
 

 

 

 

 

 

 

 

 
 



 

Proceedings of the 44th Conference of the International Group  

for the Psychology of Mathematics Education  

 

Volume 2 

Research Reports (A-G) 

 

 

 

 

 

Editors: 

Maitree Inprasitha 

Narumon Changsri 

Nisakorn Boonsena 

 

 

 

Khon Kaen, Thailand 

19-22 July 2021 

 

 

 



  

Proceedings of the 44th Conference of the 

International Group for the Psychology of 

Mathematics Education 

Volume 2 

Research Reports (A-G)       

Editors: Maitree Inprasitha, Narumon Changsri,  

      Nisakorn Boonsena 

 

 

 

 
Cite as: 

Inprasitha, M., Changsri, N., & Boonsena, N. (Eds). (2021). Proceedings of the 44th 

Conference of the International Group for the Psychology of Mathematics Education (Vol.2). 

Khon Kaen, Thailand: PME. 

 

Website: https//pme44.kku.ac.th 

 

Proceedings are also available on the IGPME website: http://www.igpme.org 

 

Copyright © 2021 left to authors 

All rights reserved 

 

ISBN 978-616-93830-1-7 (e-book) 

 

 

Published by Thailand Society of Mathematics Education, Khon Kaen, Thailand 

123/2009 Moo. 16 Mittraphap Rd., Nai-Muang, Muang District Khon Kaen 40002 

Logo designed by Thailand Society of Mathematics Education  



PME 44 - 2021 
 

PREFACE 

We are pleased to welcome you to PME 44. PME is one of the most important international 

conferences in mathematics education and draws educators, researchers, and mathematicians 

from all over the world. The PME 44 Virtual Conference is hosted by Khon Kaen University 

and technically assisted by Technion Israel Institute of Technology. The COVID-19 

pandemic made massive changes in countries’ economic, political, transport, communication, 

and education environment including the 44th PME Conference which was postponed from 

2020. The PME International Committee / Board of Trustees decided against an on-site 

conference in 2021, in accordance with the Thailand team of PME 44 will therefore go 

completely online, hosted by the Technion - Israel Institute of Technology, Israel, and takes 

place by July 19-22, 2021. A national presentation of PME-related activities in Thailand is 

part of the conference program. 

This is the first time such a conference is being held in Thailand together with CLMV 

(Cambodia, Laos, Myanmar, Vietnam) countries, where mathematics education is 

underrepresented in the community. Hence, this conference will provide chances to facilitate 

the activities and network associated with mathematics education in the region. Besides, we 

all know this pandemic has made significant impacts on every aspect of life and provides 

challenges for society, but the research production should not be stopped, and these studies 

needed an avenue for public presentation. In this line of reasoning, we have hosted the 

IGPME annual meetings for the consecutive year, July 21 to 22, 2020, and 19 to 22 July 

2021, respectively by halting “on-site” activities and shift to a new paradigm that is fully 

online. Therefore, we would like to thank you for your support and opportunity were given to 

us twice. 

“Mathematics Education in the 4th Industrial Revolution: Thinking Skills for the Future” has 

been chosen as the theme of the conference, which is very timely for this era. The theme 

offers opportunities to reflect on the importance of thinking skills using AI and Big Data as 

promoted by APEC to accelerate our movement for regional reform in education under the 4th 

industrial revolution. Computational Thinking and Statistical Thinking skills are the two 

essential competencies for Digital Society. For example, Computational Thinking is related 

to using AI and coding while Statistical Thinking is related to using Big Data. Therefore, 

Computational Thinking is mostly associated with computer science, and Statistical Thinking 

is mostly associated with statistics and probability on academic subjects. However, the way 

of thinking is not limited to be used in specific academic subjects such as informatics at the 

senior secondary school level but used in daily life.   

For the PME 44 Thailand 2021, we have 661 participants from 55 different countries. We are 

particularly proud of broadening the base of participation in mathematics education research 

across the globe. The papers in the four proceedings are organized according to the type of 

presentation. Volume 1 contains the presentation of our Plenary Lectures, Plenary Panel, 

Working Group, the Seminar, National Presentation, the Oral Communication presentations, 

the Poster Presentations, the Colloquium. Volume 2 contains the Research Reports (A-G). 

Volume 3 contains Research Reports (H-R), and Volume 4 contains Research Reports (S-Z). 

The organization of PME 44 is a collaborative effort involving staff of Center for Research in 

Mathematics Education (CRME), Centre of Excellence in Mathematics (CEM), Thailand 
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Society of Mathematics Education (TSMEd), Institute for Research and Development in 

Teaching Profession (IRDTP) for ASEAN Khon Kaen University, The Educational 

Foundation for Development of Thinking Skills (EDTS) and The Institute for the Promotion 

of Teaching Science and Technology (IPST). Moreover, all the members of the Local 

Organizing Committee are also supported by the International Program Committee. I 

acknowledge the support of all involved in making the conference possible. I thank each and 

every one of them for their efforts. Finally, I thank PME 44 participants for their 

contributions to this conference. 

Thank you  

Best regards  

  

Associate Professor Dr. Maitree Inprasitha  

PME 44 the Year 2021 

Conference Chair   
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SECONDARY MATHEMATICS TEACHERS USE OF 

FACEBOOK FOR PROFESSIONAL LEARNING 

Judy Anderson1 and Blanca Swanson1 

The University of Sydney, Australia 

 

Professional learning is critical for mathematics teachers to support reflective practice, and 

to learn about new ideas, resources and pedagogies. Online communities provide 

opportunities for teachers to engage with other practitioners, but to what extent do these sites 

enable shared understandings, mutual engagement, and the development of shared meaning-

making resources? Little is known about how secondary mathematics teachers interact with 

online groups, and how such groups function for members of different levels of engagement. 

This study used an audit, questionnaire and interviews to explore levels of teacher 

engagement and to investigate the potential for the development of an online community of 

practice. 

INTRODUCTION 

Innovative reforms in practice, such as using inquiry-based pedagogies and alternative 

assessment approaches are less evident in secondary mathematics classrooms, particularly if 

teachers teach the way they were taught (Goos & Bennison, 2008). Changing practice is 

complex. Strategies such as policies which mandate new approaches to assessment have been 

used to change practice (Barnes, Clarke, & Stephens, 2000) although not always successfully 

nor sustainably. More successful reform programs employ high quality professional learning 

(Darling-Hammond, Hyler, Gardner, & Espinoza, 2017), frequently aiming to develop 

teacher ownership through shared understandings, mutual engagement and the collaborative 

development of resources.  

Traditionally, teacher professional development involved attending courses, seminars and 

conferences (Lantz-Andersson, Lundin, & Selwyn, 2018), but there has been increased 

recognition of other opportunities for teacher professional learning, including through 

communities of practice, which allow for dynamic, collaborative and participant-driven 

learning (Goos & Bennison, 2008). Professional learning communities encourage teachers to 

ask questions focused on their practice, which facilitates growth in teachers’ professional 

identities. Regardless of geographical location and potential isolation, social media sites 

provide new opportunities for teachers to share experiences and resources, and to create, 

develop and incorporate innovative pedagogies into their teaching practice. It is therefore 

worth investigating how an established social media site such as Facebook could serve as a 

space for professional learning, potentially leading to an online community of practice.  

This project investigated an existing Facebook group used by secondary mathematics 

teachers in one Australian state. The recent implementation of a new mathematics syllabus, 
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including requirements for alternative, inquiry-based high-stakes assessment tasks for the 

final two years of schooling, positioned the group in a key period of implementation of new 

classroom practices. The project thus aimed to investigate the question: To what extent can 

an established Facebook group become a community of practice for secondary mathematics 

teacher members of the group?  

LITERATURE REVIEW 

The “community of practice” framework (Lave & Wenger, 1991, p. 10) is used to describe a 

group of professionals who use their social ties and common objectives to improve their 

practice, by building a body of related resources and knowledge (Goos & Bennison, 2008; 

Lantz-Andersson et al., 2018). The process of learning in such a community is inherently 

social; it is achieved through observation and participation within the community. Wenger 

(1998) described three key features of a community of practice: the formation of a joint 

enterprise held by the group; the practice of mutual engagement from members; and the 

creation of a shared repertoire of meaning-making resources. Wenger, McDermott, and 

Snyder (2002) noted there are three typical levels of participation in a community of practice: 

core members, who regularly initiate group interactions and energise the community; active 

members, who regularly participate in group interactions; and legitimate peripheral 

participants, who learn through observation of the interactions between core and active 

members. The legitimate peripheral participants have the potential to become core or more 

active members since through apprenticeship, they transition from novice to expert. 

The rise of the Internet and its enhanced capacity to maintain stable infrastructure without 

external financial patronage, has provided new possibilities for teacher networking and 

collaboration. Consequently, there has been a multitude of initiatives designed to utilise 

online sites for professional learning, resource sharing and forming communities (e.g., Lantz-

Andersson et al., 2018). Researchers have focused on Facebook groups as an opportunity for 

teacher professional learning (Rutherford, 2010), a means to promote teacher inquiry, 

collaboration, and adoption of innovative pedagogies (Goodyear, Casey, & Kirk, 2014), and 

as an “extended staff room” (Lantz-Andersson, Peterson, Hillman, Lundin, & Rensfeldt, 

2017, p. 54). However, these studies have not addressed how Facebook groups can function 

independently as a community of practice, or to what extent participants’ contributions within 

the group might impact classroom practice. While online communities appear to promote the 

resource and idea sharing that forms the development of innovative practice, how effective 

are they in promoting mutual participation and a shared teacher identity? 

In addition, there is little information about how peripheral participants engage with online 

communities, as they often leave no digital trace of their presence. This limitation was 

recognised by Rutherford (2010), who concluded “there is no way of knowing if the 

knowledge of these ‘lurkers’ was affected by simply reading the posts of the active group 

members” (p. 68). Lantz-Andersson et al. (2017) argued that peripheral participants might 

view Facebook groups as networks rather than communities of practice, yet they suggested 

meaningful forms of passive engagement could still exist within the group. Also, there is 

limited research about how mathematics teachers engage in online communities, despite their 
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potential to model the planning and pedagogy needed to bring new ideas and practices into 

the classroom (Goos & Bennison, 2008), hence the need for this study. 

METHODOLOGY 

A case study of teachers’ participation in the Mathematical Association of New South Wales 

(MANSW) Facebook group, a closed group with over 2000 members was conducted by the 

authors. Previous research on Facebook as an online teacher community has used a range of 

data collection methods such as participant interviews and collecting archival documents 

(Kelly & Antonio, 2016), surveys, online participant observations (Goodyear et al., 2014), 

and audits (Lantz-Andersson et al., 2017). Since the project aimed to investigate how a 

specialised Facebook group might support secondary mathematics teachers as a community 

of practice, the combination of an audit, questionnaire and interviews was chosen to explore 

the context. However, due to space constraints, this paper only presents data from the audit 

and questionnaire. 

The audit of the group was conducted, focusing on the posts, comments and reactions within 

a one-year period. Facebook’s Group Insights tool was used to find the total number of posts, 

comments, reactions and members who viewed posts per day, as well as information on 

member demographics. Since the tool did not record which members posted to the group, one 

month was examined manually to record the frequency with which members posted to the 

group. A small sample of posts were then analysed with a process of open coding, resulting in 

the formation of 12 descriptive categories of post types. All posts within the one-year 

timeframe were then coded into these categories (see Table 1). The audit recorded the 

number of peripheral participants in the group, in comparison to previous studies that lacked 

such data (Lantz-Andersson et al., 2017). 

After the audit, an anonymous questionnaire was posted to the discussion page of the group, 

seeking information about the underlying motivations of members to participate in the group, 

as well as their perceptions about how their engagement impacted practice. The questionnaire 

was brief, asking respondents to identify: their reasons for visiting the group from a list of 

possible responses derived from the categories developed in the audit; how often they visited 

the group; whether they had seen any ideas or resources in the group that they would be 

interested in using in the classroom; whether they had used any ideas or resources from the 

group in the classroom; how long they had been teaching mathematics; and how often they 

commented or posted to the site. In comparison to the audit, surveying participants enabled a 

greater understanding of members’ different levels of engagement.  

For expedience, in contrast to Wenger et al (2002) definitions of core, active and peripheral 

members as representing experts or novices, we chose to initially classify members according 

to their engagement with the Facebook page through posting comments or reacting to the 

posts of others. This categorisation was further explored in the questionnaires and interviews 

suggesting that some experienced and potentially ‘expert’ teachers were peripheral 

participants. We argue that the focus of the study was to ascertain engagement and the 

potential for the development of a community of practice regardless of the level of expertise 

of participants. 
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RESULTS AND DISCUSSION 

During the audit, posts were categorised into twelve purposes for engagement with the 

Facebook group (Table 1). The audit also provided evidence of the three levels of member 

involvement; over the year, there was an average of five posts, 45 comments and 108 

reactions submitted to the group each day, showing the widening impact of core and active 

members. However, there was also an average of 1200 members each day who viewed posts, 

with approximately 13% of members who saw posts actively responding to them on a given 

day, and the remaining 87% of these members were considered peripheral participants. It is 

therefore crucial to consider how these peripheral users engaged with the group, as they 

appeared to comprise such a high proportion of members. 

Category Number of Posts % Total 

Sharing a link for discussion 327 18% 

Sharing a link for humour 231 13% 

Sharing resources/teaching ideas 230 13% 

Asking for opinions on teaching 198 11% 

Sharing experience or awards 173 9% 

Asking for resources/ideas 141 8% 

Asking questions about syllabus 135 7% 

MANSW admin/conference information 131 7% 

Offering/asking for employment 114 6% 

Asking for solutions to a mathematics question 80 4% 

Asking for assessment ideas/advice 51 3% 

Other 16 1% 

Total 1827 100% 
Table 1. Categories of discussion posts over a one year period 

The 120 questionnaire responses were collated and analysed to determine each respondents 

level of engagement. The levels of engagement were defined as: core members as those who 

regularly started discussions, commented on posts, and energised the community (11, 9%); 

active members as those who often commented or reacted to posts and occasionally started 

discussions (53, 44%); and peripheral participants as those who mainly read posts without 

actively replying (56, 47%). It is not surprising that more core and active members (53%) 

responded to the questionnaire than peripheral members (47%) given their more active 

engagement with the Facebook group. To investigate the extent to which the group supports 

mathematics teachers as a community of practice, the remaining data are presented under the 

three features of joint enterprise, mutual engagement, and a shared repertoire of resources. In 

each of the sections, attention is given to members of varying levels of engagement. 

Joint Enterprise 

Wenger (1998) describes the joint enterprise of a community as the purpose of a group as 

continually redefined and acted upon by its members. While the MANSW Facebook group 

(ttps://www.facebook.com/MathsNSW/) was developed for the exchange of information and 

ideas between members, it is important to consider how the group was used by its members. 

Within a one-year period, the 1827 posts submitted to the main discussion page of the group 
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were analysed to determine the most common ways the site was used. From the 12 categories 

identified in Table 1, categories were grouped to provide the main uses presented here. 

First, the group functioned as a place for intentional professional discussion. While 

discussions also arose in the comments of other posts, 29% of posts were intentionally aimed 

at either informing or starting discussions, by sharing an article related to teaching or asking 

for members’ opinions on specific aspects of pedagogy. For example, the following post 

asked for opinions on a screenshot from one of the new syllabus documents, resulting in 32 

comments and 66 reactions. The phrase “brains trust” was commonly used in such posts to 

the discussion group, evidencing a culture of collaborative discussion. 

Brains trust, Asymptotes have been discussed here a few times. What do we think of this 

definition, from the Glossary attached to the new syllabus? 

Second, the group acted as a space for individual teachers to seek specific help from a larger 

body of mathematics teachers – 22% of posts asked for resources, assessment advice, and 

clarifications about the syllabus, or solutions to specific mathematics questions. The 

following post had 35 comments and 18 reactions, including teachers offering to share a 

Google Drive of resources. 

I'm trying to come up with an alternative assessment task for my Year 12 Ext 1 class. Any 

ideas? I'm struggling! 

Third, the group functioned as a social space for mathematics teachers, with 22% of posts 

used to share mathematics memes or jokes, personal experiences and pictures of conferences, 

or to celebrate members who had won awards. Fourth, the group was a place for individuals 

to offer resources or ideas to the community, as seen in 13% of posts. The group was also 

used by the MANSW executive to share information about conferences or administration (7% 

of posts) or for people to ask or offer employment (6% of posts). These posts generally had 

fewer interactions from other group members.  

Each of these categories can be broadly considered to support the stated purpose of 

exchanging ideas and information in the group. However, members who posted directly to 

the group have expanded upon the set purpose to collectively start professional discussions, 

support teachers in need and share among other practitioners: essentially, to engage in 

collective professional learning. There was also a strong emphasis on posting for the benefit 

of the wider collective, rather than the group functioning simply as a get-help site for 

individual questions. 

To gain further information about the use of the group from members who did not post 

directly to the discussion page, the questionnaire asked participants why they visited the site. 

From the 120 questionnaires, many provided more than one response but the most common 

selected categories were “to stay connected to other mathematics teachers” (83%), “to find 

resources” (79%), and “to ask a question about the syllabus” (47%). It is worth noting the 

passive nature of the two most common responses, which indicates many members visit the 

page regularly to benefit from reading existing posts.  

Considering the responses of the peripheral members in more detail, there was a greater 

difference between the top two categories and the rest of the responses, as can be expected 
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considering their observatory habits. Other differences for peripheral members indicated the 

top category was to “find resources/ideas” rather than “stay connected”. Ultimately, data 

from the audit and questionnaires reflected a common purpose of member participation with 

the group: to connect with like-minded practitioners for community and professional 

learning. The joint enterprise was thus evidenced among members of all levels of 

participation, despite their varying levels of engagement.  

Mutual engagement from members 

Relationships of mutual engagement are a key component to understanding how a network of 

people is united into a single social entity: in essence, how the group functions as a 

community. In the MANSW Facebook group, engagement was expressed primarily through 

the main discussion page as users reacted to, and commented on, others’ posts. Throughout 

the year, there was an average of eight comments and 20 reactions per post, which 

demonstrates a high level of community engagement. The nature of the Facebook group as a 

digital space also enabled mutual participation between members of different geographical 

backgrounds, although a clear majority (67%) of the members originated from the Sydney 

metropolitan area.  

However, it should be acknowledged that many members of the group do not participate in 

mutual engagement to the same extent as the small group of core and active members. To 

obtain the frequency of members posting to the discussion page, March 2019 was chosen for 

detailed analysis because it was early in a new school year when a new syllabus was being 

implemented for the first time. In this month, there were 200 posts, 2429 comments and 4709 

reactions submitted to the group. Each day, there was an average of seven posts, 78 

comments and 152 reactions submitted, with 1485 members viewing posts at some point in 

the day. The posts submitted to the discussion page originated from 115 different members of 

the group, with 81 members only posting once in the month. This suggests that most 

members do not engage by actively posting to the group, and that even members who do post 

to the group do so infrequently. Yet, it would be unwise to underestimate the engagement of 

peripheral members. In a community of practice, all members, including peripheral 

participants, learn through watching the interactions between active and core members 

(Wenger et al., 2002). Indeed, online sites provide a powerful space for people to view these 

discussions, which are digitally preserved and visible to all members despite location or time.  

The important practice of observation was exercised frequently by most members of the 

group, as evidenced by the questionnaire. Ninety-three percent of those surveyed checked the 

group multiple times a week, with 58% of respondents checking the group at least once a day. 

Facebook’s Group Insights corresponded with the data, showing that for any given day, an 

average of 58% of the total members were viewing the group. Furthermore, frequent 

observation was common across members from all levels of engagement. In particular, 86% 

of peripheral members checked the group multiple times per week, with 46% viewing the 

page at least once a day. Notably, Wenger et al. (2002) argued if observation is frequent, 

peripheral members are not as passive as they appear, despite limited records of engagement. 

They explained, “like people sitting at a café watching the activity on the street, [peripheral 

members] gain their own insights from the discussion and put them to good use” (p. 56). 
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Shared repertoire of meaning-making resources 

Sharing resources was a key function of the MANSW Facebook group; it was the third 

highest category (13%) of posts observed in the audit. The frequency of this category is 

especially notable when considering the comparative effort of each category of posts. Sharing 

links to Facebook is relatively easy; in contrast, resource sharing requires members to find or 

create a resource and take the initiative to share it, unprompted, with the group. An additional 

11% of posts were submitted to ask for resources or ideas, which had a high level of response 

in comments by other members of the group. Furthermore, 79% of questionnaire respondents 

nominated “finding resources,” as the main reason for visiting the site. Evidently, the 

repertoire of meaning-making resources created by the group is important to core, active and 

peripheral members.  

It is important to recognise that the resources created by a community of practice do not only 

consist of actual lesson plans or pedagogical ideas, but also the shared competencies and 

knowledge collectively produced by the group (Wenger, 1998). Shared competencies in the 

MANSW Facebook group, were evidenced through teachers contributing to knowledge on 

interpreting syllabus documents, marking solutions to mathematics questions, and textbook 

selection. Thus, the professional discussions held by the group, particularly to develop 

collective interpretations of the syllabus, should also be considered as part of the created 

shared repertoire.  

CONCLUDING REMARKS 

The qualities of a community of practice (Lave & Wenger, 1991): joint enterprise, mutual 

engagement between members, and the creation of a shared repertoire of meaning making 

resources, were all evidenced within the interactions of the MANSW Facebook group. 

However, in considering how the group supports mathematics teachers as a community of 

practice, there must also be an acknowledgement of the fundamental ongoing processes of 

observation and learning within the group that leave little digital trace. The project found 

evidence to confirm significant professional learning among peripheral members of the 

group, demonstrating that online communities should be considered as a powerful form of 

professional learning across members from all levels of engagement.  It should be 

acknowledged that the project examined a single case study of a closed Facebook group for 

mathematics teachers in NSW, over the course of one year. Data from the interviews and 

questionnaire were also reliant on participant self-reporting, which may be affected by 

unconscious bias or deliberate self-censoring. However, its findings are relevant in 

recognising that social media sites can lead to an online community of practice.  
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Beliefs that teachers hold about mathematics teaching and learning are the most investigated 

domain in affect-related research. These beliefs can be contradictory and thus lead to 

dilemmas that play a crucial role in shaping how a teacher changes her practice. In this 

paper, we give an account of how such contradictions have been addressed in literature and 

then propose a worldview lens to analyse the dilemmas of four teachers enrolled in 

Professional Development (PD) programs. 

INTRODUCTION: BELIEFS AND PRACTICE 

Beliefs are propositions about a certain topic that are regarded as true (Philipp, 2007), and 

tend to form clusters as they “come always in sets or groups, never in complete independence 

of one another” (Green, 1971, p. 41). According to Green (1971), belief clusters are coherent 

families of beliefs across multiple contexts. Thus, beliefs have a systemic nature. Affect-

related research has provided evidence that beliefs have observable behavioural consequences 

(e.g., Di Martino & Zan, 2011), and a change in a teacher’s beliefs is likely to result in a 

change in their practice (Leder, Pehkonen & Törner, 2002), suggesting a dialectical 

relationship between change and beliefs in that one influences the other (Buehl & Beck, 

2015). One of the challenges with this, however, is that such a dialectic relationship can lead 

towards the emergence of tensions between belief clusters. In this paper we are interested in 

looking closely at such tensions, to better illuminate the role of beliefs in shaping teachers’ 

behaviour.  

THEORETICAL FRAMEWORK 

The systemic nature of teachers’ beliefs can be understood in terms of “world views” 

(Grigutsch, Raatz & Törner, 1998), or epistemological beliefs about mathematics (Hofer & 

Pintrich, 1997), including its teaching and learning. According to Grigutsch et al. (1998), it is 

possible to outline four different world views (see also Liljedahl, Rolka & Roesken, 2007): a 

process-oriented view that represents mathematics as a creative activity consisting of problem 

solving using different and individual ways; an application-oriented view that represents the 

utility of mathematics for real world problems as the main aspect of the nature of 

mathematics; a formalist view that represents mathematics as characterised by a strongly 

logical and formal structure; a schema-oriented view that represents mathematics as a set of 
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calculation rules and procedures to apply for routine tasks. Even from the sketchily 

description, we can notice how world views are strongly linked to practice. 

Each teacher’s beliefs, thus, belongs to (at least) one world view (Erens & Eichler, 2019), as 

teachers’ beliefs are organised in systems of beliefs (Fives & Buehl, 2012; Green, 1971; 

Philipp, 2007). One aspect of a belief system relevant for our research is that beliefs are 

organized in clusters that are not necessarily logically connected. The fact that beliefs can be 

contradictory (Fives & Buehl, 2012) allows the possibility for teachers to hold beliefs that 

belong to different clusters. Skott (2015) suggests, however, to interpret possible 

contradictions in teachers’ belief systems not merely as incoherence, but rather to consider 

the different contexts in which beliefs are evoked. As “beliefs are expected to significantly 

influence the ways in which teachers interpret and engage with the problems of practice” 

(Skott, 2015, p. 19), they cannot be exhaustively described by one cluster of central beliefs. 

Given the complexity of teaching and the variety of stakeholders (e.g., students, parents, 

colleagues, the Ministry of Education), teachers usually show a coexistence of more than one 

cluster of beliefs (Erens & Eichler, 2019). 

These considerations shed light on two intertwined features of teachers’ beliefs: they are 

subjective in nature and individually held, but at the same time they are (or can be) socially 

and contextually shaped. The context plays a crucial role in evoking beliefs, for example a 

teacher, talking with a colleague (context 1), might show some beliefs that are different from, 

or even in conflict with, the ones she enacts in class (context 2) (e.g., Fives & Buehl, 2012). 

Our research hypothesis is that, even in the same context, contrasting beliefs may emerge. 

Namely, beyond Skott’s (2015) findings, we aim at exploring the existence of beliefs that 

emerge in the same contexts but are in conflict with each other, almost like anti-clusters, and 

this reverberates in a teacher’s practice, as change in a teacher’s practice can be understood as 

an attempt to balance contrasting world views held by different stakeholders (Andrà, 

Rouleau, Liljedahl & Di Martino, 2019). In order to frame this, we refer to research on 

teachers’ tensions. 

Lampert (1985) understood tensions as problems to be managed, rather than solved, 

characterising teachers as “dilemma managers”, who find ways to cope with conflict between 

equally undesirable (or desirable but incompatible) options without necessarily coming to a 

resolution. For Lampert (1985), the ongoing internal struggles presented by the tensions arise 

from and contribute to the developing identity of the teacher, and as such they have value in 

themselves. For Chapman and Heater (2010), “Meaningful change can occur when the 

process is initiated and rooted in the teacher’s experience based on a tension in self and/or 

practice that is personal and real to him or her” (p. 456).  We further suggest that tension 

research applied to beliefs can offer a new insight into the frustrations and needs of the 

classroom and the changes that result. Furthermore, recognition of the tension inherent in 

teaching can help us as researchers in better understanding those apparently inconsistent 

behaviors we observe, and what might be construed as minimal or no change could be recast 

as a rational decision that weighed the practicality of the change against its potential 

consequences (Andrà et al., 2019). Our aim with the research presented here is to understand 

the tension(s) between different world views. Tensions may emerge when teacher beliefs are 
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challenged, for example during PD. Our research questions are as follows: When does a 

tension between world views emerge? How does a teacher cope with tensions? How does a 

tension reverberate in a teacher’s practice? 

METHODOLOGY 

The participants for this study come from a set of more than 200 teachers who participated in 

PD sessions led by one of the authors in 2016. Of them, 26 volunteered to be interviewed at 

the end of the sessions. The relatively limited number of interviewees is due to the fact that 

researchers aimed at conducting extended interviews, which were semi-structured, lasted 30 

to 60 minutes, were audio-recorded, and then fully transcribed. The structure of the interview 

aimed at letting beliefs emerge through the narrative rather than by direct questioning. For 

example, we invited the teachers to describe their school, the relationship with their 

colleagues, and with parents. Preliminary analysis of each of these 26 transcripts revealed 

that 19 expressed beliefs belonging to different clusters. To note, this confirmed Fives & 

Buehl’s (2012) study that teachers often hold beliefs that can be contradictory. Further 

analysis revealed that the ways in which the teachers coped with this fell into one of four 

categories - (i) ignoring the conflict, (ii) internal struggling, (iii) balancing two worldviews, 

(iv) resolving the conflict. In what follows we present a deeper analysis of four prototypical 

cases, one selected from each of the aforementioned categories. Teachers’ fictitious names 

are, respectively: Vicky for case (i), Julia for (ii), Ron for (iii) and Mary for (iv). 

In analysing the verbatim transcribed interviews, we used a qualitative coding method 

(Mayring, 2015), based on Erens and Eichler’s (2019) four deductive categories described in 

their coding manual. Examples of statements coded as application-oriented view are: 

“mathematics helps to solve tasks and problems that originate from daily life”, “the ideas of 

mathematics are of general and fundamental use to society”, and “a sound knowledge of 

mathematics is very important for students in their whole life”. Examples of statements coded 

as formalist view are: “logical strictness and precision are very essential aspects in 

mathematics”, “mathematics is a logically coherent edifice free of contradiction consisting of 

precisely defined terms and statements which can be unequivocally be proven”, and “in 

mathematics students must use mathematical terms correctly”. Examples of statements coded 

as process-oriented view are: “there is usually more than one way to solve a task or problem 

in mathematics”, “in order to comprehend and understand mathematics, one needs to create 

or (re-)discover new ideas”, and “everyone is able to (re)invent or to comprehend the central 

ideas of mathematics”. Examples of statements coded as schema-oriented view are: 

“Mathematics consists of memorising, recalling and applying procedures”, “doing 

mathematics demands a lot of practice in adherence and applying to calculation rules and 

routines”, “nearly any mathematical problem can be solved by the direct application of 

familiar rules, formulas and procedures”, and “to solve a mathematics task, there is mostly a 

unique way of solution which needs to be found”. These examples are taken from Erens and 

Eichler’s research. Each teacher’s statement has been assigned a world view by one of the 

authors, and the other authors independently agreed or disagreed. In case of disagreement, 

discussion among the authors took place, until consensus has been reached. 
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RESULTS AND ANALYSIS 

As teachers talk about (aspects of) their practice in their interviews, we analyse the tensions 

between worldviews that emerged. For Vicky and Julia, tensions emerge between two 

coexisting views, whilst for Ron and Mary the tension is provoked by an external agent. Julia 

and Mary significantly change their practice, Ron introduces a new practice but still employs 

the ‘old’ one, and Vicky does not show change. 

Vicky: When asked to talk about her teaching method, Vicky commented that she does not 

“have a specific one: it is different for each class, because each one is different. […] I 

propose problem-based group activities, where math and physics are applied to everyday 

life”. An application-oriented view emerges from Vicky’s words, as mathematics helps to 

solve problems originating from daily life (see examples of codes). Vicky, then, referred to 

one of her classes: 

The characteristic of this class is that the traditional lessons annoy them, hence I started 

to propose group activities dedicated to the study of physical phenomena applied to real 

situations. The result has been excellent: the students have developed a high sense of 

critique and above all they have cooperated together for solving the given problems. 

Every activity has been welcomed with absolute enthusiasm. 

In the last excerpt, a process-oriented view, which values solving problems in a creative way, 

emerges in one of Vicky’s classes. When talking about her teaching, and referring to her 

specific classes, two different views of mathematics emerge for Vicky, but there seems to be 

no tension lived by the teacher. It is as if they can coexist. Overall, Vicky’s teaching 

orientation could be interpreted as being a means to an end to achieve application and 

process-oriented views. These two belief clusters coexist and the reason why Vicky does not 

live a conflict may reside in a lack of awareness about their differences, or more likely in a 

worldview that tries to accommodate these differences. Moreover, Vicky’s teaching practice 

is a blending of problem-based activities originating from everyday life and solved in creative 

ways. Her reference to a specific class suggests that, in other classes, she may opt for a 

mostly application-oriented view, as she declares that she adopts different methods in 

different classes. 

Julia: A completely different picture emerges from Julia’s words. In her interview, she does 

not refer to a specific class or situation, but she makes a general statement about an 

uncomfortable internal struggle:  

I really struggle when I see a student struggling to try and figure out a problem. I have a 

really hard time not giving them the answer as an example, and then letting them go from 

there, it’s very — yeah. I really struggle with watching them struggle, I guess. 

This excerpt can be interpreted in terms of a tension between a process-oriented view 

(struggling with new ideas, finding one’s own path to solve a problem), and a schema view, 

according to which nearly any mathematical problem can be solved by the direct application 

of familiar rules, formulas and procedures and as such it may encourage a teacher to give the 

students the answer. Julia is well aware of the conflict. Like Vicky, she does not mention any 

external force that pushes her to act in a way that contrasts with her beliefs (e.g., she does not 
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mention any PD session she attended, where she was faced with either alternative of 

teaching): rather, the two views, which are specific to the role of the teacher in problem 

solving, coexist in her belief system and the dilemma can be read mainly as her own, 

subjective elaboration. We can further see that, in her practice, Julia opts for the process-

oriented view, as she tells us that she does not intervene. 

Ron: After having attended a PD session, Ron referred back to his first experiences of 

teaching: “When you're a young teacher, you love having all the lessons and your notes set 

and all that and all this is great, got it all set.” Ron seemed, from this quote, to adopt a 

formalist view, according to which mathematics is a logically coherent edifice consisting of 

precisely defined terms and statements. A formalist view blends with a schema-oriented one, 

as Ron further acknowledged that students like taking notes. However, also a non-formalist 

and non-schema view emerges, as he added: “I was getting tired of giving notes, giving 

lessons and just having them sit there and do it and observe. Because my thinking was they 

can get these notes anywhere”. These words suggest that Ron came to PD with an emerging 

tension, seeking for a way to sort it out. In fact, Ron recognised that, “once you've been doing 

that for a short while, you just, you realise it's kind of limiting”. Ron’s belief system was in 

motion, and the timing of the interview allowed us to capture this. A new view of 

mathematics was emerging: 

Getting the students to do the work in class so that you know, even if they only get one 

or two problems, they really got it. And just so that, if they have to come in and think. I 

mean, I have to come in and think too because I don't really have to think if there's a 

[conventional] lesson. In a conventional lesson, I already know what to say and do. 

A process-oriented view, according to which in order to understand mathematics one needs 

to create or re-discover new ideas, started to take form in Ron’s orientations, and was valued. 

In Ron’s words, not only the students have to “come in and think” during problem solving, 

but also the teacher has to do the same, whilst he does not “really have to think if there is a 

[conventional] lesson”. However, Ron has not abandoned his previous, schema-oriented view 

as he mentioned: 

A few of them [the students] would say to me that they like notes and so sometimes I 

would say, okay let's do that and then I would always tell them, see why I don't do this 

anymore. Some students said to me they liked the mini-lesson before, which is fair 

enough. But sometimes it's the questions that get you thinking in the first place, so I 

think it's fair enough to balance. 

Ron uses the verb “to balance” to represent his way of living with the tension that is 

provoked by some of his students’ preference for notes and formalism, which contrasts with 

his love for more engagement and thinking. Here, an important feature of tension emerges, 

that is: tensions are dilemmas that often cannot be resolved. In Ron’s practice, this results in a 

mixture of teaching methods: sometimes students are exposed to ‘mini-lessons’ and take 

notes, while other times they ‘come in and think’. As for Vicky, coexistence of different 

views mirrors the one of different practices. 

Mary: Mary had been accustomed to strictly adhering to grade 1 curriculum in grade 1, and 

grade 2 in grade 2, without mixing up the content (a schema-oriented view). Participating in a 
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PD session created a tension that caused her to change her mind. She acknowledged a change 

from before the PD, when she had a schema-oriented view of curriculum, to the present, as 

she now had a process-oriented view of mathematics, which involves a shift of attention to 

problem-based mathematical activities in her lessons, rather than being too much concerned 

about the constraints of curriculum. In Mary’s words, the tension between these two views 

seems to be resolved: 

It just freed up boundaries, I would say, like this is a grade one, this is grade two. You 

don’t teach grade two in grade one. (laughs) It's just now that we’re doing problem-

solving activities it just naturally comes out and students that are ready will do it and 

students that are not ready just won’t. The students can only learn at their own pace or at 

their own development level and I’m okay with that. Before, I used to worry but now, it’s 

just, — Okay. 

The tension, currently resolved, initiated a change in Mary’s practice and in certain belief 

clusters. Unlike Ron, for Mary there was not an external force prompting her to compromise, 

at least to a certain extent, between two worldviews, she abandoned the ‘old’ one and tension 

resolved. Differently from Vicky, Mary was aware of the conflict: she contrasted the two 

views explicitly in her account. Similarly to Julia, Mary makes a choice (her practice 

originating from that choice), but unlike Julia, Mary does not live uncomfortably with a 

struggle beyond her actions. 

DISCUSSION AND CONCLUSIONS 

The four prototypical cases allow us to exemplify some important features of tensions among 

belief clusters, and to attempt an answer to our research questions. Tension emerges when the 

teacher sees the conflict between different views, but is unable to resolve it. Teachers can live 

an internal struggle, or try to balance. There is no tension when the teacher ignores, or 

resolves, it. Tensions can be occasioned by PD, or emerge as the teacher encounters her 

classes and reflects upon her practice. An interesting case is Ron, who started to live a tension 

before PD and PD showed a way to (partly) solve it. For Mary, PD provoked a tension as it 

introduced a new worldview. Whilst Mary’s case show that ‘old’ worldviews can be 

abandoned and the tensions can be resolved, resulting in a significant change in practice, 

Ron’s case show that ‘old’ and ‘new’ views can find a way to coexist in a teacher’s practice, 

as Ron’s practice is a compromise between ‘come and think’ and ‘take notes’, since the 

schema-view has not been completely abandoned. We remark that, without a tension lens, 

Ron’s choice would have been interpreted in a different way, namely as beliefs’ resistance to 

change. For Mary’s, Julia’s and Ron’s cases, we can say that we see a change in their 

practice, but we can also see the struggle behind it. For Vicky, we see no change and she 

blends different world views in her practice. In order to enrich the discussion, we summarise 

our results in Table 1, where we further distinguish between existence of external forces and 

‘pure’ internal conflicts. 
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Table 1: Ways of dealing with beliefs belonging to contrasting world views 

 Internal contradiction External force(s) 

There is 

tension 

…when the teacher values ideas, 

practices, behaviour that belong to 

different belief clusters and she is aware 

that they are in conflict (e.g., Julia).  

For Julia, there is change. 

…when someone has different beliefs, and 

the teacher values the point of view of these 

people, she cares to have a good relationship 

with them and she sees the conflict (e.g., 

Ron).  

For Ron, there is partial change. 

There is 

no 

tension 

…when the teacher lives with ideas, 

practices, behaviour that do belong to 

contrasting belief clusters, but this is not 

a problem for her (e.g., Vicky).  

For Vicky, there is no change. 

…when new experiences provoke a teacher 

change and tension between the old and the 

new is resolved (e.g., Mary).  

For Mary, there is change (resolving tension 

in favour of the new one). 

 

Focusing on external forces, we notice a dual nature of world views: on one hand, they are 

subjective and internal to an individual person. They may conflict with external sources but 

are - in terms of cognition - cognitive traits (Erens & Eichler, 2019). On the other hand, 

however, if we consider the case of Ron, the formalist view which is tied to taking notes is 

also shared by Ron’s students, and valued both by the teacher and the students. This view 

belongs to the teacher’s beliefs system and to the ‘external’ source. Also, the process-oriented 

view, which resulted in breaking the boundaries among grade-specific curricula for Mary, 

was shared by the PD facilitator. This suggests that a teacher’s world views can be altered by 

tension from external forces. Our data, thus, do not allow us to discard the central role of the 

social context not only in mirroring a person’s belief system, but most importantly in dealing 

with contrasting world views and resolving (or balancing) the tension. This poses a question 

which deserves further investigation: Does an external force provoke a tension only if 

teachers hold the same view as the external force? Our preliminary results suggest the answer 

to this might be ‘yes’. A follow up study will confirm this and it will reveal the incidence of 

each prototype in a much larger sample of teachers. 
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We focus on the role of signs in the process of constructing proofs by mathematical induction 

of high-achieving post-graduate students. Using a multimodal semiotic perspective, speech, 

written inscription (symbols, drawings, etc.), and gestures are analysed, and two particular 

categories of signs are identified and observed: linking signs and iteration signs. We analyse 

what these signs reveal and how the students use them to formulate a conjecture and to 

structure the proof by mathematical induction. 

