 

Interpersonal obligation 1 (2%)  7 (10%) 8 (6%) 

Disciplinary obligation (Rigour & the 

logic) 

25 (42%)  9 (13%) 
34 (26%) 

Disciplinary obligation (Math competence) 15 (25%) 19 (26%) 34 (26%) 

Institutional obligation 5 (8%) 5 (7%) 10 (8%) 

 

Comparing the percentages of units in which teachers mentioned each type of 

professional obligations in both situations, we found that some types of framing were 

more common in one situation rather in another. When student arguments were invalid 

rather than valid, teachers more often mentioned their framing of individual obligations 

to facilitate the student’s thinking (50% versus 29%) and point out limitations of the 

student’s reasoning/methods (32% versus 6%), and their framing of disciplinary 

obligation to demonstrate rigour and the logic of mathematics (42% versus 13%). The 

pattern of the framing to solve the task stood out as different: the teachers mentioned 

it more often in Valid-argument situations than in Invalid (12% versus 64%). This 

suggests that teachers’ framing is dynamic as is their noticing. They also adapted their 

framing of their professional obligations depending on the validity of student 

argument. 

The patterns of the remaining four types of framing were similar between the two types 

of arguments. The disciplinary obligation to cultivate students’ mathematics 

competence, which was mentioned relatively often regardless of the validity of student 

arguments, was more often mentioned in conjunction with other obligations rather than 

alone. This may suggest that while adapting other obligations to the validity of student 

arguments, teachers constantly kept this obligation in mind. 
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DISCUSSION AND CONCLUSION 

To conclude, our results show that teachers used multiple ways to notice students’ 

reasoning, and they adapted their ways of noticing to the validity of student arguments. 

These results provide us with a window into the possible mechanisms by which 

teachers’ multiple and adaptive noticing is driven by their multiple and adaptive 

framing of professional obligations (see Figure 3). 

 

Figure 3:  Mechanisms behind the multiplicity and adaptability of teacher noticing 

Teachers more often framed their professional obligations in the Invalid-argument 

situations than the Valid ones so as to facilitate individual students’ thinking, to point 

out limitations of the students’ reasoning/methods, and to demonstrate the rigour and 

logic of mathematics. This may imply that when students raised invalid arguments, 

teachers tended to be concerned with how to guide students towards the “correct 

direction” according to disciplinary considerations. Under this framing of obligations, 

teachers tended to focus on the outcome of students’ reasoning, assess which parts of 

their reasoning were incorrect, and decide what kind of process students should go 

through to get in the right direction.  

By contrast, when student arguments were valid rather than invalid, teachers more 

often framed their professional obligations as to help students solve the proof task. This 

indicates that, in this situation, teachers tended to be concerned more with whether 

and/or how the task was solved by the students. Under such framing of obligations, 

teachers tended to focus on the essential process of students’ reasoning (e.g., the 

strategies that students used), interpret students’ reasoning in an interpretive way, and 

decide what possible products (e.g., a revised conjecture or a completed proof) students 

could produce in solving the task.  

From Figure 3, we can identify differences between teachers’ noticing and framing in 

both situations. Yet, this does not mean that teachers in one situation will not use the 

same ways of noticing or have the same types of framing as in another situation. 

Instead, results showed that teachers were capable of multiple ways of noticing and 

that such multiplicity can be explained by their framing of multiple professional 

obligations. Among these multiple ways of noticing or types of framing, some may be 

more common in one situation than in another, but they may still be activated across 
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situations. Also, some of them (e.g., the obligation to cultivate students’ mathematical 

competence) may be constantly activated across both situations. 

Given the dynamic natures of teacher noticing and framing, it is possible we may 

identify different patterns if the research context or participants change. Still, the 

mechanisms and patterns we identified in this study contribute empirically and 

theoretically to both the field of teacher noticing and proof-related instruction. First, 

the identified ways of noticing and framing of professional obligations enrich the 

field’s understanding of teachers’ perception and cognition in the context of proving 

activities, and offer researchers and teacher educators a starting point to further unpack 

the underlying mechanisms of teachers’ decision making in this context. Second, they 

can be used as teacher training resources for teachers to disscuss and reflect on; 

introducing teachers to new ways of noticing or framing may transform their teaching. 

Third, future assessment and training of teacher noticing can consider its multiplicity 

and adaptability; for example, it can assess or aim to develop teachers’ competence in 

using multiple and adaptive ways of noticing. 
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This study examined 111 mathematics preservice teachers (PSTs) noticing of 

exemplary mathematics lessons with different frameworks. The results showed 

differences in the content, stance and level of preservice teachers' noticing under the 

two frameworks. In the open framework, PSTs’ noticing level is highly concentrated in 

Mixed(L2), with a wide range of noticing content on teachers' teaching strategies and 

skills. Teachers' noticing stance mainly uses explanations, most of which are detailed 

explanations of the noticing content. However, explanatory evidence is insufficient, 

and most strategies are not targeted. For the focused framework, PSTs’ noticing levels 

are mainly located on Mixed(L2) and Focused(L3), with relatively concentrated 

content on students' mathematical thinking, knowledge and skills. Most of the noticing 

stances were descriptions. In addition, PG-group and UG-group have differences in 

noticing content, stance and level with the same framework. The findings can 

contribute to understanding the role of noticing frameworks in teacher noticing 

research and deepen our knowledge of Chinese PSTs’ noticing ability. 

INTRODUCTION  

Teacher noticing refers to a teacher’s ability to identify noteworthy instructional events 

from a classroom containing a large amount of information to interpret and respond 

appropriately (Bastian et al., 2022). This noticing ability is considered a core 

component of teachers’ expertise (König et al., 2022). Ainley and Luntley (2007) 

described this expertise as attention-dependent knowledge, referring to skills that 

expert teachers use to attend to the cognitive and affective aspects of students’ 

activities, and that guide the effectiveness of their instruction in response to what 

happens during a lesson. However, this is not an instinctive ability, which showed 

significant differences between preservice and expert teachers (Huang & Li, 2012; 

Stahnke & Blömeke, 2021). In previous studies, video-based methods were frequently 

used to examine PSTs and in-service experienced teachers’ noticing skills (Amador et 

al., 2021). Using teaching videos in research can capture more details of the 

interactions between the teacher and students, and provide more opportunities for 

participating teachers to watch from multiple perspectives and reflect. However, with 

little experience in teaching and few interactions with students, PSTs always showed a 

low level of noticing and hardly perceived meaningful patterns from what they saw in 

the videos. They tend to have vague ideas about what they notice, and their 

explanations of the noticed content are often superficial. Some strategies have been 
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proposed to develop PST’ noticing skills, such as using reflective journals (van den 

Kieboom, 2021), teaching PSTs about clinical interview skills before noticing (Lee, 

2021a), using technology-aided interventions (Lee, 2021b), Although these strategies 

did make a difference in enhancing PSTs’ noticing ability. Still, they may not be 

suitable for PSTs to view a whole lesson. The difficulties in developing PSTs’ noticing 

may be related to the theoretical framework in those studies. For example, Fisher et al. 