INTRODUCTION 

The analysis of signs offers an interesting access to mathematical thinking and has promoted 

the discovery of interesting processes with important didactical implications. In the last 

decades the semiotic analysis has been integrated by the study of gesture that has enriched 

research in different areas of mathematics education and, recently, the studies on 

argumentation and proof (see, for example, Edwards, 2010; Arzarello and Sabena, 2014; 

Krause, 2015; Sabena 2018). In particular, Arzarello and Sabena show that gestures can 

contribute “not only to the semantic content of mathematical ideas, but also to the logical 

structure that organizes them in mathematical arguments” (Arzarello & Sabena, 2014, p. 76). 

Along the same line, Krause (2015) analyses the gestures produced during an activity 

involving reasoning by induction by grade 10 students who had not studied mathematical 

induction at school and states that gestures “give visual access to the structure of a reasoning 

action” (Krause, 2015, p. 1432). 

The study presented in this paper is part of a wider research on proving by mathematical 

induction of post-graduate, undergraduate and secondary students. In particular, in this paper, 

we focus on signs in post-graduate students’ processes involved in the generation of a 

conjecture and of proof by induction.  

THEORETICAL FRAMEWORK 

In a multimodal perspective, we consider that thinking and learning processes involve 

simultaneously different kinds of signs (mathematical symbols, diagrams, sketches, language, 

gestures, etc.). Arzarello (2006) considers these different kinds of signs as an inseparable unit 

and defines a semiotic bundle as a dynamic structure consisting of different semiotic sets and 

relationships among them. Two main types of analysis are carried out on a semiotic bundle: a 

synchronic analysis of relationships between different kinds of signs activated simultaneously 

and a diachronic analysis of evolutions of signs activated over the time.  
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In this paper, we analyse the semiotic bundle made of three semiotic sets - speech, written 

inscriptions (symbols, drawings, etc.) and gestures - in the production of a conjecture and of a 

proof by mathematical induction. The analysis of complex units of signs has enabled the 

identification of new interesting processes in argumentation and proof. In particular, Sabena 

(2018, p. 554) provides empirical evidence that “gestures may contribute to carrying out 

argumentations that depart from empirical stances and shift to a hypothetical plane in which 

generality is addressed”. Sabena, Radford and Bardini (2005) observe that a deictic gesture 

used by a grade 9 student to point at a figure on the sheet becomes a gesture in the air and 

identify a crucial role of a progressive detachment of gestures from a sheet in generalization 

processes. Similarly, Krause (2016) proposes a classification of gestures in three levels 

(concrete, potential, and general) according to their detachment from a concrete inscription. 

Gestures of level 1 refers concretely “to something actually represented in a fixed diagram” 

(e.g. pointing to the sheet). Gestures of level 2 potentially “depict new entities in an 

established diagram” but they need to be considered as embedded in it (e.g. gesture of 

rotating a figure). Gestures of level 3 are general gestures performed in the gesture space. 

They are detached from a concrete level and their interpretation is general, i.e. not dependent 

on a “present referential frame” (Krause, 2016, p. 138). 

In our study, we also refer to the classic distinction of gestures into iconic, metaphoric, 

deictic and beats (McNeil, 1992). We will use these classifications and synchronic and 

diachronic analyses to investigate processes of construction of a proof by induction. 

Linking and Iteration Signs in Mathematical Induction 

A proof by mathematical induction of a proposition nN, P(n) consists in a proof of the 

base case P(0) and of the inductive step nN, P(n)→P(n+1). Referring to the theory of 

natural numbers and to the logic theory, we know that the validity of the base case and of the 

inductive step guarantees that P(n) holds for all natural numbers. Usually, a non-formal 

explanation is that from the propositions P(0) and P(0)→P(1) it follows P(1) by modus 

ponens; from P(1) and P(1)→P(2) it follows P(2), and so on. In other words, this process can 

be iterated to cover all the natural numbers. In this paper we aim to investigate signs that 

reveal and support the construction of the inductive step and the iteration in the generation 

processes of a conjecture and of proof. Constructing the inductive step requires the 

consideration of two cases (P(n) and P(n+1)) and their relationships. The iteration requires 

the consideration of the possibility to repeat the inductive step. Thus, in particular, we look 

for and analyse: 

• signs produced or used to refer to two or more entities (objects, mathematical 

objects, problems, situations, etc.) and to their relationships, where these entities 

are seen in connection with two consecutive natural numbers. For these we use the 

term linking signs;  

• signs that refer to iteration, or that are composed by a repetition (in time or in 

space) of linking signs, or that refer to a repetition of them. For these we use the 

term iteration signs.  

Examples of linking signs can be found in usual algebraic manipulations. For instance, in the 

construction of the proof of the formula for the sum of the first n consecutive natural numbers 

it is common to use the sign (1+2+…+n)+(n+1). This sign links the case n with the case n+1 
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and prepares the proof of the inductive step. Some examples of the iteration signs are the 

verbal “and so on”, or the image of falling dominoes.   

In this study, our goal is to look for the presence of linking and iteration signs, and to 

investigate what they reveal, in the process of generating a conjecture and a proof by 

induction, and considering not only mathematical symbols but a wider variety of signs, as 

speech, written inscriptions, and gestures.  

METHODOLOGY 

This is a qualitative study based on interviews in which students were asked to solve 4 

problems and then to speak about mathematical induction. Data consist of audio, video 

recordings, and of written inscriptions produced by the students. The subjects were 1 high-

achieving post-graduate student in the Master’s course in Mathematics and 4 doctoral 

students in Mathematics. They were interviewed individually by the second author of this 

paper, for approximately 70 minutes each. They were neither aware of our interest about their 

written inscriptions and gestures nor of our focus on proof by mathematical induction. In this 

paper we will refer to the following problem: 

“Consider a 2nx2n chessboard. What is the maximum number of squares which can be tiled 

with L-shaped pieces composed of 3 squares each?”  

The solution is that it is possible to tile the entire 2nx2n chessboard except for one square, for 

any natural number n. This can be proved by mathematical induction on n. 

CASE ANALYSIS 

Giuditta is a post-graduate student in the Master’s course in Mathematics. In the first 10 

minutes of the interview she produces some drawings and recognises that for reasons of 

divisibility it is not possible to completely tile any chessboards. By minute 10:00 she has 

sketched an 8x8 chessboard (n=3) and determined a tessellation which covers every square 

except one. The interviewer then asks her if this property is also valid in other cases, for 

example in the case 16x16. In the transcript, Giu stands for Giuditta and with italics we 

describe gestures in the moments when they occur. 

1 Giu: 16 by 16 (with her left middle finger and the tip of the pen in the right 
hand she points to two vertices of the 8x8 chessboard drawing, Fig. 1a). 

2 Giu: but, then I have another three (she keeps her left middle finger on the 
vertex, and with the pen in the right hand she indicates respectively to the 
right, upper right, and above the drawing of the 8x8 chessboard, Fig. 
1b,c,d) of these (she points with the pen to the drawing of the 8x8 
chessboard) squares here (she moves the tip of the pen along the 
perimeter of three imaginary squares in the three places she has indicated 
before, Fig. 2). 

The synchronic analysis of the bundle produced in line 1 reveals an interesting element. In 

this moment, on the sheet there is the drawing of the 8x8 chessboard and no other written 

inscriptions referring to a 16x16 chessboard. Giuditta says “16 by 16” and at the same time 

points to two vertices of the drawing of the 8x8 chessboard (fig. 1a). She refers to something 

through her speech and to something else through her gesture: this is a case of speech-gesture 

mismatch and Goldin-Meadow (2003) highlights the cognitive potential of a mismatch in the 
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representation of a new idea. In this case, pointing at the drawings of the 8x8 chessboard is 

co-timed to saying “16 by 16”. The bundle and the mismatch offer Giuditta the possibility to 

represent simultaneously two different chessboards (8x8 and 16x16).  

  

Figure 1: Gestures in line 2. 

The diachronic analysis allows us to look at the evolution of signs. In line 2, Giuditta 

produces signs connecting the chessboards. She keeps the left hand still on the drawing of the 

8x8 chessboard (deictic gesture of level 1) and with the right hand she points to three places 

on the sheet (fig. 1b,c,d). Then she moves the tip of the pen along the sides of three imaginary 

squares in the three places she has just indicated. In summary, four 8x8 chessboards are 

represented: one by a written inscription, and three by speech and gesture (fig 1 and 2). These 

gestures represent something new into the inscription and are therefore gestures of level 2. 

The bundle speech-inscription-gesture represents a 16x16 chessboard composed by four 8x8 

chessboards and, as a unit, can be considered a linking sign referring to the two chessboards 

and to their relationships. This linking sign, at this point, allows Giuditta to access the 

connections between the tessellation problem in the case n=3 (8x8) and in the case n=4 

(16x16): 

 

Fig. 2: Pointing with the left hand to the drawing of a 8x8 chessboard, Giuditta follows with a 

pen (without marking) the perimeter of 3 squares.  

3 Giu: And then there would be left out one, one, one and one (she points to the 
drawing of the 8x8 chessboard on the sheet and to the other three she has 
in mind) [omissis]. And so I would think to put three of them together, 
somehow. And then, there would always be one left out? 

Giuditta conjectures that the 16x16 chessboard can be tiled except for one small square (a 

square 1x1) and imagines doing it by using the tessellation of the four 8x8 chessboards. In 

each of them, one small square would be left out, thus 4 squares in total, but three of them 

can be covered with an L-shape tile. Therefore, also the 16x16 chessboard would be tiled 

except for one little square. Her linking sign has a crucial role in the conjecture generation. In 

particular it enables Giuditta to anticipate the fact that the 16x16 chessboard can be tiled 
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using the tessellation of the smaller one “somehow” (she doesn’t know in which way and the 

conjecture is expressed as a question). At this point, Giuditta focuses on verifying her 

conjecture for n=1, n=2 and then for n=0. Differently from her reasoning in line 3, these cases 

are each tiled independently, without connections between them. Then she claims to be 

convinced of the truth of her conjecture. In argumentation process, new signs enrich the 

bundle: 

4 Giu: So, what I was thinking (the drawing of the 4x4 chessboard, Fig.3a, is 
extended into a new drawing, Fig. 3b) was that to come, to move forward 
from n=1 (she makes an arc-shaped gesture in the air from left to right, 
Fig.3c,d) to n=2 (with her left middle finger she points to a drawing of a 
2x2 chessboard) practically (with the right hand she points specifically to 
three squares of the drawing of the 2x2 chessboard, see arrows in Fig. 3e) 
I have to put another three identical little squares (she draws two lines on 
the drawing in Fig. 3b obtaining the drawing of Fig. 3f). 

 

Figure 3: Gestures and written inscriptions in line 4 (a,b,c,d,e) and in line 5 (g).  

Fig. 3e indicates where Giuditta points to on the sheet. 

 

In this excerpt, Giuditta produces three linking signs that become the object of her 

exploration. The first is the drawing of a big square (fig. 3b) as extension of the drawing of 

the chessboard 4x4 (already on the sheet, fig. 3a). The second is the gesture in the air from 

left to right (fig. 3c,d). The third is the bundle composed by the deictic gesture with her left 

middle finger pointing to the drawing of the 2x2 chessboard and the gesture made by the right 

hand referring to the action of adding three small 1x1 squares to build a 2x2 chessboard up 

from a single square. The gesture from left to right is iconic and refers to a path, but can also 

be interpreted as a metaphoric gesture of level 3. This gesture is detached from a concrete 

inscription and it is co-timed to the verbal “to move forward from n=1 to n=2”. This gesture 

appears here for the first time and does not refer to any drawings, any chessboards or 

tessellations. With this, Giuditta doesn’t refer to the specific aspects of the relationship 

between a smaller chessboard and a bigger one, neither to the relationship between 

tessellations. Rather, the gesture represents metaphorically the transition between two cases, 

i.e. the inductive step. The structure of the argumentation is thus emerging. The analysis of 
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the bundle shows the genesis of linking signs with different levels of generality and in 

reference to different cases: the verbal “from n=1 to n=2”; the written inscription linking the 

drawings of the 4x4 and the 8x8 chessboards (from n=2 to n=3, see fig. 3a,b,f); the gesture 

(level 2) linking the drawing of the 2x2 and 1x1 chessboards (from n=1 to n=2, see fig. 3e) 

and the metaphorical gesture (level 3, see fig. 3c,d). Giuditta is progressively shifting her 

focus from the tessellation of some specific chessboards to the links between these 

tessellations. Now, the produced linking signs allow her to establish the inductive 

relationship. In fact, at this point Giuditta shows how she could tessellate the 8x8 chessboard 

(except for one square) using a tessellation of the 4x4 chessboard and placing a tile in the 

central part of the chessboard (fig. 3g). After a few minutes, she concludes: 

5 Giu: And this, I can do it in general (after a circular gesture around the 
drawing of a 4x4 chessboard, with the right hand she makes a spiral 
movement that widens as the right hand rises and concludes with 
spreading both the hands, Fig.4a,b,c,d,e and Fig. 4f for a summary). 

 

Figure 4: Gesture in line 5. The fig. 4f summarises the whole movement. 

 

Giuditta does not write anything and she uses very few words: “and this, I can do it in 

general”. However, her gesture reveals the structure of argumentation and give us access to 

her reasoning. The gesture is articulated in four components.  

The first component is the same gesture she has produced several times since line 1 when she 

linked the 8x8 and the 16x16 chessboards; now this gesture represents the action of 

constructing the 8x8 chessboard using the 4x4 chessboards.  

The second component consists of contracting the previous gesture and moving away her 

right hand from the sheet in two directions: upwards and outwards. The upward direction 

takes the gesture from level 2 to level 3. It is the first time that Giuditta produces this gesture 

in the air. The shift through levels and her words indicate the generality of the actions of 

tessellation. Moreover, the gesture grows wider away from her body to indicate the 

construction of bigger chessboards (in mathematical terms, n is increasing). Until now, the 

left hand has remained still with a finger of the drawing of the 4x4 chessboards (which could 
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represent the starting point of the recurrence; in fact she has already directly verified the 

cases of the smaller chessboards).  

The third component consists in moving the right hand to the right - making the metaphoric 

gesture of a link, as seen in figure 3c,d - and moving the left hand to the left: the link between 

the chessboards of different sizes, represented before by an iconic gesture, here becomes an 

inductive step represented by a metaphoric gesture. These first three components, consisting 

of a sequence of different linking signs, constitute a unique iteration sign, which in its 

complete form is a gesture of level 2-3: it starts on the sheet, in which the base of the 

induction is represented, and rapidly moves away from the sheet becoming a gesture of the 

level of the general (level 3).  

Finally, the fourth component consists in keeping her hands still in the air, as if they contain 

the space in which the iteration gesture took place. This space, to use an expression of 

McNeil (1992, p. 173) when describing an iconic gesture that indicates a point in space, is not 

empty but “full of conceptual significance”. In our case, this space is the location that 

contains the argumentation and its logical structure.  

CONCLUDING REMARKS 

The multimodal perspective and the notion of semiotic bundle (Arzarello, 2006) has allowed 

us to identify and to analyse linking and iterative signs, and to observe and study the genesis 

of a proof by mathematical induction. Our analysis confirms the results presented in other 

studies (Arzarello & Sabena, 2014; Krause, 2015; Sabena, 2018) regarding the role of 

gestures in providing a logical structure to argumentation. 

In the first excerpt, the speech-gesture mismatch (synchronic analysis) shows that the subject 

focuses simultaneously on two cases (8x8 and 16x16 chessboards). The bundle evolves and 

new signs are produced (diachronic analysis) to connect the two objects. The bundle is 

composed by different kinds of signs with mutual relationships. Only when we consider the 

bundle as a unit, we can see the linking sign representing a 16x16 chessboard as composed by 

8x8 chessboards. This and other signs lead the subject to establish the connection between the 

problem of tessellating a chessboard and the same problem on a bigger chessboard, and then 

to construct the inductive step.  

During the production of the argumentation, a repetition of linking signs produces an iterative 

sign and the complete detachment of the gesture from the sheet shows the transition to the 

general (Krause, 2016). The gesture contracts progressively, from iconic (referring to the 

extension of a chessboard into a bigger one) to metaphoric (referring to the inductive step), 

from level 2 (level of concrete) to level 3 (level of general). The iterative sign reveals that 

Giuditta constructs the entire recurrence even if it is not formally necessary (having proved 

the base case and the inductive step). The still hands at the end show the transition of 

argumentation from process to object. 

The contraction of linking signs reveals a change of the focus. For Radford, “contraction is 

the mechanism for reducing attention to those aspects that appear to be relevant […] We need 

to forget to be able to focus” (Radford, 2008, p. 94). The contraction of Giuditta’s gesture 

shows that she “forgets” the tessellation and focuses on the relationships between 
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tessellations. Following Radford (2003), the contraction of linking signs is a process of 

objectification of the inductive step. 

Moreover, the repetition of linking signs is an example of catchment. According to McNeill 

(2005), a catchment is due to the recurrence of consistent visuospatial imagery in the 

speaker’s thinking, and indicates and provides the discourse cohesion. Arzarello and Sabena 

(2014) show that catchments contribute to support the students in structuring a mathematical 

argumentation. Our analysis seems to confirm their results. 

Finally, further research is necessary to identify linking signs in symbolic manipulation and 

to study the evolution of linking signs within the bundle from the proving process to the 

written proof. 
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Family background predicts success in mathematics education in many 

countries – and particularly in Germany. Mathematical modelling with its 

authentic and realistic contents may be of importance for inequality research. 

Based on the German National Assessment Study, correlation comparisons, 

variance and regression analyses indicated that socio-economic status, 

migration background, and language use are more strongly related to 

mathematical achievement (excluding modelling) than to modelling 

achievement. Mathematical modelling might, therefore, contain facets which 

contribute to the reduction of social disparities. 

INTRODUCTION 

Family background determines educational success. Studies have repeatedly 

shown a connection between students’ migration background, language use and 

socio-economic status (SES) on the one side and their achievement in 

mathematics on the other (e.g., OECD, 2013). This issue is of importance to the 

German education system. While on OECD average social disparities in 

mathematics sank over the last years, in Germany they rose again (OECD, 

2013; 2019). Thus, Germany has a relatively low level of educational equity 

about mathematics. The German National Assessment Study – conducted by the 

Institute for Educational Quality Improvement (IQB) – identified a learning 

disadvantage in mathematics of almost three years for students from families 

with lower SES (Pant, Stanat, Schroeders, Roppelt, Siegle & Pöhlmann, 2013). 

Mathematics education should, hence, create conditions and provide learning 

opportunities that reduce social disparities. German educational standards 

describe mathematics education in which mathematical knowledge is applied 

functionally and flexibly in context-related situations. Therefore, in addition to 

content, general mathematical competencies are central to mathematics 

education in Germany (KMK, 2003). Mathematical modelling is one of those 

competencies.  It includes solving realistic and authentic problems (Maaß, 

2010) and thereby differs from dressed-up tasks with extra-mathematical 

contents. 
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However, empirical research does not come to consistent conclusions regarding 

background-related barriers and strategies in modelling processes. On the one 

hand, Cooper and Dunne (2000), amongst others, pointed out that lower SES 

students overemphasize everyday experiences while processing tasks with real-

world content.  

According to them, the SES is more important for realistic tasks than for purely 

mathematical tasks. On the other hand, Schuchart, Buch and Piel (2015) showed 

that the item context was not systematically related to the response rate of lower 

and higher SES students. The present study approaches this issue quantitatively 

by analyzing and comparing the effects of different family background factors 

on the response rates of modelling and non-modelling tasks. 

THEORETICAL FRAMEWORK 

For quite some time, research has been addressing the mechanisms through 

which family background is related to student’s education outcomes. From a 

sociological perspective, according to Bourdieu's habitus theory (1984), 

individuals find themselves in a social space which limits their scope of action. 

This scope forms the way individuals think and act and it constitutes the 

foundation on which social inequality is built. It is passed on through 

socialization and by this, certain behaviors and values are being internalized. 

Empirical studies identified many factors that produce social disparities and 

then contribute to its consolidation and reproduction. Students from families 

with higher SES on average “benefit from a wider range of financial […], 

cultural […] and social […] resources that make it easier […] to succeed in 

school” (OECD, 2016, p. 206). Regarding family communication, higher SES 

parents place higher value on reasoning and discussing, whereas lower SES 

parents focus more on conformity (Heath, 1983). By different socialization, 

higher SES parents are comparatively better able to prepare children for 

educational requirements (Schuchart et al., 2015) and pass on their social 

advantages to their children. Besides, teachers tend to educate lower SES 

students’ mechanical behaviors or give them routine instructions (‘Do it this 

way’), while they tend to teach students with higher SES to think (Anyon, 

1981). Further, teachers might underestimate the mathematical capacity of 

lower SES students, if they attribute students’ problems to their cognitive ability 

and not to their background (Schuchart et al., 2015). Also, teachers may 

communicate differently with students of different social classes, since lower 

SES students are often less well equipped to interact with teachers and 

institutions (Calarco, 2011). This is accompanied by the tendency that higher 

SES students request and hence receive more help from teachers. They can use 

their working time more efficient (ibid.) and thereby create their own 

advantages. In this way, students, parents, and teachers contribute to the 

consolidation and reproduction of social disparities. Thus, it is hardly surprising 
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that PISA refers to socio-economic heterogeneity as being a challenge for 

teachers and education systems (OECD, 2016). 

Mathematical Modelling 

The German educational standards comprise six general competencies which 

students are expected to develop in secondary level: (i) Arguing; (ii) problem-

solving; (iii) modelling; (iv) using descriptions; (v) dealing with symbolic, 

formal and technical elements, and (vi) communicating (KMK, 2003). 

Regarding mathematical modelling, students are supposed to translate the 

respective situation into mathematical terms, structures, and relations, to work 

within the mathematical model, to interpret and to check results with respect to 

the corresponding situation (ibid.). While modelling tasks in general contain 

solving realistic problems, they might differ in terms of authenticity, realism, 

involved modelling activities, level of openness, etc. (Maaß, 2010). An example 

for a modelling task that could occur similarly in the test described below is 

given by Figure 1. 

 

 

 

In the picture you can see the 

historical city hall of Muenster. 

How high is the city hall 

approximately? 

……………… m 

Write down your assumptions 

and your approach. 

 

 

Figure 1: Modelling problem “city hall” 

 

The illustrated historical building really exists and estimating sizes by using 

reference values are part of everyday life. The mentioned problem is thus 

authentic and realistic. It is open since the students are free in choosing the 

object of comparison, for example, the man with the white shirt. The task 

involves modelling activities, including making assumptions about the average 

size of a person and interpreting the mathematical results in a meaningful way. 
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Therefore, there is not a single solution, but rather an interval of results that can 

be evaluated as correct. This ensures the comparability and evaluability of 

students’ results. 

DESIGN AND METHOD 

The following research question derives from the current state of research: 

• Is mathematical achievement in modelling and non-modelling 

differently connected to students’ family background? 

This study is based on data from the German National Assessment Study 2012, 

which was conducted by the IQB. In total, a representative sample of 24731 

ninth-grade students across Germany participated in the mathematical part of 

this standards-based assessment (Pant et al., 2013). We compared students’ 

achievement in mathematical modelling with their achievement in other 

mathematical competencies. We predicted achievement by students’ SES. As 

SES is often related to migration background, language proficiency and 

language use (OECD, 2016; 2019), which in turn may affect mathematical 

achievement, we used these variables as additional predictors.  

The test booklets were assembled under a multi-matrix design, so that each 

student worked on 24 to 60 out of 349 items. Based on specified evaluation 

criteria for each item, student solutions were coded dichotomously as ‘correct’ 

or ‘incorrect’. A global score for mathematical competency – including all items 

– was estimated for every participant on a one-dimensional dichotomous Rasch 

Model (Warm, 1989). The estimation results in a metrical measure namely the 

Weighted Likelihood Estimate (WLE). For the present study, we further 

estimated person parameters (WLE) using the same statistical model for the 

achievement in modelling and the mathematical achievement excluding 

modelling. We will refer to them as modelling achievement and non-modelling 

achievement. The estimates are based on two nonoverlapping subgroups of 

items: Items targeting modelling according to the German educational standards 

and items targeting other mathematical competencies. The first subgroup 

contains 41 out of the 349 items.  

Students’ family background was assessed using student questionnaires. In this 

study, we used the HISEI (Highest International Socio-Economic Index of 

Occupational Status of both parents) to measure families’ SES. It is determined 

by the professions of the parents and takes income and educational level into 

account. By means of the HISEI, it is possible to capture the SES of occupations 

by putting them on a one-dimensional hierarchical scale from 10 (e.g., kitchen 

helper) up to 89 (e.g., medical doctor), with a higher HISEI indicating higher 

SES (Ganzeboom, de Graaf & Treiman, 1992). Students’ migration background 

was operationalized ordinally via the countries of birth of the parents. For the 

language use, students were asked how frequently they speak German at home 

(see Table 1). Though, the data on family background has missing values, since 
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in some German states it was optional for students to fill out the questionnaire. 

Further, part of the sample (𝑛 = 14 793) completed a C-Test to measure their 

language proficiency in German (Robitzsch, Karius & Neumann, 2008).  

Variable Operationalization Distribution 

SES  

(𝑛 = 17810) 

HISEI ∈ {10, … , 89} 𝑀 =  51.40 

𝑆𝐷 =  20.47 

Migration 

background  

(𝑛 = 18663) 

Both parents were born in Germany 

One parent was born in another country 

Both parents were born in another country  

14710 

1780  

2713 

(76%) 

(10%) 

(15%) 

Language use  

(𝑛 = 17276) 

Mostly/ only speaking German at home 

Sometimes speaking another language at home 

Or never speaking German at home 

14025  

3251  

(81%) 

(19%) 

Table 1: Background variables 

To answer the research question, we conducted linear regressions and single-

factor variance analysis (ANOVAs), measured and compared the percentage of 

explained variation by means of 𝜂2 and 𝑅2 (Cohen, 1988). In order to do so, we 

compared dependent correlations with one common index (i.e., the correlation 

coefficients are calculated from a single sample and the correlations are 

overlapping with one common variable) according to Hittner, May and Silver 

(2003). They indicated that Type I error depends not only on sample size and 

population distribution, but also on the intercorrelation (between modelling and 

non-modelling achievement) 𝑟3 and the discrepancy between predictor-criterion 

correlations 𝑟1 and 𝑟2 (see Figure 2). 

RESULTS 

Table 2 summarizes the results of the ANOVAs and linear regressions. 

Dependent 

variable 

Independent 

variable 

Method Explained 

variation 

df F Signifi- 

cance  

Modelling 

achievement 

SES Linear 

regression 
𝑅2 =  .06 1 1045.66 𝑝 < .001 

Migration 

background  

ANOVA 𝜂2 =  .02 2 190.60 𝑝 < .001 

Language use ANOVA 𝜂2 =  .03 2 224.63 𝑝 < .001 

Non-

modelling 

achievement 

SES Linear 

regression 
𝑅2 =  .12 1 2355.77 𝑝 < .001 

Migration 

background  

ANOVA 𝜂2 =  .04 2 389.55 𝑝 < .001 

 Language use ANOVA 𝜂2 =  .05 2 474.76 𝑝 < .001 

Table 2: Explained variation in modelling and non-modelling achievement by 

family background 
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It appears that all family background variables can explain variation in 

modelling and non-modelling achievement. Also, all background variables have 

a higher effect on non-modelling achievement than on modelling achievement. 

 

Figure 2: Comparison of the correlation between SES and modelling 

achievement with the correlation between SES and non-modelling achievement 

Figure 2 shows the results of comparing the correlation coefficients. Analysis, 

based on Hittner’s et al. (2003) correlation comparison yielded that the 

correlations 𝑟1 and 𝑟2 vary significantly from each other (𝑛 = 15 711, 𝑧 =
14.8, 𝑝 < .001). The magnitude of the intercorrelation (IC) is high (𝑟3 >
.6) and the effect size is .09. With a power of 1 − 𝛽 = 1, a statistically verified 

small correlation difference can be assumed. The same applies for migration 

background and language use with an effect size of .04 for both variables (𝑛 =
16 446, 𝑧 = 6.7, 𝑝 < .001, 1 − ß = 1, 𝐼𝐶 > .6;  𝑛 = 15 138, 𝑧 = 6.3, 𝑝 <
.001, 1 − ß = 1, 𝐼𝐶 > .6). Repeating the analysis controlling for language use, 

migration background and language proficiency still yields a significant 

difference in partial correlations between SES and the two mathematical 

achievement variables with a small effect size of .09 (𝑛 = 7 384, 𝑧 = 7.7, 𝑝 <
.001, 1 − ß = 1, 𝐼𝐶 > .5). Further analysis show that this difference cannot be 

explained by the fact that modelling tasks are, on average, more likely to 

contain extra-mathematical content. In fact, in our data SES correlates more 

closely with the response rates of tasks with extra-mathematical content 

compared to purely mathematical tasks (𝑛 = 17 810, 𝑧 = 2.3, 𝑝 < .05, 1 −
ß = .75, 𝐼𝐶 > .7). 

DISCUSSION AND CONCLUSION 

The current study shows that SES, migration background and language use are 

more strongly related to mathematical achievement (excluding modelling) than 

to modelling achievement. However, only for SES the correlation comparisons 

reveal an important, albeit small, difference. In addition, even when controlling 

for migration background, language use and language proficiency, SES is less 

closely correlated with modelling achievement. SES appears to be less 

important for modelling tasks than for non-modelling tasks. Considering that 

modelling tasks are on average more realistic than non-modelling tasks, one 
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could expect that SES is also less important for tasks with extra-mathematical 

content than for purely mathematical tasks. Though, in our data SES seems to 

be more important for tasks with extra-mathematical content than for purely 

mathematical tasks (see also Cooper & Dunne, 2000). Therefore, in our data the 

difference between 𝑟1 and 𝑟2 from Figure 2 cannot be explained by more 

realistic nature of modelling tasks. In conclusion, SES appears to be less 

relevant for modelling tasks, even though they contain realistic content. 

At this point it remains uncertain which characteristics of the tasks cause these 

correlation differences and must be explored in further investigations. 

Moreover, even though SES is less closely correlated to modelling achievement 

than to non-modelling achievement, it is still important for the explanation of 

variation in modelling achievement. Methodologically, it must be mentioned 

that the contents of the extra-mathematical and the purely mathematical tasks 

differed from each other (in our study as well as in Cooper and Dunne’s study). 

Further, considering the limitations of our study regarding the teaching of 

mathematics, the results should be interpreted with caution, since performance 

tests only provide very limited implications for mathematics teaching. 

Furthermore, our sample is representative only for ninth-grade students. 

In sum, our study indicates that mathematical modelling contains aspects which 

may contribute to the reduction of social disparities in mathematics education. 

Since modelling plays a more underrepresented role in classroom practice than 

it would be desirable (Blum & Borromeo Ferri, 2009), these results may 

strengthen the importance of modelling in mathematics education. Future 

quantitative and qualitative studies should analyze these aspects in more detail, 

especially within the scope of classroom practice. This study does not aim to 

place mathematical modelling above other competencies. Rather, it should 

encourage to confront students from all social backgrounds with authentic and 

realistic mathematical problems. With a view to the empirical findings 

mentioned at the beginning, especially lower SES students might profit from 

mathematical modelling.  
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EXPLORING TEACHERS’ ENVISIONING OF CLASSROOM 

ARGUMENTATION  
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This study explores how secondary mathematics teachers envision potential argumentation 

situations in the classroom. The data were collected by means of individual semi-structured 

interviews conducted with 31 secondary mathematics teachers. The participants were asked 

to express their views on argumentation for teaching mathematics, provide examples of 

argumentation as manifested in their own teaching, and formulate a script for the 

hypothetical implementation of a mathematical task in the classroom with the goal of 

engaging students in argumentative activity. Analysis of the teachers' responses yielded 

categories related to: (1) task characteristics, (2) teaching strategies, and (3) students’ 

characteristics. From a cross-analysis of the teachers' statements, certain categories 

appeared more frequently than others. The findings are interpreted in light of theory and 

practice.  

INTRODUCTION 

In the last several decades, there has been a growing appreciation for the incorporation of 

argumentation in the mathematics classroom (Krummheuer, 2007; Yackel & Hanna, 2003). 

Firstly, argumentation is a valued mathematical practice whereby mathematicians socially 

construct knowledge through generating and evaluating alternative arguments. Secondly, 

existing literature suggests that participation in argumentation requires students to explore, 

confront, and evaluate alternative positions, voice support or objections, and justify different 

ideas and hypotheses, all of which promote meaningful understanding and deep thinking 

(Asterhan & Schwarz, 2016; Staples & Newton, 2016). Recent reform documents, in various 

subject domains worldwide, highlight argumentation as an important goal for students (e.g., 

Israel Ministry of Education, 2013). Nevertheless, argumentation in the mathematics 

classroom is not yet a commonplace practice (Bieda, 2010).  

Research exists on many aspects of argumentation as it pertains to learning mathematics (e.g., 

Mueller et al., 2014; Staples & Newton, 2016; Yackel & Cobb, 1996); yet little work has 

focused specifically on teachers' understanding of argumentation (Ayalon & Even, 2016, Mueller 

et al., 2014). Considering that such an understanding impacts the way in which argumentation 

practices are implemented in the classroom (Conner et al., 2014), we deemed it important to 

make it the focus of investigation. Hence, this study addresses the topic by exploring 

secondary teachers’ views on argumentation. We asked teachers to provide examples of 

argumentation as manifested in their own teaching and to write a script for the hypothetical 

implementation of a mathematical task that would engage students in argumentation. 

Analysis of their responses yielded several dimensions of teachers’ attention to potential 
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classroom situations of argumentation, and these provide a lens through which we may learn 

about teachers' grasp of argumentation. 

THEORETICAL BACKGROUND 

A commonly accepted definition of argumentation is that of van Eemeren and Grootendorst 

(2004) who maintain that argumentation is “a verbal, social, and rational activity aimed at 

convincing a reasonable critic of the acceptability of a standpoint by putting forward a 

constellation of propositions justifying or refuting the proposition expressed in the 

standpoint” (p. 1). According to this definition, argumentation involves generating claims, 

providing evidence to support the claims, and evaluating evidence to assess their validity. 

This definition also posits argumentation in a social space, and, if incorporated into 

classroom discourse, it affords a venue for the articulation and critical evaluation of 

alternative ideas, eventually supporting collaborative knowledge construction (Asterhan & 

Schwarz, 2016). This definition forms the foundation in the literature for common 

descriptions of argumentation that are ‘fruitful’ for learning.  

According to this definition, the present paper considers argumentation as having two 

important aspects – structural and dialogic (McNeill & Pimentel, 2010). The structural 

aspect of argumentation focuses on the feature of discourse whereby a claim, which can be 

presented as an idea, conclusion, hypothesis, solution etc., is supported by an appropriate 

justification. While mathematicians support claims using diverse justification types, specific 

types, such as deductive justifications, are valued in the mathematics discipline over others. 

In the mathematics classroom, the appropriateness of justifications is attained by negotiating 

socio-mathematical norms (Yackel & Cobb, 1996). The dialogic aspect regards 

argumentation as the interactions between individuals when they attempt to generate and 

critique each other’s ideas. In mathematics classrooms, this is indicated by students listening 

to each other, building on each other's ideas, and critiquing ideas as the community moves 

toward consensus.  

In this study, we explore secondary mathematics teachers' envisioning of potential classroom 

argumentation situations in both the structural and dialogic aspects of argumentation. We 

assume that teachers' attention to both of these aspects could help them better incorporate 

argumentation into their classroom instruction (McNeill & Pimentel, 2010). In mathematics 

education, research has focused on teachers' attention as a topic for both investigation and 

development, upon the premise that it shapes teachers' actions and practices (Mason, 2015). 

For those researchers who focus on teachers' noticing (e.g., Jacobs, Lamb, & Philipp, 2010), 

attention is considered a fundamental skill. One important issue discussed in the research 

literature relates to how professionals attend to noteworthy aspects of complex situations: 

“We are interested in the extent to which teachers attend to a particular aspect of instructional 

situations” (Jacobs et al., 2010, p. 172). Research has shown that attention can be narrowly 

focused on one aspect of a situation at the expense of others, or, alternatively, it may be broad 

in processing a wide variety of details and aspects of the situation (Mason, 2015). Therefore, 

investigating what teachers attend to when envisioning potential classroom argumentation 

situations is important and can serve as an avenue for teacher educators to devise appropriate 

support, direction and guidance. 
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Mathematics teaching that encourages argumentation provides students with ample 

opportunities to take an active role in both structural and dialogic aspects; i.e., to construct 

arguments, share their ideas, consider others' ideas, and critically evaluate their validity, 

while adhering to normative aspects of mathematical discourse that are specific to the 

students’ mathematical activity (Yackel & Cobb, 1996). Various factors associated with 

teaching generate opportunities for students to participate in argumentation. For example, 

teaching for argumentation is fundamentally associated with implementing appropriate tasks 

(e.g., Ayalon & Hershkowitz, 2018). In particular, open-ended tasks that invite multiple 

strategies for solutions are perceived as enhancing opportunities for argumentation (Mueller 

et al., 2014). In addition, teaching for argumentation is intrinsically linked with the teacher's 

actions, such as encouraging students' participation and thoughtful questions (e.g., Ayalon & 

Even, 2016). Moreover, teaching for argumentation requires teachers' sensitivity to their 

students' cognitive factors, such as prior knowledge, common ways of thinking, and 

argumentation skills, as well as to their students' affective characteristics, such as self-

confidence, interest, and enjoyment (Knuth & Sutherland, 2004). 

While recognizing that the three dimensions of task characteristics, teaching strategies, and 

student characteristics are only a subset of factors contributing to classroom argumentation, 

we view them as important initial steps for the successful integration of argumentation into 

classroom practice. These dimensions are naturally inter-related; however, focusing on each 

one individually allows us to discern each one and learn about its place in teachers' 

envisioning of class argumentation. Taking into account the two aspects of argumentation 

(structural and dialogic) across the three dimensions of argumentation (task characteristics, 

teaching strategies, and student characteristics), this study addresses the research question: To 

what do secondary mathematics teachers attend when asked to envision argumentation in 

their classroom? 

METHODOLOGY 

Research participants  

Thirty-one secondary mathematics teachers participated in this study. All of them had five 

years or more of teaching experience. The decision to focus on secondary-school teachers 

derived from the emphasis placed on argumentation in the curriculum of this student 

population in Israel (Ministry of Education, 2013).  

Data collection  

The data used for this study consisted of individual, semi-structured interviews of 

approximately 90 minutes that comprised two main parts. The first part involved questions 

about the place of argumentation in teaching mathematics and whether and how the research 

participants practice argumentation in their respective classrooms. The teachers were 

encouraged to explain their responses in detail and provide examples from their own 

teaching. In the second part, they were asked to select a mathematical task which, in their 

view, encourages argumentation, and to write a script for its hypothetical implementation, 

including the context of the teaching situation and the discourse among the participants while 

working on the task. Follow-up questions included: (1) What were you considering when 
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writing the script, in terms of engaging students in argumentation? (2) In what ways do you 

find that ‘your manner of teaching’ within the script provides opportunities for students to 

engage in argumentation? (3) In your script, what factors contribute to shaping the 

argumentation? (4) What difficulties or inhibitors are you taking into consideration here? 

How do you deal with them?  

Data analysis  

The aim of the data analysis was to ascertain what secondary mathematics teachers attend to 

when asked to envision argumentation in their classroom. We used the teachers' responses as 

the main source of our systematic analysis. The teachers' written scripts served as a resource 

for us to better understand and interpret their discourse. First, we employed the three 

predominant dimensions found in the literature to in creating opportunities for class 

argumentation – task characteristics (TC); teaching strategies for argumentation (TS); and 

students’ characteristics (SC) – as lenses through which we analyzed the teachers' statements. 

at the same time, we remained open to other dimensions emerging as well, although this 

ultimately did not happen. We then distinguished between statements in which the teachers' 

focal attentiveness was directed toward structural aspects of argumentation (i.e., responses 

pertaining to elements of arguments such as claims and justifications and what counts as an 

appropriate justification) and those in which their focal attentiveness was devoted to dialogic 

aspects of argumentation (i.e., responses associated with students' interactions when 

generating and critiquing arguments). We then used inductive content analysis to devise sub-

categories for each of the six categories (structural and dialogic across TC, TS, and SC). We 

iteratively checked categorizations against the whole data set. Since the analytical process 

was comparative, it required repeated analysis of the whole data set. Based on an in-depth 

discussion of the emerging categories, we reached a final consensus. We ultimately obtained 

13 sub-categories, to be discussed in the upcoming findings section. Subsequently, we used 

these codes to re-analyze the transcripts of the interviews with the 31 secondary mathematics 

teachers for characterizing each teacher's envisioning of potential argumentation situations in 

the classroom. The analysis focused on classifying each response according to the previously 

received categories and sub-categories.  

FINDINGS AND DISCUSSION 

Table 1 presents the categories identified in the teachers' responses1. For each dimension, we 

present categories that were found to focus on structural aspects (S) of argumentation and 

categories found to focus on dialogic aspects (D) of argumentation. Note that ‘T’ stands for a 

teacher. The third column presents the number of teachers found to attend to each category 

according to their interviews.  

 

 

 
1 In the presentation we will elaborate the discussion on the categories and examples. 
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Table 1: Categories of teachers' envisioning of potential classroom argumentation 

situations 

Category Examples  from the teachers' responses #Teachers 

(n=31) 

Task characteristics (TC) 

TC1. (S) Inviting the 

use of specific 

mathematical 

justifications 

I asked the students to justify the claim 𝑛3 − 𝑛 is divided by 6 for each 

natural n. My goal in choosing this task was to expose the students to 

different kinds of arguments while distinguishing between their merits: 

an algebraic solution, which is valued; and other approaches, such as 

substitution of numbers into the expression, which are not…. (T13) 

5 

TC2. (D) Affording 

various solutions as 

enabling students' 

participation 

I give the students multiple-solution tasks to encourage their 

participation…. Such tasks afford fruitful argumentation, with different 

points of views, allowing for disagreements among students which they 

will need to resolve. (T24) 

26 

Teaching strategies (TS) 

TS1. (S) Encouraging 

and scaffolding 

justifications 

I would use various scaffolding strategies that serve to generate 

justifications for their solutions. For example, as I wrote in my script, 

by providing real matches [from a matchbook] to help students develop 

a sense of the situation…. or by encouraging a student to use a table of 

values to support his efforts to justify his generalization. )T1) 

26 

TS2. (S) Promoting 

adherence to standard 

disciplinary criteria for 

determining the truth of 

a claim 

In my script, in response to this student's argument, I, as the teacher, 

emphasized: "[That's] a very good argument. We have here a 

counterexample for the claim that the number of matches is the number 

of wagons multiplied by four. This is a mathematical method to show 

that the claim is incorrect." (T1) 

9 

TS3. (D) Encouraging 

students to collaborate 

on constructing 

arguments  

I prompt students to collaborate on developing their arguments. For 

example, when a student suggests a solution, I ask the other students 

questions, for example: Who would like to explain the other student’s 

idea? How can you build upon this idea? And when a student responds, 

I commend him for collaborating. (T28) 

26 

TS4. (D) Prompting 

students to critically 

evaluate each other's 

arguments and search 

for alternative ideas  

I encourage my students to critically evaluate each other’s 

arguments… I do that by asking them questions like: Do you agree or 

disagree? What do you think about it? (T8)  

 

24 

TS5. (D) Encouraging 

attempts to reach a 

consensus 

 

During the activity, I wrote on the board all the arguments that the 

students raised... and discussed with them which are correct and which 

are incorrect... It is very important to me that all students will be 

convinced and then reach a consensus as to which arguments are 

correct and which are incorrect, and why. (T19) 

11 

TS6. (D) Establishing a 

climate of mutual 

respect 

I explain to my students that there should be mutual respect within the 

classroom; they should listen to each other respectfully, not disparage 

the other's opinion, and acknowledge that different people have 

different points of view… I praise students who critique others 

respectfully or receive others' critiques in a polite and open-minded 

way. (T16) 

7 

Student characteristics (SC) 
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SC1. (S) Students' 

strengths and 

challenges in justifying 

and refuting 

In the script, I took into account familiar ways in which students’ 

thinking about forming and justifying generalizations might be 

incorrect, such as employing empirical methods or using invalid 

proportional reasoning…. Here, in my script, I tried to deal with these 

tendencies by challenging the students with dilemma. (T1) 

8 

SC2. (D) Students' 

skills of 

communicating 

arguments  

Some students may know and understand the correct answer but are 

unable to articulate and present it in class, which makes it difficult for 

others to evaluate it and thus impedes having a productive discussion. 

(T15) 

7 

SC3. (D) Students' 

skills of critiquing each 

other’s ideas 

…If students are asked to evaluate their peer's answers, they usually do 

so by saying ‘right’ or ‘wrong’, without discussing the weaknesses or 

strengths and how to correct the mistakes if any are found. (T17) 

6 

SC4. (D) Students' 

sense of confidence 

Sometimes only a few students participate. This is because some 

students, especially the weaker ones, suffer from a lack of self-

confidence which causes them to be awkward about expressing 

themselves and reluctant to give critical feedback to their peers. (T9) 

13 

SC5. (D) Students' 

interest and enjoyment 

For my students, it is more interesting and challenging to work 

together on a task, try to convince their peers about their solutions' 

correctness, and critique each other's ideas, rather than to be assessed 

solely by the teacher. (T31)   

8 

 

As seen in Table 1, whereas some categories were attended to by a large number of teachers, 

some were scarcely mentioned. In terms of dialogic aspects of argumentation, analysis of the 

teachers' responses revealed that, in their envisioning of potential classroom argumentation 

situations, the majority (26 out of 31), attended primarily to choosing mathematical tasks that 

invite multiple solutions as a means for students to discuss differences in viewpoint and 

critique ideas (TC2). Most teachers also attended to teaching strategies that encourage 

students to collaborate on constructing and critiquing arguments (TS3 & TS4, 26 and 24 

teachers, respectively), and, to a lesser degree, encourage students to reach a consensus (TS5, 

11 teachers). Still only a few teachers expressed sensitivity to student characteristics that 

enable or inhibit participation in argumentation, and those that did referred mainly to 

students' difficulties in communicating their ideas in a comprehensive and coherent way 

(SC2, 7 teachers). A relatively small number of teachers attended to affective factors such as 

students' lack of self-confidence or to students' interest and enjoyment when participating in 

argumentation (SC4 & SC5, 13 and 8 teachers, respectively). In terms of structural aspects of 

argumentation, the analysis of the teachers' responses revealed that most teachers (26 out of 

31), in their envisioning of potential classroom argumentation situations, attended to teaching 

strategies that encourage and support students in their struggle to build justifications for their 

claims (TS1). Only a few teachers mentioned in-class teaching strategies which promote 

adherence to standard disciplinary criteria for evaluating the quality of arguments and which 

cultivate students' sensitivity to what constitutes acceptable mathematical  arguments in the 

classroom (TS2, 9 teachers). In addition, few teachers referred to students' tendencies and 

possible difficulties when generating specific kinds of mathematical justifications, such as the 

tendency to use empirically based justifications, or the challenge in generating deductively-

based arguments (SC1, 8 teachers).  
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Overall, in the teachers' envisioning of argumentation in their classrooms, we see much 

attention to social interactions that attempt to generate new ideas and those involving the 

critiquing of each other’s ideas and solutions. To a much lesser degree, we see teachers' 

attention to the specific normative aspects of mathematical argumentation and to students' 

characteristics in relation to their engagement in argumentation. Research has indicated the 

importance of instructional practices that integrate both the dialogic and structural aspects of 

argumentation which are mathematically specific (Nathan & Knuth, 2003). Research has also 

suggested that teachers who are likely to support student participation in argumentation but 

do not emphasize distinctions between acceptable and unacceptable mathematical 

justifications, may limit students’ opportunities to develop an understanding of what 

constitutes accepted mathematical justifications and thus act more autonomously when 

engaging in mathematics (Ibid., 2003). In the teachers' interviews included in our study, we 

found wide mention of providing students with opportunities to participate in co-constructing 

and critiquing arguments. At the same time, we witnessed rather limited attention to 

facilitating students' participation in classroom argumentation grounded in normative aspects 

of mathematical argumentation. Our study suggests, therefore, that the teachers’ envisioning 

of argumentation in the mathematics classroom was partial, at least as far as can be inferred 

from their interviews. Hence, there is more to learn about teachers' understanding of 

argumentation. 

CONCLUSION 

While the interviews used in this study provided a snapshot of teachers' views at a particular 

point in time, research suggests that attention can be cultivated over time (Mason, 2015; 

Paparistodemou et al., 2014).  Findings of the current study can serve as a foundation and a 

resource for enhancing teachers' attention to argumentation. The range of dimensions 

identified in this study can serve as an analytic platform for planning and facilitating 

professional development activities to promote teachers' awareness of, and enthusiasm for, 

argumentation. Examples of teachers' responses compiled in this study can serve as sources 

for other teachers to analyze, compare, and reflect on, so as to construct a broad range of 

‘attention to argumentation’ aspects. The fact that some of the teachers participating in this 

study perceived both the structural and the dialogic aspects across the three dimensions as an 

integral part of enhancing the argumentation processes in the classroom, is encouraging. It is 

evident from our findings that teachers are at least partially open to adopting a new mindset 

with respect to the teaching of argumentation in the classroom. 
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This investigation aims at developing a framework for identifying metacognitive 

behaviour in problem-posing processes and illustrating the potential of such a 

framework for assessing the quality of problem posing. For this purpose, 36 task-

based interviews were conducted with pairs of student teachers. On these, an 

inductive category development has been carried out to identify problem- posing-

specific metacognitive behaviour of planning, monitoring, and evaluating. 

Subsequently, the identified metacognitive behaviours were applied to a selected 

transcript fragment. 

INTRODUCTION 

At least since Flavell’s 1979 seminal work, metacognition has been a central construct 

of research in psychology and mathematics education (Schneider & Artelt, 2010). In 

particular, research on problem solving has benefited from the consideration of 

metacognitive behaviour (e.g., Schoenfeld, 1987). Surprisingly, for the field of 

problem posing, a systematic literature review in high-ranked journals on mathematics 

education revealed that nearly no study explicitly considered metacognitive behaviour 

(Baumanns & Rott, 2021). Yet we are convinced that considering and analysing 

problem-posing-specific metacognitive behaviour may be a pivotal enrichment to the 

field. On the basis of this desideratum, we aim at (1) developing a framework for 

identifying metacognitive behaviour in problem-posing processes and (2) illustrating 

the potential of such a framework for assessing the quality of problem posing.  

THEORETICAL BACKGROUND 

Problem posing 

The numerous definitions of problem posing conceptualise mostly equivalent 

activities. Silver (1994) defines problem posing as generation of new and 

reformulation of given problems which occurs before, during, or after problem 

solving. Stoyanova and Ellerton (1996) refer to problem posing as the “process by 

which, on the basis of mathematical experience, students construct personal 

interpretations of concrete situations and formulate them as meaningful mathematical 

problems” (p. 218). 

Based on the categories by Stoyanova and Ellerton (1996), we distinguish between 

unstructured and structured problem-posing situations depending on the degree of 

given information (Baumanns & Rott, 2021). Unstructured situations are characterised 



Baumanns & Rott 

2 -  42 

 

PME 44 -2021 

by a given naturalistic or constructed situation in which tasks can be posed without or 

with less restrictions. Asking to pose many problems to a given geometric 

configuration would be, for example, an unstructured situation. In structured 

situations, people are asked to pose further problems based on a specific problem, for 

example by varying its conditions. As structured situations are used in this study, an 

example is shown in the section Methods.  

Metacognition 

According to Flavell (1979, p. 906), metacognition describes “knowledge and 

cognition about cognitive phenomena”, which roughly means thinking about thinking. 

Based on this understanding, two facets of metacognition are identified: (1) 

knowledge of cognition and (2) regulation of cognition. In this paper, regulative 

activities are investigated, therefore facet (2) will be focused. 

Regulation of cognition refers to procedural knowledge with regard to processes that 

coordinate cognition, including planning, monitoring, and evaluation (Schraw & 

Moshman, 1995). Planning refers to the identification and selection of appropriate 

strategies or resources concerning the current endeavour. Monitoring refers to the 

attention and awareness of the comprehension concerning the current endeavour. 

Evaluating refers to the assessment of the processes and products of one’s learning. 

Cohors-Fresenborg and Kaune (2007) provide a category system for classifying 

teachers’ and students’ metacognitive (i.e. planning, monitoring, and evaluating) and 

discursive activities in class discussions. This approach is used in this study.  

Research on metacognition in problem posing 

In mathematics education research, metacognition is considered most prominently in 

problem-solving research which had an immense impact on this field (e.g., 

Schoenfeld, 1987). However, research on metacognitive behaviour in problem posing 

remains largely unresearched to date. Some studies contain few aspects of 

metacognition and self-regulation (Pelczer & Gamboa, 2009; Kontorovich et al., 

2012), metacognition is rarely explicitly addressed, though. Yet, for example, Voica et 

al. (2020) mention that they found metacognitive behaviour in their study with 

students as they were able to analyse and reflect on their own posed problems and 

thinking processes. 

RESEARCH QUESTIONS 

The lack of conceptual and empirical insight into metacognitive behaviour in problem 

posing constitutes a desideratum from which the following research questions emerge:  

(1) Which problem-posing-specific metacognitive behaviour (i.e. planning, 

monitoring, and evaluating) can be identified in students’ problem-posing 

processes?  

(2) To what extent can different degrees of problem-posing-specific metacognitive 

behaviour be empirically assessed?  
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METHODS 

Research design for data collection 

For this study, 32 task-based interviews were conducted, each with two pre-service 

primary and secondary mathematics teachers, working in pairs on one of two 

structured problem-posing situations (A. Nim game; B. Number pyramid). Situation 

A, the Nim game, reads: “There are 20 stones on the table. Two players A and B may 

alternately remove one or two stones from the table. Whoever makes the last move 

wins. Can player A, who starts, win safely? Based on this task, pose as many 

mathematical tasks as possible.” In total, 15 processes of situation A and 17 processes 

of situation B that range from 9 to 25 minutes with an average length of 14.5 min have 

been recorded. The processes ended when no ideas for further problems emerged from 

the participants. 7h 46min of video material was recorded and analysed. 

Data analysis – Assessment of metacognitive behaviour 

To answer research question (1), we conducted a qualitative content analysis 

(Mayring, 2000). There are three main categories of the metacognitive behaviour, 

planning, monitoring, and evaluating, which stem from theoretical considerations on 

regulation of cognition presented above, especially Cohors-Fresenborg and Kaune 

(2007). Although their framework is developed for analysing classroom interaction, it 

has been used successfully in paired problem-solving processes (Rott, 2014). 

Problem-posing-specific sub-categories were obtained through an inductive category 

development, with the goal of identifying the activities of planning, monitoring, and 

evaluating within the 32 recorded problem-posing processes. 

For research question (2), we analysed in detail several transcripts using the developed 

framework. The analysis of a selected process fragment is discussed in the results. In 

this transcript, the participants’ statements are reproduced verbatim. For the analysis, 

the transcripts were first read iteratively in order for us to obtain a rough 

understanding of the text and to be able to better integrate finer sections of the text 

into the overall context of the text. The codes developed in research question (1) are 

then applied to the transcript. The quality of the coding was ensured through 

consensual validation in team discussions. The coding of metacognitive behaviour of 

planning, monitoring and evaluation are color-coded in blue, red and yellow the style 

of Cohors-Fresenborg and Kaune (2007).  

RESULTS 

Identification of metacognitive behaviour in problem posing  

In Table 1, the observed problem-posing-specific metacognitive behaviours of 

planning, monitoring, and evaluating are summarized. In the following, the behaviours 

are commented and discussed. 

Planning. Four different behaviours of planning have been identified in the students’ 

processes. Code P1 denotes the focus on a starting point for problem posing from 

which new problems can be posed. This can be, for example, a certain condition, a 
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certain context or even a certain solution structure of the given initial problem. The 

behaviour in P2 has been frequently observed and is reminiscent of the well-known 

“What-if-not”-strategy (Brown & Walter, 2005), in which a similar activity is 

suggested before the actual problem posing. Reflecting necessary knowledge (P3) was 

observed quite rarely. Nevertheless, participants have partly considered what 

knowledge they or the potential solvers of a posed problem need to have in order to be 

able to solve it. In some cases, a general procedure for the upcoming problem-posing 

process was also named by the participants, e.g. first vary the initial task in multiple 

ways, then solving the varied tasks (P4).  

Monitoring. M1 characterises that metacognitive behaviour in which participants 

control the problem-posing process. Controlling the notation or representation of the 

posed problems (M2) refers to figures drawn to illustrate a problem, to the formulation 

of the specific question so that it becomes understandable and precise, or similar 

behaviours. We frequently observed that participants made a modification to the initial 

problem and analysed the consequences of this modification on the newly created 

problem (M3), for example for the solution structure or its difficulty. The code M4 

was set when participants analysed the mathematical structure of the given situation in 

order to get to a new problem or analysed the structure of a posed problem in order to 

be able the characterise it, for example with regard to its solvability or 

appropriateness.  

 Planning  Monitoring  Evaluating 

P1 Focus on a starting point of 

the problem-posing 

situation to generate new 

problems 

M1 Controlling 

the general procedure 

for problem posing 

E1 Assessing and 

reflecting 

on the characteristics of 

the posed problems 

P2 Capturing the conditions 

and identifying the 

restrictions of the given 

problem-posing situation 

M2 Controlling the 

notation or 

representation of the 

posed problems 

E2 Reflect on 

modifications of the 

posed problems 

P3 Reflect necessary 

knowledge 

M3 Assessing 

consequences for the 

problem’s structure 

through the modified 

or new constructed 

conditions 

  

P4 Express general procedure 

for problem posing 

M4 Mathematical activities 

related to a posed 

problem 

  

Table 1: Regulative processes in problem posing 
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Evaluating. Assessing and reflecting on the characteristics of a posed problem (E1) 

was a common behaviour of the participants. They often evaluated whether their 

problem is interesting, solvable, or appropriate for a specific target group. This 

behaviour was also mentioned in previous studies on the process of problem posing 

(Pelczer & Gamboa, 2009; Kontorovich et al., 2012). A reflection on modifications of 

the posed problems (E2) was frequently observed when the posed problem lacks a 

specific characteristic, for example it is too easy or too difficult, it is not very 

interesting, or it is too similar to the initial problem.  

The case of Tino & Ulrich 

In this section, we show the analysis of a process fragment by the students Tino and 

Ulrich, focussing on the metacognitive behaviours that have been developed in the 

previous section. The transcript starts at 19m 49s of their 33m 21s problem-posing 

process of the Nim game. Beforehand, they already posed, solved, and analysed 

several new variations of the Nim game such as: What if there are 21 stones on the 

table in the beginning? What if you could remove 1, 2, or 3 stones from the table? In 

the following fragment, they pose the problem that you are only allowed to remove 2 

or 3 stones from the table.  

1. U: So and now we make a next variation namely you may no 

longer take 1 to 3, but you may either take 2 stones or 3 stones 

P1 

2. T:  What about the variation with number of stones is also a 
victory factor? 

 

3. U: Oh yes, we can do that too...   

4. T: At least we can notice for a moment, right? 

 

 

5. U:  … But I would like to do that later, I would like to save that 

for a little, so this is definitely also a variation.  

M1 

In turn 1, Ulrich poses a new variation, in which only 2 or 3 pieces may be removed 

from the table. This new starting point is derived from a previous task (1 to 3 pieces 

may be removed). Since Ulrich sets a new focus for the upcoming problem-posing 

activity, this statement is coded as planning (P1). After Tino has thrown in what 

happened to one of the previous ideas, Ulrich directs the general procedure in turn 5 

and thinks that this task can be dealt with later and that the task posed in turn 1 should 

be discussed in greater depth. Ulrich intervenes in the process and tries to guide it in a 

structuring way. Therefore, this statement is coded as monitoring (M1). 

10. T: (referring back to the problem posed in Turn 1) So you can’t 

just remove one tile, right? (writes down) Okay. 

M2 

11. U:  Here is a scenario; at 4 nobody wins (5 sec).  

12. U: When I take 3.  
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13. U: Yes. This is a new game. I think it’s great, it’s already totally 

good. There are situations where nobody wins. Yeah, it’s like 

at the game…  

M3 & 

E1 

 

14. T:  Tic-tac-toe… M1 

17. U: Yes, I can’t remember exactly. Already interesting! It is 

already interesting. 

E1 

18. T: Yeah, it’s definitely interesting.  E1 

 

In turn 10, Tino tries to find a formulation for the problem that was posed in turn 1. 

He writes down this task as a negation that one may not just remove one stone from 

the table. His thinking about the formulation of the question represents a control of the 

notation or representation of the problem and is therefore coded as monitoring (M2). 

Ulrich says that this change results in a “new game”. This assessment of the 

consequences that their variation has for the Nim game was coded as monitoring 

(M3). Ulrich states that he likes the consequences that follow from their variation 

since they are different from the initial task. Therefore, this is coded as evaluation 

(E1). In turn 18, Tino agrees with Ulrich’s positive evaluation of the game. 

20. T: The question is, the question is whether one still admits that 

one also loses if one only has one stone left, but one can no 

longer move. 

E2 

21. U:  Yes, but I would not do that.   E2 

24. T: Because then you practically keep it up, right? The winning  

strategy. 

M3 

25. U: But I’d say it’s a little lame somehow.  E1 

26. T: Yes, of course, but just to think about how I can keep this 

system up, it would probably be a possibility.  

E2 

27. U: Yes, that’s true. Then, exactly, then the system would also be 

upright. But let’s move on to the next step. … 

E2 & 

M1 

38. T: … What if one could remove 3 or 4?  P1 

Tino interjects in turn 20 whether they should modify the new game due to this 

situation. Ulrich argues not to make this change. In both statements, the participants 

consider to modify the posed problem so that the game has a definite winner (E2). 

Tino states in turn 24 that this change would restore the original winning strategy of 

the initial task. By that, he assesses the consequences of his slight modification and 

compares it to the initial task. Therefore, this statement is coded as monitoring (M3). 

Ulrich does not seem to like this change, perhaps because it would bring him too close 

to the initial task. In turn 13, he seemed to like this new element very much. This 

statement is coded as evaluation (E1). Tino reflects in turn 26 that one could modify 
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the game with his suggestion in order to maintain the original winning strategy of the 

initial task. This is a reflection on their modification and, thus, is coded as evaluation 

(E2). Ulrich initially agrees with Tino’s previous assessment (E2). Then, he focuses 

on a solution strategy of the modified game again and thinks about the situation in 

which five stones lie on the table. With his statement, he is controlling the process 

which is why this statement is coded as monitoring (M1).  

DISCUSSION AND CONCLUSION 

The present study examined metacognitive behaviour, which has so far been widely 

disregarded in problem-posing research. Analyses of 32 problem-posing processes of 

student teachers were conducted to identify regulative behaviours, sorted into 

planning, monitoring, and evaluating. The results of this exploratory investigation are 

discussed in the following with regard to research questions (1) and (2):  

(1) Table 1, summarises observed behaviours that are predominantly metacognitive. 

Some of these behaviours may be considered as cognitive. Yet, it should be noted that 

being able to intentionally use these kinds of cognitive behaviour is a sign for 

metacognitive abilities. For example, searching for a solution can be seen as cognitive 

behaviour, but considering the solution in order to get a better idea whether the posed 

problem is, for example, solvable or appropriate for a specific target group can be seen 

as metacognitive behaviour. Moreover, not all codes within the main categories of 

planning, monitoring, and evaluating are separable from each other. However, a clear 

separation between these main categories should be recognizable. It should be 

emphasised that even if the named behaviours are labelled as metacognitive, they 

should not be considered without cognitive behaviour. 

(2) Tino and Ulrich show several and dense acts of metacognitive behaviour in their 

problem-posing process. In the analysed fragment (duration 3:12 min), 19 activities 

were coded as metacognitive, i.e. one code every 10 seconds. This value should not be 

interpreted as a fixed value for metacognitive behaviour. However, it allows to 

identify a tendency for quantity of metacognitive behaviour. In other fragments that 

have been analysed in this study, this value was strikingly lower. Coding using the 

developed categories is intended to support this assessment.  

The framework developed in this study provides numerous opportunities for follow-up 

research. With a larger sample, maybe additional problem-posing-specific 

metacognitive behaviours can be identified. As in research on problem solving, a 

comparison between metacognitive behaviours of experts and novices could reveal 

metacognitive behaviour related to successful problem posing. This study uses 

structured problem-posing situations. Future studies could investigate whether there 

are different metacognitive behaviours in unstructured situations. Often, the ability to 

pose problems is measured by analysing the products of a problem-posing process (cf. 

Van Harpen & Sriraman, 2013). The analysis of metacognitive behaviour could be 

used to assess the ability to pose problems on a process-oriented level. Neglected in 

this study was the metacognitive facet knowledge of cognition. The importance of this 
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facet of metacognition could also be the focus of future studies. In addition, the 

interaction and discourse of the participants in the transcript fragment also plays a 

central role in the quality of problem-posing processes. Future considerations could 

look more closely at this interaction as an additional aspect of (negative) discursivity 

similar to Cohors-Fresenborg and Kaune (2007). Overall, we believe that the so far 

largely neglected perspective of metacognitive behaviour can be a significant 

enrichment for problem-posing research in the future.  
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Reasoning about covarying quantities in terms of both a fixed measurement unit and a 

measurement unit that varies in size is an overlooked but potentially valuable way to 

help learners make sense of a range topics that past research has demonstrated pose 

perennial challenges. We identify several such topics including developing and 

explaining linear equations, making sense of slope and average rate of change, 

interpreting geometric similarity and trigonometric ratios, and understanding the 

relationship between empirical and theoretical probability. We explain how a specific 

way of conceptualizing proportional relationships—the variable-parts perspective—

relies on reasoning with both a fixed measurement unit and a measurement unit that 

varies in size, and make the case this perspective can be a foundational and 

productive way of reasoning about a critical swathe of school mathematics.  

INTRODUCTION 

A well-known concern in mathematics education is disjointed, incoherent treatments 

of topics that rely on isolated, single-purpose tools. Another concern is that many 

important topics are difficult for students and teachers, including linear relationships, 

rates of change, trigonometry, and the law of large numbers (e.g., see Cai, 2017). One 

possibility is that there are foundational ideas that students need to work productively 

across a variety of topics, but that these ideas have either not been emphasized or their 

importance has not been discovered in mathematics education. Also, when the same 

idea can be used repeatedly, across many topics, students may see how prior 

experiences can help them reason about new situations. 

In this theoretical essay we propose that a specific way of conceptualizing 

proportional relationships—the variable-parts perspective (Beckmann & Izsák, 

2015)—may be valuable, in part, because it includes an idea that is needed in many 

contexts: the idea of using both a fixed unit of measurement and a unit of 

measurement that varies in size to measure and describe covarying quantities.   

USING VARIABLE PARTS TO GENERATE AND EXPLAIN EQUATIONS 

Research has shown that the variable-parts perspective provides one specific way to 

conceive of how quantities can vary together, yet be in a constant linear (or 

proportional) relationship (Beckmann & Izsák, 2015). It is part of a coherent, 
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connected landscape of multiplicative ideas at the core of a large swathe of important 

mathematics (Izsák & Beckmann, 2019). 

To illustrate the variable-parts perspective, Figures 1a and 1b show 4 parts of red paint 

covarying with 3 parts of blue paint. Initially, each of the 7 parts is 1 Litre. Then the 

parts are allowed to vary in such a way that the 7 parts remain the same size as each 

other, but that size can be any number of Litres. If we view 1 part as a unit of 

measurement that varies in size, then we can interpret the quantities of paint as 

simultaneously fixed and varying. Measured in parts, the red paint is fixed at 4 parts 

and the blue paint is fixed at 3 parts. Yet measured in Litres, the numbers of Litres of 

red and blue paint vary. When mixed, the paint would always make the same fixed 

hue of purple, but in larger or smaller amounts, depending on how many Litres make 

1 part. 

We can use the above perspective on the red and blue paint to develop an equation. 

Let the red paint consist of X Litres and let the blue paint be Y Litres. Then because Y 

is always 3 parts and X is always 4 parts, Y must always be ¾ of X, and therefore the 

equation Y = ¾ X describes how the covarying quantities of paint are related.  

If we rotate the 3 parts blue, as in Figures 1c and 1d, we can see the line through (0, 0) 

and (4, 3) from a variable-parts perspective (see www.geogebra.org/m/fe9q378s for 

these and other dynamic Geogebra sketches). The forgoing reasoning also explains 

why the line has equation Y = ¾ X.   

 

 

Figure 1: Covarying quantities of red and blue paint from a variable-parts perspective. 

(a, c) 1 liter per part. (b, d) 2 liters per part. 

http://www.geogebra.org/m/fe9q378s
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The variable-parts perspective is different from another “multiple-batches” way to 

conceive of the red and blue paint. For example, we might think of 20 Litres of red 

paint and 15 Litres of blue paint as composed of 5 batches, each consisting of 4 Litres 

red paint and 3 Litres blue paint. From this multiple-batches viewpoint, as we vary the 

numbers of Litres of red and blue paint, we imagine a fixed batch, consisting of 4 

Litres red paint and 3 Litres blue paint, and we imagine varying the number of batches 

that we consider. But there is no unit of measurement that varies in size, and we do 

not describe the overall quantities of paint as fixed. In a coordinate plane, from this 

multiple-batches perspective we might view quantities of red and blue paint as 

obtained by repeatedly going over 4 Litres and up 3 Litres, or over 1 Litre and up ¾ 

Litres.   

Past research has shown that middle grades students as well as future teachers often 

have difficulty justifying linear relationships (e.g., Rivera & Becker, 2007; Stephens, 

Ellis, Blanton, & Brizuela, 2017). Students and teachers have more success when they 

use visual strategies with figural patterns, but figural patterns are discrete and do not 

offer the opportunity to reason about a continuous context. Above, we showed one 

way to generate and justify linear equations in two variables by reasoning about how 

quantities are related in a continuous context viewed from a variable-parts perspective. 

Beckmann and Kulow (2017) showed that future middle grades teachers enrolled in a 

mathematics course were able to use the variable-parts perspective to reason about 

covarying quantities and to generate and justify linear equations in two variables, 

including equations in non-standard forms. Thus, a variable-parts perspective might 

also be promising for helping middle grades students to reason quantitatively to 

generate and justify linear equations. 

USING VARIABLE PARTS TO INTERPRET RATE OF CHANGE 

Research has shown that the concepts of slope and rate of change are difficult for 

students and teachers. For example, in Lobato, Ellis, and Munoz’s (2003) study, 

middle grades students interpreted m in y = b + mx as a difference rather than a ratio. 

In a study of secondary teachers’ meanings for measure, slope, and rate of change, 

Byerly and Thompson (2017) found that the majority of teachers interpreted a slope of 

3.04 as meaning that for every change of 1 in x, there is a change of 3.04 in y, or as 

moving to the right 1 space and up 3.04 on a graph. When these teachers were asked 

how to interpret 3.04 if x changes by something other than 1, only 8% conveyed a 

multiplicative meaning for 3.04, such as x can change by any amount and y will 

change by 3.04 times the change in x.    

The variable-parts perspective offers a way to view (average) rates of change and 

slope as the result of a measurement and therefore multiplicatively. In the example of 

Figure 1 discussed previously, the rate of change or slope, ¾, is the constant measure 

of Y Litres (3 parts) in terms of X Litres (4 parts); it is how much of X it takes to make 

Y exactly. This interprets the rate of change or slope multiplicatively, as how many 

times one needs to take one quantity to produce another, and is not limited to the case 

where the change in X is 1 unit.       
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More generally, the idea of using a unit of measurement that varies in size could be 

important for interpreting instantaneous rates of change in calculus. With a variable-

parts perspective, we can interpret the average rate of change of a function in a way 

that makes sense even when both X (the change in X) and Y (the change in Y) 

shrink toward 0. The average rate of change of a function over an interval is given by 

a difference quotient, namely Y divided by X. To interpret this difference quotient 

as a measure, we can view X as a measurement unit that varies in size, and we can 

use it to measure Y. The resulting measure—how many (or how much) of X it takes 

to make Y exactly—is the value of the difference quotient Y/X. See Figure 3. For 

a differentiable function, as X shrinks toward 0 (keeping the left end point of the 

intervals fixed, say), these measures are approximately constant, and approach the 

value of the derivative at the left end point.  

 

 

Figure 3: Average rate of change as the measure of Y by X as X shrinks toward 0. 

A variable-parts perspective might build on approaches students have been found to 

use in past research. In a study of students’ quantitative reasoning about covarying 

quantities, Johnson (2015) asked students to reason about how the height of liquid in a 

bottle varied with the liquid’s volume. Even though height and volume are not the 

same kind of quantity and not measured in the same units, all three students compared 

changes in height with changes in volume. Johnson found that making such 

comparisons can be useful for interpreting covariation, but it does not foster attention 

to variation in the intensity of change. We propose that a productive next step for the 

students in Johnson’s study might be to measure changes in the dependent variable by 

changes in the independent variable, given that they had just compared such changes. 

Such a next step would put students on a path to interpreting average and 

instantaneous rates of change as we described in the previous paragraph.             

USING VARIABLE PARTS IN GEOMETRY AND TRIGONOMETRY 

To see how the variable-parts perspective is useful for situations of geometric 

similarity, including trigonometry, consider dilations of 2-dimensional Euclidean 

space equipped with Cartesian coordinates. We may think of dilations that are centred 

at the origin in terms of two systems of coordinates on the same axes: one in which 1 

unit of distance is fixed at 1 cm (say) and another set of coordinates in which 1 unit of 
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distance—1 part—varies in size and consists of x cm, where x is the scale factor of the 

dilation. Given any point in the plane, its coordinates can be expressed in centimetres 

or in parts. For example, Figure 4 shows the effect of applying a dilation with scale 

factor 2. The light (grey) grid lines remain 1 cm apart and the heavy (red) grid lines 

remain 1 part apart even though 1 part changes from (a) 1 cm to (b) 2 cm. Expressed 

in terms of parts, the coordinates of the apex of the triangle are always (4, 3) even 

though the apex’s coordinates expressed in centimetres vary as the scale factor of the 

dilation varies.  

 

 

Figure 4: Heavy (red) grid lines are 1 part apart where 1 part is (a) 1 cm (b) 2 cm. 

This variable-parts perspective highlights that the side lengths of a triangle remain in 

the same ratio even as the triangle is dilated. For example, in Figure 4 the height of the 

triangle, h, is always 3/4 its width, w, and therefore h/w is always 3/4 and is 

independent of the dilation that is applied to the triangle. The constancy of ratios of 

side lengths of right triangles is necessary and implicit in trigonometry.  

To apply the variable-parts perspective to trigonometry, consider a right triangle 

inscribed in a circle of radius 1 part, which is r cm (say), where r is the scale factor of 

a dilation centred on the centre of the circle. With this view, the radian measure of an 

angle is the measure in terms of parts—i.e., in terms of the radius—of the arc 

subtended by the angle on the circle. The variable-parts perspective highlights that the 

radian measure of an angle does not depend on the size of the circle and that it is 

always how many or how much of the radius it takes to make the subtended arc. 

A variable-parts perspective fits with the successful approach Moore (2013, 2014) 

took in his teaching experiments on angles and trigonometric functions. In particular, 

Moore’s teaching experiments seem to have fostered the idea of measurement with 

respect to both a fixed unit and a variable unit (the radius). For example, Zac 

interpreted an arc length of 0.61 as 61% of a radius and explained that it is always the 

same percentage for each different circle. Zac was also able to interpret the sine and 

cosine as percentages of a circle’s radius, regardless of the circle’s size.   
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USING VARIABLE PARTS FOR THE LAW OF LARGE NUMBERS 

In their review of the teaching and learning of probability and statistics, Langrall, 

Makar, Nilsson, and Shaughnessy (2017) noted that there has been particular interest 

in informal inference and a strong consensus that “informal inference includes (1) 

making claims or predictions beyond the given data while (2) using the data as 

evidence for any claims that are made and (3) acknowledging that there is uncertainty 

in any claims or predictions” (p. 516). In reviewing misconceptions of statistical 

inference, Castro Sotos, Vanhoof, Van den Noorgate, and Onghena (2007) found a 

number of empirical studies that documented misconceptions regarding the idea 

behind the law of large numbers. According to Castro Sotos et al., students’ 

difficulties may have their source in the misconception known as “the law of small 

numbers,” in which even small samples are assumed to be highly similar to the 

population from which they are drawn (Tversky & Kahneman, 1971). Tversky and 

Kahneman noted that in sequential games of chance “subjects act as if every segment 

of the random sequence must reflect the true proportion: if the sequence has strayed 

from the population proportion, a corrective bias in the other direction is expected. 

This has been called the gambler’s fallacy” (p. 106). Castro Sotos et al. called for 

further research to identify sources and possible solutions for misconceptions.   

In situations of random processes, such as spinning a spinner, there are different ways 

students might informally conceptualize the law of large numbers. Consider a spinner 

that has 5 sectors of the same size, 3 purple and 2 blue (see Figure 6), and assume that 

every time one spins the spinner, each sector is equally likely to be landed on. One 

way to interpret the theoretical probability of landing on purple, 3/5, is “we expect 3 

out of every 5 spins to land on purple.” With this interpretation, one might interpret 

the law of large numbers in terms of multiple “batches” (sets) of 5 spins, expecting 

that in every such batch, 3 should land on purple, and that when batches deviate from 

this expectation, subsequent batches will adjust to compensate. Such a view seems 

similar to the “law of small numbers” ideas described by Tversky and Kahneman 

(1971). Although it seems reasonable to some extent for students to use ideas like “3 

out of every 5 spins should be purple,” it also seems that this way of thinking could 

reinforce the “law of small numbers” and the gambler’s fallacy.   

The variable-parts perspective provides a different way to think about the law of large 

numbers. In the context of the spinner discussed above, imagine spinning the spinner 

over and over, and think of measuring sets of spins in two ways: in terms of the fixed 

unit “1 spin” and in terms of the unit “all the spins so far,” which varies in size. 

(Alternatively, one could use “the spins that have landed in Sector 1 so far.”) One can 

then think of measuring various sets of spins, such as the spins that have landed in 

purple so far. If we measure the spins that landed in purple by the unit “1 spin,” the 

result is a number of spins. If we measure the spins that landed in purple by “all the 

spins so far,” the result is some fraction or percentage—the empirical probability. 

Because the spinner is equally likely to land in each sector, we expect approximately 

1/5 of the spins to land in each sector, and so we expect approximately 3/5 of the spins 
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to land in purple. As more and more spins are performed, we should expect the spins 

to become more and more evenly distributed across the 5 sectors (see Figure 6). So 

when we measure the spins that landed in purple by the unit “all the spins so far,” we 

should expect the measure to be approximately 3/5, with a better and better 

approximation as there are more and more spins. This is a way for students to see why 

we should expect the empirical probability to approximate the theoretical probability 

more and more closely as the number of spins increase. We propose that such an 

interpretation of the law of large numbers provides a more accurate image and a better 

foundation for informal inference than a “3 out of every 5 spins” idea.   

 

Percentages of spins landing in each sector on 10 total spins

Percentages of spins landing in each sector on 100 total spins

Percentages of spins landing in each sector on 1000 total spins

0% 10% 0% 50% 40%

21% 23% 12% 21% 23%

20.1% 21.8% 18.6% 20.6% 18.9%

A spinner with

3 purple sectors and

2 blue sectors

 

Figure 6: A spinner and percentages of spins landing in each sector on 10, 100, and 

1000 spins. 