(2019)’s intervention experiment showed that the theoretical framework significantly 

facilitated the attending and explanation components. Numerous studies have always 

adopted the Learning to Notice framework to approach and guide teachers noticing 

(van Es & Sherin, 2010). Three prompts related to three skills of noticing (attend to, 

interpret, and decide to) were used to ask PSTs: “What did you attend to during the 

video?”; “How do you interpret the issues you attended to?”; and “How would you 

respond to the same situation?” . Since these questions in the noticing framework were 

general, the noticing level of PSTs’ responses may still highly rely on their knowledge 

and teaching experiences. Some researchers suggested that PSTs could be explicitly 

provided with a set of focal points in the framework to guide their professional noticing 

(Lee & Choy, 2017). Inspired by Yang and Ricks (2012)’s three-point template for 

studying Chinese lesson study, Lee (2021b) used a three-point framework to enhance 

the noticing skills of US elementary PSTs. The three-point framework detailed how 

three interrelated focal points with which mathematics teachers design a lesson: the 

key point, the difficult point, and the critical point. The key point refers to the 

mathematical concept targeted in the lesson; the difficult point is the cognitive obstacle 

or stumbling block that students face when learning the key point; the critical point 

refers to the approach teachers can use to support students in their efforts to overcome 

the difficult point to learn the key point (Yang & Ricks, 2012).  

The Learning to Notice and the three-point framework can provide valuable ways to 

examine what and how teachers notice when they observe lessons. The major 

difference between the two frameworks is that the former is more open and allows 

observers to select what they want to notice, while the latter is more structured and 

focused. Learning to Notice (the open framework) was developed in the Western 

classroom context, while the three-point framework (the focused framework) was 

developed in the Chinese context. In existing studies, the effects of using different 

theoretical frameworks on examining PSTs’ noticing are relatively rare. Hence, the 

main purpose of this study was to explore the noticing abilities of Chinese elementary 

pre-service mathematics teachers and to compare the effects of the two frameworks. 

Specifically, we address the following two questions in this study: 1) What are Chinese 

PSTs’ noticing of exemplary mathematics lessons; 2) What is the impact of the two 

noticing frameworks (open framework and focused framework) on PSTs’ noticing? 

THEORETICAL FRAMEWORK AND LITERATURE REVIEW  

Mathematical teacher noticing 

The concept of mathematics teachers’ noticing consists of three practices—coding, 

highlighting and producing and articulating material representations (Goodwin, 1994). 
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Although teachers’ noticing mainly involves two processes, namely attending to and 

making sense of particular events in an instructional setting, researchers have 

conceptualised noticing differently (Superfine et al., 2017). Based on their Learning to 

Notice framework, van Es & Sherin (2008) summarised that noticing skills for teaching 

mathematics consists of three main aspects: (a) identifying what is essential in a 

teaching situation; (b) using what one knows about the context to reason about a 

situation; and (c) making connections between specific events and broader principles 

of teaching and learning. Jacobs et al. (2010) conceptualised teacher noticing with three 

main components, including attending to children’s strategies, interpreting children’s 

mathematical understandings, and deciding how to respond to children’s 

understandings. In this research, we consider noticing as a construct consisting of the 

three interrelated processes of attending to what is important or noteworthy in a 

classroom situation, interpreting and reasoning about the situation, and making 

instructional decisions based on interpretations.  

Video-based approach to accessing teacher noticing 

In the scoping review paper, most teacher noticing research instruments are considered 

as video materials from classroom practice (Weyers et al., 2023). Teaching videos have 

been used for decades in teacher learning, and it appears to show promise in supporting 

teachers in learning to notice (van Es & Sherin, 2006). By pausing and rewinding these 

videos, teachers can have more chances to focus on the events they care about, and to 

find supporting evidence for their claims. Also, videos provide a medium where 

teachers can critically analyse teaching practice in ways that are safely distanced from 

their own teaching experiences (Superfine et al., 2017). During the noticing 

engagements, the content that teachers notice and the complexity of their 

interpretations of what they notice influences their decision-making. Intervention 

therapy using instructional videos positively affects PSTs’ professional noticing skills 

and content knowledge (Jacobs et al., 2010; Kosko et al., 2021). In this study, we used 

teaching videos and teachers’ written responses as data sources to investigate 

mathematics PSTs’ noticing. Stürmer and Seidel (2017) outlined three criteria for 

video selection: (a) teachers should perceive the videos as authentic examples of 

classroom practice, (b) the videos should serve to activate teachers’ knowledge by 

being stimulating but not overwhelming, and (c) experts in the field should watch the 

videos as examples of the target practice. The mathematics teaching videos used in the 

project captured actual teaching by expert teachers in mainland China. These 

exemplary lesson videos were selected as viewing material to ensure the quality of the 

teaching being demonstrated. By watching these videos, PSTs could observe what 

expert teachers emphasised in their classroom teaching. 

METHODOLOGY 

Participants 

A total of 111 PSTs was purposely recruited in one normal university located in the 

northeast of mainland China from April to May 2021. One group (UG-group, aged 20-

21) consisted of 49 year-3 undergraduate students and the other group (PG-group, aged 
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22-23) included 62 year-1 master students. Participants in both groups majored in 

elementary education. They have learned mathematics courses and pedagogy courses. 

They were trained to be elementary mathematics teachers in the future. The difference 

was that the UG-group has completed teaching observations and didn’t formally teach 

mathematics at schools, and PG-group hold bachelor’s degree and completed teaching 

practicum during undergraduate study.  

Theoretical frameworks used in the data collection  

The open framework is very flexible which allows PSTs to select what they want to 

notice from the videos. The focused framework adapted from three-point framework 

(Lee & Choy, 2017) has a clear focus on what PSTs shall notice from the videos which 

may make more productive noticing. Besides considering three focal points, teachers 

also need to know students’ pre-knowledge and cognitive thinking patterns, and further 

foresee their learning development (Tobias, 1994). We name it Starting point, for they 

are regarded as the very first step of lesson design (see Table 1). After random 

selection, 55 participants (24 in UG-group, 31 in PG-group) used the open framework 

and 56 participants (25 in UG-group, 31 in PG-group) used the focused framework. 

 

Table 1. Focused noticing 

framework 

PROCEDURE  

Participants in these two groups were required to watch at one online exemplary 

mathematics lessons by using a noticing framework. These online lessons were  

were published online by the Chinese Education Association (CEA) to provide 

mathematics teachers with professional development. All the lessons were taught by 

experienced and recognised elementary teachers. The contents of lessons included 

three main learning areas: Number & Algebra, Shape & Geometry, and Statistics & 

Probability. Each participant was required to watch at least one lesson and to select one 

of the noticing frameworks-the open framework or the focused Framework-to guide 

their observations. The total time for watching one complete lesson was around 40 

minutes. After that, PSTs need to write down their observations.  