In a study of future middle grades teachers who were enrolled in a mathematics course 

that taught the variable-parts perspective, Stevenson, Beckmann, Johnson, and Kang 

(2018) found that all 4 participants were able to reason about spinners using a 

variable-parts perspective, even though probability had not yet been discussed in the 

course. Three of the future teachers also used an interpretation like “3 out of every 5 

times.” Two of them got stuck when using such an interpretation, but then made 

progress when they shifted to focusing on spins landing in parts (sectors) of the 

spinner and used variable-parts reasoning. Although further study is needed, these 

results suggest that a variable-parts perspective could be both accessible and useful for 

reasoning in probability and statistics. 
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In the present study, we tested the hypotheses that: a) there are individual differences 

in secondary students’ conceptual and procedural fraction knowledge, and b) these 

differences are predicted by students’ approach (deep vs. surface) to mathematics 

learning. We used two instruments developed and evaluated for the purposes of the 

study which were administered to 463 students at seventh and ninth grade. We found 

four clusters of students corresponding to different ways of combining conceptual and 

procedural knowledge of fractions. Students’ approach to mathematics learning 

predicted membership to some, but not all clusters.  

THEORETICAL BACKROUND 

Procedural knowledge is commonly defined as the knowledge of algorithmic 

procedures, whereas conceptual knowledge as the knowledge of concepts and 

principles pertaining to a certain domain (Rittle-Johnson & Schneider, 2015). This 

distinction has been criticized (e.g., Star & Stylianides, 2013), a main issue of concern 

being whether it is possible for the two types of knowledge be separated, given that 

they are typically found to be highly correlated. Nevertheless, there are indications 

that the two types of knowledge can be separated both theοretically and empirically 

(Lenz & Wittman, 2021), and this distinction remains useful in the area of research on 

mathematics learning (Vamvakoussi, Bempeni, Poulopoulou, & Tsiplaki, 2019). 

Assuming that conceptual and procedural knowledge are distinct types of knowledge, 

the order of acquisition and their relation have long been an issue of interest. The 

currently predominant theory, namely the iterative model (Rittle-Johnson, Siegler, & 

Alibali, 2001), came to bridge the gap between two different accounts according to 

which one type of knowledge precedes the other (procedures-first and concept-first 

theories). The iterative model assumes that either type of knowledge can trigger the 

learning process, depending on the child’s prior experience with the domain in 

question; and that, from then on, the links between the two types of knowledge are bi-

directional and continuous, with increases in one kind of knowledge leading to gains 

in the other type of knowledge.  The iterative model explains many empirical findings, 

notably the well-established one that the two types of knowledge are positively 

correlated. However, such correlations found at group level do not accurately depict 
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what happens at the individual level (Vamvakoussi, et al., 2019). Indeed, there is 

evidence that there are individual differences in the ways students combine the two 

types of knowledge. Hallett and colleagues (2010; 2012) investigated such individual 

differences in the area of fraction learning and identified different groups of students 

(Grades 5-8) with the one type of knowledge, conceptual or procedural, to be more 

developed than expected, given the other type. Similar individual differences in 

fraction knowledge have been found for older students, namely 9th graders (Bempeni, 

Poulopoulou, Tsiplaki, & Vamvakoussi, 2018; Lenz & Wittman, 2021), and they may 

be even extreme (Bempeni & Vamvakoussi, 2015). 

With the aim of explaining how these individual differences regarding knowledge in 

the domain of fractions, or other domains, arise, several hypotheses have been tested 

looking at various factors such as the amount of the prior knowledge in a domain 

(Schneider, Rittle-Johnson, & Star, 2011); differences in cognitive profiles, measured 

as general conceptual and procedural ability (Gilmore & Bryant, 2006; Hallett et al., 

2012) or general cognitive abilities (Lenz & Wittman, 2021); and differences in 

educational experiences, measured as attendance in different schools or as school 

grade (Canobi, 2004; Hallett et al., 2012). No or limited support for these hypotheses 

has been found. 

We have formulated the hypothesis that a possible source of individual differences in 

conceptual and procedural fraction knowledge is the individual’s approach to 

mathematics learning.  In the literature there is an overarching distinction between the 

deep approach to learning, associated with the individual’s intention to understand; 

and the surface approach, associated with the individual’s intention to reproduce. 

There are several ways of characterizing each approach, mainly adapted to tertiary 

education (Entwistle & McCune, 2004). In a qualitative study (Bempeni & 

Vamvakoussi, 2015) we adopted a model developed by Stathopoulou and Vosniadou 

(2007) and tested with secondary students. This model differentiates between the deep 

and the surface approach to learning along three axes, namely goals (personal making 

of meaning vs. performance goals); study strategies (e.g., searching for connections vs 

rote learning); and awareness of understanding (high vs. low). We interviewed in 

depth three 9th graders (A, B, C) who differed with respect to their fraction 

knowledge: A had strong conceptual as well as procedural knowledge; B had strong 

conceptual, but extremely weak procedural knowledge; and C had strong procedural, 

but extremely weak conceptual knowledge. We found indicators of the deep approach 

to mathematics learning for A and B, and indicators of the surface approach for C. We 

also traced differences among the students with respect to particular aspects of 

motivation (e.g., enjoying vs. avoiding intellectual challenges in mathematics). In a 

second qualitative study, we further investigated the features of the deep approach to 

mathematics learning by studying exceptionally competent students in mathematics 

(Bempeni, Kaldrimidou, & Vamvakoussi, 2016).  

These two qualitative studies, informant the development of an instrument assessing 

secondary students’ approach to mathematics learning (deep vs. surface) along four 



Bempeni, Poulopoulou & Vamvakoussi 

2 -  59 

 

PME 44 -2021 

axes, namely goals, study strategies, motivation, and self-regulatory behaviors (e.g., 

monitoring of understanding, regulation of study habits). 

In the present study, we examined the hypotheses that there are individual differences 

in conceptual and procedural knowledge of fractions (hereafter, CKn and PKn) that 

become less salient but remain present up to Grade 9; and that these differences are 

predicted by students’ approach to mathematics learning (surface vs. deep). 

METHOD 

Participants 

The study had two phases. The participants in the first phase were 510 students at 

Grades 7 and 9, of whom 463 participated also in the second phase (262 ninth graders 

and 201 seventh graders). The participants came from seven Greek secondary schools. 

Materials 

Students’ CKn and PKn was measured by an instrument that has been evaluated in a 

previous study with respect to reliability and validity (Bempeni et al., 2018). The 

instrument comprised 12 procedural tasks (e.g.: fraction operations, simplification of a 

complex fraction) and 14 conceptual tasks such as fraction representation, 

comparison, estimating the outcome of fraction operations (see Bempeni et al., 2018; 

Vamvakoussi et al., 2019 for a more detailed description of the instrument). 

The new instrument assessing student’s approach to mathematics learning comprised 

of 28 statements and 6 scenarios in which two hypothetical students presented two 

different views on an issue. Half of the statements were consistent with the deep 

approach to learning, and the other half with the superficial approach to learning. The 

students were asked to express the degree of their accordance in a scale of 1-4 

(1=Totally Disagree, 2=Disagree, 3=Agree, 4=Totally Agree). The neutral choice 

“Neither Agree or Disagree” was not included because it has been proved problematic 

in similar studies (e.g.: Entwistle et al., 2015). Examples of such statements were the 

following: “It’s a waste of time to study for something that is not required for the 

exams”, “If I do not remember the particular strategy to solve a problem, it is 

meaningless to try to solve it”, “I prefer to solve new problems, than practicing with 

the ones I already know how to solve”. 

Procedure 

The students had fifty minutes to complete the first questionnaire with the fraction 

tasks, which was enough for them. The questionnaire for the approach to mathematics 

studying and learning was administered three weeks later. No time limit was imposed, 

but the students needed at about half hour to complete it.  

DATA ANALYSIS – RESULTS 

1st Phase of the study 

The data of the first phase of the study were classified using the proposed hierarchical 

method of cluster analysis, and taking as variables the standardized residuals in the 
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two types of tasks (Bempeni et al., 2018; Hallett et al., 2010, 2012). By following this 

method, we examined the relative difference between the two variables. Using a series 

of evaluation measures in R programming language (R project for statistical 

computing), we determined that the optimal number of clusters was 4. 

In Figure 1, we present the average performance in conceptual and procedural 

knowledge by cluster. In a little more detail, the first cluster (“Stronger than expected 

in CKn and PKn”, N=163, 32%, 10% 7th Grade) performed better than expected in 

both types of tasks. The second cluster performed better than expected in procedural 

tasks based on their CKn (“Stronger than expected in PKn”, N=207, 40.6%, 28.6% 

7th Grade). The third cluster performed better than expected in conceptual tasks based 

on their PKn (“Stronger than expected in CKn”, N=75, 14.7%, 6.9% 7th Grade). 

Finally, the fourth cluster (“Weaker than expected in CKn and PKn”, N=65, 12.7%, 

8.4% 7th Grade), comprised of students with low performance in both measures. It is 

worth noting that despite the fact that the overall score of the cluster “Stronger than 

expected in PKn” was higher than the one of the cluster “Stronger than expected in 

CKn”, the CKn score was comparatively lower. Moreover, the average performance 

in PKn and CKn was better at 9th grade (69.5% and 49.2% respectively) than at 7th 

grade (66.9% and 32.8%). 

  

Figure 1: Average performance in CKn and PKn by cluster 
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2nd Phase of the study 

In the second questionnaire, for the items consistent with the deep approach to 

learning, each choice (1-4) was taken to reflect the degree (low to high) of consistency 

of the response with the deep approach to learning. For the items consistent with the 

surface approach to learning the scores were ranked in the inverse order. The total 

score (hereafter, LA score) was calculated as the sum of the scores of all the items. 

For the analysis of the data, we used R programming language. 

For the evaluation of the second questionnaire, we conducted a small pilot study. The 

participants of the pilot study were 120 seventh and ninth graders. In order to assess 

the internal consistency of the instrument, we calculated Cronbach’s alpha. The value 

of Cronbach’s alpha for two of the items had negative correlation with the scale, and 

as a result, these questions were excluded from our instrument. Finally, the value of 

Cronbach’s alpha for the scale was α=0.821. We also assessed the external 

consistency of the instrument over a period of 15 days with a test-retest method. 

Forty-one students completed the questionnaire for a second time. We calculated the 

value of intra-class correlation coefficient for each item separately. Five of the items 

displayed intra-class correlation below 0.4 and thus we decided to exclude them from 

the final version of the instrument. 

Clusters N Mean SD Median Range 

1 Stronger than expected 

in CKn and PKn 

158 2.987 0.414 3.037 (1.852 - 3.704) 

2 Stronger than expected 

in PKn 

194 2.830 0.397 2.923 (1.630 - 3.593) 

3 Stronger than expected 

in CKn  

52 2.636 0.275 2.633 (2.222 - 3.370) 

4 Weaker than expected in 

CKn and PKn 

59 2.593 0.367 2.630 (1.481 - 3.481) 

Table 1: Mean LA score by cluster 

The test of independence showed that there is a statistically significant correlation 

between cluster and approach to mathematics studying and learning (χ2=60.396, df=3, 

p-value<0.0001). As illustrated in the Table 1, the cluster “Stronger than expected in 

CKn and PKn” had the highest score with respect to the approach to mathematics 

learning, followed by the group “Stronger than expected in PKn”. The group 

“Weaker than expected in CKn and PKn” had the lowest score. 

In order to test the hypothesis that learning approach and school grade are predictors 

of the level of students’ CKn and PKn, we conducted multinomial logistic regression 

(Table 2). The results showed that both learning approach and grade can predict 

cluster membership. With the cluster “Weaker than expected in CKn and PKn” as 

base level, for every unit that the individual’ s LA score increases, it was 21.98 more 



Bempeni, Poulopoulou & Vamvakoussi 

2 -  62 

 

PME 44 -2021 

likely for the student to belong to the cluster “Stronger than expected in CKn and 

PKn” and 4.77 more likely to belong to the cluster “Stronger than expected in PKn”. 

Using the same base level, a ninth grader is 8.35 more likely to belong to the group 

“Stronger than expected in CKn and PKn” than to the group “Weaker than expected 

in CKn and PKn”. 

Predictor Weaker than expected in 

CKn and PKn 

Vs. 

B OR= exp(B) p-value 

Score in mathematics 

learning approach  

Stronger than expected in 

CKn and PKn 

3.09 21.98 0.000 

 Stronger than expected in 

PKn 

1.56 4.77 0.000 

 Stronger than expected in 

CKn 

0.42 1.53 0.390 

9th Grade Stronger than expected in 

CKn and PKn 

2.12 8.35 0.000 

 Stronger than expected in 

PKn 

0.18 1.19 0.606 

 Stronger than expected in 

CKn 

0.52 1.69 0.206 

Table 2: Predictive factor testing 

CONCLUSIONS – DISCUSSION 

The results of our study confirm the hypothesis that there are individual differences in 

the way students combine CKn and PKn for fractions (Hallett et al., 2010; 2012). 

Although older students were more likely to have strong CKn as well as PKn, a 

considerable percentage of 9th graders belonged to the clusters “Stronger than 

expected in PKn” and “Stronger than expected in CKn”, indicating that individual 

differences remain present up to Grade 9. It is worth noting that the greater part of our 

sample was found in the group “Stronger than expected in PKn”, indicating that 

instruction favours mainly the development of PKn (see also Canobi, 2004). 

In our attempt to detect the possible factors that are responsible for individual 

differences in CKn and PKn, we tested the hypothesis that the approach to 

mathematics learning predicts such individual differences. The LA score predicted the 

membership in the clusters “Stronger than expected in CKn and PKn” and “Stronger 

than expected in PKn”. This result only partially supports our hypothesis, due to the 

fact that the probability for a student to belong to the cluster “Stronger than expected 

in CKn” cannot be predicted; moreover, the mean LA score for this cluster was the 

second lowest one, lower than the mean LA score of the “Stronger than expected in 
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PKn” cluster. A possible explanation is, that as a result of using residualized scores in 

the cluster analysis (Hallett et al., 2010, 2012; Bempeni et al., 2018), the “Stronger 

than expected in CKn” cluster includes students with relatively stronger CKn given 

their PKn, but not necessarily in absolute terms; and similarly, for students in the 

“Stronger than expected in PKn” cluster. A different method for clustering the 

students, differentiating between the low from the high performing students could be a 

viable solution (see Lenz & Wittman, 2021, for such a method). 

Whilst the development of the two types of knowledge is not assumed to be 

symmetrical at any given moment (Rittle-Johnson & Schneider, 2015), our results put 

a challenge to the iterative model. More specifically, given the age and educational 

experience of the participants, we would expect a more balanced development of the 

two types of knowledge which is not the case in our study.  

The learning approach to mathematics deserves to be further investigated as a source 

of individual differences in CKn and PKn. The instrument that we developed is a 

contribution of some significance per se, since, to the best of our knowledge, there is 

no similar instrument targeting secondary students. An enrichment and refinement of 

our instrument, in view of the fact that several items had to be excluded from its final 

version following its evaluation, is worth-considering. 
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In this paper, we draw on the commognitive framework to explore types of 

mathematical growth during middle-school geometry peer interaction. Comparing 

students’ routines when working apart with their joint routines when working 

together, we identified four types of mathematical growth. Three types were object-

level growth: applicability, refinement, and flexibility. One type was a meta-level 

growth consisting of a shift from a configural/visual procedure to a deductive one. 

Our study pinpoints the types of mathematical learning that can be achieved during 

peer interaction and shows the ways in which they can occur. Specifically, the study 

shows how different types of growth can be achieved by students building on their 

partner’s procedure in different ways. 

RATIONALE 

Learning through peer interaction has come to be highly regarded not only as an 

important 21st century skill, but also as a means to improve learning (Kuhn 2015). 

Studies have shown that under certain interactional conditions, such as readiness of 

peers to listen to each other, problem-solving in pairs or small groups can be more 

conducive to students’ learning than solving a problem alone (e.g., Schwarz and 

Linchevski 2007). Other studies have examined the types of learning that can occur in 

peer interactions. Phelps and Damon (1989), for example, have found that peer 

interactions are more effective for conceptual learning and reasoning than for rote 

kinds of learning. Pai and colleagues (2015) showed, through the examination of 

pre/post-tests, that peer interaction is conducive to learners’ ability to apply or adapt 

prior knowledge to a novel situation. Although we learn from these studies about 

learning in peer interaction, we still know very little about the processes of 

mathematical learning that take place in these interactions and about how these 

different types of learning occur. In this study, our goal is to better understand how 

peer interaction promotes different types of growth in students' mathematical 

procedures used to solve a certain problem. 

THEORETICAL FRAMEWROK 

The theoretical framework which we use to pursue our goal is commognition (Sfard 

2008). Commognition is a sociocultural discursive framework which has been 

productive in studying processes of peer interactions (Chan and Sfard 2020; Sfard and 

Kieran 2001) as well as processes of mathematical learning (Lavie and Sfard 2019; 

e.g. Lavie, Steiner, and Sfard 2019). The commognitive framework conceptualizes 
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learning as a process of routinization of students’ actions (Lavie et al. 2019). Routines 

- repetitive patterns of actions – are thus the commognitive basic unit for analyzing 

learning. A routine is a task-procedure pair; it is defined as “the task, as seen by the 

performer, together with the procedure she executed to perform the task” (Lavie et al. 

2019:161).  

By studying mathematical routines, commognitive studies have been able to track 

learning over time and identify different types of growth in learners' routines (Lavie 

and Sfard 2019; Lavie et al. 2019). Flexibility is one such type of growth. A routine 

grows in its flexibility when another procedure is used in response to the same task. 

For example, Lavie and Sfard (2019) showed a growth in a young child’s routine for 

the task "where is there more?" when in addition to the initial procedure of visually 

estimating two piles of cubes, the child used another procedure of aligning these 

cubes. The child’s routine thus grew in flexibility to offer two alternative procedures 

for accomplishing the task. Applicability is another type of growth. Growth in 

applicability is detected when after applying a certain procedure to a certain task, a 

learner applies the same procedure to a new unfamiliar task. 

Much of the growth in children's mathematical routines happens at the object level. As 

they become familiar with certain procedures (e.g., adding, dividing) and certain 

objects (e.g., natural numbers), learners gradually apply the familiar procedures to 

different tasks, producing an increasing number of narratives about these objects. This 

growth constitutes object-level learning. Yet from time to time, as students gradually 

get introduced to more sophisticated mathematical discourses, a meta-level change is 

needed (Sfard 2007). Such a meta-level change can happen when rules for 

substantiating mathematical narratives change, or when new objects are introduced. 

For example, when students get introduced to rational numbers, the familiar arithmetic 

rules that had so far been successfully applied to natural numbers no longer apply. 

In this study, we wish to examine processes of peer interaction in junctures that afford 

object-level as well as meta-level learning. We pursue this goal by focusing on 

middle-school geometry, since a particularly critical transition is required from 

students in those years – the meta-level shift to deductive geometric procedures 

(Duval 1998). In this transition, students who are used to performing visual-configural 

procedures for substantiating claims about geometric objects (such as showing 

congruence by placing one triangle on top of the other) are required to shift to using 

new deductive procedures based on given data and geometric theorems (such as 

congruence theorems).  

For examining mathematical learning in peer interaction, we add to our commognitive 

conceptual toolset the concept of a joint routine which we define as the collection of 

procedures used by a group (or pair) of people working together on the same task. 

Based on this theoretical framework, we ask: in what ways did students’ geometric 

joint routines grow during middle-school geometric peer interaction? 
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METHODOLOGY 

The participants of our study were 10 middle-school students, six 8th graders (13-year-

old) and four 9th graders (14-year-old), who took part in in a one-hour geometric 

activity facilitated by the first author. The design of the activity was based on 

videotaped lessons of the VIDEO-LM project (Karsenty and Arcavi 2017) in which a 

geometric problem called The three squares was presented. The students in these 

lessons were asked to compare areas in three drawings. The canonical (correct) 

answer is that all areas are equal. Our design included: (1) a presentation of the 

geometric problem; (2) an individual session in which students worked on a worksheet 

(see Figure 1); (3) a dyadic session in which they worked on the same worksheet. 

Colored, half-transparent plastic shapes of a square and a triangle were given to the 

students as supporting tangible mediators.  

 

Figure 1: The worksheet 

Data collected included students’ 10 individual worksheets and 5 dyadic worksheets 

as well as footage from different cameras of both individual and dyadic sessions. 

Individual and dyadic sessions were fully transcribed (including non-verbal 

communication) and analyzed using footage from different cameras. Overall, 1530 

transcription lines of verbal and non-verbal communication were analyzed.  

Data analysis included the following steps: (a) analyzing students’ visual mediators by 

adding to each line in the transcript a graphic representation of what they did, looked 

at and pointed to in the worksheet; (b) identifying students’ procedures for the task of 

comparing areas when working alone, by examining students’ written answers in 

individual worksheet as well as the footage from their individual session and their 

communication at the beginning of dyadic session (c) tracking developments in dyads’ 

joint routine for the task of comparing areas when working together, by analyzing 

their communication during dyadic session as well as their dyadic worksheet; (d) 

deductively and inductively identifying types of joint routine growth. 
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FINDINGS 

Individually, the ten students used four main procedures for the task of comparing 

areas. These were: (1) the “Supplement procedure” – cutting and “moving” parts in 

order to supplement similar-looking shared areas; (2) the “Ratio procedure” –visually 

estimating the ratio of the shared area from the whole square; (3) the “Formula 

procedure” – visually estimating the relation between heights and bases of the shared 

areas and then applying to it an area formula (such as base*height/2); and (4) the 

“Given procedure” – examining the givens (or lack thereof) to assess if enough 

information is provided.  

During the start of the dyadic session, the students within each dyad (dyad 1 to 5) 

compared their solutions with the solutions of their dyadic partners and tried to reach 

an agreement. Some of them used different procedures in their individual routines for 

comparing the shared areas.  

Examining students’ joint routines during dyadic session, we found four ways in 

which growth in these routines occurred. Three of these ways were object-level. In 

other words, the growth did not include a change in meta-rules. These categories of 

growth were: (1) applicability; (2) refinement; and (3) flexibility. Two of these growth 

patterns – applicability and flexibility – have been known from previous studies 

(Lavie and Sfard 2019; Lavie et al. 2019). Refinement is a new bottom-up category 

that we used to describe growth which included the refinement of specific steps in a 

procedure previously used by one of the students. The fourth type of growth was a 

meta-level shift to deductive procedures. Table 1 presents these types of growth, their 

description, and examples.  

# Type Description Example 

1 Applicability 

(Object-level 

growth) 

Extending 

application of an 

initial procedure 

to another task 

The Supplement procedure, initially applied 

by one of the students only in relation to the 

comparison between shared areas I and II, 

was applied in dyadic sessions also to the 

comparison between shared areas I and III. 

2 Refinement 

(Object-level 

growth) 

 

Refining steps of 

an initial 

procedure 

In the Ratio procedure, the step of visually 

estimating the ratio of the shared area from 

the whole square was refined into two 

separate steps: (a) visually estimating how 

many times the shared areas can fit into the 

square; (b) deducing the ratio of the shared 

area from the whole square. 

3 Flexibility 

(Object-level 

growth) 

Forming a new 

procedure based 

on an initial 

procedure (same 

A new rotational procedure was formed 

based on the Ratio procedure. Both 

procedures, the original and the newly 

developed, relied on the same meta-rule of 
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meta-rules) visual estimation. 

4 Meta-level 

growth 

Forming a new 

procedure based 

on an initial 

procedure (more 

developed meta-

rules) 

A new deductive congruence procedure was 

formed based on the Supplement procedure. 

The newly formed procedure relied on a 

more developed meta-rule (visual estimation 

is insufficient; justifications should be based 

on theorems and givens). 

Table 1: Types of growth in joint routines during dyadic session 

In what follows, we illustrate two of these types of growth – applicability and meta-

level. We do so by focusing on the development of the most commonly used 

procedure – the Supplement procedure – through the case of dyad 1 (8th graders Noa 

and Eyal) and dyad 4 (9th graders Tamara and Orna).  

Example of growth in applicability during dyad 1’s session 

Analyzing Noa and Eyal’s initial processes in individual session, we found that Eyal 

only used the Ratio procedure, while Noa only used the Supplement procedure. Noa’s 

use of the Supplement procedure was limited to the comparison between shared area I 

and II. Although they used different procedures to compare between shared areas I 

and II, they endorsed the same narrative, namely, that shared area I and shared area II 

are equal. Here is how Noa explained her procedure to Eyal at the start of their dyadic 

session: 

Legend: (implied words); [parallel speech]; right column: representations of visual 

mediators. 

 

 

Look, these (shared areas I and II) are 

definitely equal 'cause… 'cause if you cut 

this, say, in half… here (draws line a), so 

what we have here (points to triangle b) 

you can move here (c), so we get a triangle 

(like shared area II) (in the picture to the 

right, Noa uses the plastic shapes to 

demonstrate more tangibly her procedure) 

Noa 36 

How did you think about that?? Eyal 37 

From her written answer in her individual worksheet as well as from her explanation 

in this excerpt, we deducted that Noa’s procedure for comparing shared areas I and II 

included: (1) identifying the geometric shapes of the shared areas. This is evident in 

her reference to shared area I as “square” and to shared area II as “triangle”; (2) 

cutting the shape (line (a) cuts the square) of one area (area I) into sub-shapes (two 

triangles); (3) moving a sub-shape (triangle b) to another place (c) in the same 

drawing (I) so that it supplements a shape (triangle) similar to the other area (area II); 

(4) determining the relation between the shared areas (I and II) according to a visual 

comparison between the newly formed area (formed triangle in drawing I) and the 
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other area (triangle in drawing II). The same procedure, with slight variations, 

recurred several times in students’ answers, and was named the Supplement 

procedure.  

Eyal’s reaction to Noa’s Supplement procedure, communicates not only that the 

procedure was new to him, but that he was surprised by and appreciated Noa’s 

“thinking” (37). Following his reaction Noa suggested that they write her explanation 

in their shared worksheet. Eyal then said:  

Yes, wait a second, you can cut also here (a), see? From here (a) and then 

put it here (b), We get this (c) 

Eyal 47 

 

Why? Noa 48 

To cut this, you can… Eyal 49 

[No but listen] Noa 50 

[take here this] small piece (a) Eyal 51 

[Aha] Noa 52 

[and then you] put it (a) here 

(b) 

Eyal 53 

But it’s not enough for… [ahh right, o.k., you’re right] Noa 54 

Here, Eyal applied Noa’s Supplement procedure to the task of comparing between 

shared areas II and III. He suggested cutting the shape of one area into sub-shapes and 

moving a sub-shape to another place so that it supplements a similar looking shape. 

Therefore, Eyal did not only adopt Noa’s Supplement procedure (starting his 

suggestion with “yes”), but also built upon it to suggest a new application 

(comparison between II and II) to the same procedure, an application which was not 

previously used by Noa. His words in line 47 communicate that he found (“wait a 

second”) a new way of applying the same procedure (“also”, “see?”). Therefore, Noa 

and Eyal’s joint routine for comparing areas grew in applicability: from only applying 

the Supplement procedure to the task of comparing areas I and II at the start of dyadic 

session (Noa’s individual routine) to applying it also to the task of comparing between 

areas II and III (Noa and Eyal’s joint routine). 

Example of meta-level growth during dyad 4’s session 

Meta-level growth was found only in the interaction of Tamara and Orna, a pair of 

relatively high achieving 9th graders. This did not come as a complete surprise since 

only two interactions (Orna and Tamara’s and one more dyadic interaction) were of 

9th grade dyads; the other three were of 8th grade dyads, who were at the very initial 

stages of exposure to deductive geometric procedures. Both Tamara and Orna started 

out with configurally-based procedures. Orna used the Ratio procedure, while Tamara 

used the Supplement procedure. Toward the end of the pair’s session, a meta-level 

growth in the dyad joint routine occurred when the girls discussed why shared area I 

a b c
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and III are equal. The following exchange begins with Tamara suggesting using the 

Supplement procedure for comparing areas I and III: 

 

… you need to say that, like you 

move this part (a) to here (b) and 

then like [it will form a square] 

Tamara 132 

[I have an idea], if we, like, show congruence (between) this (a) and 

that (b), then… (given the context of previous utterances we interpret 

this as meaning: by showing that these triangles are congruent, we can 

show that their areas are “the same”) 

Orna 133 

 …   

No, No look, you need to say that this (a) is like (meaning congruent 

to) this (b) in order for it to be ok to move the… 

Orna 141 

In line 132 Tamara suggested her Supplement procedure: to move part (a) so that it 

covers part (b) and forms a square similar to the shared area in drawing I. In response 

to Tamara’s suggestion, Orna proposed that they use congruence theorems to 

substantiate that the areas of the triangles (a and b) are the same (“I have an idea, if 

we, like, show congruence” [133]). In line 141, Orna further explained that in order to 

claim that triangle (a) can be moved on top of the triangle (b) in a way that exactly 

covers it, they need to show that they are congruent (“you need to say… in order 

for…”). In other words, she did not agree (“no, no…”) with the meta-rule of the 

Supplement procedure that visual estimation is enough. Rather, she drew on the 

Supplement procedure to suggest a new deductive congruence procedure. The newly 

formed procedure relied on a more developed meta-rule (visual estimation is 

insufficient; justifications should be based on givens and theorems). By that, Tamara 

and Orna’s joint routine for comparing areas underwent a meta-level shift. 

DISCUSSION 

Our goal in this study was to explore types of mathematical growth in peer interaction. 

Specifically, we examined developments in students’ joint routines around a 

geometric problem that invited movement from purely configural/visual procedures to 

deductive ones. We found four ways in which students' routines grew during 

interaction. Three of these were object-level learning – applicability, refinement, and 

flexibility – while the fourth was a meta-level learning that included a shift from 

configural to deductive meta-rules. Our study contributes to commognitive research 

by extending the application of the study of routine growth (Lavie et al. 2019) from 

individuals’ learning to peer learning. In addition, it adds on previous research on peer 

learning (Kuhn 2015) by pinpointing the types of mathematical learning that can be 

achieved during peer interaction, and showing the ways in which they can occur. 

Specifically, the study shows how different types of growth can be achieved in 

routines by students building on their partner’s procedure in different ways. 
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The conclusions from this study are limited by the relatively small scope of cases, a 

regular limitation in studies that take such a micro-analytical look at students' 

discourse. Thus, future studies are needed to determine the relative frequencies of 

different types of joint routine growth in peer interaction. In addition, it is yet to be 

examined how much of what is developed jointly during students' interaction is later 

individualized by the participating students. Nevertheless, we believe that through our 

detailed theoretically anchored report, we are making progress in understanding the 

precise mechanisms of mathematical learning during peer interaction. A better 

understanding of these mechanisms of peer learning can aid educators in preparing, 

designing, and facilitating collaborative activities in the mathematics classroom. 
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Over the last decades, there has been an on-going international reform for school 

mathematics, which has, not surprisingly, been difficult to implement. This study 

focuses on teachers’ interpretation of formal written curriculum documents, 

especially whether their interpretations align with how a concept (the concept of 

problem) is conveyed in the documents (in Sweden). The results show that the formal 

written documents are vague, but that it to some extent conveys the concept of 

problem as “a task for which the solution method is not known in advance to the 

solver.” The interviews show that about 53 % of the teachers interpreted problem as 

“any task,” and that teachers’ interpretations therefore are not aligned with how the 

concept is (albeit vaguely) conveyed in the documents. 

INTRODUCTION 

During the last 25 years, the descriptions of school mathematics have gradually 

changed all over the world. The main message of this reform is to complement content 

goals (such as algebra) with competency goals (such as problem solving) and this idea 

can be found in many international reform frameworks (e.g., NCTM, 2000; Niss & 

Jensen, 2002). In many countries the formal written (national) curriculum documents 

now use these kinds of competency goals to formulate goals for student learning in 

mathematics (e.g., in Singapore, SME, 2012). Many researchers argue that in the heart 

of doing mathematics you find problem solving (e.g., Schoenfeld, 1992) and problem 

solving is sometimes considered as the most important part of the reform. There is a 

lot of research on the implementation of educational reforms, for example, in Norway 

(e.g., Gundem, Karseth, & Sivesind, 2003), and in North America (e.g., Fullan, 2001). 

One main result is that educational reforms most often do not give the desired effect in 

schools (Hopmann, 2003) even when the teachers themselves believe that their 

teaching reflects the new ideas (e.g., Stein, Remillard, & Smith, 2007, p. 344). It is 

therefore important to understand how the different parts of the curriculum chain are 

connected. The purpose of this study is to deepen the understanding of the connection 

between written and intended curriculum in mathematics. The study will compare how 

a central standards-based reform concept is conveyed in the Swedish formal written 

curriculum (the policy documents) with how it is interpreted by Swedish teachers’, 

that is, the intended curriculum. In particular, we focus on the concept of problem and 

on Sweden, as one of the countries that has been part of the standards-based reform.  
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CURRICULUM CHANGE 

The word curriculum has many different meanings in research. In this article we use a 

framework suggested by Stein et al. (2007), including the written (the printed page), 

the intended (as planned by the teachers), and the enacted (actual implementation in 

the classroom) curriculum. Research has shown many possible reasons that a reform 

does not result in change in teacher practice, that is, that change in the written 

curriculum does not result in change in the enacted. One possible reason is that the 

reform message is not clearly conveyed to the teachers (Fullan, 2001). Another is that 

the teachers are not supported enough to carry out the change (Fullan, 2001). Different 

parts of the chain between written curriculum and student learning have been studied 

extensively (see e.g., Stein et al., 2007), but in comparison there is not much research 

on teachers’ interpretation of the formal written curriculum.  

DEFINITIONS OF PROBLEM AND PROBLEM SOLVING 

Problem solving has had an important role in many areas of research, for example, in 

cognitive psychology as the “paradigm for the higher cognitive processes” (Kintsch, 

1998, p. 2). There are, however, many possible different definitions of problem and 

problem solving, and this has often been discussed (see e.g., Schoenfeld, 1992; 

Xenofontos & Andrews, 2014). In the words of Stigler and Hiebert (2004), “the word 

‘problem’ clearly means different things to different people” (p. 13). 

A traditional definition of the concept of problem is that it is any task including both 

routine and non-routine tasks (Schoenfeld, 1992, p. 337). This definition is in line 

with definitions presented in both English and Swedish dictionaries. Within 

mathematics education research, this traditional definition is often questioned: “In 

education it is important to distinguish a problem from a simple question to which the 

answer is known without any need for reflection” (Borba, 1990, p. 39).  

Another definition that is more common today is to see a mathematical problem as a 

task for which the solution method is not known in advance for the solver (see e.g., 

Blum & Niss, 1991). In addition, this is a common definition in standards-based 

reform, which is central to this study (e.g., NCTM, 2000). Lester (2013) summarizes 

that although there have been many different research areas that have focused on 

problem solving, in general, “they all agree that a problem is a task for which an 

individual does not know (immediately) what to do to get an answer” (p. 247).  

Another suggested definition of problem is word task, that is, a task with verbal text 

describing a situation or a context (see e.g., Borasi, 1986). A real-world task, that is a 

task with a real-world context or an applied task (se e.g., Chen, 1996) is also a 

suggested definition. In conclusion, even though most researchers presently define 

problem in line with a task for which the solution method is not known in advance for 

the solver there are many different definitions of and opinions regarding what a 

problem is. 
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TEACHERS’ INTERPRETATIONS OF THE CONCEPT OF PROBLEM 

That many mathematics education researchers use the same definition of what a 

problem is, does not necessarily imply that teachers would agree. Few studies focus 

on how teachers actually define what a problem or what problem solving is 

(Xenofontos & Andrews, 2014). Grouws, Good, and Dougherty (1990) interviewed 

24 teachers and summarized their conceptions of problem solving into four categories: 

solving word problems (6 teachers), solving real-world problems (3 teachers), solving 

problems (10 teachers) and solving thinking problems (6 teachers). The third category 

is described as following a “step-by-step adherence to predetermined guidelines” and 

“involved computations or setting up equations” (p. 137), which we interpret as 

including any task and, perhaps in particular, routine tasks. Another study examined a 

representative random sample of 63 Finnish third grade elementary teachers’ 

conceptions about mathematical problem and problem solving (Näveri, Pehkonen, 

Hannula, Laine, & Heinilä, 2011). On the multiple-choice question, “What is a 

problem?” most of the teachers (70 %) answered that it primarily is a word task. For a 

smaller group of teachers (24 %) “problem is a task for which the solution is not 

known” (p. 5). In conclusion, teachers’ definitions of the concept of problem varies, 

and also vary between cultures, but are generally not in line with the most common 

definition within mathematics education research. 

PURPOSE AND RESEARCH QUESTIONS 

The purpose of this study is to deepen the understanding of the connection between 

written and intended curriculum in mathematics. The study will therefore compare 

how the concept of problem is conveyed in the Swedish formal written curriculum 

(the policy documents) with how it is interpreted by Swedish teachers. The research 

questions are: 

1. What meaning of the concept of problem is conveyed in the Swedish formal 

written curriculum in mathematics? 

2. How do Swedish mathematics teachers interpret the concept of problem when 

it is used in the formal written curriculum in mathematics? 

METHOD 

The method consists of an analysis of the written Swedish formal written curriculum, 

in relation to research question 1, and another analysis of teachers’ interpretations of 

curriculum documents, in relation to research question 2, as described below.  

Categories for Analysis 

The analyses use four categories of possible definitions of the concept of problem, 

chosen since they represent the four most common definitions within mathematics 

education research, as presented in the Background. The categories are:  

1. any task (including routine tasks) 
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2. tasks for which the solution method is not known in advance to the solver (i.e., 

non-routine tasks) 

3. real-world tasks, that is, tasks set in a context or applied tasks  

4. word tasks, that is, tasks with verbal text describing a situation or a context 

All these definitions make sense in a mathematics. However, note that the categories 

are not disjoint, since categories 2-4 are subsets of category 1. 

Data Collection and Analysis of the Formal Written Curriculum 

To answer the first research question, the Swedish formal written curriculum for 

mathematics in primary and lower secondary school and for upper secondary school 

valid at the time of the interviews (Utbildningsdepartementet, 1994) are examined. 

For upper secondary school, we analyze one text describing mathematics in general, 

common to all courses, and the text describing course A, since it is the only 

compulsory course for all students. We also include the official Commentary 

documents written by experts engaged in the writing of the formal written curriculum 

for mathematics for primary and lower secondary school (Emanuelsson & Johansson, 

1997). There were no other official documents explicitly concerning mathematics 

valid at this time.  

The formal written curriculum is searched for all instances where the word problem is 

used. The search includes the word problem, as well as any compound word including 

the word problem, such as problem solving (Sw. problemlösning). All instances are 

then analyzed in two steps. First, and most importantly, by examining each instance in 

search for definitions, explanations, and examples. Second, by examining whether the 

wording in the instances are in line with one or more of the definitions of problem (1-

4) or if any instance has a wording that conflicts with any of these.  

Data Collection and Analysis of Teachers’ Interpretations 

This part of the data collection was carried out within a larger project (see Boesen et 

al., 2014) in which almost 200 teachers were observed and interviewed. The selection 

of schools was “based on stratified random sampling and was carried out by the 

Swedish Schools Inspectorate” (Boesen et al., 2014, p. 77). The data in this particular 

study consists of answers to one specific interview question from 126 upper secondary 

mathematics teachers and 61 primary and lower secondary school teachers, in total 

187 teachers. During the interviews the teachers were presented quotes from the 

formal written curriculum and one quote included the word “problem”. The quote 

presented to the upper secondary school teachers was: “Pupils use appropriate 

mathematical concepts, methods, models and procedures to formulate and solve 

different types of problems”. The quote shown to the primary and lower secondary 

school teachers was similar. The teachers were then asked: “How do you interpret the 

word problem?”  

The analysis was carried out in three steps. First, the researchers separately analyzed 

the answers from the upper secondary school teachers (126 answers) using the 
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categories presented above. The researchers made the same categorization for 103 of 

these, which indicates a reasonable inter-rater reliability. Second, the researchers 

discussed the 23 answers for which they did not initially agree, which resulted in more 

detailed instructions regarding how to interpret the categories. Third, the remaining 61 

answers) were analyzed by the second researcher.  