DATA ANALYSIS 

We analysed the valid written data using thematical analysis (Braun & Clarke, 2006). 

We first concentrated on two key aspects of noticing: what teachers notice and how 

they notice. Drawing from van Es and Sherin (2006)’s coding framework, what 

teachers attend to was examined through two dimensions, the Agent and the Topic that 

PSTs identified in the videos. How PSTs interpreted the events was analysed through 

the dimension of Stance. Stance consists of three categories: Describe, Evaluate, and 

Interpret. In addition to analysing what and how that PSTs noticed, the developmental 
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trajectory framework was adopted to evaluate their noticing levels (van Es & Sherin, 

2010). There are four distinct levels of noticing from the lowest to the highest, these 

are Baseline (L1), Mixed(L2), Focused (L3) and Extended (L4). The baseline level 

indicates that teachers attend to events that cannot influence students learning directly. 

At the mixed level, participants primarily attend to teacher pedagogy or begin to attend 

to particular students’ mathematical thinking; the focused level refers to attending to 

particular students’ mathematical thinking; and the extended level refers to attending 

to the relationship between particular student thinking and teaching strategies. 

RESULTS 

What PSTs noticed of the lessons 

As for the Agent of noticing, both UG-group and PG-group mainly focus on teachers 

and students. PSTs who used the open framework focused more on the agent of 

teachers and only a few (29.40%) on students, while PSTs who used the focused 

framework concentrated mainly on the agent of students. The main topics noticed by 

PSTs who focused on students were students’ mathematical thinking, students’ 

knowledge and skills, learning methods, mathematical myths, learning engagement, 

and interest in learning. As for the PSTs who focused on teachers, the main topics 

included teachers’ mathematical thinking, teaching strategies, teaching skills, teaching 

beliefs, classroom management, teaching evaluation, teaching flow and teachers’ 

gestures. Comparing the two frameworks, we can find that PSTs who used the open 

framework span a broader range of topics, and those who used the focused framework 

were relatively more concerned. This may be mainly because the four points in the 

focused framework help to guide PSTs to focus their thinking on some specific events. 

Specifically, in the starting point dimension, PSTs mainly focused on knowledge skills 

and teaching strategies; in the key point dimension, they mainly focus on knowledge 

skills, learning methods, and students' mathematical myths; in the difficult point, PSTs 

mainly focuses on mathematical myths, students' mathematical thinking, knowledge 

and skills, and learning methods; in the critical point, they mainly focused on teaching 

strategies, learning methods, and students' mathematical thinking. 

How PSTs noticed 

The UG-group had more evaluations than the PG-group when interpreting the events, 

while the PG-group used more descriptions and explanations. With the open 

framework, PSTs had most of the explanations in how to notice (72.13%). While with 

the focused framework, PSTs used more descriptions (51.80%). By analysing the four 

dimensions of the focused framework, it was found that both UG-groups and PG-

groups used descriptions more often in four dimensions, especially in the key point and 

difficult point dimensions.  

What are the levels of PSTS’ noticing 

Combined the analysis of noticing content and stance, it was revealed that both UG-

group and PG-group’ noticing skills levels were mainly on Mixed(L2). They primarily 

focused on teachers’ teaching strategies, were able to highlight some meaningful 

events or details in their observations, and could provide certain specific events as 
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evidence to support their evaluations or explanations. However, these evidences were 

insufficient. They usually affirmed teachers' teaching strategies unilaterally or 

proposed alternative strategies, but they could not provide reasons for the strategies. 

PSTs in both groups were weak on Extended level (L4), which showed that they failed 

to reach high levels of noticing, and did not pay enough attention to the relationship 

between the students' thinking and teaching strategies. Comparing the two frameworks, 

it was found that the noticing level of PSTs who used the open framework was more 

at L2 (71.20%), while the noticing level of PSTs who used the focused framework was 

relatively evenly distributed at L2 (53.23%) and L3 (40.32%). PSTs noticing levels in 

the four dimensions of the focused framework were prominent at mixed level, 

especially the starting point dimension. UG-groups and PG-groups also showed some 

differences under the same framework. This is particularly evident in the focused 

framework, where PG-group only showed three levels (L2, L3, and L4) at different 

dimensions and most focused on Focused (L3). In contrast, UG-group could cover all 

four levels and mainly concentrated at L2. 

DISCUSSION 

In the study, the analysis of 111 Chinese elementary PSTs’ noticing revealed that the 

overall noticing level of PSTs was concentrated on Mixed level (L2) and weak in 

Extended level (L4). PG-group focused more on students' learning and the UG-group 

focused more on teachers' teaching. When interpreting what they observed, the PG-

group outperformed than the UG-group. PSTs' noticing stance was mainly to 

"describe", with the PG-group using "explain" more frequently than the UG-group. 

The finding echoes with previous research on teacher noticing and further shows that 

it’s still a challenge for improving PSTs noticing, in particular at undergraduate level. 

It was found that the levels of What PSTs noticed and How PSTs noticed were not 

always consistent. For example, some PSTs who showed relatively low levels of 

noticing contents, mainly paied attention to teaching-related contents without 

mentioning students' thinking, but they could provide different specific strategies from 

multiple perspectives in the process of explaining. It is noted that these two stages 

(What teachers notice and How teachers notice) are inextricably linked, with the latter 

always based on the analysis of the former. For example, more focus on student 

thinking at the stage of What PSTs notice, consequently, more evidence-based details 

and interpretation of student thinking may be provided at the stage of How PSTs notice 

section. Hence, if we (teacher educators) aims to enhance PSTs noticing, we may need 

to broaden their views of classroom events and deepen their understanding of what 

happen in a mathematics classroom.  These can be introduced in the pedagogy courses 

by theoretical instruction design or video-based case study.  

PSTs always have little teaching experience or interaction with students, they tend to 

interpret students’ thinking or teaching videos in vague ways, even not interpreting the 

work at all and only describing its surface-level details (Didis et al., 2016). The results 

showed that there were differences in PSTs noticing with the different frameworks. For 

example, PSTs using the open framework presented relatively broad topics and focused 

mainly on topics related to teachers' teaching. The PSTs using the focused framework 
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presented topics that were relatively focused on student mathematical thinking and 

other contents related to student learning. In the process of interpreting the content, the 

focused framework provides a structure to describe the four dimensions of thinking 

before and during the lesson, which in turn provides objective evidence for further 

analysis of the causes. Hence, compared to the open framework, the focused 

framework provides four major dimensions as cues for PSTs to conduct lesson 

observation, which help them to observe lessons more effectively.  

CONCLUSION 

The study not only analyzed PSTs noticing of exemplary lessons but also compared 

the effects of using different noticing framework on PSTs noticing level. In particular, 

this study incorporates the three-points framework originally developed in Chinese 

lesson study into Learning to Notice framework to specifically highlight what teachers 

notice during observing exemplary lesson videos. Hence, the findings provide 

theoretical and practical implications to the research field. First, compared to existing 

numerous studies on teacher noticing in western contexts, current finding could 

provide a cross-cultural perspective and empirical evidence to understand PSTs’ 

noticing in the Chinese context. Second, the designed focused framework may 

contribute to develop research tools in teacher training programmes which aiming at 

improving PSTs’ noticing skills. We acknowledge the limitation of small sample size 

and insufficient comparations with western partners. In future studies, we may examine 

a larger population on the effect of focused framework and conduct further research on 

whether the framework can improve teacher noticing in teaching practice.  
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EXPLORING THE ROLE OF PEDAGOGY IN MATHEMATICAL 

CREATIVITY VIA MULTIPLE SOLUTION TASKS: A 

COMPARATIVE STUDY OF TWO SCHOOLS IN CHINA 

Ying Zhang 

University of Cambridge 

 

This study aimed to explore the relationship between pedagogy and mathematical 

creativity by comparing the mathematical creativity of students who experienced more 

student-centred pedagogy (SCP) with that of students who experienced more teacher-

centred pedagogy (TCP). In total, 163 Grade 9 students from two schools in China, 

each enacting primarily one of these forms of pedagogy, participated in the study. 

Multiple solution tasks (MST) were used to measure mathematical creativity in terms 

of fluency, flexibility, originality. The total mean scores for fluency, flexibility, and 

originality of the SCP school were all higher than the respective scores of the TCP 

school though the differences were not statistically significant. Implications for 

research and practice are discussed in light of these findings.  

INTRODUCTION 

Creativity plays a crucial role in the full cycle of advanced mathematical thinking. 

Giftedness in mathematics assessments does not necessarily imply mathematical 

creativity (Sriraman, 2005), which requires divergent thinking that might not be 

covered in a national mathematics assessment. An example of this would be Chinese 

students who attained high scores in many international mathematics assessments but 

are in need of improvement in mathematical creativity (OCED, 2014). Relatedly, Lu 

and Kaiser (2022) conducted an empirical study among 107 Chinese upper secondary 

students, and found low levels of fluency and originality among participants reflecting 

their difficulties with attempting diverse ways to solve tasks. Regarding ways to foster 

mathematical creativity, some researchers suggested that, in contrast with teacher-

centred pedagogy (TCP), student-centred pedagogy (SCP) has such a potential (e.g., 

Silver, 1997). Yet the relationship between pedagogy and mathematical creativity has 

attracted little research attention thus far. This study takes a step towards addressing 

this need for research by focusing on the following research question: Are there 

differences in mathematical creativity between students who have experienced more 

SCP and students who have experienced more TCP? 

THEORETICAL PERSPECTIVES  

The perspectives on TCP, SCP, and mathematical creativity are described as follows.  

In a learning environment with TCP, the teacher primarily communicates to students 

through lectures solely designed to impart knowledge. SCP, in contrast, provides a 

learning environment where students construct their understanding, and teachers act as 

facilitators to “guide on the side” and help students achieve goals. While TCP is based 
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on the behaviorist theory in which external stimuli causes behaviour changes, SCP 

involves constructivist and democratic principles where much knowledge is socially 

constructed (Serin, 2018). In this study, students categorized as having experienced 

more SCP did not necessarily only experience SCP-based lessons but did learn in an 

environment with more SCP compared to the comparative group. 

The mathematical creativity in this study refers to the relative creativity, or creativity 

in school mathematics, which differs from that of professional mathematicians in that 

relative creativity is evaluated with reference to students’ previous experiences and to 

the performance of other students who have a similar educational history (Leikin, 

2009). Therefore, in this study mathematical creativity is to generate novel/original 

mathematical ideas, which are new to the person or the performance of other students 

in the similar educational history, with respect to the mathematics they have learned 

by discerning acceptable mathematical problems and models. I measured creativity in 

terms of three cognitive outcomes: fluency, flexibility, and originality. Fluency refers 

to the total number of appropriate problems generated by a solver; flexibility refers to 

the total number of strategies generated; originality refers to the uniqueness of one’s 

solutions compared to others’ response across two schools (Leikin, 2009). 

METHODOLOGY 

Comparative case study 

In this study, Dulangkou Secondary School and School Y were selected as cases to 

play the role of SCP and TCP, respectively. Four Grade 9 classrooms, two from each 

school, were then randomly selected. In total, 83 Dulangkou students and 80 School Y 

students participated in this study. Importantly, Grade 9 is the third year of Chinese 

secondary education, and participants from the same school have received the same 

school instruction since Grade 7.  

The two schools were selected due to having comparable features but different 

pedagogical approaches. Regarding similarities, firstly, both schools are in rural towns 

under the same county of the same city, so the schools follow the same educational 

policies and have similar economic conditions, though Y town has slightly better 

economic development and a better geographic location. Secondly, both schools 

randomly divide students into classrooms rather than dividing them based on 

achievement. Thirdly, both are the only school in their respective towns, both of which 

require recruiting students only from within the district; thus, both schools have similar 

sources for students. These similarities provide some control over confounding 

variables and allow for a meaningful comparison. Regarding the differences, School Y 

is one of the best-performing schools among all 14 towns and employs TCP, while 

Dulangkou is the most popular school among all towns due to its reformed SCP. 

Dulangkou has been using a reformed pedagogy for more than two decades and 

exemplifies the result of Chinese compulsory education reform (Sun & Wang, 2011).  

I used the RTOP observation protocol (Piburn et al., 2000), which was developed to 

evaluate the extent to which a classroom adopts reform-based pedagogy, to verify that 
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Dulangkou’s mathematical pedagogy was more student-centred than that of School Y. 

The total RTOP score ranges between 0 and 100, in which lower scores reflect TCP 

environments and higher scores represent SCP environments. Specifically, the RTOP 

results showed that Dulangkou scored 21.4 higher on average than School Y. In total, 

four Dulangkou teachers (11 lessons) and five School Y teachers (13 lessons) were 

observed. All four participated classrooms were observed for at least three consecutive 

lessons, and the rest non-participated classrooms were randomly selected from each 

grade (Grade 7, 8, 9) for observation.  

Due to the schools each having a distinct pedagogy, the class schedule also 

significantly differed between them. Specifically, Dulangkou students received eight 

mathematics lessons per week (45 minutes/lesson), while School Y students received 

seven mathematics teaching lessons and six mathematics self-study lessons (40 

minutes/lesson) each week. Self-study lessons refer to the periods that students 

independently work on the assigned problems while the teacher simply monitors. Thus, 

each week School Y students received 160 more minutes of compulsory mathematics 

discipline than Dulangkou students. 

Design of the multiple solution task  

Solve the following problem in as many ways as possible.  

Task A (Geometry) 

The straight line AB is tangent to the circle with center O in point 

B. OA intersects the circle in point C. D is on AB so that CD is 

perpendicular to AB (see figure). Prove that ∠BCD = ∠BCO.  