RESULTS 

The Concept of Problem in the Written Curriculum 

The first research question is: What meaning of the concept of problem is conveyed in 

the Swedish formal written curriculum in mathematics? In the documents for primary 

and lower secondary school) the word problem is used 21 times as it is or in 

compound words. In the documents for upper secondary school, it is used 25 times. 

First, and most importantly, examining the 46 instances, our main result is that there is 

no definitions, explanations, or examples of what a problem or problem solving is.  

Second, that 37 of the 46 instances are compatible with all the definitions used in the 

analysis (1-4). Typical examples are instances saying that a problem can be solved, 

understood, developed, formulated, and that different methods can be used to solve 

problems, and all these are reasonable regardless of definition used. The other nine 

instances have wordings that are to some extent in conflict with one or more of the 

definitions. For example, the wording “mathematical problem solving is a creative 

activity” is in conflict with the definitions that include routine tasks. In summary, the 

concepts are undefined and used in a vague or even contradictory way. This is also the 

case for most other concepts in the Swedish formal written curriculum (Bergqvist & 

Bergqvist, 2017).  

In the Commentary, the development of problem solving is described as a central 

purpose of all mathematics education (Emanuelsson & Johansson, 1997). The word 

problem is not explicitly defined but is used under the headline Problem solving: 

“Sometimes it is not even a genuine problem since the needed calculation method is 

given through the context or the chapter heading...” (Authors’ own translation. 

Emanuelsson & Johansson, 1997, p. 18). For a genuine problem “the needed 

calculation method” is not “given through the context or the chapter heading”, which 

indicates that a “genuine problem” is of type 2, tasks for which the solution method is 

not known in advance to the solver. Our conclusion is that in the Commentary a 

problem is conveyed as category 2, but that the wording is vague. 

The answer to research question one is that the conveyed meaning of the concept of 

problem in these documents is unclear. The concept is not defined, explained, or 

exemplified in any text, but it is to some extent conveyed as being of type 2, tasks for 

which the solution method is not known in advance to the solver (or non-routine 

tasks). 
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Teachers’ Interpretations of the Concept of Problem 

We present 187 teachers’ interpretation of the word problem in the written curriculum. 

Four categories (1-4) of possible interpretations were predefined and 151 of the 187 

teachers gave answers that could be placed within these categories (see Table 1). 

Interpretation of 

problem 

Primary and 

lower secondary 

teachers (61) 

Upper secondary 

teachers (126) 

All teachers (187) 

1. Any task 49% (30) 55% (69) 53% (99) 

2. Task for which the 

solution method is not 

known in advance 

10% (6) 15% (19) 13% (25) 

3. Real-world task 3% (2) 8% (10) 6% (12) 

4. Word task 10% (6) 7% (9) 8% (15) 

5. Other 28% (17) 15% (19) 19% (36) 

Table 1: Percentage (number) of teachers making interpretations of  

the concept of problem in line with each of the predefined categories. 

The most common answer was that a problem is any task (99 teachers). This was 

expressed in a few different ways, but the most common answer (given by 61 

teachers) was “uppgift”, which is Swedish for “task.” Other answers categorized as 

any task were “something to be solved” and “everything is a problem.” In category 2, 

18 of the 25 teachers used expressions close to the definition in this study, like 

“unfamiliar tasks”, “when you don’t know how to solve it,” and “when you can’t see 

the answer.” The remaining 7 used expressions that were not as close to the definition, 

for example, “many solutions”, but we chose to include them to avoid underestimating 

the category that is most common among researchers. Twelve teachers used 

expressions that were categorized as real-world tasks. In this category, statements like 

“applications”, and “real life tasks” were placed. Fifteen teachers said that a problem 

is a word task. They all used either the expression “text task” (Sw. textuppgift) or the 

expression “reading task” (Sw. lästal or läsuppgift). The expressions put in category 

5, other, were of different types, for example, “problems are mathematical problems”, 

and “it can be on different levels, different for different students.” In general, these 

answers were hard to interpret. Three teachers in this group answered: “I don’t know 

what a problem is.” 

The answer to research question two is that there is a large variation in how Swedish 

mathematics teachers interpret the concept of problem, but that more than half of the 

teachers interpret it as any task. 



Bergqvist & Bergqvist 

2 -  79 

 

PME 44 -2021 

DISCUSSION 

The purpose of this study is to deepen the understanding of the connection between 

written and intended curriculum in mathematics, and the study has a particular focus 

on the concept of problem. The results show that the formal written documents and 

the Commentary are vague, but that they to some extent convey that a problem is a 

task for which the solution method is not known in advance to the solver. The 

interviews show that about 53% of the teachers interpreted problem as any task, and 

that the rest of the teachers interpreted it in many different ways. The teachers’ 

interpretations are therefore not aligned with how the concept is (vaguely) conveyed 

in the documents.  

In the formal written curriculum, problem is a very central concept, and it is implied 

that a significant part of the students’ work in mathematics should be devoted to 

solving problems. Different interpretations of the word problem could therefore lead 

to very different teaching practices. One example is that Swedish students spend a 

large part of their time (two thirds of the lessons) during mathematics classes working 

with the textbook (Boesen et al., 2014). Interpreting problem as any task means that 

the students already spend two-thirds of their time on problem solving. A teacher 

interpreting problem as a task for which the solution method is not known in advance 

to the solver, would have to examine the textbook tasks and probably add different 

kinds of tasks from other sources in order to ensure that their classroom practice meets 

the goals of the written curriculum. In this case, different interpretations of the written 

curriculum would result in large variation regarding both the intended and the enacted 

curriculum. Under these circumstances, the formal written curriculum cannot be said 

to clearly guide the teachers’ practice, a situation in line with previous research (e.g., 

Hill, 2001). In this study we asked teacher to explain what a problem is, but not what 

problem solving is. Initially it was assumed that problem solving would be considered 

to be the same thing as solving problems. However, three teachers suggested that 

problems to be solved during problem solving are of a different kind than problems in 

general.  
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In this paper, a semiotic perspective on mathematics learning is taken, focusing on 

diagrammatic work and thus on diagrammaticity. With this theoretical approach, 

action on diagrams, which include designing, manipulation and experimenting with 

diagrams on paper, on the computer screen or with physical material, are examined 

in more detail. It is assumed that the actions on diagrams show the mathematical 

interpretation of actors, which can be used to draw conclusions about their 

mathematical awareness. With the help of Vogel’s (2017) adaptation of the context 

analysis according to Mayring (2014), mathematical interpretation processes from 

young learners are reconstructed using a geometric example of actions on physical 

material. 

INTRODUCTION  

The semiotic perspective on mathematical learning makes it possible to focus more 

strongly on materialised actions and to use these as a starting point for the 

identification of the learners’ mathematical interpretation processes and thus to make 

them accessible for research in mathematics education. The material arrangement — 

often initiated by the formulated work task and the materialisations given therein (on 

paper, on the screen or in form of physical material) — is interpreted as a 

mathematical diagram and represents the beginning of diagrammatic work. In 

diagrammatic work, diagrams are interpreted mathematically, and rule-guided actions 

are performed in the diagrams. The implicit or explicit interpretation of diagram rules 

depends, among other things, on the selected material and problem arrangement. 

Which possibilities of reconstruction open up for research into mathematical 

interpretation processes and thus mathematical learning through this semiotic 

perspective will be presented in the following using a geometric example from 

primary school. 

THEORETICAL FRAMEWORK  

Mathematical Learning from Semiotic Perspective 

From a semiotic point of view, learning of mathematics is seen as a perceptible action. 

These actions include dealing with diagrams, manipulating and experimenting with 

diagrams as well as inventing new diagrams (Dörfler, 2006) “A Diagram is a 

representamen which is predominantly an icon of relations and is aided to be so by 

conventions.” (CP 4.418). The relations and conventions of a diagram become clear 
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through the interplay of different inscriptions. Inscriptions can be signs on paper, 

illustrations on screen or consist of tactile material (Gravemeijer, 2002). In order to do 

mathematics with diagrams, the implicit and partly conventionalised rules in which 

the relation of the diagram are expressed must be interpreted by the learners. Only by 

this interpretation rules become usable for manipulations and the learners can 

experiment with the diagram. Through a rule-guided transforming of the diagram, a 

learning space is opened up for the learners, in which the learners can apply existing 

mathematical knowledge but also can gain new mathematical knowledge, and thus 

mathematical learning takes place. These insights include, for example, the 

determination of characteristics, the discovery of previously unknown relationships or 

the calculation of a result. Learning mathematics can thus be seen as interpreting and 

acting with diagrams (Dörfler, 2006).  

Semiotic Perspective on Actions on the Material  

The semiotic perspective on mathematical learning, especially the diagrammaticity 

described above (Dörfler, 2006), is another way to grasp actions on materials 

theoretically. The widespread view of material in mathematics teaching is that it is 

used to construct mental images (Lorenz, 1993; Dörfler, 1991). The material is usually 

assigned the function of representation. These representations of mathematical 

objects, which are concretely available through the materialisation, can be used for 

actions. Materialisations from a semiotic perspective do not stand for a mathematical 

object but allow to make mathematical experiences through manipulations and their 

interpretations. “[…] the number line does not represent Z in an objective manner. 

However, the number line can be used to think ‘about’ whole numbers and their 

operations and relations.” (Dörfler, 2000, p. 103) 

Therefore, in this paper actions are to be understood as what learners do in order to 

design diagrams (on paper, on the screen or in form of physical material), to 

manipulate them according to certain rules (also conventionally shaped) and to 

experiment with them. The central assumption for this paper is that actions on 

diagrams show the mathematical interpretation of the actors, from which their 

mathematical knowledge and mathematical cognitive processes can be deduced 

(Dörfler, 2000). Thus, the actions are the starting point for the reconstruction of the 

mathematical interpretations of the diagrams of the learners. Through actions, further 

inscriptions can be designed as part of the diagram on which the learners perform 

further actions and which they can take into interaction with other learners. Thus, the 

action itself is temporary, and the resulting inscription (manifestations on the material) 

can be interpreted as a diagram and manipulated by the learners. In this way, further 

actions emerge from actions, which can lead to mathematical awareness (Dörfler, 

2000).  
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RESEARCH DESIGN AND GOALS  

The Study “MatheMat — Mathematical Learning with Materials” 

The study “MatheMat — Mathematical Learning with Materials” focuses on primary 

school children’s actions on various material (digital and physical) (Billion, 2018). In 

four learning situations, primary school children deal with the representation of data, 

and in another four learning situations they deal with geometric quantities (e.g. 

volume and surface). Each learning situation is realised on the one hand with physical 

material and on the other hand with digital material. In total, 32 children (16 child 

pairs) from third and fourth grade participate in the study. Each child pair works on 

one geometric and one statistical problem, working once with digital and once with 

physical material. The processing time of one problem is about 45 minutes. The 

processing of the primary school children was recorded with two video cameras. One 

camera records the long shot, and the second camera focuses on the actions on the 

material. Specially selected video sequences from the learning situations are 

transcribed in order to be able to analyse them qualitatively. For this paper, the 

geometric learning situation “Relationship between surface and volume of similar 

cubes”, which is realised with physical material, is selected.  

Learning Situation “Relationship Between Surface and Volume of Similar 

Cubes” 

As in all learning situations, prompts are available to the fourth-graders. Prompts are 

challenges or short questions that activate learners’ mathematical concepts and 

knowledge, induce the execution of processes and stimulate cognitive and 

metacognitive strategies (Bannert, 2009). The learning situation starts with the same 

prompt for all learners. This prompt intended to stimulate with a question to produce 

similar cubes using an edge model. In this way, the concept of similar cubes can be 

clarified at the beginning.  

In order to structure this first approach, at the beginning the learners are asked to 

consider a similar but larger cube and then to build it. In this way, learners intuitively 

but also systematically generating rules for the construction of similar cubes. Plastic 

sticks of different lengths are available to the learners to build the edge model, which 

they can plug together with corner connectors. Furthermore, in the arranged learning 

environment (see Fig. 1) they can use a wooden cube, which is introduced as a unit 

cube, and a flat square grid with the grid size of one side area of the unit cube. After 

processing the start prompt, further prompts are available to the learners. The order of 

processing is determined by the children. 
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Figure 1: Prompts and the material arrangement from the selected learning situation 

The prompts are written on paper cards that 

are spread out on the table in front of the 

learners. Each prompt contains the same 

information text, which clarifies basic 

concepts, a work assignment usually in the 

form of a question and a request for the 

children to reflect on their learning process 

or to note down results. The learners can 

flexibly decide which prompt they want to 

work on. If they do not understand the 

question of the prompt, they can put it in the 

back and work on another prompt first. Using 

the prompts, learners are asked to check how 

many unit cubes fit into and how many unit 

squares fit on all sides of the edge models of 

similar cubes and what patterns can be 

discovered.  

Figure 2: Prompt with which the children 

work in the transcribed scene 

To determine this, learners can use the square grid and the unit cubes, indicating the 

volume and surface in unit cubes or squares. The learners have the instruction to 

record their observations, findings and results either verbally or in writing e.g. in the 

form of a table.  

DATA ANALYSIS  

For the analysis of the data, selected sections of the video material are transcribed. For 

this purpose, those places in the data material are selected where the child pairs 

working with digital or physical material use at the same place in the order of 

processing (e.g. the third place) the same prompt. In the transcripts, all action on the 

material and gestures of the children are reproduced in detail.  
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On the basis of the theoretical explanations, the following research question will be 

pursued in this paper: Which mathematical interpretations of the learners can be 

reconstructed on the basis of their actions on physical material during their processing 

of the learning situation “Relationship between surface and volume of similar cubes”?  

Methodological Approach — Analysis of the Mathematical Interpretation  

The basis of the qualitative reconstruction of the learners’ mathematical 

interpretations of the diagrams and their actions on them is the adaption of the context 

analysis (explication) according to Mayring (2014) for mathematical learning 

processes made by Vogel (2017). Here, the explication of a linguistic expression is 

transferred to the reconstruction of mathematical concepts. This adaption (Vogel, 

2017, pp. 68–69) is specified for the reconstruction of learners’ interpretations as 

follows.  

Step 1 – Determination of evaluation unit: As a starting point for the context analysis, 

a transcript passage is selected in which a mathematical (diagrammatic) action is 

described that is significant in the situation and that matches the research question and 

in this case is interesting for the reconstruction of the learner’s individual 

interpretations.  

Step 2 – Explication 1 — mathematically and diagrammatically intended actions of 

the evaluation unit: (E1.1) Determining mathematically and diagrammatically 

intended actions by prompts and chosen material based on mathematical contents. 

(E1.2) Analysis of the transcription passage with regard to the shown actions and the 

interpretation of the actor expressed therein by contrasting them with the intended 

action. (E1.3) Compilation of the previous findings.  

Step 3 – Explication 2 — narrow context analysis: (E2.1) All actions which are 

directly related to the transcript passage to be explained are compiled. (E2.2) Pursuing 

actions are searched in the transcript, which provide further dissociations for the 

actor’s interpretations. (E2.3) These transcript passages are the starting point for in-

depth analyses. The description of the mathematically intended actions from 

Explication 1 as a frame of reference may need to be extended at this point. 

Step 4 – Explication 3 — broad context analysis: Further explanatory material of the 

transcript is compiled, such as non-transcribed sections of the videographed learning 

situation. These will be used for a more in-depth continuation of the reconstruction.  

Step 5 – Conclusion: Now, the reconstructed aspects of the mathematical 

interpretations of the selected actor during the different phases of the analysis are 

described in summary.  

The following context analysis of the learning situation “Relationship between surface 

and volume of similar cubes” cannot be shown completely due to lack of space. 

Therefore, the broad context analysis (step 4) is not explicitly shown here. Selected 

results from this analysis are integrated into the conclusion (step 5).  
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Analysis of the Individual Interpretation of a Child  

A transcript (scenes 01 to 29) of the editing of the prompt “volume table” by two 

fourth-graders is created (see Fig. 2), in which the learners are to determine the 

volume of similar cubes. The learners have already determined the volume of cubes 

with edge length two and three (scenes 05 to 07). The selected passage of the 

transcribed dialogue of the child couple (scene 15, 33:17 min) reflects exactly the 

actions of Mia to be explained in this analysis. 

1  Mia: No no no no stop stop  

2   Mia places the plastic stick with length 4 back on the square grid 
perpendicular to the edge of the table.  

3   She still touches the stick with the index finger and thumb of her left 
hand.  

4  She removes her fingers from the stick.  

5  She takes three more sticks with length 4, lying between the green 
and red sticks, between thumb and index finger of the left hand.  

6  She places the first stick from her hand perpendicularly at the back 
end of the already lying stick as seen from the girl.  

7  She places the second stick from her left hand again perpendicularly 
at the end of the stick she just placed.  

8  She places the last stick from her hand perpendicularly on the first 
stick lying on the square grid and the last stick placed on it. 

Step 1: In this scene, Mia places a square of sticks with length 4 on the square grid. In 

the further analysis, we will focus on Mia.  

Step 2 – Explication 1: (E1.1) In the learning situation, edge models of similar cubes 

are considered. The focus of the selected prompt (see Fig. 2) is determining the 

number of unit cubes (volume determination) that fit into similar cubes of different 

sizes. A suitable action for processing would be the construction of edge models for 

cubes of different sizes. By positioning the edge model on the square grid and using 

the unit cube, the volume can be determined. For example, the squares on the square 

grid can give orientation how often the unit cube fits into a row, a plane and finally 

into the complete edge model. To build an edge model of a cube, sticks of equal 

length must be selected for the twelve edges. In perpendicular prisms, the three edges 

that meet in a corner are aligned at right angles to each other. The so-called spatial 

tripod (Müller, 2004, p. 30), which stands for the three-dimensional coordinate 

system, is materialised in the form of a plastic corner connector. The edge lengths can 

be measured using the unit cube or the square grid. It is also possible to determine 

whether the different sticks are of the same length by placing them next to each other. 

(E1.2) By selecting sticks of the same length, it becomes clear that Mia considers that 

edges of equal length are necessary to make a cube. In total, Mia selects four sticks of 

equal length, which she places on the square grid. She places the sticks on the square 

grid so that the ends of the sticks meet at a 90° angle. It can be assumed that due to the 

square grid and the available corner connections, Mia can interpret the 
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conventionalised materialisation of a right angle in the plane and in space and use it 

for the construction of cube edge models. It is not clear at this point whether she uses 

the square as the basic side area for the edge model or whether she just does not 

extend what is lying. (E1.3) In the actions from this transcript, it becomes clear that 

she deliberately selects sticks of the same length and places them on the square grid in 

such a way that they are at right angles to each other, which becomes clear in the 

square grid. It can be assumed that Mia has interpreted the convention of sticks of 

equal length and the observance of right angles for the construction of a square and 

uses it in her actions.  

Step 3 – Explication 2 — narrow context analysis (Analysis in sections): In scene 20, 

Mia grabs four sticks of length 5, and in the following scene, she places these four 

sticks on the square grid at right angles to each other, creating a square. At this point, 

it is still not clear if she will extend the square further. In scene 22, Mia taps the 

square grid five times with her stretched finger, moving her finger to the right after 

each tap. Then, she taps the square grid five times again and moves her finger down 

after each tap. Meanwhile, she counts from one to five twice. In comparison to the 

intended actions, it becomes clear that Mia does not use the unit cube to determine the 

area or volume but works with the square grid. In the following scene, Mia expresses 

the calculation five times five is twenty-five and then twenty-five times five. Already 

in the narrow content analysis, it becomes apparent that Mia recognises rules in the 

material arrangement, uses them to work on the mathematical problem and transfers 

her two-dimensional actions to the space.  

Step 5 – Conclusion: It can be seen in Mia’s actions that she uses the available 

material (sticks, corner connections, unit cubes and square grids) diagrammatically. 

The implicit rules and conventions for building cubes of different sizes as a basis of 

determining the volume are used by Mia to process the problem. Including the broad 

context analysis (see Fig. 1, left picture), it is noticeable that she reduces her actions in 

the course of the situation and still can make the same interpretations. No longer does 

she have to build a cube, nor does she move the unit cube in the built edge models, but 

she can infer the volume of the cube from the base area using the internalised rules 

and conventions.  

DISCUSSION 

Based on the actions, Mia’s individual interpretations of the diagrams and the 

interpretations of the actions on the diagrams can be reconstructed. By using different 

rules, such as the necessity of equal edge length for the representation of a cube, it 

becomes clear that Mia recognises this rule and uses it for processing the problem. 

Working on the problem, this diagrammatic work has to be applied several times and 

is incorporated into the work with other diagrams, e.g. determining the volume or 

filling in the table (see Fig. 2). It is noticeable that the actions decrease with the 

internalisation of the conventionalised set of rules. Thus, in the broad context analysis 

it becomes clear that Mia initially executes the actions, such as building an edge 

model, completely (see Fig. 1, left picture). Later, she only lays the base area of the 
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cube and extrapolates from this area to the volume. For this purpose, further analyses 

will be carried out to see whether the actions and thus the interpretation of the diagram 

for the same problem situation, but with digital material, differ from the 

interpretations reconstructed here.  
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The aim of this paper is to analyse a symmetry and art workshop from a STEAM 

perspective. The theoretical framework of the Meta-Didactical Transposition is taken 

as a reference. The sample consists of seven Primary School teachers. A qualitative 

methodology is followed that is developed in four phases: learning, planning, 

implementation and reflection. The results show that the teachers are not flexible in 

dealing with the different conceptions of symmetry and the creative aspect of the 

workshop. In general, there is a positive attitude towards the interdisciplinary 

character of the workshop, despite the fact that they were not able to connect both 

disciplines in a balanced way.  

INTRODUCTION 

Recently, the ‘A’ of art has been included in the acronym STEM (Science, 

Technology, Engineering, Mathematics). The main goal of STEAM education is to 

make the students grasp the connections between different pieces of knowledge 

incorporating an artistic vision into the activities from a creative and emotional point 

of view (Henricksen, 2014; Yakman & Lee, 2012).  

In particular, what is the relationship between Visual Arts Education and 

Mathematics? One reason for asking this question is that “on the one hand, 

mathematics is art, and on the other hand, working in art has a mathematical basis” 

(Hickman and Huckstep, 2003, p.1). Mathematics and art are two disciplines that have 

a close relationship since immemorial times. In order to motivate students to study 

mathematics, the connections between art and mathematics, in particular geometry, 

have been exploited in many works in mathematics education (Fenyvesi, K. & 

Lähdesmhäki, T., 2017; Lavizca, Z. et. al., 2018; Portaankorva-Koivisto, P.  & 

Havinga, M., 2019) showing them that these have been used for aesthetic reasons in 

the history and modern art. 

Recently, the recommendations for including the arts and creativity in the teaching of 

mathematics significantly increased all over the world along with demands to move 

from paradigms of teaching concepts and methods in a purely disciplinary way to an 

interdisciplinary and integrated education that shows connections, is  based on 

complex problems and promotes critical and creative thinking (Council of the 

European Union, 2018). These recommendations come, in general, from outside the 
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school. In particular, from EU and other transnational institutions and from labour 

market. That recommendations oblige the curriculum developer who wants to meet 

such promising but ambitious goals to take the issue of teacher training education 

seriously. Indeed, in order to make this new approach become a structural innovation 

in schools, a change of perspective would be necessary, first of all in teacher 

education: the teachers need to be prepared to carry out properly the classroom 

activities, becoming aware of their non-renounceable features and pursuing their goals 

with their more traditional ones in the complexity of the real classrooms.  

In this paper a STEAM training workshop for Primary School teachers is analysed, 

emphasizing the disciplines of mathematics and art. The aims are to attend how the 

teachers react to the activities proposed and how they implement them in the 

classroom. Moreover, the process of personal transformation of the proposal made by 

some teachers is observed. 

RESEARCH FRAMEWORK 

The framework of the Meta-Didactical Transposition (MDT) (Aldon et al., 2013; 

Chevallard, 1999) is considered as a main reference. In particular, in this paper, the 

construct of praxeology is used. “The praxis or ‘to know how’ includes different kinds 

of problems to be studied as well as techniques available to solve them; and the logos 

or ‘knowledge’ includes the discourses that describe, explain and justify the 

techniques used and even produce new techniques” (Garcia et al, 2006, p.226). Within 

the MDT approach, the praxis is didactical and the logos not only concerns the 

knowledge of the discipline, but also of didactical and pedagogical research results. 

On one hand, in a teacher training activity, researchers’ and teachers’ praxeologies 

meet each other and members of two communities of practice have to find a common 

ground in order to allow the teachers to appropriate of the researchers’ proposals and 

effectively modify their praxeologies.  

The transition from individual to shared praxologies is very delicate and requires the 

action of a ‘broker’, a subject that is a hybrid between the two communities who acts 

as a hinge between the two fields, the school itself and the academic. The broker has 

the difficult role of creating new connections and encouraging creations of meaning 

and learning (Rasmussen et al., 2009).  

To analyse the teachers’ choices, when they plan and implement the activities of the 

symmetry-art workshop, the goal-oriented decision-making theory by Schoenfeld 

(2010) is relied on. This framework deals in particular with choices of the teachers in 

real-time. As Schoenfeld (2010) stated clearly, when the teachers move from the 

design to the implementation, something that changes even completely the goals of 

the designed activities often happens. Indeed, they are only partially aware of their 

resources, goals and orientations, and these might remain invisible in the design 

phases, but appear clearly in the way they react to students’ questions or unexpected 

happenings. Tensions appear between the planned and the implicit goals and 

orientations (Liljedal et al., 2015) and oblige the teachers to make real-time decisions 

according to their priorities. This point is crucial: a deep innovation requires the 

teachers to become aware of their knowledge and assumptions and seriously 

reconsider in a conscious way their goals and priorities.  
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RESEARCH METHODOLOGY 

The training symmetry-art workshop was designed for Primary School teachers and 

was carried out in two Italian cities. In this paper, a sample of seven Primary School 

teachers is analysed. The objective is to answer the follow research question: what is 

the general impact of the symmetry-art workshop on the teacher’s design and 

implementation in their classrooms?  

The research methodology is qualitative and from a STEAM perspective involves 

working the two disciplines together in a balanced way, both in terms of concepts 

procedures and procedures and attitudes. It was organized in four phases that are 

described below: (i) learning; (ii) planning; (iii) implementation; (iv) reflection.  

(i) Learning phase. In this phase, the researchers present the STEAM methodology. 

Then, the teachers carry out the different workshops by interacting with the 

researchers. In accordance with the MDT, a PhD student graduate in Primary 

Education Sciences took on the role of broker, mediating the delicate passage of the 

interweaving of the praxeologies of the teachers with those ones of the researchers. 

(ii). Planning phase. The objective is that teachers develop this proposal to the 

classroom, after a careful co-design shared between teachers and researchers. To this 

end, they should decide which tasks they are going to implement, whether and how 

they want to modify them, in which order, the time they are going to use for each task, 

the links with their curricular teaching plan and the methodology they are going to 

carry out (group or individual work, classroom discussions and the educational 

environment where the students would do the activities).  

(iii). Implementation phase. In this phase, the teachers implement the symmetry-art 

workshop tasks as they have designed them in the previous phase. The aim of the 

research is to compare the decisions taken in the planning phase and the teachers’ 

actual praxeologies in the classroom.  

(iv). Reflection phase. Here, both researchers and teachers reflect on the entire 

instructional process. In this way, following the theoretical framework, researchers’ 

praxeologies should change interacting with the teachers to make the proposal more 

suitable from the cognitive and institutional points of view. 

To collect the data the following instruments were used. In the planning phase, 

individual and group interviews with teachers were recorded. In addition, they were 

given a grid to fill in different sections regarding the organization of the tasks. In the 

implementation phase, video recordings were made of the observations of teachers 

and students in the classroom. Moreover, an observation tool was also designed which 

comprehends thirteen items. Within these items, special attention was given to those 

that refer to, among others, the good use of mathematical vocabulary, the mastery of 

the artistic techniques and the methodology carried out in class.  

The tasks that were carried out in the STEAM training workshop are described below. 

Description of the Tasks 

Training Symmetry-Art workshop is made up of four tasks to carry out in two 

sessions of two hours. The tasks of this workshop are aimed at Primary School 
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students (six to twelve years old). In mathematics education, the difficulties in the 

learning of this topic have been investigated in many studies (Bulf, 2011; Chesnais, A. 

& Munier, V., 2013, Bohorquez et. al., 2009), and it has been shown to be more 

complex as it might seem. These difficulties might affect the teachers’ resources, both 

on the side of disciplinary knowledge and of the anticipation of students’ difficulties. 

Within this proposal, a balance is sought between the two subjects of mathematics and 

art. Following a STEAM perspective, the objective is to work these two subjects in an 

equal way, that is, these tasks form a cycle starting from art (task 1) and coming back 

to art (task 4), with a renewed conceptualization of the everyday conception of 

symmetry (Chesnais, 2012) triggered by the artistic work and supported by research-

based mathematical tasks (2 and 3).  

Task 1: Artistic folding paper 

This activity is designed with the intent to create a symmetrical artwork from the 

blank paper and without mentioning the concept of symmetry. The aim is to bring 

students closer to the study of symmetry and its elements, starting from the original 

artistic creation of each of them through the manipulation of different resources, in 

this case, thread, tempera and sheets. The contents that are worked on in this task are 

the concept of symmetry, the axis of symmetry, the types of lines, the equidistance, 

the concept of shape and dimension, the horizontal and vertical meaning, the manual 

work and the use of colour and its possible mixtures.  

Task 2: TEPs. 

Following to D’Amore and Maier (2003), the objective is, for each student, to create a 

TEP (Textual Eigen Production), which is an autonomous textual production, in this 

case, of the concept of symmetry and its characteristics based on the artistic work and 

the discussion carried out in the previous task. The contents worked on here are the 

use of the mathematical vocabulary to elaborate the definition, the written expression 

and, again, the concept of symmetry with some of its elements as the axis of 

symmetry, the equidistance of each point to that axis and the concept of form and 

dimension. 

Task 3: Schematization 

This task consists of drawing, on the grid sheet, the figure that the students made in 

the task 1. The aim is to make them work on symmetry and its characteristics through 

the elaboration of a scheme with drawing instruments as the rule or the compass. The 

students also work on the reproduction of a figure to scale, since at the moment of 

drawing the figure in a schematic way, they are transferring the figure to the grid 

sheet, taking the little square as a unit.  

Task 4: Symmetrical figures with coloured threads 

The last task is designed to finish the proposal with an artistic activity that gathers 

everything learned in the previous tasks. The activity consists of recreating, with 

coloured threads and pins, the figure made in task 1, and then outlined in the task 3. 

By stretching the threads and tightening them, the students create another artistic work 

in a different format in which the main theme is symmetry. 
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RESULTS AND DISCUSSION 

The results are presented according to the aims set, derived from the research question 

presented in the previous section: to observe how the teachers react to the activities 

proposed in the symmetry-art workshop and how they implement them in the 

classroom. 

Teachers Reactions 

In terms of STEAM methodology, the teachers initially stated that they dealt with 

mathematics and art topics always separated. Although they had already dealt with the 

topics proposed in their classes, they did not realize that they could make an 

interdisciplinary lesson by drawing inspiration from artistic creations to get to the 

formalization of mathematical concepts. Moreover, it could be observed that the 

reactions of some teachers consisted on not considering the STEAM activities truly 

mathematical didactical activities, since the contents and the kind of tasks were 

different from the text-books exercises, that are their institutional reference. Some 

teachers perceived these activities as extracurricular motivation, since they emphasize 

their artistic character and gave importance only to the aesthetic aspect, that is, they 

did not consider them ‘mathematical’ (learning phase).  

For most of the teachers, the tasks seemed to be not so far from their usual practice 

and the mathematical contents and artistic skills were considered easy. However, 

some of them did not feel confident to carry out the activities in the classroom 

observed by researchers and, in many cases, they had some difficulties to pursue the 

planned goals in the implementations. For example, a teacher somewhat insecure, 

asked “how I should start the lesson? Are we going to carry out the activity together?” 

(planning phase). 

In the implementation phase, two of the seven teachers said “Do we have to carry out 

the lesson? But we can’t do it, we don’t know how to do it”, revealing to be unsure at 

the beginning of the class. Another teacher renounced to lead the activity and asked 

the researchers to do it. Part of the problem could be due to the presence of the 

researchers in the classroom or to the insecurity of applying the STEAM 

methodology. 

Implementation in the Classroom 

Of the seven teachers who planned to carry out the art and symmetry workshop in the 

classroom, six did so. Of those six, four implemented it autonomously while the other 

two needed further assistance from the researchers. Although the planning phase 

allowed them to modify and adapt the proposal to their classroom and students, only 

one of the teachers changed the order of the tasks and dedicated more time to the 

discussion that is carried out in task 1. 

Paying attention to the mathematical aspect of the workshop, several facts are 

considered important. When the students commented on their TEPs for the rest of the 

class (task 2), the teachers corrected those who talked about important aspects of 

symmetry such as distance to the symmetry axis, because they identify the term 

symmetry only with the definition they know, which is the same one that appears in 
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the textbook. Therefore, their goals were far from ours and were influenced by the 

textbook definition in a negative way for the students' mathematical processes.  

For some teachers there is a total identification between the concept of symmetry and 

the fact that half of a figure could be superposed to its other half folding a piece of 

paper containing the picture; the paper folding activity helped them to feel 

comfortable but in some cases the symmetry-art workshop was not effective in 

enriching their concepts moving from the everyday to the mathematical concept. In 

some cases, the teachers did not take care properly of the students’ spontaneous 

mathematical processes and interrupted the students who were carrying out their own 

reasonings in terms of symmetry. For instance, many students interpreted correctly the 

request of explaining with their words how to draw a ‘symmetric figure’ that is, a 

figure admitting (at least) one axis of symmetry while their teacher expected the 

students to use formal words and define the symmetry in the way the teacher had 

suggested and started limiting them without helping them in their developmental zone. 

This may be due to teachers’ lack of flexibility in conducting a group discussion with 

students on the concept of the symmetry (ibid., 2012). On the other hand, in many 

cases the teachers declared that their insecurities were due to unexpected difficulties 

with the mathematical contents, and emerged when the students were working and 

proposing their ideas in a manner that was different than the usual (reflection phase).  

Focusing on the artistic part, it should be pointed out that it was the main aspect that 

motivates the teachers to implement the mathematics and art workshop. However, 

initially, most of them limited the creativity of the students, especially in task 1. This 

limitation could be due to the fact that the teachers showed a perfectionist attitude 

when they performed the workshop by themselves (learning phase) and wanted their 

students to obtain similar results to theirs, imposing some criteria like the colours they 

should use or indicating that the artwork should be ‘beautiful’ and ‘well done’ 

(implementation phase). Between these two phases, it could be seen that teachers’ 

praxeologies (Schoelfeld, 2010) changed, since they were forced to make decisions 

just in time. For example, because of the motivation students to do this workshop, 

many of the teachers spent more time experimenting with more colours and creating 

more artworks. In addition, some of them left the students total freedom when 

performing the schematization (task 3) allowing them to use different colours and 

shapes.  

CONCLUSIONS 

Taking into account one of the aims of this paper, it could be observed that teachers’ 

reactions to the proposed STEAM workshop were positive. In the reflection phase, all 

teachers valued the importance of proposing activities with an interdisciplinary 

character. Adding the planning phase was intended to give teachers flexibility and 

creativity in implementing the workshop in their classrooms. However, the changes 

that were observed were very specific and only one of the seven teachers modified the 

tasks by adapting them to her classroom context. In this case, the intersection between 

the teacher's and the researcher's praxeologies was obviously no longer empty. 
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On the other hand, the tasks of the workshop have an intrinsic complexity that makes 

students act in unpredictable ways. Although many of the teachers stated that the 

schematization (task 3), specifically, was very difficult, the students performed it very 

effectively obtaining great results. In some cases, however, teachers were not flexible 

to adapt the activities to just-in-time happenings.  

The fact that more than one teacher has declared that they want to continue 

experimenting with mathematics and art workshops means that some practices have 

changed and that the symmetry-art workshop has been successful. It is therefore 

desirable that a dynamic process of professional evolution has been triggered in which 

some components external to the teachers praxeologies, such as the use of 

interdisciplinary teaching through appropriate tasks, become internal as an effect of 

the process of meta-didactic transposition. The meta-didactic transposition, in our 

case, has its strength in the use of innovative tasks and the adoption of 

interdisciplinary teaching. Therefore, we propose to continue carrying out workshops 

and to focus on the relationship between mathematics and art encouraging a balance 

between these two disciplines.  
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Motivation is important for students’ learning and strategy use. However, we do not 

know much about the relations between motivation and the use of strategies such as 

the drawing strategy. In this study, we assessed the mathematical and strategy-based 

motivation of 194 ninth- and tenth-grade students using expectancy-value 

questionnaires. Further, we measured the spontaneous use of drawings for solving 

geometric modelling problems. We found a positive relation between mathematical 

and strategy-based expectations of success as well as between mathematical and 

strategy-based attainment value. Furthermore, mathematical and strategy-based 

motivation differed in their relation to the use of drawings. These results indicate the 

importance of both mathematical and strategy-based motivation for strategy use and 

modelling. 

INTRODUCTION 

Mathematics as an applied science is part of many other disciplines, such as the 

natural sciences, computer science, and the social sciences. An application-based view 

of mathematics is reflected in mathematical modelling. Mathematical modelling 

involves the use of mathematics to solve real-world problems (Niss, Blum, & 

Galbraith, 2007). Because of the importance of applications for life and work, 

countries around the world recommend that mathematical modelling be promoted in 

mathematics education, and it is included in the mathematics curriculum of different 

countries. However, prior research has repeatedly demonstrated that students have 

trouble solving modelling problems (Niss et al., 2007). The use of strategies such as 

self-generated drawing is considered to have a beneficial effect in overcoming the 

difficulties involved in solving modelling problems (Galbraith & Stillman, 2006; 

Hembree, 1992). Positive effects of drawings have been shown for students who made 

drawings spontaneously. However, why do learners rarely make drawings 

spontaneously? One possible factor that influences the spontaneous use of drawings is 

motivation. In the present research, we targeted mathematics and the drawing strategy 

as the objects of motivation because mathematical and strategy-based motivation 

might both be important for the spontaneous use of drawings. In this paper, we aimed 

to examine the relation between mathematical and strategy-related motivation and 

their importance for the spontaneous use of drawings in mathematical modelling. 
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THEORETICAL BACKGROUND 

Self-generated Drawings in Mathematical Modelling 

By making a self-generated drawing for a mathematical modelling task, the learner 

visualizes a problem described in the task by representing the objects and their 

relations to each other in an iconic way. By applying the strategy of making a 

drawing, we understand both the drawing process and the drawing as a product 

(Rellensmann, Schukajlow, & Leopold, 2017). As a strategy for learning and 

problem-solving, making drawings can support various activities in mathematical 

modelling such as constructing a mental model of the text, discovering errors in the 

mental model, structuring and simplifying the given situation and constructing a real 

model, mathematizing the real model, or validating the mathematical result. 

Spontaneously making a drawing for a given mathematical word problem has already 

been shown to be a potentially performance-enhancing strategy for learners (Hembree, 

1992; Uesaka et al., 2007). This strategy was found to be more helpful than improving 

mathematical vocabulary, verbalizing important concepts, or applying other strategies 

(Hembree, 1992). Thus, making a drawing might also be helpful for solving 

geometrical modelling problems. Despite the expected positive effects of generating a 

drawing in mathematical modelling derived from the analysis of modelling activities 

such as mathematizing, students rarely use this strategy spontaneously. One reason for 

this result might be students’ motivation. For example, in Pressley's (1986) model of a 

Good Strategy User, motivational beliefs are suggested to predict the spontaneous use 

of strategies. Pressley further suggested that if students are motivated to use a strategy, 

they will use it more often. 