Task B (Functional word problem) 

A company has two cuboid reservoirs A and B. The water in 

reservoir A is injected into reservoir B at a speed of 6 m³per hour. 

The functional relationship between water depth y (m) and 

injection time x (h) in reservoirs A and B is shown in the figure 

below. The functional relationship between the water depth y and 

the injection time x in the reservoirs A and B is: yA = - 
2x

3
 + 2, yB = x+1. After 

injecting 
3

5
 hours, the depths of water in the two pools are the same. So, how long 

will the two reservoirs’ water storage capacity be the same? 

Figure 1. Tasks used in this study 

This study used multiple solution tasks (MST) to indicate mathematical creativity. Two 

tasks, listed in Figure 1, were chosen for their coverage of geometry and functional 

word problems to assess multiple facets of students’ conceptual and procedural 

knowledge. Task A is at an easy level of difficulty and Task B is at a difficult level. 

Circle related geometry and linear function are both important contents examined in 



Zhang 

4 - 382 PME 46 – 2023 

Zhongkao, the Chinese official Senior High School Entrance Examination held 

annually at the end of Grade 9. 

Analysis method 

Problems solved by students were first analysed based on appropriateness. The notion 

of appropriateness allows evaluating reasonable ways of solving a problem that 

potentially led to the correct solution outcome regardless of the minor mistakes made 

by a solver (Leikin, 2009). The data were then analysed based on fluency, flexibility, 

and originality. The detailed scoring scheme is explained in Table 1, which was 

adapted from Leikin (2009) in that students were given half credit for the partial correct 

procedure rather than an absolute zero or a full credit. 

 Fluency Flexibility Originality Creativity 

Scores 

per 

solution 

 

Flui=1 

solution is 

appropriate 

Flui=0.5 

solution is 

partial 

appropriate 

Flui=0 

solution is 

inappropriate 

Flxi=10 

solutions from a different 

group of strategies 

Flxi=1 

similar strategy but a 

different representation 

Flxi=0.1 

same strategy, same 

representation 

If Flui=0.5, Flxi=Flxi/2 

Ori=10 

(P<15%) 

 

Ori=1 

15%≤P<40 

 

Ori=0.1 

(P≥40) 

Flxi  × Ori 

Total 

Score 
∑ Flui

n

i=1
 ∑ Flxi

n

i=1
 ∑ Ori

n

i=1
 ∑ FlxiOri

n

i=1
 

n is the total number of appropriate solutions, including partial appropriate solutions. 

P=(mj/n)·100%, where mj is the number of students who used strategy j.  

Table 1. Creativity scoring scheme, adapted from Leikin (2009) 

FINDINGS 

Fluency, Flexibility and Originality 

For Task A, School Y participants generated 81 appropriate solutions and 5 partial 

appropriate solutions; Dulangkou students generated 108 appropriate solutions and 1 

partial appropriate solution. For Task B, Dulangkou produced 7 and School Y 

produced 8 appropriate solutions. Only six students from each school generated an 

appropriate solution(s) for task B, in which only one student from each school came 

up with two different strategies. 
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Table 2 and 3 demonstrate the number of students (n) generating the corresponding 

strategy, in which strategy A comprises of four different sub-strategies (A1, A2, A3, 

A4). For Task A, Dulangkou’s solutions comprise of ten subcategories and School Y 

covers eight subcategories. For Task B, Dulangkou’s solution comprise of two 

categories and School Y covers three categories. The value in the brackets represents 

the percentage of students within their schools’ participants. For example, 14.4% 

Dulangkou participants and 6.3% School Y participants used strategy C. The 

corresponding originality is also described in both tables. In total, 21.7% Dulangkou 

and 15% School Y participants generated original solutions. Dulangkou have more 

participants who were able to generate original solutions among these two tasks.  

Table 2. Distribution of categories of solutions solved by participants (Task A) 

Table 3. Distribution of categories of solutions solved by participants (Task B) 

 Dulangkou School Y Originality 

Strategy I 5 (6%) 2 (2.5%) 0.1 

Strategy II 2 (2.4%) 4 (5) 0.1 

Strategy III 0 1 (1.3%) 10 

As indicated in Table 4, The total mean fluency, flexibility, and originality of 

Dulangkou participants were all higher than the respective scores of School Y students. 

However, the Mann-Whitney U test suggests such differences are not statistically 

significant, with the p-value of 0.105, 0.115, 0.301 for fluency, flexibility, and 

originality, which attributes to the small sample size, the scoring scheme’s nature, and 

the difficulty of Task B.  

# of students / 

Strategy 

Dulangkou 

(n = 83) 

School Y 

(n = 80) 

Originality 

Strategy A A1 A2 A3 A4 A1 A2 A3 A4 0.1 for 1.1 

to 1.3; 

10 for 1.4 

59 

(71%) 

5 

(6%) 

2 

(2.4%) 

2 

(2.4%) 

41 

(51%) 

0 

 

3 

(3.8%) 

0 

 

Strategy B 26 (31.3%) 31 (38.8%) 1 

Strategy C 12 (14.4%) 5 (6.3%) 10 

Strategy D 1 (1.2%) 2 (2.5%) 10 

Strategy E 1 (1.2%) 1 (1.3%) 10 

Strategy F 1 (1.2%) 1 (1.3%) 10 

Strategy G 1 (1.2%) 0  10 

Strategy H 0 1 (1.3%) 10 
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Table 4. Mean and SD of Total Creativity for both tasks 

 Fluency Flexibility Originality Creativity 

 mean±SD mean±SD mean±SD mean±SD 

Dulangkou 1.38±1.17 13.00±10.86 2.68±5.35 22.38±43.17 

School Y 1.14±1.21 10.68±10.62 1.93±4.63 17.34±42.44 

Creativity 

All participants were ranked based on their total creativity score. 28% Dulangkou and 

35% School Y participants obtained a zero score, and thirteen out of the top twenty 

performers are Dulangkou students. Specifically, for Task A, eight out of the top ten 

performers are Dulangkou students. However, according to Mann-Whitney U test, such 

differences are not statistically significant (p-value: 0.248). 

 Table 5. Creative Thinking Level, Adapted from Tatag (2011). 