Expectancy-value Theory of Motivation 

In a broader definition, Middleton and Photini (1999) specified motivation as a reason 

for human behavior in a specific manner and in each situation. At the core of many 

theories of motivation are expectancy-value models such as the one by Eccles and 

Wigfield (1995). These models propose that performance-related decisions (e.g., using 

a specific strategy) are essentially influenced by two subjective beliefs: expectations 

of success (ES) and the value attached to the different options that are available. In 

research, expectations of success have often been estimated via self-concept or via 

general self-efficacy, which have repeatedly been found to be closely connected to 

each other (see the overview by Marsh et al., 2019). The value component includes 

three sub-components: the interest and enjoyment gained from the task (Intrinsic 

Value, IV), the personal importance of being able to do it well (Attainment Value, 

AV), and the perceived utility from solving it (Utility Value, UV). Similar to other 

affective constructs, motivation can target different objects (Schukajlow, Rakoczy, & 

Pekrun, 2017). The objects of motivation can be learning in general, a specific topic, 

or even a specific problem. The present research involves mathematical motivation 

because the object of motivation is mathematics. Motivation that targets a specific 

strategy or its characteristics as its objects can be called strategy-based motivation. In 
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the present research, we assessed strategy-based motivation by using the drawing 

strategy because of the importance of this strategy for problem-solving (Hembree, 

1992).  

Prior research hypothesized a positive relation between expectations of success that 

targeted different objects in one domain such as mathematics. The reason for this 

positive relation is that problem-solving activities within mathematics require related 

abilities and skills. Furthermore, students acquire different abilities and skills in 

mathematics in parallel in their mathematics lessons or in mathematical activities that 

they participate outside of school. These considerations were confirmed empirically 

by Marsh et al. (2019), who demonstrated a positive relation between mathematical 

expectations of success (that were asked about by referring to mathematics in general) 

and to specific mathematical problems as objects of motivation. Likewise, a positive 

relation can be expected between values within the same domain such as mathematics. 

The expectation that values for different objects in mathematics can be related has 

been supported by empirical results. For example, the utility value of modelling 

problems was found to be positively related to the utility value of intra-mathematical 

problems (Krawitz & Schukajlow, 2018). However, prior empirical results should be 

interpreted with caution because the differences in the objects of motivation are 

essential for the relations between the constructs. The relation between mathematical 

and strategy-based motivation is still an open question. 

Motivation and Strategy Use 

Many studies have demonstrated the positive effects of expectations of success and 

value on the use of cognitive and meta-cognitive learning strategies. For example, 

Virtanen, Nevgi, and Niemi (2013) showed that university students who reported high 

expectations of success and high intrinsic value were also more likely to report that 

they organize the learning content in their discipline. Focusing on the relation between 

mathematical motivation and self-reported learning strategies in mathematics, Berger 

and Karabenick (2011) found that both expectations of success and value predicted 

elaboration and metacognitive strategies. However, in these studies, researchers used 

self-reports to assess the strategies, and the validity of assessing strategies via self-

reports has often been criticized in the past. Because of research on the relation 

between mathematical motivation and self-reported strategies, we suggest a positive 

relation between mathematical motivation and the use of the drawing strategy. 

Moreover, we found only a few studies that analyzed the relation between motivation 

and the spontaneous use of the drawing strategy. A case study of an eighth-grade girl 

who did not use a drawing strategy spontaneously at first but used it successfully after 

being instructed to do so suggests that spontaneous strategy use depends on the 

perceived efficiency of the strategy and thus also on motivation (Ichikawa, 1993; 

Uesaka, Manalo, & Ichikawa, 2007). Furthermore, Uesaka et al. (2007) demonstrated 

that the benefits attributed to learner-generated drawings reported by students were 

significantly related to the use of drawings. These findings indicate that strategy-based 

motivation might be important for the spontaneous use of drawings. 
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RESEARCH QUESTIONS AND HYPOTHESIS 

Based on theoretical considerations, we conclude that the spontaneous use of a 

drawing strategy is related to motivational factors. However, there is a research gap 

regarding the relation between mathematical and strategy-based motivation as well as 

to the relation between motivational factors and the use of the drawing strategy. 

Moreover, we did not find any research that investigated the relation between 

motivation and making a drawing to solve modelling problems. Therefore, we 

addressed the following questions in this study:  

(1) How are the mathematical motivational constructs (ES, IV, AV, UV MATH) 

related to the corresponding strategy-related constructs (ES, IV, AV, UV DRAW)? 

We expected a positive relation between mathematical and strategy-based 

expectations of success because the development of the strategic skills involved in 

making drawings takes place within mathematical learning. We also expected positive 

relations between the different values of the mathematical and strategy-based 

constructs. However, as the relations between motivational constructs strongly depend 

on how close the objects of motivation are to each other, and only a little research has 

been conducted on strategy-based motivation, these expectations were based mostly 

on theoretical considerations. 

(2) How are mathematical and strategy-based motivational constructs (ES, IV, AV, 

UV) related to the spontaneous use of the drawing strategy while students solve 

modelling problems? 

Based on the expectancy-value theory, we expected both mathematical and strategy-

based motivation to be important for the spontaneous use of drawings. An empirical 

indication for the positive relation between mathematical motivation and the use of the 

drawing strategy comes from research on self-reported strategies. One case study and 

one cross-sectional study carried out with school students on the use of the drawing 

strategy supported the expectation that students’ strategy-based motivation might be 

related to spontaneous strategy use. 

METHOD 

Participants and Research Design 

Two hundred twenty German ninth- and tenth graders (49.5% female, M = 14.93 

years) of 10 comprehensive classes participated in the study. At the first occasion, the 

students answered a questionnaire about motivational constructs. After two weeks, 

they were asked to solve eight geometric modelling tasks. The analysis of students’ 

solutions allowed us to assess their spontaneous use of the drawing strategy. Some 

students could not participate on both occasions for various reasons. In sum, 194 

students participated on both occasions and were included in our analysis. 
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Measures 

The 22-item survey was applied to assess mathematical motivation (MATH, 10 items) 

and strategy-based motivation with respect to the use of drawings (DRAW, 12 items). 

Students rated each statement on a 5-point scale (1 = "not true at all" to 5 = 

"completely true").  

Mathematical motivation scale. The mathematical motivational items were adapted in 

accordance with Eccles and Wigfield (1995). Expectations of success (ES MATH) 

were assessed with three items (e.g., “I am very good at mathematics”). The three 

components of value are intrinsic value (IV MATH; 2 items; e.g., "In general, I find 

working on mathematics assignments very interesting"), attainment value (AV 

MATH; 3 items; e.g., "It is very important to me to be able to solve mathematical 

problems very well"), and utility value (UV MATH; 3 items; e.g., "Mathematics in 

school is very useful for my professional future after graduation"). The reliabilities of 

the subscales were mostly good to satisfactory (.55 < α < .89). The confirmatory 

factor analysis revealed that the model with four factors fit the data adequately 

(𝜒2/𝑑𝑓= 1.72, SRMR = .04, RMSEA = .06, CFI = .97). 

Strategy-based motivation scale. The strategy-based motivation scale with respect to 

the use of the drawing strategy was assessed with four subscales: expectations of 

success (ES DRAW; 3 items; e.g., “I believe I can make very good drawings for any 

word problem”), intrinsic value (IV DRAW; 3 items; e.g., "I like to make a drawing 

for a difficult word problem"), attainment value (AV DRAW; 2 items; e.g., "It is 

important to me to be able to make a drawing for a difficult word problem"), and 

utility value (UV DRAW; 4 items; e.g., "Making drawings is important to me because 

it helps me solve difficult word problems"). The reliabilities of the subscales were 

mostly good to satisfactory (.58 < α < .86). Confirmatory factor analyses showed 

acceptable values for the model (𝜒2/𝑑𝑓= 3.27, SRMR = .04, RMSEA = .07, CFI = 

.95). 

Use of drawings. The use of drawings was measured dichotomously for each of eight 

modelling tasks that could be solved by applying the Pythagorean Theorem. A code of 

0 was assigned to solutions without a drawing and a code of 1 to solutions with a 

drawing. The measurement showed good reliability (Cronbach's α = .866). 

RESULTS 

Relations of mathematical and strategy-based motivation. As expected, the analysis of 

the correlations between mathematical and strategy-based motivation (Table 1) 

showed moderate positive correlations between ES MATH and ES DRAW as well as 

between AV MATH and AV DRAW. These results indicate that students who have 

high expectations of success and ascribe a high attainment value to mathematics are 

confident that they can use a drawing strategy to solve problems and feel that this 

strategy is personally important to them. However, we did not find a positive relation 

between intrinsic value or utility value for mathematical and strategy-based 
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motivation. For example, students who ascribed a higher utility value to mathematics 

did not differ in their estimation of the utility value of the drawing strategy. 

  MATH 

  ES IV AV UV 

      

D

R

A

W 

ES      .289**     .255** .377**     .234** 

IV -.041 .010 .233** .087 

A

V 
 .007 .104 .351** .117 

U

V 
-.018 .010 .278** .038 

      

Note. ** p < .01, p two-tailed. MATH: mathematical motivation, DRAW: strategy-

based motivation, ES: expectancy of success, IV: intrinsic value, AV: attainment 

value, UV: utility value. Correlations between the same constructs in different 

domains are presented in grey. 

Table 1: Correlations between mathematical and strategy-based motivational 

constructs 

Motivation and the use of drawings. Our analysis of the relation between 

mathematical motivation and the use of drawings confirmed our expectation for IV 

MATH (Table 2). Students who attributed high intrinsic value to mathematics used 

the drawing strategy to solve modelling problems more often. Mathematical 

expectations of success, attainment value, or utility value in mathematics were not 

related to the use of drawings. The analysis of the relation between strategy-based 

motivation and the use of drawings while modelling revealed a more consistent 

picture and confirmed our expectations. We found positive correlations for all 

strategy-based sub-constructs IV DRAW, AV DRAW, UV DRAW, and ES DRAW 

with the use of drawings. These results indicate the importance of strategy-based 

motivation for the spontaneous use of the drawing strategy. Students who have high 

expectations of success for the use of drawings and who ascribe high intrinsic, 

attainment, and utility value to the drawing strategy more often used this strategy 

spontaneously. 

  MATH  DRAW  

  EX IV AV UV  EX IV AV UV  

USE r .047 .180* .088 .098  .164* .212** .138a .172*  

            

Note. a p < .10, * p < .05, ** p < .01, ** p < .001. p: two-tailed. MATH: mathematical 

motivation, DRAW: strategy-based motivation, EX: expectancy, IV: intrinsic value, 

AV: attainment value, UV: utility value, USE: spontaneous use of drawings. 

 

 

Table 2: Correlations between mathematical and strategy-based motivational 

constructs and the spontaneous use of drawings 
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DISCUSSION 

Based on expectancy value theory (Wigfield & Eccles, 2000), we investigated the 

relation between mathematical and strategy-based motivation and the importance of 

motivation for the use of drawings while solving modelling problems. As expected, 

the analysis of the relation between mathematical motivation and the strategy-based 

motivation to make drawings showed that mathematical and strategy-based 

expectations of success were positively related. However, the relation was weak. One 

reason for this result may be the cognitive structure of the activities: Although the 

making of drawings as a visual strategy is part of the mathematical curriculum, formal 

symbolic procedures usually predominate in students’ learning in mathematics. 

Another reason may be the different categories of focused objects (the domain of 

mathematics vs. the strategy of drawing). As mathematics is a more general object and 

the drawing strategy is a more specific object, this difference might have an impact on 

the strength of the relation between the constructs (Marsh et al., 2019). The relation 

between the personal importance of being good at mathematics (AV MATH) and the 

personal importance of making good drawings (AV DRAW) was moderate in size. 

This result revealed that the personal importance of mathematics is closely related to 

the personal importance of making a drawing to solve mathematical problems. By 

contrast, the intrinsic and utility values of one object were not related to the values of 

other. The perceived utility of drawings for solving problems did not depend on 

whether mathematics was considered useful or not. 

The strategy- and mathematics-based motivational constructs differed in their 

relations with the spontaneous use of drawings during mathematical modelling. 

Whereas only the intrinsic value of mathematical motivation was correlated with the 

use of drawings, all four strategy-based motivational constructs were positively 

related to the use of the drawing strategy. We suggest that future studies conduct 

deeper investigations of the relation between mathematical and strategy-based 

motivation on the one hand and the use of drawings and performance on the other 

hand. One interesting research question might be whether mathematical motivation 

has an indirect effect on the use of strategies and performance via strategy-based 

motivation. In line with results from learning strategy research (Berger & Karabenick, 

2011; Virtanen et al., 2013), intrinsic value with respect to mathematics was found to 

be related to spontaneous strategy use. In addition, as suggested by expectancy-value 

theory, we found a positive relation between strategy-based expectations of success 

and the use of drawings in our research. Positive relations between strategy-based 

values and the use of strategies indicated the importance of values for students’ 

strategy use. Thus, our results confirmed the validity of expectancy-value theory for 

strategy use. 

The results revealed intrapersonal differences when comparing mathematical 

motivation and strategy-based motivation with respect to making a drawing in 

mathematical modelling and in problem-solving. Effects of strategy-based motivation 

on learning outcomes should be addressed more often in future research because it can 

explain why some students make drawings spontaneously and others do not. Research 

on strategy-based motivation can be applied not only for the use of the drawing 

strategy but also to other strategies. Finally, for the practice of teaching, it is important 
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to investigate which teaching interventions improve strategy-based motivation and 

students’ strategic and achievement-related learning outcomes. 
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WHEN TEACHER-STUDENT DISCOURSE REACH 

IMPASSE: THE ROLE OF COMPUTER GAME AND 

ATTENTIVE PEER  
Orit Broza1 and Yifat Ben-David Kolikant 

Levinsky College of Education, Israel 

 

Researchers traced the learning processes of 26 low-achieving students 

studying subtraction of decimal numbers, as they worked in small groups within 

a rich learning environment involving a computerized game, play money, peer 

interactions and teacher mediation. Data sources were videotaped sessions, 

worksheets, observations, and pre- and post-program teacher evaluations. 

Results indicate that low achieving students can build new significant 

knowledge, to participate in a reflective mathematical discourse, and benefit 

from it. Yet, the setting of computer games with an attentive peer served a fertile 

platform for strategies to emerge and consolidate. 

INTRODUCTION AND THEORETICAL FRAMEWORK 

Applying mathematics into real life is considered as an essential component for 

professional life (OECD, 2016). This might be the reason for mathematics 

educators to actively engage students with mathematical knowledge building, 

based on meaning, and avoid routine procedural learning. Insignificant learning 

base on drill and memorization, especially in early years, might lead to under-

achievement among students who do not have any identified disability. This 

phenomenon is reflected in PISA findings which show that around 20% of 

OECD students with normal cognitive skills do not reach a minimum level of 

basic skills in mathematics (OECD, 2016).  

Trying to explain these students’ poor performance, the literature focuses on 

cognitive deficits and on behavioral manifestations of their failure (e.g. 

participation patterns). Low achieving students (LASs) find it difficult to 

retrieve basic mathematic facts (and knowledge) from their memory (Gray, 

1991). Craik (2002) referred to this difficulty as 'fragile memory': a product of 

superficial data processing in the brain. Other explanations points on affective 

reasons such as frustration, anxiety, and passivity (Ramirez, Gunderson, Levine, 

& Beilock, 2013). 

Although the population of low-achieving students is heterogenic, some 

cognitive difficulties and behavioral characteristics are common. For example, 

such students find it difficult to retrieve basic mathematic facts from their 

memory (Geary, 2004) and to use effective computation strategies based on 

meta-cognitive skills (Goldman, 1989). They are sensitive to the learning 
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context (e.g., written and oral arithmetic practices or every day and formal 

mathematics), and find it much harder than other students to solve simple and 

complex addition and subtraction problems (Linchevski & Teubal, 1993). These 

difficulties may lead them to use less sophisticated strategies, and thus commit 

more errors. As they repeatedly experience failure and cannot keep up with the 

class, their motivation and self-esteem decrease. Therefore, they might have a 

weak sense of internal responsibility, be passive and/or rely on external 

authority (Geary, 2004; Linchevski & Tuval, 1993; Haylock, 1991).  

Adding to that, teachers do not always take into account socio-emotional 

aspects of LAS, neither going beyond the cognitive and subject matter aspects, 

and look into socio-emotional aspects of the teacher-student interaction that 

could affect learning (Broza & Ben-David Kolikant, 2015). Instead of 

increasing LAS ability to build on past successes, and fostering a sense of 

internal responsibility for their advancement, some teachers typically conclude 

that the most effective way of promoting mathematical performance in low-

achieving students is to ‘drill and kill’ (Anderson, Reder, & Simon, 2000), that 

is to focus more on the mathematical algorithms than on the mathematical 

meaning.  

Digital game-based learning is considered as an effective means to overcome 

negative implications of learning mathematics. They are fun, meaningful and 

inspiring by their nature, thus, they allow disengaged students to gain interest 

for mathematics, enhance motivation to perform difficult tasks and maintain 

effort, and help children to overcome anxiety (OECD, 2016). Digital game-

based learning theories (Squire, 2008; Gee, 2003), emphasize the potential of 

games to engage and motivate students in becoming active rather than passive, 

by enabling experiments and explorations without fear of failing in front of the 

entire class. Through active participation in a meaningful and authentic learning 

environment, mathematical strategies can develop naturally, as the concrete 

context is served as a cognitive scaffolding (Wood, Bruner, & Ross, 

1976).Therefore, the use of games for teaching may thus be particularly 

beneficial for low-achieving students. 

The current research examines learning processes of LAS who learn 

mathematics with a digital game and a teacher who was trained to attune her 

support to LAS cognitive and emotional needs. The learning environment was 

designed according to three theoretical lines: (a) ‘Learning in Context’  in which 

mathematical concepts and procedures are presented in a context relevant to a 

child’s day-to-day life (Gravenmeijer, 2004); (b) game-based learning (Gee, 

2003; Squire, 2008), and (c) ‘Accountable talk’, which focuses on the role of 

the teacher to create a safe and constructive space for building new knowledge 

by establishing norms and provide opportunities to talk mathematics, as well as 

share thoughts and ideas with group members (Chapin, O'Connor & Anderson, 

2009).  
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Researchers aimed at engaging students in significant learning by transforming 

their social and socio-mathematical norms (Cobb, 2004) from passive to active, 

from isolated to social collaboration, from impulsive to thoughtful. Group 

discussions were focused on reporting student' mathematical strategies (built by 

tools and teachers' scaffoldings), and establishing shared norms (e.g., examining 

students' strategies by approval and disapproval, and optimizing ineffective 

strategies).  

Researchers were aware of LAS's tendency to impulsivity; thus, students were 

asked to learn in dyads, in front of a computer. Researchers hypothesized that 

the collaborative setting will trigger two types of interactions: Computer-student 

and student-student; and that peers will explain their calculations to each other, 

and question other’s action, bringing about reflective and thoughtful interactions 

(Dillenbourg & Ficher, 2007).  

In a previous work (Broza & Ben-David Kolikant, 2015), researchers 

endeavored to characterize the meaningful and complex learning processes 

among LAS in a rich supporting environment in general and at the different 

levels of progress. In the following section researchers present the importance 

of the presence of computer game in the environment with peers’ discussions 

for progression. 

METHODOLOGY 

A total of 26 low-achieving fifth grade students took part in the above-

mentioned extracurricular program, for one weekly hour, for the duration of 

eight weeks in tow iterations. They studied subtraction with decimal fractions 

prior to the topic being studied in their parent mathematics classes, learning in 

small groups (up to four students), with a teacher trained by the researchers. The 

instruction framework emphasized a delicate transition from the realistic 

environment to formal mathematics. For this reason, for example, in the first 

four lessons, subtraction was presented only through monetary simulations and 

problems, with no formal exercises. From the fifth lesson onward, the formal 

representation of operations was interwoven into the learning situations, while 

maintaining the focus on authentic contexts.   

When playing the learning environment's "ice-cream shop" game 

(http://kids.gov.il/money_he/glideriya.html), the students acted as sellers: They 

received orders, prepared ice-cream, and then calculated and gave change. In 

addition, students were asked to work in supplementary online study units, 

which concerned the transition between money and formal representations, as 

well as change calculations. Students also enacted game-like situations with 

mock Israeli money (shekels and agorot).   

While students engaged in computerized activities, the teacher stayed in the 

background, observing their work and difficulties, taking notes for the following 

discussion, and intervening when needed. Much of class time was devoted to 
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pair and group discussions. The teacher's interventions did not include direct 

corrections of students' strategies, but rather meta-scaffolding questions that 

encouraged the students to use the tools in the environment to build their own 

strategies. 

Our primary data source was the transcripts of eight videotaped, 45-minute-long 

learning sessions, accompanied by eight screen captured computer sessions 

video screenshots (about 20 minutes each). Other tools included pre-program 

student interviews focusing on mental computation strategies, observation of the 

parent mathematics classes, student evaluations filled in by their parent 

mathematics class teachers' pre-and post-program, and individual worksheets 

each student filled in during the extracurricular lessons. According to a design-

based research, data were  collected in two iterations: Pilot study and main 

iteration. The transcripts were coded twice by two researchers. Using micro 

genetic approach (Siegler, 2006) researchers analyzed their knowledge building 

trial by trial. Utterances were segmented into episodes, so that each episode 

began with the presentation of a new task (Broza & Ben-David Kolikant, 2010). 

Each episode was classified according to the problem it deals with, and 

examined: (i) who participated in it; (ii) the tools that were involved; (iii) the 

knowledge pieces that emerged, and (iv) the difficulties that arose, including 

whether they were solved, and if so how and by whom.  

After identifying the episodes in which constructing occurred, researchers 

searched for historical evidence, i.e. indications in previous episodes, that could 

hint about the specific ways this new piece of knowledge could have been 

constructed. This integrative analysis enabled to focus on the developmental 

changes in the student's thinking and behavior chronologically, as well as to 

examine it with respect to the literature of LASs.  

RESULTS 

Eighty two percent of the students in the main iteration significantly changed 

their discourse participation, and actively built their own strategies to solve 

mathematical problems and exercises. The learning process was complex or 

inconsistent with regressions and progressions alternately due to LAS fragile 

memory. Therefore, the teacher found it difficult to calibrate her support in 

accordance with students' prior experiences. However, despite the difficulties, 

55 percent of the students in the main iteration exhibited stability in their 

knowledge during at least three continuous lessons. Additional 27 percent of the 

students exhibited short progressions with localized consolidations (within a 

specific lesson and not between lessons).  

Students' Behavior While Playing the Game 

As researchers hypothesized, the computerized environment, encouraged the 

students to be active as well as engaged in their task. During the play, 

researchers observed that the students were very focused on the task in hand. In 
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fact, students continued working (or playing) after the class had ended. The 

students reported in the interviews and ad hoc conversations that “it was 

fun…not a regular class”, “playing with the computer provides a sense of fun, 

[vs.] a blackboard, where you just sit and solve exercises”. Each student solved 

many subtraction exercises, manifested by the need to give change to customers 

in the shop. Students usually worked in turns: The one on the keyboard gave 

ice-cream, calculated the price, the change, and returned change.  

Failures in this context did not discourage them. On the contrary, this is when 

researchers observed mathematical discussions with their peers and with the 

teacher. Usually, when they received a response from a “customer” indicating 

that the change they gave was incorrect, they paused to think and sometimes 

they turned to their peers and verbalized their solution process. Sometimes this 

verbalization occurred after their peers asked them how they had worked. The 

discussion often helped them to correct themselves. This behavior was 

dramatically different from the observed (and reported) passivity (or 

impulsivity) in the regular classes. Moreover, in this context, the students 

generally welcomed the teachers’ intervention and cooperated with them. 

Hence, the computer and the peers often generated a synergetic effect on the 

students.  

The next two examples (to be reported at the conference) illustrates knowledge 

building next to the computer when the teacher find it hard to build on previous 

experiences due to the fragility of the knowledge. In both cases the successions 

of success were in lesson or between two lessons in front of the computer and at 

the next writing task. In both cases the strategy was not consolidated in the long 

term. 

Li 's Example 

In Lesson 3, Li was able to easily use borrowing to subtract decimals with 

halves from integers, yet in Lesson 4, she found it difficult to extend this to 

subtrahends with different decimals (e.g., 7.70). It took the teacher several 

attempts to identify the problem. Then, rather than explicitly teaching the 

procedure, the teacher elected to create opportunities for Li to build her own 

knowledge and made many attempts to support her in this process. Amongst her 

attempts were her suggestions and guidance to use play money, the verification 

procedure, the conversion procedure, and the linking of subtraction exercise in 

the task to the monetary terms of the problem story (the price, the change). Her 

suggestions were reasonable, given that Li previously experienced success with 

these activities and procedures. However, Li was apparently unable to 

remember or apply this past knowledge to the situation at hand.  

It was only in the next lesson that Li was able to construct a conversion strategy.  

It was in the subsequent computer session when Li managed to solve a 
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succession of tasks as demonstrated in her explanation to her peer. The task was 

20-12.20 = 

1  Li: 20 minus 10 equals 10…minus two equals] eight. Look, seven [NIS] 
and 20 agorot, right? [Gets feedback from the computer that the 
answer is correct]. 

2 Nina:  Ah!! I got it, I got it… 

3 Li:  Understood?  

In another task 20-15.50 = Li explains to her peer: "First do not pay attention to 

this [Agorot], look at the integers. Then do 20 minus 10 is 10, minus five is five. 

And five minus fifty [agorot]. And then you continue with the agorot…" after 

they got a positive feedback from the computer Li added to her peer: "You see, 

you are learning!".  

Li could even apply her strategy to written individual tasks (as shown in Figure 

1). 

 

Figure 1: Li's writing performance 

Yar's Example 

The following excerpt  is from the fifth lesson, solving the exercise 20-7.70. 

After the teacher collected all the answers, she saw that Yar got a wrong 

answer, 13.30, and turned to him for an explanation: 

59  Yar:  It can be done vertically. 20 minus 7.70 

60 Teacher:  How shall I write it? I really do not know... 

61 Yar:   As if 20…[pause]  

62 Teacher: 20, yes…[writing on the board] 

63  Yar:  Minus 

64 Teacher:  Vertical minus? 

65 Yar:   Now, you should do…[thinking]  

66 Teacher: Come [to the board], tell me exactly where [to write 7.70]? 

67  Yar: [goes to the board] eh, here [points right under the 0 of the 20] 
here…no, no…it is impossible. 

68 Teacher:  Impossible… 

Yar thought that a vertical-solving procedure might help. However, it was the 

first time he wrote decimal numbers vertically, and he was unsure where to put 
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the decimal point. The teacher let him struggle with writing, repeating his 

conclusion, “impossible” (Line 68).  

The next lesson opened with a computer session. For the first six of the ten 

exercises presented on the computer, Yar quickly typed a response in what 

seemed like a trial-and-error fashion, responding to "customer" feedback from 

the computer and correcting, as necessary.  Then he was observed "just 

thinking". The exercise at hand was 20-12.80. He solved it, got positive 

feedback from the computer, and explained to his peer, Ron: “[20 minus 12 

equals] 8, [changes one shekel to 100 agorot on the computer] 7 and 20 agorot”. 

Namely, he subtracted the integers, then subtracted one more integer and added 

the right amount of agorot. He solved the remaining three exercises in this 

computer session straightforwardly, employing the same strategy.  

Apparently, the computer immediate feedback (and probably its non-judgmental 

nature) and the presence of a peer, to whom Yar verbalized the strategy he has 

just constructed, not only helped him construct a strategy.  

In the next written individual task, Yar also succeeded: 

 
Figure 2: Yar's writing performance 

DISCUSSIONS AND CONCLUSSIONS 

Both examples illustrate knowledge building next to the computer when the 

teacher find it hard to build on previous experiences due to the fragility of the 

knowledge. In both cases the successions of success were in lesson or between 

two lessons in front of the computer and at the next writing task. Probably, the 

experience while playing and explaining to attentive peer strengthen their 

fragile memory in the short term. Although the computer changes their learning 

experience, the strategies were not consolidated in the long term.  

This complex picture is perhaps a result of the tension between LASs’ active 

engagement in mathematics and their weaknesses. It is no surprise that teachers 

frequently conclude that LASs fail to acquire mathematical thinking and 

therefore minimize situations that require such thinking (Metz, 1978). Still the 
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change in their capacities and behavior points on potential of the environment. 

A longer research might conduct to observe longer-time stability.  
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THE INFLUENCE OF ANALYTIC MODEL ON CRITICAL 

REFLECTIVE THOUGHT OF PRE-SERVICE 

MATHEMATICS TEACHERS FOR ELEMENTARY SCHOOL 

Orit Broza and Ariel Lifshit 

Levinsky College of Education, Israel 

 

A total of 23 mathematics pre-service teachers learning process was examined as a 

result of using an analytic model designed for discourse protocols' analysis. The 

model contains three lenses to analyze discourse: (i) Examines the pre-service 

teachers' dominance in discourse; (ii) maps the types of questions, and (3) focuses on 

learners’ reactions and comprehension performance. Results revealed that an active 

and dynamic process occurred, modifying teacher practice, and developing critical 

reflective thinking among pre-service teachers. The change occurred in two “ripples 

of influence”: (i) Improving discourse to one promoting learning by demonstrating 

hypothetical scenarios and (ii) perception of the role of teachers and class 

management.  

INTRODUCTION AND THEORETICAL FRAMEWORK 

One of the challenges in teaching mathematics in general and teacher education is the 

existence of meaningful discourse that will lead to generalization and justification 

processes. Data collected in the past two years in the framework of work practicum 

lessons in a college of education demonstrate a difficulty among pre-service teachers 

to establish meaningful developing mathematical discourse for the purpose of 

constructing mathematical knowledge. Existing discourse is generally characterized 

by closed questions (e.g. IRF) and consequently, answers that do not lead to 

generalizations or justifications. 

Michaels, O’Connor, and Resnick (2007) used the term “accountable talk” (to express 

the desired classroom mathematics discourse and the importance of teachers as 

leading the discourse. This approach was meant to involve pupils and create discourse 

situations whereby participants listened to one another, built ideas on one another’s 

and asked questions to clarify or broaden any opinion. The participants create links 

between statements voiced in the discourse and provide reasons and justifications 

when disagreements arise. The teacher's role is to encourage conversation with 

questions such as: “Has anyone got anything to add?” or “Can someone say what he (a 

colleague) said in other words?”, to request clarifications and explanations for what 

was said, to give time to think, to encourage learners who do not participate by asking 

to hear their opinion and to encourage agreements or disagreements about a common 

idea that arose in the group.  

In recent decades, attempts have been made to characterize and define the concept 

justifications. Research literature deals mainly with high school. For example, Harel 

and Sowder (2007) defined justifications as a process carried out by a learner so as 
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remove any doubt about a given hypothesis, a process made up of two secondary 

processes: Persuasion and becoming convinced. In ‘persuasion’ a learner removes the 

doubts of others. In ‘becoming convinced’ a learner (with the help of others) removes 

his own doubts. In elementary schools today, referring to justification as a process is 

very common to help processes of structuring knowledge and promoting meaningful 

learning. The expectation is for justification to occur within the framework of tools 

learners have and in accordance with their developmental stages, in other words, 

employing explanations for how something is solved, using supporting examples, 

using non-examples to refute arguments, employing definitions, rules and law and not 

complicated processes of proof. 

Employing reflection in teacher education promotes teachers’ abilities to learn from 

experience, initiate changes and be more aware of their understandings (Fox et al., 

2011; Shulman & Shulman, 2004). Many studies have employed joint video 

observations to analyze teacher-learners interaction or transcripts of teachers’ lessons 

to characterize diverse teaching styles, examine congruence between content and 

executing lesson aims or in order to understand unrealized teaching opportunities 

(Santagata & Yeh, 2013; Spitzer et al., 2011). A reflective process that combines in-

depth research analysis contributes to understand processes of situational 

understanding (Korthagen, 2010). Hence, work experiences become not only a place 

to practice these teaching skills but a field in which to examine theory. Furthermore, 

reflective writing improves self-regulation, cognitive and meta-cognitive 

qualifications as well as motivation. 

The aim of this research is to examine the learning that occurred among pre-service 

teachers who employed a reflective model developed especially for the practicum 

research course. The assumption is that analytical analysis will develop pre-service 

teachers' awareness of the way in which they conduct discourse, will reflect barriers in 

developing discourse, will lead to the development of optimal scenarios for situations 

that were not exploited, to finding possible leverage to improve discourse during 

research lessons and at the end of the day improve mathematical discourse in work 

experience classes. 

The Model 

Researchers constructed an analytical model containing three different lenses for 

analyzing discourse protocols focusing on diverse episodes of the discourse conducted 

in a lesson, examining the types of pre-service teachers' questions and answers in the 

discourse, and the connection between these and their learners’ comprehension 

performance. The work stages of the model were as follows: 

Stage A: Mark and quantify only pre-service teachers’ expression in a discourse 

protocol and the frequency of these expressions in various episodes. Using this lens, 

the dominance of pre-service teachers in the discourse was examined (for example, 

IRF). 

Stage B:  Map the types of pre-service teachers' questions and answers in discourse: 

Closed, procedural, open, challenging questions or high thinking order questions that 

awaken thought and investigation (Bozo-Schwartz, 2011). Learning promoting 

feedback was defined as prolonging conversation through clarification questions, 
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challenging learners to discuss with and explain to one another, repeating what 

learners say, linking learners’ ideas in a discussion of mistakes (Bozo-Schwartz, 2011; 

Chapin, O’Connor & Anderson, 2009). 

Stage C: Code learners comprehension performance in the discourse: providing an 

explanation, bringing examples, application, generalization, or justification (Perkins, 

1998). 

METHODOLOGY 

The research was conducted within the framework of a “practicum research”, which is 

an integral part of the 23 pre-service teachers' practical experience in schools in the 

second and the third year of their studies. The course is annual and addresses 

improving the quality of teaching and self-examination of teaching/learning processes 

using questions regarding adapted teaching in general and in the field of mathematics. 

The researchers served as pedagogical instructors for the research group. 

Research tools included 46 transcripts of complete lessons analyzed according to the 

three lenses of the model (23 from each semester), 46 lesson plans and 23 complete 

reflections on the research process. 

Thematic qualitative analysis was carried out on the research work results and 

complete reflections of each pre-service teacher, a total of 23 pieces of work. The 

works were coded twice by two researchers, each separately, and there was a 95% 

match. The following aspects were analyzed:  (a) Examining coding of types of 

questions asked by pre-service teachers at two points in time; (b) examining coding of 

learners comprehension function at two point in time; (c) discussion of link between 

type of question pre-service teachers asked, learners reactions, and their 

comprehension performance; (d) pre-service teachers’ explanations and interpretations 

of the change occurring, if at all, and (e) pre-service teachers’ ability to develop 

hypothetical scenarios at times when they were not satisfied with discourse progress. 

RESULTS 

An analysis of finding and comprehensive reflections pointed to a proactive process-

taking place that led to a change in views of teaching/learning processes over and 

above the fundamental hypotheses of the model that sought to improve the quality of 

discourse. In fact, two “ripples of influence” were created: The one at the level of 

awareness of classroom discourse, the role of a teacher as a mediator in structuring 

mathematics knowledge in class, designing and openness to hypothetical scenarios in 

situations where discourse did not promote learning. This type of effect will be called 

“local ripple”. The other ripple in a broader and more generic circle, is the influence 

on pre-service teachers' perceptions of the effect of discourse on classroom 

management norms (developing socio-mathematical norms, employing a range of 

interactions for learning). This type of effect will be called “expanded ripple”. Pre-

service teachers who showed development of an expanded ripple also demonstrated a 

change in local ripple, as can be seen in Figure 1, and therefore, expanded ripple is 

also contained within local ripple. 
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Finally, the works of about 13% of the remaining pre-service teachers (3 works) did 

not testify to a meaningful process and analysis were paltry. Their group was defined 

as “no change” (Figure 1). 

 

Figure 1:  Types of effects on pre-service teachers  

Figure 1 shows that the most frequent change was in the local ripple as researchers 

expected. However, among five of the 23 pre-service teachers, in addition to a change 

in the local ripple effects of an expanded ripple were found, a result that researchers 

did not expect would emerge. The following section will demonstrate episodes taken 

from the research works and reflections for each of the ripples and will discuss the 

challenges and difficulties described by pre-service teachers throughout the process. 

In the next section, three presentative examples demonstrate the two ripples. Further 

examples will be presented at the conference. 

“Local ripple” Effect: Awareness of Importance of Using Open Questions 

The following episodes demonstrate how analytical analysis helped pre-service 

teacher N acquire insights regarding the questions she asks in her transcript analysis:  

“I don’t ask enough open questions. However, the open questions I do ask are 

mainly two types. The one is questions asking for an explanation, mainly the 

question “how”? – “How did you solve it?” (Line 5). “How did you get to 9 ½ 

?” (Line 8), “How did you get to the whole?” (Line 85). “The second type is 

questions asking for other ways of solving, “Is there another way” (Line 87) 

“Did everyone solve it the same way?” (Line 10).  

Later, N (referred as a "teacher") explained the implications of asking closed 

questions on the discourse with her learners.  

80  A:  10 whole and a half less 9 and five tenths or 9 and a half. 

83 Teacher:  How many does that equal? 

84 A:   A whole  

85 Teacher:   How did you get to a whole? “I don’t understand” Explain it to 
me. 

86  A: Half less a half is zero, so it is nothing and 10 minus 9 equal 1 so 
it   is whole.  

87 Teacher:  Is there another way? 
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88 B:  I did 9 and a half and then a tried to add some wholes so it would 
reach 10 and a half and it comes out 1. 

91 L:   I did it another way. I did a half plus another half and it came out 
whole. 

92 A:  How did you get to a half plus another half? But what do you do 
with the 9? 

93 D:   How do you do it? But why exactly did you choose the half. 

94 L:  Because I know that there is 9 and a half so I added the half. 

95 D:   Ah! I understand. 

96 L:  And then another half and then it comes out a whole. Do you 
understand? 

97 A:   Yes. 

N analyzed the above episode as the following:  

“One can see that in Line 83 I asked a closed question: "How many?” And in 

Line 84, A gave me a fitting succinct answer. In contrast in Line 85 and Line 87 

I asked open questions. Line 85 is a question requesting an explanation and the 

question in Line 87 encourages learners to offer further ways of solving the 

question. Accordingly, in Line 86, Line 88, and Line 91 there is comprehension 

of the explanation by the learners. In addition, one can see in Line 92- Line 93 

that when learners did not understand how L solved it, they also asked “how?” 

and requested an explanation, like I ask for in lessons. In Line 94 and Line 96, 

L responded appropriately in giving an explanation.” 

This episodes above shows the connection made by the pre-service teacher (teacher) 

between types of question and learners’ comprehension performance, in other words, 

a closed question leads to a short and concise answer that actually testifies more to the 

existence of knowledge and less to comprehension. In the transition to a discussion of 

open questions, the pre-service teacher identifies the importance of using open 

questions to creating discussion norms among pupils who use the word “how” among 

themselves (Line 92, Line 93). Moreover, the pre-service teacher mainly supports a 

discourse being conducted among learners without her intervention but does not 

develop the topic around the various ways’ learners raised but suffices purely with 

their presence in the discourse. She does not employ the practices of repeating and/or 

reasoning to leverage this opportunity to a discussion about the similarities and 

differences between the ways presented and verifying that discourse participants 

comprehend how the others solved the problem. 

“Local ripple” Effect: Frequent Use of the Question "Why" as Feedback 

Promoting Learning 

One of the criteria for feedback promoting learning is extending dialogue with 

learners and asking clarification questions requiring an explanation. Pre-service 

teacher K illustrated the importance of using the question “why” to encourage 

causality in learners’ arguments and urging explanations from them. 
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K: “In that lesson I gave the learners a card containing a comparison between 

two different lengths of chains. In addition, the learners were asked to answer 

who had a longer chain. For this purpose, the learners had to convert the unit 

of measurement from centimeters to millimeters and then compare between two 

chain lengths.” 

Below is the evidence from the “centimeter” lesson held on 16 March 2016, Lines 39-

40 and 46-49. 

39  Teacher: Why is a centimeter longer than a millimeter? 

40 HV:   Because every 10 millimeters is one centimeter. 

46 Teacher:  Girls, why in your opinion is Yossi’s chain longer than Daniel’s?  

47 A:   Because a centimeter is longer than a millimeter and Yossi has 
one centimeter. 

Pre-service teacher K (Teacher) summarized the importance of asking the “why” 

question: 

“When I ask the group questions that demands reasons, I am in fact forcing 

them to use their existing knowledge so that they can base and explain their 

answers why a centimeter is longer than a millimeter and the like.” 