To further analyse the two schools’ performance, I grouped students’ responses into 

Creative Thinking Level (CTL), which is the level I adapted from Tatag (2011) to 

classify students’ creativity with relevance to the rest of the group. The indicators of 

CTL are explained in Table 5, and the CTL results are indicated in Table 6. The 

following ordinal logistic regression model was employed: logit (P(Y ≤ k|S)) = 

loge(
P(Y≤k|S)

1−P(Y≤k|S)
), where Y denotes the CTL (k = 0, 1, 2, 3, 4) and S denotes the school 

(0 for School Y, 1 for Dulangkou). The model suggests that the odds of Dulangkou 

Level Characteristic of Creative Thinking Level 

Level 0 

(Not Creative) 

Students were not able to show any components of creativity 

(Cr = 0) 

Level 1 

(Almost Not Creative) 

Students were able to show fluency without or with low 

originality and flexibility in solving problem 

(Flui>0, Orii = 0.1 and Flxi≠1< 10) 

Level 2 

(Quite Creative) 

Students were able to show flexibility or originality in 

solving problem with low fluency 

 (0 < Flui≤1, Orii > 0.1 or Flxi≠1= 10) 

Level 3 

(Creative) 

Students were fluent and then they were flexible or 

demonstrate originality 

(Flui>1, Flxi≠1= 10 or Orii=10) 

Level 4 

(Very Creative) 

Students satisfied all components of creativity 

(Flui＞1, Flxi≠1=10 and Orii=10 ) 
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students obtaining a higher CTL for Task A is 1.455 times, and for Task B is 0.959 

times, as large as it is for School Y students. The estimated differences between the 

two schools are smaller for Task B than for Task A. 

 Table 6. Distribution of CTL 

# of students Level 0 Level 1 Level 2 Level 3 Level 4 

Task A 

Dulangkou 23 (27.7%) 26 (31.3%) 0 19 (22.9%) 15 (18.1%) 

School Y 28 (35%) 21 (25%) 8 (10%) 16 (20%) 7 (8.8%) 

Task B 

Dulangkou 77 (92.7%) 5 (6%) 0 1 (1.2%) 0 

School Y 74 (92.5) 5 (6.3%) 0 0 1 (1.3%) 

Inter-rater Reliability 

Two raters independently coded at least 12% of the student responses from each task 

of each sample. The inter-rater agreements were 96.4%, 91.1%, 96.4%, and the 

Cohen’s Kappa was 0.819, 0.741, 0.819 for fluency, flexibility, and originality. 

CONCLUSIONS AND DISCUSSION 

The analysis of the MST performance showed that the SCP participants outperformed 

the TCP participants in terms of the total creativity; however, due to the small sample 

sizes and 93% zero-achievers in Task B, the differences are not statistically significant. 

School Y students receiving 160 minutes/week more compulsory mathematics learning 

time might narrow the differences between the schools’ MST performance, which 

remains a possible avenue for future exploration. Overall, our study results implicated 

that integrating SCP into secondary mathematics might avoid excessively subjecting 

students to intense discipline while achieving a similar/better level of mathematical 

creativity. Moreover, 7% fewer zero achievers among Dulangkou participants indicates 

that SCP might help improve problem solving among the low performers. 

Students’ performance on Task B suggests two things. First, the benefit of SCP when 

solving easy-level MST might exceed the benefit from solving difficult MST. Second, 

when tasks are too difficult, students’ mathematical creativity via MST can be 

restricted to their mathematical knowledge and problem-solving skills. As a result, the 

valid data received would be insufficient, and individual results could dominate the 

group results. I therefore suggest tasks aiming to indicate creativity be set at an easy or 

moderate level so that students’ divergent thinking is not submerged. Although this 

study cannot guarantee the definitive causal claim between pedagogy and 

mathematical creativity, which attributes to the limitation of comparative studies: the 

quandary of “many variables, small-N” (Lijphart, 1971), it blazes a new path in this 

direction and underscores the need for more inquiry into this line of research. Future 
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studies should increase school cases and further control pedagogy as the main variable 

to robustly investigate the relationship between pedagogy and mathematical creativity. 
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This study examines how sixth graders learn to solve multiplicative structure problems 

when they participate in an instruction focused on two connections: connecting 

multiplicative structure word problems and connecting the invariant structures from 

natural numbers to fractions. In a previous study, we identified five different students’ 

modelling pathways. We extend this previous work by examining the changes in 

students’ modelling pathways along the varied problem sets designed. The results show 

differences in the students’ learning and shed light on the role of the variation principle 

in overcoming students’ difficulties in solving this type of problems.  

INTRODUCTION 

Multiplicative structure word problems have been studied since the 1980s (overview 

in Greer, 1992); and students’ difficulties regarding the problem structure and the type 

of numbers have been identified (e.g., Fischbein et al., 1985). The same situation (e.g., 

15 cakes grouped in five boxes with three cakes each) can be transformed in three types 

of multiplicative structure problems according to its unknown (Greer, 1992): 

multiplication (the total amount is unknown, i.e., total of cakes), partitive division (the 

quantity per group is unknown, i.e., cakes per box), and quotitive division (the number 

of groups is unknown, i.e., number of boxes). However, many students deal with 

problem structures in isolated ways rather than making these connections of inverse 

relationships. Furthermore, previous studies have shown that also students who 

successfully solve these problems with natural numbers, do not succeed for rational 

numbers (Fischbein et al., 1985; Greer, 1992). 

In our design research study, we investigated how to engage students in two types of 

connections to overcome these difficulties: (i) connecting multiplicative structure 

problems, i.e., multiplication problems with their inverse partitive and quotitive 

division problems, and (ii) connecting the invariant structures between these problem 

structures across natural numbers and proper/improper fractions. The instructional 

approach for initiating making these connections is based on the Bianshi approach, 

with its design principle of problem variation (Sun, 2019). The variation principle is 

used for designing and analyzing textbooks (Sun, 2019) and for teacher professional 

development (Han et al., 2017). However, as far as we know, there are no empirical 

studies providing in-depth insights into students’ work. So, we ask: How do students’ 

solving modelling pathways change during the work with varied problem sets?  
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THEORETICAL FRAMEWORK  

Variation principle used for the design of the varied problem sets 

Considering the two connections mentioned above, we used three types of variations 

(Sun, 2019): (i) One problem multiple changes (OPMC): Initially presenting and 

solving a problem, and later solving variations of the initial problem (by varying 

condition/s). (ii) One problem multiple solutions (OPMS): Providing the opportunity 

to solve a problem using different strategies. (iii) Multiple problems one solution 

(MPOS): Using the same strategy to solve a set of identical structure problems. 

For this, five varied problem sets were designed (Table 1; Zorrilla et al., 2022). For 

focusing students’ attention on the inverse relationship, we used the variation OPMC 

for composing each problem set of three problems with the same situation but different 

unknowns: A multiplication problem (M), e.g., “We have [number of groups] 

packages. Each package contains [quantity per group] kilos. How many kilos do we 

have in total?”; a partitive division problem (P), e.g., “We have [number of groups] 

packages. All the packages contain the same number of kilos. We have [total quantity] 

kilos in total. How many kilos does each package have?”, and a quotitive division 

problem (Q): “We have some packages. Each package contains [quantity per group] 

kilos. We have [total quantity] kilos in total. How many packages do we have?”. 