“Expanded ripple”: Changing the Discourse about Norms and Classroom 

Management 

The following excerpts illustrate the effect of analysis on the interactions and norms 

by which pre-service teachers choose to manage learning. 

T. “In lesson number 1, which took place in February, although most of the 

questions I asked were closed questions, I also posed a lot of open, reflective 

and meta-cognitive questions, and questions based on a high order of thinking. 

However, because of the nature of the lesson tasks, given to learners as 

personal tasks, there was almost no discourse between learners and their 

colleagues, but mostly reactions to questions I asked … In the second half of 

the year, I used more group and pair tasks, so as to encourage mathematical 

discourse between learners, and indeed, it was possible to see in lesson no. 2 

many more conversations between learners working in pairs, more reactions to 

what the other said, reasons and explanations they gave to each other, 

mediated by questions that I asked and also without mediation.” 

T moved to group tasks instead of personal tasks to allow learners to talk among 

themselves. A change testifying to a different view of the teacher as a facilitator 

striving to structure knowledge by creating interactions between learners and not 

seeing herself as the source of knowledge. A perception promoting interpersonal 

discourse instead of IRF discourse with the teacher attests to a change in the teacher’s 

professional identity. 

T added the effect of her learning process on organizing interactions and times within 

a lesson. 
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“…I shortened the opening part of the lesson with frontal acquisition for all, I 

prolonged the part of independent work experience and discussion following it 

and I planned a range of activities for the whole lesson that constituted 

demonstrating different levels of comprehension.” 

DISCUSSION AND CONCLUSIONS 

As mentioned, the aim of the research was to examine how employing an analytical 

model to analyze discourse promoting meaningful learning among pre-service 

teachers. The results of this research are compatible with the need for teacher 

education to turn work experience not just to a place to experience these skills but also 

to a field of theoretical research (Korthagen, 2010). In fact, what occurred here was an 

active process of changing views of teaching/learning processes expressed by 

awareness of the quality of discourse and their role as teachers in mediating teaching.  

The results testify to a development in pre-service teachers’ reflective ability as 

expressed by critical observations of the discourse they conducted in lessons they 

taught and its influence on them as teachers. The model developed here led to a 

significant step in pre-service teachers’ ability to connect between theory and their 

personal teaching practices and to move to and from practice to theory and vice versa 

in their ambition to advance their teaching. However, from the testimonies about the 

first wave of influence it emerged that in most cases partially considering discourse 

exists characterized by practices to encourage discourse such as: Do you agree? Who 

wants to add? Whilst adhering to preplanning and without authentically relating to 

learners' answers and without deepening the discourse and promoting commitment to 

all participants. The change, therefore, is firstly on the level of questions alone. 

The case of the expanded ripple teaches us that a pre-service teacher can 

metaphorically distance herself from the conversation and observe the group discourse 

from the side and plan steps that perhaps were not considered in lesson planning. 

Distancing allows them to develop the ability to listen to the developing authentic 

“here and now” discourse between learners, detachment from original planning that is 

likely to fixate and re-enter the conversation when they feel more confident. 

The key conclusion emerging from this research is that using an analytical model to 

analyze discourse among pre-service teachers has great multi-directional potential, 

which is simple and clear and demonstrates how it can be integrated into the 

curriculum in an empowering and structured manner, and as an integral part of the 

work experience. As such it meets the need for a link between theory and practice in 

teacher education.  
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The present research report takes one of the key notions of statistics and probability 

as an object of study: the random variable, studied from its discrete character. 

Supported by the theorical-methodological tools from the Onto-Semiotic Approach 

(OSA) of mathematical cognition and instruction, it was possible to define the 

reference meaning that diverse authors have built upon this mathematical object,  in 

order to study the representativeness of the institutional meaning and the types of 

mathematical practices expected and fostered by the Chilean mathematics curriculum 

for secondary education, to learn the discrete random variable. The context of the 

proposed tasks plays a key role, and in our work the possible relations between these 

and the meanings of the discrete random variable promoted in textbooks, are also 

analyzed. 

RANDOM VARIABLE AS A FUNDAMENTAL IDEA 

The advances in science and technology, the exponential growth in data collection 

systems, a globalized world that bombards day by day its citizens with information 

through figures and graphs, have generated the need for new analytic tools for the 

people, that could help them in the correct interpretation of the information 

surrounding them. A key tool in this process is the so-called statistical culture. 

Batanero (2002) explains that statistics have had a fundamental role in the 

development of modern society, as it has provided a battery of methodological tools to 

analyze variability, relations among variables, design of studies and experiments, and 

improve the predictions to make decisions in situations of uncertainty.  

Because of the foregoing, the need to count with citizens culturized on statistics have 

become an objective for leaders of diverse nations, who have promoted the 

incorporation of statistics and probability in formal education. In this sense, 

researchers and teachers have contributed to define curricular lines that allow 

addressing these topics. The teaching of stochastic ideas throughout the education 

process, began to be conceived by Bruner (1959; cited in Ruiz, 2013), who in 

September of 1959 in the Woods Hole Conference, proposed the idea of a spiral 

curriculum consisting of a series of possible fundamental ideas to teach in different 

levels of complexity from preschool to university. Years later, Heitele (1975) boldly 

proposed ten fundamental ideas in stochastic, based on psychological and 
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epistemological reflections, that is to say: Expressions of belief, the probability field, 

independence, the addition rule, equidistribution and symmetry, combinatorics, urn 

model and simulation, stochastic variable, the law of large numbers, and sample. 

Heitele established the random variable as a fundamental idea from three perspectives: 

the epistemological in which plays a basic role in the mathematization of probability 

through history; the psychological in which the intuition of magnitudes where chance 

participates, arises earlier than that of random experiment; and as an explanatory 

model in which plays a key role in three aspects, its distribution, its expectancy and 

operations between random variables. Nevertheless, even when the importance of the 

random variable is well-known, how does the mathematics curriculum and textbooks 

in the Chilean context address the study of this notion? The present research report 

presents the advances of a developing study about the meanings of the (discrete) 

random variable, expected and promoted by the mathematics Chilean curriculum 

(understood as the duo <Plans of study and textbooks>) and the representativeness of 

those meanings regarding the reference meaning of the random variable.  

THEORETICAL FRAMEWORK 

The present work uses some theoretical-methodological notions of the Onto-Semiotic 

Approach (OSA) of mathematical cognition and instruction. To study a mathematical 

concept, it is necessary to comprehend its characteristics, scopes, fields of action, 

among other elements that might compose it, and thus having a deeper understanding 

of that intended to be observed; it is necessary to know the meaning of such 

mathematical object. It is possible to determine the meaning or meanings of a given 

mathematical object from the historical development of it through time. In this sense, 

Pino-Fan, Godino and Font (2011), propose that the reference meaning is understood 

as the systems of practices that are used as reference to elaborate the meanings that are 

intended to be included in a study process. For a concrete educational institution, the 

reference meaning will be a part of the holistic meaning of the mathematical object.  

In the OSA, the notion of mathematical practice is of great relevance, which refers to 

any performance or manifestation (verbal, graphic, etc.) carried out by someone in 

order to solve mathematical problems, to communicate the solution to others, to 

validate the solution and generalize it to other contexts and problems (Godino and 

Batanero,1994, p. 334). The practices can be idiosyncratic of a person (personal 

practices) or shared within an institution (institutional practices). Furthermore, in the 

OSA the anthropological premise of socio-epistemic relativity of the system of 

practices, of the emergent objects and the meaning, is assumed. Thus, the meaning of 

a mathematical object is understood as the system of practices that a person makes 

(personal meaning) or shared in the heart of an institution (institutional meaning) to 

solve a type of situations-problems.  

Pino-Fan, Godino and Font (2011) indicate that the partial meaning of the 

mathematical objects (that constitute the global reference meaning) have associated 

epistemic configurations (situations/problems, linguistic elements, 
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concepts/definitions, properties/propositions, procedures and arguments) that are 

mobilized when solving certain problems situations, in given historical problems, and 

that gave rise to the emergence, evolution, formalization and generalization of a given 

mathematical object, in this case, the random variable.  

REFERENCE MEANING OF THE RANDOM VARIABLE 

Based on the study of diverse historical stages of the random variable evolution, 

according to different authors (e.g., Ruiz, 2013; Alvarado, 2007; Ortiz, 2002; Heitele, 

1975), it is shown that the mathematical object variable is the result of numerous 

generalizations made through an evolution of more than 800 years. Thus, it was 

possible to identify four meanings of the random variable, which are described below. 

Meaning 1:  The Random Variable as a Variable of Interest 

One of the first problem areas in which the idea of random variable is observed, is the 

one linked with games of chance. However, the more formal mathematical analysis of 

them, appeared in relatively recent times (García, 1971). The ideas depicted in these 

works are not very formal, as the existence of variables or distributions in a general 

form, is not mentioned. Nevertheless, variables are defined for particular cases and in 

certain cases their distributions are considered. Different mathematicians were 

attracted by the problem of estimating the equitable wager in the game of chance, 

which led them to implicitly consider random variables and distribution. In modern 

terms, their main interest was the mathematical expectation of the variable. Such was 

the case of Fournival, Cardano or Galileo, who motivated by their interest to find the 

best wager in games of chance, were devoted to study the possible outcomes for 

rolling three dice. At a later stage, Pascal and Fermat, based on the ideas of Fournival, 

Cardano and Galileo, started with the probability theory in search of the solution for 

the equitable wager, further on, is Huygnes who manifests the need to think about a 

variable of study, that is to say a variable of interest in consideration of the context. In 

the analysis of his solution, Huygens makes explicit the needed variable to analyze: 

“IN the first place we must consider the number of Games still wanting to (win) either 

Party” (Huygens, 1714/1657, p.4), for that, he situates in the context of the problem.  

Meaning 2: Random Variable as Magnitude 

De Moivre (1756), established a change regarding previous books of probability. 

Latin began to be replaced by writing in or simultaneously translating into English or 

the native language of the author, which made that a specialized vocabulary would 

develop faster by working with a living language. Furthermore, it showed a different 

conceptual approach, in which he clearly separated the probability of an outcome from 

its value or the expectation. In its third edition (De Moivre, 1756) established the 

paradigm of mathematical probability, leaving behind the philosophical problems and 

forming the theoretical basis to all his propositions (Sylla, 2006). 

According to Pearson (1924), De Moivre wrote the first treatment of the probability 

integral and the essence of the Normal Curve, contributing with diverse tools for the 
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field of probability. In that age, scientists used the idea of variable connected with the 

study of mathematical analysis. It was commonly called quantity or variable 

magnitude, which evidenced its character linked with measurement, process in which, 

the quality could take different values. 

Meaning 3: The Random Variable as Statistical Variable 

In parallel to the development of the probability theory, through the resolution of 

game problems, emerged the birth of statistics through the gathering and description 

of social or economic data. The human has had the need to do counts and 

representations that could be considered simple statistical recounts from time 

immemorial. The need to know and plan, in the sense of knowing what is at hand and 

make accessible and manageable that information to take decisions, caused that little 

by little politicians, traders and militaries would carry out increasingly sophisticated 

census and counting. 

Thus, the statistical variable is associated with the observation and description of a 

sample from a dataset. Following this idea, Ríos (1967) proposed that the statistical 

variable describes the set of values obtained in the data by making the experiment a 

concrete n number of times, then, if we consider a random experiment S and make a 

certain n number of tests relative to the same, we obtain a set of observations called 

random sample of extension n. This set of results will provide a statistical table in 

which certain values of the variable correspond certain frequencies. To such “variable, 

that only represents the n results of n executions of the S random experiment will be 

referred as statistical variable” (Ríos, 1967, p.70). 

Meaning 4: The Random Variable as a Function  

Hawkins and cols. (1992), consider the concept of random variable as a function with 

numerical values which domain is a sample space. Borovcnik and cols. (1991) 

indicate that a variable is random when its value is determined as a result of a random 

experiment; it also establishes that to characterize a random variable we need to know 

the set of all its possible results and the probabilities associated to each of them.   

Then, a random variable is defined as a function of the sample space E in the set of 

real numbers R. Not any function can be a random variable. It is necessary that, for 

each interval I, the set should be an event of the sample space and, thus, should have a 

well-defined probability. This guarantees that the random variable would carry the P 

probability that is defined over the E sample space to the real line.  

On the basis of that, Ortiz (2002) identifies the following elements of the meaning of 

the random variable as a function:  

RV 1: The random variable takes its values depending on the results of a 

random experiment. 

RV 2: It is a function of the sample space in R. 

RV 3: Is characterized through the distribution of probability, along with 
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the values that takes with its probability. 

RV 4: It is required that, for each I interval of R, the original set would be 

the event of the sample space. 

RV 5: A random variable defines a measurement of probability over the set 

of real numbers. 

RV 6: For each random variable we can define a function of distribution in 

the following way:  

 

 

RV 7: The function of distribution of a random variable is a real function of 

real variable, monotonous non decrescent. 

RV 8: The function of distribution of a random variable determines on a 

biunivocal form the distribution of probability. 

RV 9: Be  (xi, pi) i ∈ I  the distribution of probability of a discrete random 

variable. The media or mathematical expectation is defined as E[ξ] =
∑ xipii ∈I  . This concept expands the idea of media in a random 

variable. 

RV 10: The mode is the most likely value of the variable. 

RV 11: The median is the value of the variable by which the function of 

distribution takes the 1/2 value. Then, the probability that one 

random variable would take a lower or equal value to the median es 

exactly 1/2. 

METHODOLOGICAL ASPECTS OF THE STUDY  

The sample selected corresponds to the mathematics textbook of Chilean secondary 

education. Secondary education in Chile considers 6 levels, from 7th grade (12 years 

old) to 12th grade (15 years old). Each year the Chilean Ministry of Education 

(MINEDUC), provides textbook for free to all the students from public institutions. 

The elaboration of such textbooks is awarded on a tender basis, thus throughout 

secondary education it is observed that different editorials oversee the elaboration of 

them, as we can see in Figure 1. 

 

Figure 1: Representation of the editorials in charge of the edition of textbooks in Chile 

for each educational level 
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For the purposes of the present work textbooks from secondary education were 

selected, excepting those of 11th and 12th grade, as they are outdated in relation to the 

national curriculum published by the end of 2019. Along with the mathematics 

textbooks of 7th, 8th, 9th, 10th grade, the 8th and 11th grade history textbooks were 

analyzed, because of the relationship between the axis of statistics and probability 

with the objectives set by the history subject around the development of skills such as 

critical thinking.  

EXAMPLES OF DEVELOPMENT OF THE ANALYSIS 

To facilitate the analysis, a database which user screen we can see on Figure 2, was 

created. In such database the pictures of the proposed tasks in textbooks are uploaded 

and further analyzed. First, the general information of the task, the level, the subject, 

the code of the task, the section analyzed and the page of the original document from 

which it was extracted, are entered. 

 

Figure 2: Database for analysis of typologies of tasks and meanings of the R. V 

 

After that, the context present on the task is categorized. Based on a historical study 7 

possible contexts were determined: (a) games of chance, considering every task 

involving dices, cards, coins, picking from a bag and others; (b) census and records, 

considering every task related with the counting of a population and its characteristics; 

(c) natural and biological sciences, considering any task related with natural 

environment, health, flora and fauna; (d) physics and astronomy, taking into account 

every task concerning stars and physical processes such as sound, speed, among 

others; (e) observation and interpretation of data from polls, entails every task in 

which interpretation of poll data is not determined by a particular population and 

which size is lower than that of a census, as well as, the data recording in matches of 

different types of sports, is involved; (f) formal, considering tasks which context is the 

use of axioms and formal definitions of the variable; and (g) without context.  

Once the context is defined, the meaning which the task is trying to address is 

identified, this is done through the statement itself of the task and of the elements of 
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the epistemic configuration intended to be used in the practices that solve the task. 

These meanings are: (S1) as variable of interest: (S2) as magnitude: (S3) as statistical 

variable; (S4) as function. Additionally, problems without classification were 

contemplated for such cases in which the task mobilizes more than one or any 

meaning, with or without context.  

Once the context and meaning are identified, the types of activated representations or 

the ones expected to be activated by the task are analyzed, say: verbal, graphic, 

symbolic, tabular or iconic. Moreover, a differentiation between the previous 

representation, which we understand as the ones that should, originally, interpret and 

decode the student (or subject) with the aim of comprehending and facing the task; 

and emergent, seen as those that emerge as part of the subjects answers (or expected 

answers, if seen from an institutional point of view), is made . Depending on the type 

of task, it is possible that apart from a previous representation and an emergent one, 

may arise a transitory, necessary to address before the emergent representation.  

Finally, and particularly for meaning four (S4), random variable as function, the 

intentional elements present in the task are identified, as well as, the typology of 

problems, based on the previously mentioned proposal of Ortiz (2002). 

FINAL REFLECTIONS 

From the analysis performed so far, we have determined that the intended meanings of 

the mathematics Chilean curriculum about the notion of random variable seem not to 

be representative of the holistic meaning of reference. While it possible to distinguish 

tasks that promote the S1 and S3 meanings, in the earlier stages of secondary 

education (7th and 8th grade) S2 meaning cannot be observed. On the other hand, 

despite 10th grade provides a complete section entitled random variable, in which this 

function is defined as that which takes values according to the results of an random 

experiment, promoting S4, in 9th grade there is no visible definition of the variable 

provided, in detriment of an adequate transition between meanings. It appears that the 

existent relation between the statistical variable and the random variable is not 

promoted, restricting the first to a mere characteristic of a population, omitting the 

conception of this as the description of an n number of experiments, which would 

allow favoring a better transition of the students from meaning 3 to meaning 4. 

Finally, regarding the contexts of work, games of chance continue to be present in 

greater extent, followed by the observation of polls and census and records. 

Concerning the variables in study there is a tendency towards discrete variables in 

lower levels, it is worth noticing that, although there are tasks that promote the 

distinction between variables of discrete and continuous kinds in the first levels, this 

distinction seems to be lost as the higher levels are reached.  
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RATIO COMPARISON PROBLEMS: CRITICAL 

COMPONENTS AND STUDENTS’ APPROACHES 
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This study focuses on examining secondary school students’ approaches in ratio 

comparison problems. Two hundred forty-eight secondary school students (12-16 

years old) solved two ratio comparison problems that can be interpreted as a couple 

of expositions or compositions. Three main students’ approaches were identified 

according to whether they identified the relative quantities: relative comparison, 

relative trend, and non-relative comparison. Furthermore, the subcategories 

identified in the relative trend and non-relative comparison approaches showed 

students’ difficulties with critical components of the problems: difficulties in 

interpreting the referent in the comparison, in identifying the multiplicative 

relationship, and with the norming techniques. 

THEORETICAL AND EMPIRICAL BACKGROUND 

The understanding of the concepts of ratio and proportion and the development of 

proportional reasoning have been broadly studied since the 80s (Cramer & Post, 1993; 

Lobato & Ellis, 2010; Tourniaire & Pulos, 1985). Many studies have reported 

students’ difficulties in distinguishing proportional from non-proportional situations 

and the effect of some variables of the problem (such as the context, and the nature of 

ratios) on the students’ success levels and strategies (Alatorre & Figueras, 2005; Van 

Dooren, De Bock, & Verschaffel, 2010). Most of them has used missing-value 

problems (Fernández, Llinares, Van Dooren, De Bock, & Verschaffel, 2012; Van 

Dooren, De Bock, Hessels, Janssens, & Verschaffel, 2005) where three quantities of a 

proportion are known and the fourth must be found. However, little is known about 

how primary and secondary school students understand and use the ratio concept 

when solving ratio comparison problems (Alatorre & Figueras, 2005; Nunes, Desli, & 

Bell, 2003) where two ratios are given and have to be compared. 

One of the challenges in these problems is that they involve the understanding of 

intensive quantities. Nunes et al. (2003) showed that when primary school students 

construct an understanding of intensive quantities, they have to face two challenges: 

thinking in terms of proportional relations and understanding the connection between 

the intensive quantity and the two extensive quantities which are related to it. These 

authors also show that primary school students have difficulties solving ratio 

comparison problems that involve intensive quantities.  

In the understanding of the ratio concept, Freudenthal (1983) highlights the 

importance of considering situations in which the ideas of “relatively” and “norming” 
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are required. The idea of “relatively” in the sense of “put something in relation to” 

involves the use of the term ratio as a relational number that relates two quantities in 

one situation and projects this relationship onto a second situation in which the 

relationship between the two quantities remains the same (Smith, 2002). Norming 

describes the process of reconceptualising a system in relation to some fixed unit or 

standard (Lamon, 1994).  

Ratio comparison problems involve both ideas, relatively and norming. In these 

problems, the multiplicative relationship that exists between the quantities can be 

equal or unequal, and represents “relative quantities”, that is, “quantities put in 

multiplicative relationship with other quantity of reference” (called “the referent”) 

(Gómez & García, 2015, p.267). These problems can be interpreted as couples of 

expositions or compositions (Freudenthal, 1983). For instance, given the following 

ratio comparison problem: In the greengrocer A, for each 2 kg of apples paid you get 

3 kg. In the greengrocer B, for each 3 kg of apples paid you get 4 kg. If the price of a 

kilogram is the same in the two greengrocers, which offer is more advantageous?  

If it is interpreted as a couple of expositions, there is a set of greengrocers Ω = 

{greengrocer A, greengrocer B}and two functions ω1 and ω2 which assign a 

magnitude to each element of the set. The function ω1 can assign the amount paid to 

each greengrocer (2kg in greengrocer A and 3kg in greengrocer B) or the amount free 

(1kg in greengrocers A and B). The function ω2 assigns the amount purchased to each 

greengrocer (3kg in greengrocer A and 4kg in greengrocer B). The ratios that can be 

compared are: amount paid (P) / amount purchased (PU) (Table 1) and amount free 

(F) / amount purchased (PU) (Table 2). 

 Greengrocer A Greengrocer B 

ω1: Ω → Amount paid PA = 2 PB = 3 

ω2: Ω → Amount purchased PUA = 3 PUB =4 

Compared Ratio  
PA

PUA 

= 
2

3
 

PB

PUB 

= 
3

4
 

Table 1: Couple of expositions: amount paid (P) / amount purchased (PU). 

 Greengrocer A Greengrocer B 

ω1: Ω → Amount free FA = 1 FB = 1 

ω2: Ω → Amount purchased PUA = 3 PUB =4 

Compared Ratio  
𝐹A

PUA 

= 
1

3
 

𝐹B

PUB 

= 
1

4
 

Table 2: Couple of expositions: amount free (F) / amount purchased (PU). 

As a couple of compositions, it is interpreted as a class partitioning ΩA = {amount 

free, amount paid} and ΩB = {amount free, amount paid} of two universes 

(greengrocer A and greengrocer B) attained according to the same principle, and two 

functions ω1 and ω2, each function representing a magnitude. The function ω1 assigns 

their respective kg to the amount free and the amount paid of greengrocer A; while ω2 
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assigns their respective kg to the amount free and the amount paid of greengrocer B. 

The ratio that can be compared is amount free (F) / amount paid (P) (Table 3). 

 Amount free Amount paid Compared Ratio 

ω1: ΩA → PUA 

(Greengrocer A) 
FA = 1 PA = 2 

FA

PA 

= 
1

2
 

ω2: ΩB → PUB 

(Greengrocer B) 
FB = 1 PB = 3 

FB

PB 

= 
1

3
 

Table 3: Couple of compositions: amount free (F) / amount paid (P). 

In the ratio comparison problems, the norming techniques allow “the unification of the 

antecedents (numerator) or consequents (denominator) of ratios in order to favor the 

comparisons” (Gómez & García, 2015, p.267), what can be done by procedures such 

as unit rate (obtained by quotient), fraction strategy (equivalence of fractions), cross 

product, or building-up (Cramer & Post, 1993). 

In this study, we consider as critical components of ratio comparison problems: the 

multiplicative relationships, their equality or inequality, and the quantities used as 

referents (Gómez & García, 2015). We are interested in situations that can be 

interpreted both as a couple of expositions or compositions and that involve the 

necessity to apply norming techniques. Previous studies have focused on ratio 

comparison problems showing students’ success levels, strategies and the effect of 

some variables, such as the context or the numerical structure on students’ strategies 

(Alatorre & Figueras, 2005; Nunes et al., 2003). However, studies focused on how 

secondary school students solve ratio comparison problems examining the relationship 

between the critical components of the problems and students’ performance are scarce 

(Gómez & García, 2015; Monje & Gómez, 2019, both studies with pre-service 

teachers). The research question is: which are the secondary school students’ 

approaches when solving ratio comparison problems? 

METHOD 

Participants were 248 secondary school students from 7th grade (n=68), 8th grade 

(n=52), 9th grade (n=64) and 10th grade (n=64). There was approximately the same 

number of boys and girls in each age group, and students were from mixed socio-

economic backgrounds. Participants solved the following two ratio comparison 

problems (problem 1 has been described above) that involve intensive quantities and 

can be interpreted as a couple of expositions or a couple of compositions: 

Problem 1 (Sale). In the greengrocer A, for each 2 kg of apples paid you get 3 kg. In 

the greengrocer B, for each 3 kg of apples paid you get 4 kg. If the price of a kilogram 

is the same in the two greengrocers, which offer is more advantageous? 

Problem 2 (Mixture). To obtain chocolate shake, you need milk and chocolate. John 

used 450 ml of milk and got 600 ml of shake while Mary used 750 ml of milk and got 

900 ml of shake. If both used the same grams of chocolate, which shake would have a 

stronger chocolate taste? 
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Three researchers, independently, analysed the students’ answers to identify 

categories of students’ approaches, considering:  

• The idea of relatively. If students identify the relative quantities, i.e., 

quantities on a multiplicative relationship with another quantity of 

reference:  

o Identification of the multiplicative relationship.  

o Identification of the referent in the comparison. 

• The idea of norming. If students use the norming techniques properly to 

compare ratios.  

Then, agreements and disagreements were discussed until we reached an agreement 

with regard to the final categories of students’ approaches. Final categories identified 

are shown and exemplified in the results section. 

RESULTS 

In this section, students’ approaches are described and exemplified. Then, the 

frequencies of these categories in each problem and grade are shown. 

Students’ approaches 

Three main categories of students’ approaches were identified according to whether 

students identified the relative quantities: relative comparison, relative trend and non-

relative comparison.  

Relative comparison 

In this category, students identified the relative quantities: “quantities put in 

multiplicative relationship with other quantity of reference”. They were able to obtain 

and compare ratios, applying a norming technique correctly. The subcategories 

identified differed in the ratio and referent used.  

Some students interpreted the problem as a couple of compositions using the ratio 

amount free / amount paid in problem 1 and chocolate amount / milk amount in 

problem 2. For instance, a 9th-grade student used a building-up procedure in problem 1 

looking for a common multiple: “A is better than B because if you pay 6kg in A you 

get 3kg for free, but if you pay 6kg in B you only get 2kg”.  

Other students interpreted the problem as a couple of expositions using the ratios 

amount paid / amount purchased or amount free / amount purchased in problem 1 and 

milk amount / shake amount or chocolate amount / shake amount in problem 2. These 

ratios differ in the referent used for the comparison. For instance, a 10th-grade student 

stablished the price of 1€ per kg paid, and calculated the price paid for 1 kg (unit rate) 

in each greengrocer regarding the kg purchased: “2€/3kg = 0.67€/kg in the 

greengrocer A and 3€/4kg = 0.75€/kg in the greengrocer B, so A is the better option 

since a kg is cheaper”. 

Relative trend 
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This category includes students’ approaches that showed evidence of identifying the 

relative quantities, but they had difficulties in some critical components. Two 

subcategories were identified: difficulty with the referent and difficulty with norming 

techniques. In the first subcategory, students were able to obtain the ratios applying a 

norming technique correctly, but the comparison according to the referent was 

incorrect. For example, an 8th-grade student obtained the ratios correctly using fraction 

equivalences (Figure 1), but had difficulties in interpreting the antecedents concerning 

the consequents (referent), since he said that “B is cheaper”. In this approach, the 

difficulty was the loss of meaning of the referent when they applied norming 

techniques (Gómez & García, 2015). 

 

Figure 1: Example of a student who had difficulties with the referent. 

In the second subcategory, difficulties are related to norming techniques. For example, 

a 9th-grade student used a building-up strategy to find a common multiple for the 

amounts paid (6 kg), but he did not extend it correctly to the amounts purchased 

(Figure 2): “B because in case you want 6 kg, with the same price, you will get more 

quantity of apples”. 

 

Figure 2: Example of a student who had difficulties with a norming technique. 

Non-relative comparison 

This category includes students’ approaches that did not show evidence of identifying 

the relative quantities (they did not identify the multiplicative relationship). Five 

subcategories were identified: ignoring data, additive answers, affective answers, 

incomprehensible answers, and blank answers. 

Students who ignored data paid attention only to some data of the problem. For 

instance, some students compared only the amounts paid in problem 1, ignoring the 

relationship with the amount free or the amount purchased. The following 10th-grade 

student wrote: “The cheapest offer is the greengrocer A because you pay only 2 kg of 

apples while you pay 3 kg in greengrocer B”. In the additive answers, students related 

the quantities in absolute terms. For example, an 8th-grade student answered in 

problem 1: “It is the same because in both greengrocers you can save 1 kg”. In the 

affective answers, students based their answers on personal interpretations. A 7th-

grade student said: “the choice depends on the number of apples that you want to 

buy”. Incomprehensible answers are those in which students did operations without 

sense.  
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Students’ approaches by problem and grade 

Table 4 shows the percentages of each category by problem and grade. Globally, 

students were more successful in problem 2 (mixture; 81.1%) than in problem 1 (sale; 

30.1%), due to their difficulties in interpreting the quantities in relative terms. The 

average for all the grades considering both problems was 55.6%. Particularly, in 

problem 1, more than 50% of the students’ approaches from 7th to 9th-grade were non-

relative comparisons. Furthermore, although the relative comparisons increased from 

7th to 10th-grade in both problems, the average in 10th-grade was 67.2%, so difficulties 

with ratio comparison problems persisted at the end of secondary education. 

Grade 

Problem 1 (sale) Problem 2 (mixture) 

Total 
Relative 

compari-

son 

Relative 

trend 

Non- 

relative 

compar-

ison 

Relative 

compar- 

ison 

Relative 

trend 

Non- 

relative 

compar-

ison 

7th 25.0% 14.7% 60.3% 70.6% 7.4% 22.0% 47.8% 

8th 25.0% 19.2% 55.8% 86.5% 3.8% 9.7% 55.8% 

9th 20.3% 18.8% 60.9% 82.8% 4.7% 12.5% 51.6% 

10th 50.0% 15.6% 34.4% 84.4% 1.6% 14.0% 67.2% 

Total 30.1% 17.0% 52.9% 81.1% 4.4% 14.5% 55.6% 

Table 4: Percentage of each category by problem and grade.  

Table 5 shows the percentage of each subcategory in problems 1 and 2. In problem 1, 

30.1% of students’ approaches were relative comparisons. Particularly, the 23.3% 

interpreted the problem as a couple of expositions, while the 6.8% interpreted the 

problem as a couple of compositions. In problem 2, 81.1% of students’ approaches 

were relative comparisons. Specifically, 68.2% interpreted the problem as a couple of 

compositions and 12.9% interpreted it as a couple of expositions.  

Subcategories 
Problems 

1 2 

Relative 

comparison 

As a couple of compositions 6.8% 68.2% 

As a couple of expositions 23.3% 12.9% 

Relative trend 
Difficulty with the referent 5.6% 2.0% 

Difficulty in norming 11.4% 2.4% 

Non-relative 

comparison 

Ignore data 19.0% 4.3% 

Additive answers 8.1% 4.3% 

Affective answers 7.3% 1.6% 

Incomprehensible or blank answers 18.5% 4.3% 

Table 5: Percentage of the subcategories in problems 1 and 2.  

In problem 1, students’ difficulties with the relative quantities are explained by the 

17% of students who used a relative trend approach having difficulties with the 
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referents or the norming techniques, and by the 52.9% of students who did not identify 

the relative quantities (providing a non-relative comparison approach). Of this last 

group, we can highlight the subcategories: ignored data, and incomprehensible or 

blank answers. In problem 2, only 4.4% of the students had difficulties with the 

referents or the norming techniques, and 14.5% of students’ approaches were non-

relative comparisons. Of the last group, the most frequent subcategories were: ignore 

data, additive answers and incomprehensible or blank answers. 

DISCUSSION AND CONCLUSIONS 

Results provide information about secondary school students’ approaches when they 

solve ratio comparison problems with intensive quantities considering the critical 

components of the problems. Three main students’ approaches were identified 

according to whether secondary school students identified the relative quantities: 

relative comparison, relative trend, and non-relative comparison. These approaches 

coincide with the results obtained by Monje and Gómez (2019) with pre-service 

teachers, extending them to secondary education. In addition, the subcategories 

identified in the relative trend and non-relative comparison approaches showed 

students difficulties with some critical components: difficulties with the referent in the 

comparison, difficulties in identifying the multiplicative relationship, and difficulties 

with the norming techniques. 

Results about the percentages of each category along grades have shown that students’ 

success levels increased from 7th to 10th-grade in both problems. However, difficulties 

with intensive quantities (in ratio comparison problems) persisted at the end of 

secondary education. Nunes et al. (2003) showed that primary school students have 

many difficulties in relation to intensive quantities. Our study has shown that there is a 

positive evolution throughout secondary education, but difficulties persist. 

Finally, students were more successful in the mixture problem than in the sale 

problem. This result contradicts previous research that has stated that mixture 

problems are more difficult (Alatorre & Figueras, 2005; Tourniaire & Pulos, 1985) 

while other research has not found differences in primary school students’ 

performance (Nunes et al., 2003). The characteristics of our problems could explain 

this result. Both problems have one of the quantities unified. In problem 1, although 

this quantity is not given explicitly, the amount free was the same for both 

greengrocers (1 kg). In problem 2, this quantity is given explicitly in the formulation 

of the problem: the chocolate amount is the same in both shakes. If students identified 

this data, they only needed to compare the other quantities, without performing 

calculations. This raises a question: would have the success in the sale problem been 

greater if students had asked directly about the amounts free given? 

The characterization of the students’ approaches obtained in this study can provide 

information for the design of classroom interventions aimed at overcoming the 

difficulties encountered in ratio comparison problems. 
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This paper reports on a coding framework for categorizing different forms of 

mathematics teacher in-class learning. Utilizing a research design that stimulates 

teachers’ reflection on their lesson planning and teaching, a coding framework was 

developed as part of this international project to categorize teachers’ interview 

statements in relation to their learning. This paper explains the theory of teacher 

learning which underpins this project and reports on the development and 

implementation of the coding framework with illustrative case study examples from 

three countries (Australia, China, and Germany). 

BACKGROUND 

Organized professional development programs or activities are increasingly relied 

upon in different education systems to enhance teachers’ professional knowledge and 

improve classroom practices, with the ultimate goal of fostering student learning and 

achievement gains (Borko, Jacobs, Eiteljorg, & Pittman, 2008). Nonetheless, 

participation in organized professional development programs is not the only means 

for teachers to develop professionally. The Learning from Lessons project (Chan et 

al., 2017) was designed to focus on what we called teacher “in-class learning”: 

Teacher learning that takes place as part of teachers’ day-to-day practice, particularly 

in relation to their lesson planning and teaching.  

Theories of Teacher Learning 

Focusing on the mechanism of teacher learning, Boylan, Coldwell, Maxwell, and 

Jordan (2018) reviewed five theoretical models of teacher professional learning 

(Clarke & Hollingsworth, 2002; Desimone, 2009; Evans, 2014; Guskey, 2002; Opfer 

& Pedder, 2011). These models intend to have wide applicability and have variously 

been used to inform the design, analysis, and evaluation of teacher professional 

development activities. Boylan et al. found differences and inconsistencies between 

the models, particularly in terms of the components and domains of change included 

(e.g., teacher practice, student outcomes, teacher beliefs and attitudes, and school and 
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learning activity systems), scope (micro, meso, or macro), theory of learning (socially 

situated experiential, social constructivist, or cognitive), the location of agency in 

directing or facilitating professional learning (mainly within the teacher or involving 

broader structures, processes, or systems), and the philosophical foundation (e.g., 

sociological positivist, social constructivist, or complexity theory). Rather than 

providing a unified “meta” model of teacher professional learning, Boylan et al. 

argued for the need to seek multiple answers in understanding the complexities of 

teacher professional learning. 

The current project draws from the Interconnected Model of Teacher Professional 

Growth (Clarke & Hollingsworth, 2002; Clarke & Peter, 1993; Peter, 1996) which 

suggests that the process of teacher professional growth is non-linear and recursive. A 

unique feature of the model is the emphasis on the processes of enactment and 

reflection in connecting and facilitating changes in teachers’ professional 

environment, where enactment involves putting into action a new idea, a new belief, 

or a newly encountered practice (Clarke & Hollingsworth, 2002, p.953) and reflection 

involves “active, persistent and careful consideration” (p.954). 

A pilot study (Clarke, Clarke, Roche, & Chan, 2015) was undertaken in Australia to 

identify empirical evidence of teacher learning based on teachers’ reflection of their 

lesson planning and teaching. Two forms of evidence were found: Teachers’ 

declarative “claim to know” (epistemic claim) and an observable or recounted change 

in the individual practice (adaptive practice). Examination of further cases in Australia 

(Chan, Roche, Clarke, & Clarke, 2019) found different mechanisms of teacher 

learning evident in teachers’ epistemic claims – consolidation of existing knowledge 

and beliefs, and realization of new knowledge and beliefs. It is suggested that these 

two mechanisms both contribute to teacher learning, particularly in day-to-day 

teaching practice as teachers expand their existing knowledge base (consolidation) and 

form new knowledge and beliefs (new realization). 

To further refine and validate the learning categories and investigate the nature of 

teacher professional learning, this research seeks evidence of these learning categories 

in cases beyond Australia. It addresses the research question: To what extent do the 

learning categories of consolidation and new realization, and adaptive practice, apply 

to teachers in Australia, China, and Germany? Answering this question provides an 

important step towards cross-country comparison of teacher learning in the project. 

RESEARCH DESIGN 

The case study data reported in this paper came from an international research project, 

which aimed to investigate the mathematics teachers’ in-class learning in Australia, 

China, and Germany (Chan et al., 2017). The project combined focused case studies 

with an online survey of mathematics teachers’ focus of attention and consequent 

learning in the three countries. 
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Participants 

Case studies were undertaken of three teachers, teaching Year 4 in China, and Year 5 

in Australia and in Germany. The reason for the difference in year levels was to 

accommodate the difference in lesson topics commonly taught in the three countries, 

where some of the Year 5 topics taught in Australia and Germany are taught in Year 4 

in China. The three teachers were male and in their thirties. The Australian teacher 

(AU_T5) had 5 years’ teaching experience and was trained as a generalist primary 

teacher. The Chinese teacher (CH_T4) had 18 years’ teaching experience and was 

trained as a specialist mathematics teacher. The German teacher (DE_T5) had 6 years 

teaching experience and was trained as a secondary (grammar) schoolteacher. 

Data Generation 

The three teachers were separately given a different set of three researcher-designed 

lesson plans in the local language appropriate for their teaching context. Three lesson 

topics that were common across Year 5 Australia and Germany, and Year 4 in China 

were chosen for the researcher-designed lesson plans: i) division with two digit 

divisors; ii) introduction to decimals, and iii) parallelograms and trapezia. 