Table 1: Five problem sets and extra problems designed 

 Set 1 Set 2 Set 3 Set 4 Set 5 

Situa- 

tion 

3 packages of 

4kg are 12kg 

8 packages of 
1

2
kg are 4kg 

5 
1

2
 packages of 

2kg are 11kg 

8 packages of 
1

10
kg are 4

5
 kg 

2 
1

4
 packages of 

2kg are 4 
1

2
kg 

M 1.1M 3 × 4 2.3M 8 × 1
2
 3.2M 5 

1

2
 × 2 4.1M 8 × 1

10
 5.1M 2 

1

4
 × 2 

P 1.2P 12 : 3 2.1P 4 : 8 3.3P 11 : 5 
1

2
 4.3P 4

5
 : 8 5.2P 4 

1

2
 : 2 

1

4
 

Q 1.3Q 12  4 2.2Q 4  1
2
 3.1Q 11  2 4.2Q 4

5
  1

10
 5.3Q 4 

1

2
  2 

Extra problems (other situations and numbers) 

M E1.4M 8 × 2 E2.6M 10 × 2
5
   E5.4M 5 1

4
 × 3 

P E1.5P 20 : 5 E2.4P 2 : 20   E5.5P 8 
4

5
 : 2 

1

5
 

Q E1.6Q 24  4 E2.5Q 2  1
4
   E5.6Q 7 

1

2
  2 

The variation OPMC was applied across the five problem sets to maintain the structure 

of the problem (same unknown), while changing the number types involved (Table 1). 

The variation MPOS aimed at inviting students to use the same strategy in new number 

types. Furthermore, students worked on the problems in small groups, and then the 

teacher shared and discussed different strategies in the whole class (working in a format 

OPMS). The order of problems varied, e.g., 1.1M–1.2P–1.3Q, but 2.1P–2.2Q–2.3M. 

To support students’ “disregard” of the context and to initiate that they switch to 

generalizing independently of the given context, some extra problems (Table 1) were 
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included (with other context situations and other numbers). This variation aimed at 

encouraging students to extrapolate the discovered structures to other contexts and, 

thus, generalize the structure (Marton, 2015). 

Framework to investigate students’ pathways  

According to classical modelling cycles, students can work on a word problem (textual 

representation) by structuring the underlying situation of the problem (contextual 

representation; graphical or mental representation), which would allow them to 

mathematize by choosing the operation that solves the problem (symbolic 

representation) to, then, proceed to calculate the result (numerical representation). The 

student would then be expected to interpret the operation and result according to the 

structure of the situation and validate the result in that situation (vom Hofe & Blum, 

2016). Typical obstacles in completing the modelling cycle can be related to inadequate 

mental models (understood as the translation knowledge given by standard 

interpretations of operations, see Fischbein et al., 1985; Greer, 1992), poor reading 

comprehension that can lead to a deviant mental representation (Dröse & Prediger, 

2020), or superficial interpreting and validating processes that can hinder students from 

recognizing their errors (Verschaffel et al., 2000). 

In this study, we adapted the modelling cycle to capture also emergent modelling (see 

Gravemeijer, 2007), i.e., the processes involved in extending the meaning of operations 

from natural numbers to fractions and draw upon the inverse relationship between 

division and multiplication. Emergent modelling partially draws upon the same 

processes as modelling, but instead of choosing between the existing mental models, 

students are encouraged to draw upon informal strategies (Empson & Levi, 2011) and 

connect them to the newly emerging mental models or to draw upon inverse 

relationships among multiplication and division problems by discovering the 

commonality and the inverse relationship in the problem texts.  

METHOD  

Methods of data gathering. This paper is part of a larger study in which we have 

examined students’ modelling pathways when they solved the problem sets designed. 

17 Spanish sixth graders (11-12 years old) solved the problem sets in small groups. 

The data corpus comprises students’ small-group discussions (audio-recorded and 

transcribed) and students’ individual worksheets. 

Methods of qualitative data analysis. In order to capture students’ modelling pathways 

in the audio-recorded data, we applied a combined deductive and inductive qualitative 

procedure (Zorrilla et al., submitted). First, each student utterance was deductively 

coded regarding the addressed representation (textual, graphical or contextual, 

symbolic, and numerical representation) and whether students referred to other 

problems. Second, each student utterance was segmented into sense-making units 

referring to the same representation/s or idea/s and we performed an inductive coding 

of (emergent) sub-processes (e.g., related to the process of structuring, the sub-

processes of contextualizing the data of the problem and reporting the mental 
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contextual representation and/or graphical representation). From this deductive and 

inductive coding, we obtained 408 chains (24 problems and 17 students) of sub-

processes with the representation addressed. These chains of sub-processes were 

systematically compared and classified into reoccurring patterns. In case that the 

information of the chain was not enough, this chain was classified as non-

communication. This analysis revealed five typical students’ individual modelling 

pathways that partially deviate from the intended modelling trajectories (Zorrilla et al., 

submitted): (i) Direct Translation pathway: Students directly translate the problem text 

into symbolic and numerical representations. (ii) Contextualizing the Chosen 

Operation pathway: Students directly articulate the chosen operation in connection 

with mental contextual representation of the problem text that allows them to 

contextualize the operation. (iii) Informal Strategies pathway: Students solve the 

problem using a graphical or contextual representation, and they may (or may not) 

mathematize using the symbolic representation but without reaching the formal 

operation. (iv) Operational Connection pathway: Students find or validate the result by 

making connections to other problems but not by relating mathematical problem 

structures. (v) Relational Connection pathway: Students connect problems using the 

inverse relationship between multiplication and division.  

Analytic step for the current paper. Here, we extend this previous work by examining 

the changes in students’ modelling pathways along the varied problem sets. For this 

longitudinal analysis, we focus on Lola, Tíscar, Jose, Luis, Ana, and Alba. The changes 

indicate how students are learning to solve multiplicative structure problems in the 

problem sets designed with the variation principle.   

RESULTS 

Most students used the Direct Translation pathway in the first multiplication problem 

(Set 1: 1.1M: “We have 3 packages. Each package contains 4 kilos. How many kilos 

do we have in total?”). In fact, all six students directly translated the multiplication 

problem text 1.1M successfully into symbolic and numerical representation. The 

excerpt of transcript exemplifies this Direct Translation pathway in which the small 

group of Lola, Tíscar, and Jose focused on comparing their operations and result: 

Lola: [After writing down 3 × 4 = 12] 12 kilos… I know. It’s 12 kilos. 

Jose: It’s 12 kilos. 

Tíscar: Well, yes… 4 times 3 would be 12. Then that’s it. 

Also, Luis, Ana and Alba, started by individually reading the problem, then they 

proceeded to mathematize it by immediately choosing the multiplication operation and 

calculated the result to solve problem 1.1M (Direct Translation pathway). 

In contrast to their first encounter with the problem sets that was based on natural 

numbers, the students’ pathways then changed from a strong focus on the Direct 

Translation pathway to a much broader variety of pathways. In the varied problem sets 

designed, we used the variation OPMC to focus students’ attention on the inverse 
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relationships between problems. Each problem set was constructed by three problems 

with the same situation and numbers, but different unknowns. This variation principle 

seems to help students to make deeper connections between problems based on the 

inverse relation (Relational Connection pathway). This was the case for Tíscar and 

Jose: After solving the quotitive and partitive division problems 2.1Q and 2.2P in Set 

2, they solved the inverse multiplication problem 2.3M (“We have 8 packages. Each 

package contains ½ kilos. How many kilos do we have in total?”) by a Relational 

Connection pathway, saying: 

Tíscar: It’s like the other way around. It’s the inverse. 

Jose: They are inverse operations [both had written 0.5 × 8 = 4.0]. 

However, some students developed superficial connections based on the numbers 

instead of the mathematical structure of the problem (Operational Connection 

pathway) and used these superficial connections either for obtaining or validating the 

unknown respectively the operation used to calculate the unknown. This was the case, 

e.g., for Lola who solved the partitive division problem of Set 1 (1.2P: “We have 3 

packages. All the packages contain the same number of kilos. We have 12 kilos in total. 

How many kilos does each package have?”) after the multiplication problem 1.1M with 

the same numbers. In her dialogue with Tíscar, we observe that Lola agreed that “4 

kilos” is the result since it matches with the numbers of the multiplication problem that 

she had solved before. Both students obtained the results from the other problem and 

tried to search for a suitable operation. For Lola, this process resulted, first, in an 

incorrect operation providing the operation 3 : 12. 

Tíscar: It’s saying it here: “Each package contains 4 kilos” [referring to 

multiplication problem 1.1M]. 

Lola: […] Yes, because the first problem [referring to multiplication problem 

1.1M] says it. 

Tíscar: […] [After Lola had written 3 : 12 = 4] Lola, I think it’s the other way 

around. Because if you do 3 divided by 12, the result is different. 

Lola: So… 12 divided by 3? 

In some cases, these superficial connections were used to validate the operations used 

to obtain the result. This is the case, e.g., for Ana in the multiplication problem in Set 

2 (2.3M: “We have 8 packages. Each package contains ½ kilos. How many kilos do 

we have in total?”). Following a Contextualizing the Chosen Operation pathway, she 

structured the situation by contextualizing that there are 8 packages with ½ kilo each, 

but she realized that her operation (8 ÷ 0.5) was not correct since the result should have 

been 4 (looking at 2.2Q previously solved) (Operational Connection). 

Ana: 8 divided by 0.5… Because we have 8 packages, and each package weighs 

half a kilo… “How many kilos do we have in total?”. 

Ángela: […] 4 would have to be the result… 

Ana: Yes, 4 is the result. I just got it wrong. 
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Teacher: And why are you sure that 4 is the result? 

Ana: Because it says it here [pointing at the prevision quotitive division problem 

2.2Q in the same problem set]: “We have 4 kilos in total”.  

We used the variation OPMC across the five problem sets maintaining the structure of 

the problem (same unknown) and changing the numbers involved (from natural 

numbers to fractions). Supported by this variation, some students changed from Direct 

Translation pathway (with natural numbers) to Contextualizing the Chosen Operation 

pathway (with fractions). This change shows the need for students to explicitly 

construct a contextual representation of the operation with fractions. This is the case 

for Luis, who initiated the solution process of the multiplication problem 2.3M by 

structuring the problem text. This allowed him, after transforming from the fraction 

representation to the decimal number representation, to mathematize the problem text 

using the formal operation: “0.5 multiplied by 8 packages”. 

Luis: It [problem text] says that each package weighs… 1 over 2, which is equal 

to 0.5 kilograms. So, each package weighs this and it says “we have 8 

packages” … So, 0.5 multiplied by 8 packages. 

This variation (from natural numbers in Set 1 to fractions in Set 2) in format OPMS 

(with discussion of different strategies to solve the problems in the whole class), helped 

students to use informal strategies (they changed from Direct Translation pathway with 

natural numbers to Informal Strategies pathway with fractions). The following excerpt 

of the dialogue between the teacher and Alba shows the use of an informal strategy in 

the quotitive division problem of Set 5 (5.3Q: “We have some packages. Each package 

contains 2 kilos. We have 4 ½ kilos in total. How many packages do we have?”). 

Alba: As 4.5 are the total of kilos we have, I’ve divided the kilos by each package. 

Teacher: So, you’ve been drawing the packages… 

Alba: Yes, because each package has 2 kilos. So, I’ve made the packages… 

Teacher: OK. You’ve done two equal packages but the third one is different. Why?  

Alba: Because we don’t have 6 kilos. 

Teacher: […] And how many kilos there are in the third one? 

Alba: 0.5. 

Teacher: So, how many packages do we have? 

Alba: We have 2.25. 

DISCUSSION AND CONCLUSIONS 

We have analyzed the changes in students’ pathways through the problem sets 

designed to identify characteristics of students’ learning. These characteristics give us 

relevant information with regard to how students are learning to solve multiplicative 

structure word problems (in the challenging shift from natural numbers to fractions, 
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Greer, 1992), when the variation principle (Marton, 2015; Sun, 2019) is used in our 

design to help students overcome the difficulties documented in the literature. 

The design helped some students to draw Relational Connections between 

multiplicative structure problems. This was observed, e.g., when Tíscar and Jose drew 

on the inverse relationship to choose the operation of a multiplication problem by 

relating it to the partitive and quotitive problems solved previously. For other students, 

the deliberate variation of problems helped them to move from natural numbers to 

fractions, pushing them to use instead of the most common pathway used with natural 

numbers (Direct Translation pathway), the Contextualizing the Chosen Operation 

pathway or the Informal Strategies pathway (with fractions). The change from Direct 

Translation to Contextualizing the Chosen Operation seems to indicate that students 

have a contextual mental representation of the problem (although not verbalizing it 

when working with natural numbers). The introduction of fractions seems to push them 

to make explicitly this contextual mental representation showing the ability to control 

the generalized use of certain models across the various mental processes (vom Hofe 

& Blum, 2016). The change from Direct Translation to Informal Strategies pathway 

shows how students could give meaning to operations with fractions through informal 

strategies (Empson & Levi, 2011) before mathematizing with the formal operation. 

Considering these results, we observe the powerful role that OPMC played on engaging 

students in the two types of connections (Yanhui, 2018) to overcome well-documented 

difficulties (Greer, 1992). The variation principle enhanced some students drawing 

connections and helped them in the transition from natural numbers to fractions.  

However, there were students such as Lola that developed superficial connections 

based on the numbers instead of the mathematical structure of the problem 

(Operational Connection pathway), which hindered them from constructing meanings 

for multiplication or division of fractions. This observation is in line with Dröse and 

Prediger’s (2020) findings in a completely different context, some students reflected 

on the role that variation had on the structure of the new problem, while others stayed 

on more superficial connections (Relational Connection pathway vs. Operational 

Connection pathway in our study). Nevertheless, these superficial connections 

appeared to be already useful in some cases at least for the mental process of validation, 

since some students followed this pathway to validate the operation and result obtained. 
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