For example, for the Year 5 lesson plan on division with two-digit divisors given to 

the teachers in Australia and Germany, students worked in pairs to solve division 

word problems. The word problems all involve the same numbers (1144 and 32, 

which do not divide exactly), but each word problem has a different answer (e.g., “A 

dairy farm produced 1144 liters of milk, and has 32 containers in which to store the 

milk. If the containers are filled exactly, how much milk should go into each 

container?”). The purpose of the lesson is to draw the attention of students to the 

meaning of the question, and that the context of the problem determines the way in 

which the remainder is best used and expressed (Clarke, Roche, Sullivan, & 

Cheeseman, 2014). For the Year 4 lesson plan in China on the same topic, students 

were asked to solve problems with three-digit dividends and two-digit divisors in 

various contexts (e.g., “There are 178 storybooks to share with different classes. Each 

class can get 30 books. How many classes will have books?”). An emphasis of the 

lesson was for students to correctly write the calculation steps. The content of each 

researcher-designed lesson plan was checked for suitability to the local context by 

each country team. 

Each of the teachers was asked to adapt the researcher-designed lesson plan and then 

teach the lesson to their usual class (26 students in a class in Australia; 55 students in 

China, and 30 students in Germany). After teaching the adapted lesson, the teachers 

were asked to design a follow-up lesson themselves and deliver this lesson to the same 

class a few days after the adapted lesson. This process was repeated for each lesson 

plan provided, resulting in the delivery of three adapted lessons and three follow-up 

lessons per teacher. Pre- and post-lesson interviews were conducted with each teacher 

on the same day as the adapted and follow-up lesson. All the interviews were carried 

out by the local team in the local language. 
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The project was designed to generate data on each teacher’s adaptation of a pre-

designed lesson, the teacher’s actions during the lesson, the teacher’s reflective 

thoughts about the lesson and, most importantly, the consequences for the planning 

and teaching of a second (follow-up) lesson. All the pre- and post-lesson interviews 

and the adapted and follow-up lessons were video recorded, with the video recording 

of the lesson just taught used in the post-lesson interview to stimulate the teachers’ 

recall and reflection on the lesson. All the interviews were fully transcribed in the 

local language. 

Data Analysis 

The analysis reported in this paper drew on the interview data with the three case 

study teachers, and specifically, the teachers’ responses to interview questions related 

to their learning. Seven questions across the four interviews (two interviews each, pre- 

and post-lessons, for the adapted and follow-up lessons) were included in the analysis 

which explicitly asked what the teachers thought they learned from the activities 

carried out as part of the project (lesson plan adaptation, adapted lesson teaching, 

creation of follow-up lesson plan, and follow-up lesson teaching). Example questions 

included: “Please describe anything you have learned because of participating in the 

task activity, and in reading and planning the lesson. Explain your response” (pre-

lesson interview), “Was there anything that happened during the lesson that was really 

unexpected by you?” (post-lesson interview), “Which moments in the lesson do you 

think provided learning opportunities for you? What did you learn?” (post-lesson 

interview). 

After collating the teacher interview responses to the above questions, the responses 

were partitioned into idea units, where an idea unit is “a distinct shift in focus or 

change in topic” (Jacobs, Yoshida, Stigler, & Fernandez, 1997, p. 13). Each idea unit 

was then coded for epistemic claim (consolidation or new realization) and any 

indication of adaptive practice by at least two researchers in each country team. 

RESULTS 

After reviewing the reflective statements of the three teachers, we found that all the 

teachers identified things that they thought they had learned in the course of 

participating in the project. We could find statements that indicate learning based on 

the three coding categories (consolidation, new realization, and adaptive practice) for 

all three teachers. The following provides illustrative examples for the coding 

categories which were drawn from interviews where the teachers have each been 

given a researcher-designed lesson plan on the topic “division with two-digit divisors” 

for adaptation and teaching. The statements of the Chinese and German teachers are 

translated into English for reporting in this paper. 

For the Year 5 Australian teacher, he thought the lesson topic on the context of a 

mathematical problem “reignited” his emphasis on the topic in his teaching 

(consolidation). 
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“I would’ve liked to have thought that it was a big priority in my teaching, but 

reading this, it’s probably reignited that light of realising that, “hey, the 

context of the problem is super, super, super important.” ... I certainly have got 

more appreciation of that. So, that would be learning out of it, for sure.” 

(AU_T5 preadapted lesson interview) 

In the post-lesson interview of the adapted lesson, he learned that not many of his 

students applied a problem-solving strategy that was covered in the past (new 

realization):  

“I was surprised that looking through the sheets that not many of them like 

physically sort of circled or highlighted key information, which felt like a 

problem-solving strategy we’ve done in the past.” (AU_T5 post adapted lesson 

interview) 

He particularly reflected on task difficulty for his students and thought starting with 

smaller numbers for the division problems could have given students more confidence 

for the lesson (adaptive practice). 

“I guess I’m still sort of learning in terms of differentiating the task. On 

reflection, maybe I could have done that better at the start, knowing that the 

Grade 5 cohort would have really struggled with the big numbers. Even though 

using smaller numbers does not change the thinking of the actual task, at least 

it sorts of gives them a bit more of a security blanket.” (AU_T5 post adapted 

lesson interview) 

Similar to the Australian teacher, the Year 5 German teacher also found his 

knowledge consolidated in the teaching process, specifically about the importance of 

helping students to understand how to deal with decimal places in relation to units of 

measurement (e.g., liters vs milliliters in the problem that deals with the division of 

milk into containers described earlier). 

“What I found confirmative again was how important the last zero was if it is 

75 ml or 750. [...] For them (the students), the problem is about part-whole 

relationship. They are not aware that I now have steps of thousandths for the 

units.” (DE_T5 post follow-up lesson interview) 

In the pre-lesson interview for the first follow-up lesson, he learned from the previous 

lesson to anticipate typical student mistakes, even if he does not think that his students 

would make them (new realization).  

“When considering typical mistakes beforehand, and then you realize that they 

(the students) really do make them, so you can actually even expect them to 

happen and plan how to deal with them. That they really occurred and that it 

really did fit well, that was funny. That I have learnt.” (DE_T5 pre follow-up 

lesson interview) 

On reflection, the teacher thought it was important to give students who are still 

working on the problem more chance to keep working rather than make visible other 
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students’ completed work to them pre-maturely, and he suggested an alternative way 

to address this in the future (adaptive practice). 

“Next time I would definitely turn them [the post-it’s with the student solutions 

that had been pinned to the blackboard] around right away [so that the 

students who are still working on the tasks cannot see them].” (DE_T5 post 

adapted lesson interview) 

Unlike the Australian and German teachers who spoke specifically about what was 

reconfirmed for them in the teaching process, the Year 4 Chinese teacher often spoke 

in general terms about what teachers should learn from their teaching. The teacher’s 

comment can be considered as a form of confirmation as he voiced his belief about the 

need to keep a positive attitude when teaching.  

“For many inexperienced teachers, when the start of the class does not start 

smoothly, their emotions get affected and the rest of the lesson doesn’t run 

smoothly. So, there is a need to keep a positive attitude when teaching – it is 

normal for children to make mistakes. How to adjust their mistakes is what we 

(teachers) learn.” (CH_T4 post adapted lesson interview) 

Through analyzing the lesson topic, the teacher “discovered” its importance (new 

realization). 

“I read through the later key points and discovered something. … For all the 

later key points, such as division that is not of numbers that are multiples of 10, 

everything needs to be converted to multiples of 10 in order to calculate. When 

do we need to convert? For example, the later Example Question 2, to divide … 

21, a student needs to think of 21 as 20 to try to divide. … Examples 1 and 2 

are basically the foundation of the entire two-digit division method, so this 

lesson needs to be treated seriously, as it is basically giving (the students) the 

foundation today.” (CH_T4 preadapted lesson interview) 

For the teacher, the unexpected responses of the students’ summaries drew his 

attention to his questioning, which he thought could be improved (adaptive practice).   

“When summarising the similarities between the two example questions, some 

students concluded that they are both divisions, some concluded that they are 

division of multiple digits by multiple digits, which are all very superficial 

summaries. These kinds of summaries were unexpected. I mainly wanted them 

to summarise the two vertical mathematical expressions, (but) maybe my 

questioning was too vague. If I had pointed to something clearer, I would let 

(the students) directly see the similarities between these two vertical 

mathematical expressions, maybe that would be better.” (CH_T4 post adapted 

lesson interview) 

Accordingly, we found statements given by the case study teachers in the three 

countries that appeared to confirm the teachers’ already held beliefs and expectations, 

even though they thought that was also part of their learning (consolidation). Through 

these statements, the teachers expressed their existing knowledge or beliefs, and how 

the new situation, activity, or event had “reignited” or “confirmed” those knowledge 
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or beliefs. These consolidation statements contrast other teacher statements that 

appear to suggest something that was unexpected, surprising, or new for the teachers, 

conveying a sense of novelty in what the teachers observed or realized (new 

realization). In addition, we also found statements given by the teachers which showed 

that they actively thought of ways to improve their practice by suggesting alternative 

practice and things that they may do differently (adaptive practice). 

DISCUSSION 

One of the aims of the Learning from Lessons project is to provide cross-cultural 

insights into teacher in-class learning. Using purposefully designed experimental 

mathematics lesson plans, teachers were asked in this project to adapt a researcher-

designed lesson plan, teach the adapted lesson, and create and teach a follow-up 

lesson. The pre- and post-lesson interviews conducted in the research provided 

opportunities for the teachers to reflect on what changes in their knowledge and 

practice were evident, and how those changes occurred. Care was given to replicate 

the research design in the three countries (Australia, China, and Germany), while 

accommodating differences in local contexts.   

While we found evidence of the learning categories developed based on the Australian 

case studies (Chan et al., 2019), we were unsure if teachers in other countries would 

express their in-class learning in similar ways. From the case study teachers’ 

responses to the learning questions in the three countries, we could distinguish two 

learning mechanisms in terms of consolidation (reinforcement of existing knowledge 

and beliefs) and new realization (realization of new knowledge and beliefs). We have 

also found that the case study teacher in each of the countries actively considered 

ways to improve their practice based on their teaching (adaptive practice). The 

presence of teacher interview statements that fit with the proposed learning categories 

suggests the research design allows similar evidence of teacher learning to be found in 

the three different countries. This is a significant result, as this allows the project to 

proceed with making comparisons between teachers in the case study and survey data 

in Australia, China, and Germany in terms of their reflection of teacher in-class 

learning. 

On a theoretical level, conceptualizing teacher learning in terms of consolidation, new 

realization, and adaptive practice poses new questions for further research. We can ask 

the questions: What characterizes teachers who have a greater tendency to experience 

learning as new realization? What characterizes those who have a greater tendency to 

experience learning as consolidation? What types of events or conditions trigger new 

realization or adaptive practice? What are such new realizations or adaptive practices 

about? These questions will be addressed in future papers, drawing from the survey 

and cross-cultural components of the project. 
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This study examined 380 secondary school students’ values in mathematics 

learning in Malaysia using the What I Find Important (in mathematics 

learning) questionnaires. The preliminary analysis shows that Malaysian 

secondary students valued the attributes of “process”, “fun”, “effort”, 

“objectism”, “ideas and practice”, “exposition”, “recalling”, and “openness”. 

Among different ethnics’ groups, Chinese students tended to value “process” 

and “application” more than other ethnic groups. Malay students valued “hard 

work” and “effort” more than their peers in learning mathematics. In terms of 

gender difference, the result shows that Malaysian secondary school boys and 

girls valued almost the same value attributes in learning mathematics. The 

results provide some insights into understanding mathematics teaching and 

learning from the multicultural classroom context.  

INTRODUCTION 

All the while, improving students’ learning has always been the focus of 

(mathematics) education research. Many factors influence students’ learning, 

including cognitive factors (such as students’ knowledge, ability and skills) and 

affective factors (such as their attitudes and beliefs). As a deep-seated and 

personal affective factor, Bishop (2001) proposed that students’ values can also 

influence their learning. This idea was further elaborated by Seah (2013), 

whereby values regulate how cognitive skills and emotion are used in learning 

by a learner. He defined values as the “convictions” that a person perceived as 

important or worthy (Seah, 2013, p.193). This implies that values can be 

implicit as it is internalised in nature.  

Alan Bishop first proposed three pairs of complementary mathematical values 

in mathematics education, that is, values regarding the discipline of 

mathematics:  rationalism and objectism, control and progress, and openness 

and mystery (Bishop, 1988). The three pairs of complementary values echoing 

the three components of culture proposed by White (1959), namely ideological, 

sentimental and sociological. Bishop (1991) explained that rationalism “is 

concerned with the logic of the relationship between ideas” and objectism “is 

about the genesis and phenomenology of those ideas” (p. 202) as the ideology 
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component. Control and progress as the sentimental component.  Control refers 

to developing mathematical ideas through specific rules or procedures and 

progress refers to developing mathematical ideas through alternative ideas. The 

sociological component, openness stresses the demonstration of ideas in public; 

however, mystery emphasises the wonder or mystery of ideas. Later in 1996, he 

further proposed a framework of three intersecting sets of values: mathematical 

values (relating to the discipline), mathematics educational values (relating to 

mathematics pedagogy), and general educational values such as honesty and 

law-abiding (relating to the ethical and moral principles). At the same time, he 

proposed that values are “deep affective qualities” which last longer in people’s 

memories than conceptual and procedural knowledge (Bishop, 1996, p. 19).  

Recently, Seah and Andersson (2015) suggested that the process of valuing can 

be conative in nature, which involves both cognitive and affective aspects. 

Specifically, values reflect what an individual perceives as important and 

valuable through their actions in learning and teaching mathematics. This 

suggests that values, including mathematical values and mathematics 

educational values, can influence an individual’s learning process. Thus, to 

identify what values related to learning mathematics are embedded in an 

individual, within a classroom and even a cultural group to improve 

mathematics learning, such study is needed. 

This paper reports on the part of a study in The Third Wave Project. The Third 

Wave Project is carried out by a consortium of research teams that concern the 

influence of values and valuing on mathematics learning. This current study, 

named ‘What I Find Important (in my mathematics learning)’ (WIFI), aims to 

investigate what primary school and secondary school students value regarding 

mathematics learning. The WIFI questionnaire has been translated into different 

languages so that the student participants in the 19 economies could respond to 

the items within their respective medium of instruction.  

In Japan, Shinno, Kinone and Baba (2014) reported that data from 605 primary 

school students and 711 junior secondary students had valued different 

attributes in learning mathematics. Japanese primary students tended to value 

process, effort, exploration, fact, openness and progress more than secondary 

school students. Zhang (2019) has found a similar result in the Chinese 

Mainland data, whereby different grades had valued different attributes. 

Besides, there was a gender difference reported in several value attributes 

(Zhang, 2019). Those findings suggest that students’ value might change over 

time.  

Moreover, boys and girls can value different attributes in mathematics learning 

which require different teaching approaches. Furthermore, from the literature 

(e.g., Seah, 2018; Shinno et al., 2014; Zhang, 2019; Zhang et al., 2015), 

students value different value attributes even within the East Asian culture.  
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How will the situation be in the context of a multicultural classroom as value is 

culturally dependent? 

The current study explored students' value in mathematics learning in three 

(Malaysia, Singapore, and Thailand) out of 11 countries in Southeast Asia. 

Furthermore, International Mathematical Union (2013) reported many 

countries in Southeast Asia (e.g. Cambodia, Indonesia and Laos) face 

challenges in improving students’ mathematics learning. Hence, more research 

about values in mathematics education is needed in Southeast Asia. Value 

researches in Malaysia focused on the primary school level, such as value 

espoused and enacted in the primary school mathematics lesson (Lim & Kor, 

2012) and Chinese primary school students’ values in mathematics learning 

(Kor, Lim & Tan, 2010). Additionally, Ong (2014) analysed WIFI study data of 

383 Malaysian Grade 5 students and reported differences in attributes of 

learning mathematics valued by different gender and different ethnics groups. 

There is a gap in what Malaysian secondary school student might value in 

mathematics learning. Therefore, this research explores what Malaysian 

secondary school students have valued as important in learning mathematics. 

The following research questions guided this paper:  

a) What Malaysian secondary students valued in mathematics learning in 

general? 

b) Do Malaysian secondary students from different ethnicities value 

mathematics learning differently? 

c) Is there any gender difference in Malaysian secondary students’ values in 

mathematics learning? 

METHODOLOGY 

Respondents 

In this paper, the result from 380 secondary students (Grade 9 and Grade 10) is 

shown in Table 1. The data was collected randomly from public schools in 

Northern Peninsular Malaysia through personal contact. The sampling was 

convenient sampling without any specific selection of criteria. 

Gender Ethnicity N Percentage 

 Chinese Indian Malay Other  (%) 

Male 107 26 75 5 216 56.84 

Female 73 24 69 1 167 43.16 

Total 180 50 144 6 380 100 

Table 1: The participants of the study according to gender and ethnicity. 

Data Collection 

Data were collected using the WIFI questionnaire developed and validated by 

the WIFI study team (Seah, 2013). In the Malaysian context, the original 
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English items were translated into Chinese and Malay to facilitate the students’ 

response to the questions. It was a four-section questionnaire, whereby Section 

A consisted of 64 items with a rating of 5-point Likert scale, Section B 

comprised 10 items of the slider rating scale, Section C contained four items of 

open-ended question and Section D was pupils’ personal information items. In 

this paper, our analysis focused on Section B, whereby the students were 

required to choose by marking "x” at any one of the five positions in between 

two values given. For instance, when given the description “How the answer to 

a problem is obtained” (on the left) versus the description “What the answer to a 

problem is” (on the right) on a horizontal line respectively, the students were 

asked to mark their preference accordingly.   

Data Analysis 

In this paper, data were analysed using One-way ANOVA to analyse the 

statistical differences in students’ responses of different ethnicity and the 

independent t-test to analyse the statistical differences in students’ responses of 

different genders. The scores were assigned from one to five from left to right 

according to the five positions on the horizontal line. The lower the mean of the 

item, the more tendency towards the description on the left and vice versa.  

FINDINGS 

Malaysian secondary students’ values in mathematics learning 

The findings show that overall Malaysian secondary students tended to value 

the process of getting an answer (process) more than the end product for a 

problem (product), as shown in Table 2. They emphasised that having fun when 

doing and learning mathematics (fun) more than hard work. However, whether 

doing mathematics required abilities or effort, students tended to select effort. 

Furthermore, students tended to value using a mathematical formula to obtain 

the answer (rationalism) rather than applying mathematical concepts in 

problem-solving (objectism). They believed mathematical ideas and practice in 

daily life (idea & practice) were more important than discovering mathematics 

facts and theories (facts & theories).   

Moreover, the students preferred to learn mathematics by someone with direct 

teaching, explaining or telling them the concept (exposition) rather than 

exploring the mathematics by themselves, with their peers/others (exploration). 

Yet, they tended to value exploration with a concrete example given more than 

someone telling them. Besides, students tended to value remembering 

mathematics ideas, concepts, rules or formulae (recalling) than creating. The 

students had also chosen to demonstrate or prove the concept to others 

(openness) over to keep mathematics mystical (mystery). They believed that 

mathematics’ purpose should be more relevant in development or progression 

(process) than predicting or explaining certain events (control). 
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Malaysian secondary students’ values in mathematics learning according to 

ethnicity 

Items Total Chinese Indian Malay Other F η2 

 Mea

n 

SD Mea

n 

SD Mea

n 

SD Mea

n 

SD Mea

n 

SD   

66. 

Process 

versus 

product 

2.64 1.02

4 

2.38 1.14

1 

2.98 1.07

0 

2.81 .808 2.83 .408 9.545*** 0.05 

67. Fun 

versus 

hard work 

2.97 1.24

1 

2.65 1.273 2.94 1.345 3.35 1.08

4 
2.83 .408 11.742**

* 
0.07 

68. Ability 

versus 

effort 

3.47 1.23

9 

3.24 1.264 3.61 1.255 3.72 1.15

1 
2.83 1.32

9 
4.886*** 0.04 

69. 

Objectism 

versus 

rationalis

m 

3.03 1.09

4 

2.87 1.142 3.00 1.021 3.21 1.04

3 
3.17 .983 2.691** 0.02 

70. Facts& 

theories 

versus 

ideas& 

practice 

3.08 1.10

1 

3.12 1.102 3.33 1.107 2.96 1.08

4 
3.17 1.32

9 
1.492 0.01 

71. 

Exposition 

versus 

exploratio

n 

2.64 1.15

8 

2.59 1.293 2.86 1.000 2.65 1.03

3 
2.00 1.09

5 
1.462 0.01 

72. 

Recalling 

versus 

creating 

2.45 1.15

1 

2.45 1.196 2.55 1.081 2.43 1.14

1 
2.50 .837 .142 0.00

1 

73. 

Exposition 

versus 

exploratio

n 

3.35 1.18

9 

3.34 1.210 3.29 1.155 3.40 1.19

1 
3.17 .983 .197 0.00

2 

74. 

Openness 

versus 

mystery 

2.52 1.13

8 

2.53 1.121 2.69 1.294 2.42 1.09

8 
3.00 1.26

5 
1.102 0.01 

75. 

Control 

versus 

process 

3.20 1.00

0 

3.11 .927 3.37 1.035 3.28 1.05

8 
2.67 1.03

3 
1.697 0.01 

Note: p<0.001***, p<0.05**, SD= standard deviation 

Table 2: The participants’ responses to section B according to ethnicity 

As we take a closer look into different ethnicities, for item 66, the ANOVA 

result was significant, F (3, 170.310) = 9.545, p<0.001, η2 = 0.05, suggesting 

Chinese students tended to value the process more than their peers. The results 

for item 67, F (3, 170.522) = 11.742, p<0.001, η2 = 0.07 and item 68, F (3, 
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372) = 4.886, p=0.002, η2 = 0.04 imply that there are significant differences 

among the means of the four groups for the two items respectively. The results 

suggest that Malay students believed the effort was more important in learning 

mathematics than their peers. In item 69, F (3, 372) = 2.691, p=0.046, η2 = 

0.02, suggesting Chinese students emphasised application more than other 

ethnic groups students.  

Malaysian secondary students’ values in mathematics learning according to 

gender 

Further analysis in the secondary students’ population revealed a significant 

difference in the mean score of two value attributes, as shown in Table 3. One 

of the attributes was item 69, t (382) = -2.32, p=0.021, 95% CI [-0.48, -0.04]. 

This implies the girls (M=3.16, SD= 1.048) preferred to use a certain formula to 

find the answer more than the boys (M= 2.90. SD= 1.104). While another 

attribute is item 74, t (381) = 2.79, p= 0.006, 95% CI [0.10,0.55]. This suggests 

that the girls (M=2.33, SD=1.171) tended to value openness in learning 

mathematics as compared to the boys (M=2.65, SD=1.091).  

Items Male Female t-test 

 Mean SD Mean SD  

66. Process versus product 2.63 .962 2.66 1.107 -.289 

67. Fun versus hard work 2.93 1.134 2.91 1.362 .139 

68. Ability versus effort 3.43 1.204 3.53 1.271 -.788 

69. Objectism versus rationalism 2.90 1.104 3.16 1.048 -2.319* 

70. Facts& theories versus ideas& 

practice 

3.04 1.079 3.18 1.134 -1.228 

71. Exposition versus exploration 2.66 1.197 2.59 1.088 .593 

72. Recalling versus creating 2.54 1.176 2.40 1.146 1.109 

73. Exposition versus exploration 3.27 1.114 3.45 1.269 -1.425 

74. Openness versus mystery 2.65 1.091 2.33 1.171 2.788* 

75. Control versus process 3.12 1.030 3.32 .928 -1.944 

Note: p<0.05*, SD= standard deviation 

Table 3: Secondary students’ responses for section B according to gender. 

DISCUSSIONS AND CONCLUSION 

The results show that overall, Malaysian secondary students tended to value the 

attributes of process, fun, effort, rationalism, ideas and practice, exposition, 

recalling, openness over the respective opposing dimensions product, hard 

work, ability, objectism, facts and theories, exploration, creating and mystery. 

In addition, there are several values attributes that students from different ethnic 

groups value differently. A similar result is reported by Ong (2014), whereby 

Chinese and Malay primary students had valued different values attributes. 

According to Lim (2003), this can be related to their previous learning 

experience in primary schools whereby different medium schools applied 

different cultural practices or parents’ influence from the family.  
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In terms of gender difference, the result suggests that Malaysian secondary 

school boys and girls valued almost the same value attributes in learning 

mathematics except that girls tended to value rationalism and openness more 

than boys. The finding is consistent with both studies conducted by Zhang 

(2019) and Ong (2014), whereby boys and girls valued certain value attributes 

differently. 

One of the limitations of this study is the representation of the data. Due to the 

randomly convenient sampling, the ethnicity proportion was slightly different 

from the actual population in Malaysia. The proportion of Malay students was 

38% in the sample, which is less than the actual population cap at 60%. 

However, this exploratory study still provides a glimpse of what Malaysian 

students valued in mathematics learning. More data will be collected in the 

future to better represent the Malaysian secondary students' population. 

In conclusion, the preliminary analysis has provided evidence that different 

ethnic groups value different values attributes in mathematics learning. 

Furthermore, such a study helps the teacher promote effective mathematics 

teaching and learning in a multicultural classroom. Teachers can structure their 

teaching to align with students’ value in mathematics learning to facilitate their 

learning process. Future study is needed to investigate factors that influence 

students’ values in mathematics learning, so that students’ learning can be 

understood and facilitated more effective. 
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CONCEPTS IN ACTION: MULTIPLICATION AS SPREAD 
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In this research report, we work with the novel, multitouch app TouchTimes, 

which was designed to develop multiplicative thinking in young learners 

through gesture-based interactions. One aspect of multiplication highlighted in 

this app is its functional, one-to-many relation, which several researchers have 

identified as key to developing multiplicative thinking. In this study, we use 

Balacheff’s cK¢ model, which highlights the action/feedback control structure 

to describe how this relation is instantiated in children’s use of TouchTimes. 

Through an analysis of a pair of 9-year-olds, we show how this relation evolved 

into a concept, which we call multiplication-as-spread.   

INTRODUCTION 

Typically, children’s first encounters with multiplication in North America is in 

terms of repeated addition. The use of this model often persists throughout 

grades 3 and 4. While it may be an intuitive way of introducing multiplication, 

it becomes problematic as it encourages continued use of additive thinking. 

There exist several other models which can support a more robust conception of 

multiplication. In this study, we focus on the model of the one-to-many relation 

articulated by Confrey (1994), which she calls ‘splitting’, and which involves 

“… an action of creating simultaneously multiple versions of an original” (p. 

292). Splitting can be visualized using a tree diagram, which highlights the one-

to-many relation that simultaneously produces copies of the original. The 

centrality of this relation is also highlighted by Askew (2018) and Davydov 

(1992). 

We will be presenting a touchscreen application TouchTimes (TT; Jackiw & 

Sinclair, 2019) that aims to provide students with an experience of 

multiplication that uses this one-to-many model. This is done through the 

gestural expression of multiplication, which involves a dynamic, visual and 

simultaneous production, rather than the sequential one typical of repeated 

addition. Using Balacheff’s cK¢ model, which is a re-articulation of Vergnaud’s 

(1990) notion of ‘concept in action’, that emphasises the essential feature of 

control as an essential aspect of the concept, we study the emergence of the one-

to-many multiplicative relation both in the gestural interaction and then as an 

articulated concept. 
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BRIEF DESCRIPTION OF TOUCHTIMES 

The initial screen of TT has a vertical line down the middle which creates two 

sides (Figure 1a). When one side is touched with a finger, or a group of fingers, 

discs will appear in a one-to-one correspondence with each finger. These discs 

are called pips and represent the multiplicand, or unit, that will be multiplied. 

Each pip will be a different colour. When the other side is touched with a single 

or group of fingers, each configuration (called a ‘pod’) of the multiplicand side 

(the side that was touched first), both in terms of position and colour, will 

appear in a one-to-one correspondence with each finger. Each pod will be 

identical to the finger configuration on the pip side. If three fingers touch the 

left side in a triangle-like pattern, three pips will appear under each finger and 

each of the three pips will be a different colour (Figure 1b). When the other side 

is touched, the triangular pattern of the multi-coloured pips will be copied under 

each finger in pod-groupings (Figure 2c). If another finger is placed on the pip 

side, each pod on the other side will grow, in a simultaneous copy—this 

effectively performs the one-to-many relation. When a pip-finger is lifted, the 

inverse occurs: each pod decreases in size. Fingers can be added to the pod side 

to make new pods. Similarly, a pod can be dragged to the trash. Whenever pips 

and pods are created on the screen, a multiplication statement appears on the top 

of the screen (Figure 1c).  

   

Figure 1: (a) Initial screen of TT; (b) Creating 3 pips; (c) Creating 4 pods 

THEORETICAL FRAMING  

Concepts in action as described by Vergnaud (1990) are actions made that are 

correct and conceptually coherent, even though students may not be able to 

explicitly articulate this. As Vergnaud writes, “We take up information with the 

help of invariants (categories, relationships, and higher-level entities), without 

expressing or even being able to express these invariants. This is especially 

visible in students' mathematical behavior, as they often choose the right thing 

to do without being able to mention the reasons for it” (p. 20). Concepts in 

action stem from Vergnaud’s theory of conceptual fields in which multi-faceted 

concepts (like multiplication) are not unified by one overall mathematical idea 

but involve multiple conceptual experiences. In our case, we are interested in 

the one-to-many conceptual experience that we hypothesise TT can provide. 

Vergnaud’s concepts in action directs the researcher’s attention to the behaviour 

of students—to their choices, their actions and their language—which is then 

used to make inferences about their concepts in action. In articulating 
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Vergnaud’s ideas further, Balacheff’s (2017) cK¢ model of conceptualization 

draws attention to the action/feedback loop as an essential component of a 

concept in action. Balacheff argues that choices made by a subject based on 

feedback represent a necessary “control structure” (p. 9) that is a fundamental 

part of the concept. In the case of studying TT, in which gestures are a 

significant form of action, and in which the visual presentation of pips and pods 

provides important and immediate feedback on these actions, our analysis of 

behaviour will involve looking closely at the various hand movements made by 

the students on the screen, and taking these particular movements as mattering 

to students’ developing conceptualisations, as per the tenets of theories of 

embodiment (c.f., Arzarello, Bairral & Danè, 2014; Sinclair & de Freitas, 2014). 

The research objective is to document the transformation of the concept in 

action developed in TT into an explicitly articulated concept. 

METHODS 

The study took place in an elementary school in western Canada. We conducted 

teaching experiments aimed to gain insight into the multiplicative thinking that 

might emerge from interactions with TT. For this paper, we have selected one 

episode that involves two grade 3 girls (9 years old), who had begun to study 

multiplication (as repeated addition). The girls were working on the following 

task in TT: skip-count by 3s in two different ways. One method involves 

changing the number of pods; the other involves changing the number of pips. 

The students worked in pairs and many of them were video recorded by two 

researchers who circulated in the classroom from pair to pair. We have chosen 

this particular pair for analysis because the shift from a concept in action to the 

concept of the one-to-many multiplicative relation occurred during a single 

video clip (for most other pairs, we only captured the concept in action or the 

explanation). In our analysis, we draw on Vergnaud’s (1990) method, which is: 

to precisely describe the behaviour of the student; to identify the invariant 

properties of the situation; and, to trace the development and transformation of 

language and symbolic activity to highlight the way in which the student can 

explicitly describe the concept. 

FINDINGS 

The two girls, whom we will refer to as Jen and Jessica, were working together 

on the floor with one iPad that rested at an angle on Jen’s lap. Jessica did not 

say anything during the entire episode but did touch the screen. In the video 

clip, the researcher asked the girls to show her what they had figured out about 

skip counting by 3s and Jen proceeded to place three pip-making fingers on the 

left side of the screen and then iteratively placed one pod-finger on the right. 

The researcher asked, “Did you have another way?”, to which Jen responded 

“No, we couldn’t figure out a second way yet” (0.26s). The researcher 

suggested they keep trying. Jessica started to touch the screen, she made four 
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pips and touched sequentially on the pod side to make 6 pods (effectively skip-

counting by 4s).  

 Voice Hands iPad 

0:56 Jen. If we do 4, 

that’s counting up 

by 4s. 

Jessica makes four pips and six pods.  

 

0:58  

  

Jessica lifts her index, left pip-making 

finger. (The expression goes from 4 x 6 to 3 

x 6; the pods go from having four to three 

pips in them.)  
 

1:00  

 

 

Jessica lifts her middle finger. (The 

expression goes from 3 x 6 to 2 x 6; the pods 

go from having three to two pips in them.)  

 

1:01  

 

Jessica lifts her third finger. (The expression 

goes from 2 x 6 to 1 x 6; the pods go from 

having two pips to one pip in them.)  

Jessica lifted all her fingers.  

Table 1: A one-to-many concept in action. 

 

When Jessica made 4 pips and 6 pods, she did not seem to know how this would 

enable her to skip-count by 3s. She then lifted each individual pip-making 

finger to go from 4x6 to 3x6 to 2x6 to 1x6 to 0x6. Each lift of her finger was 

almost exactly 2 seconds. She was very intentional in her actions, which may 

suggest that she was becoming aware of the effect of this finger lifting on the 6 

pods (the product would have decreased by 6 at each lift and each of the 6 pods 

would have become smaller and changed configuration at each lifting of a pip). 

We thus hypothesise that Jessica was starting to develop a concept in action—

lifting the pip-making finger one by one—that could be used in the skip-

counting task, and that effectively instantiated one-to-many relation. We see this 

as an example of action/feedback described by Balacheff, whereby Jessica is 

continuing the same action of lifting her finger based on the feedback from TT. 

The girls continued to make different combinations of pips and pods, and to 

experiment with pip-making and pip-lifting. Then, at 2:45, Jen has four pips and 

one pod on the screen. 
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2:45 Jen. That’s 4 but 

when I add another 

one. 

Jen touches on the pod side to create another 

pod to make 4x2. 

 

2:49 Jen. Oh wait. Jen lifts her index pip-making finger on the 

left side, thereby getting 3 x 2. (The number 

of pips in the pod goes from 4 to 3.)  

 

2:53 Jen. This. Jen touches her index pip-making finger on 

the left side, thereby getting 4 x 2 again. She 

points at her pip-making finger with her 

right hand. 

 

2:56

- 

3:03 

Jen. Then that. 

R. How much is it 

going up by now? 

Jen. It will… it 

went up by 2. 

Jen places another pip-finger on the left side. 

She continues to point with her right hand at 

her pip making fingers. 

  

3:07 Jen. Ya, it’s going 

up by 2s. 

Jen places one more pip-making finger on 

the left side after which Jessica adds a pip 

making finger on the left side. 

 

Table 2: The spreading effect in TT. 

 

At 2:49 when Jen said, “Oh wait” she paused. Then she lifted her index pip-

making finger. Over the course of the next 14 seconds, she made three pips and 

Jessica made one pip to produce 7 x 2 = 14. Jen stated at the end that the 

product was going up by 2. Although the relationship had not been fully 

articulated, the concept in action of spreading was emerging, as the girls became 

aware that each touch on the pip side was increasing each of the pods. Jen 

seemed to be “picking up” on the co-varying relation of the pips and pods. At 

3:24 the girls successfully skip-counted by 3s by making three pods and then 

iteratively adding pips up to 5 x 3 = 15. At 4:00, the researcher asked, “So how 

is it doing that? How is it making it go up by three now?” 
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 Voice Hands iPad 

4:00 Jen. Because 

there’s three here. 

 

Jen gestures to the pods on the screen. 

 

4:05 Jen. And then each 

time that we add 

one up it goes here.  

Jessica places a pip-making finger on the 

screen.  Jen places two more pip-making 

fingers on the screen. 

Jen points to the top pod. 
 

4:11 R. So if you add a 

finger, oh, that’s a 

purple one. 

Jessica places another pip-making finger 

on the screen. 

 

4:12 What happened to 

those purple ones? 

Jessica lifts the pip-making finger. 

 

4:19 R. Oh now it’s 

yellow. 

Jen. Um, a yellow 

one drops in there. 

Jessica places her pip-making finger on the 

screen. Jen places two more pip-making 

fingers on the screen. 

 

4:21 R. Does it just drop 

in there? 

R. points at the top pod.  

 

4:25 Jen. Ya. [Pauses] 

…in every single 

one. 

Jen points at all the pods in turn, starting 

with the lower left one, moving to the 

lower right pod, and then the top pod, as if 

spreading her hand to each pod. 
 

4:27 Jen. And say if we 

take away this one. 

Without being prompted, Jen points at her 

own thumb which holds a yellow pip. 

 

4:28 Jen. Then that 

colour would 

disappear. 

Jen lifts her thumb, points to the top pod 

and moves her hand towards the bottom of 

the screen. She then moves her hand in a 

circular motion, spreading her fingers  to 

each pod.   

 

Table 3: Jen and Jessica skip-counting by changing the number of pips 
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When Jessica placed her pip-making finger on the screen, the concept in action 

of one-to-many was in play, where each pip addition made the product increase 

by three [4:05-4:19]. The researcher drew attention to this change when she 

said, “That’s a purple one…Oh now it’s yellow”. In response to the researcher’s 

question about the yellow pip, Jen explicitly articulated, by saying “every single 

one” and the gesture of pointing to the top pod and the spreading gesture, the 

relation between the change in pips and the ensuing change in each of the pods, 

which is the one-to-many relation (“dropping” one pip will change many pods).  

At 4:51, the researcher asked, “How do you think you’ll make it do it by 

fours?”. Jen immediately tapped four times on the pod side. There were 9 pips 

on the screen, producing 9 x 4 = 36. Jen said, “and we add one, that’s 40 so…”. 

She placed another pip-finger on the screen, then counted on her fingers from 

36 to 40, and said, “That’s by fours” and again gestured around to all the pods.  

DISCUSSION AND CONCLUSION 

The effect of seeing the pod change as Jen and Jessica touched and lifted their 

pip-making fingers, going from 4 to 3 and back up to 6, seemed to draw the 

girls’ attention to the relation between pips and pods and also encouraged them 

to repeat through their now developed control structure a particular gesture that 

required the coordination of two quantities—the pips on one side, changing, and 

the pods on the other, staying the same. Instead of remaining within the additive 

framework of repeated addition (sequentially adding one more pod, thereby 

focusing on just one quantity), the girls were expressing multiplication as a 

coordination of quantities. Once they had changed the number of pips, they 

could use this action again, with more pods; and this allowed them to see the 

simultaneous change in all pods that occurred when the number of pips 

changed. They had figured out how to count by 3s in a new way. Since this 

appeared to be a difficult task for all of the pairs in the classroom, we infer that 

it involves a new awareness both about how TT works, but also about the 

multiplicative relation. 

In our analysis, we have shown the development of a concept in action, which 

was in response to the task of skip-counting by 3s, and which involved making 

three pods and then iteratively adding pips. We then showed how the 

researcher’s prompt occasioned an explicit articulation of this concept in action. 

The girls were then able to count by 4s—and it was perhaps the articulation of 

the concept in action that made this not only possible, but seemingly effortless. 

But more importantly, in terms of their multiplicative thinking, the girls 

experienced a particular aspect of multiplication, which is its one-to-many 

relation, which is instantiated in TT when a change in the number of pips (the 

unit) leads to a change in each and every one of the pods. Connecting back with 

Balacheff’s model of conceptualisation, we see that the girls have developed a 
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control structure in this setting with TT contributing and being a part of the 

knowledge they now have of multiplication-as-spread.  
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It is challenging to design and structure lessons to maximize high-quality 

opportunities to learn mathematics in the classrooms. This paper presents a case 

study of Mary, a beginning mathematics teacher in Singapore, to illustrate how she 

noticed opportunities to learn during the planning and enacting of a lesson on 

decimal fractions for Primary 4 students. The case highlights the importance of 

noticing affordances of typical problems and opportunities to orchestrate productive 

discussions to provide quality opportunities to learn.  

INTRODUCTION 

All students should have access to high-quality mathematics curricular, effective 

teaching and learning, high expectations, and the support and resources needed to 

maximize their learning potential. To enhance students’ learning experiences, teachers 

need to provide their students opportunities to learn from mathematically meaningful 

tasks. The notion of opportunities to learn was defined as the “amount of time allowed 

for learning” (Carroll, 1989, p. 26) and its conceptualization has broadened over the 

years. For example, Liu (2009) positions opportunity to learn as an “entitlement of 

every student to receive the necessary classroom, school and family resources and 

practices to reach the expected competence” (p. v). Although this entitlement has 

often been measured in terms of the amount of time (Carroll, 1989) given for a 

program, or the number of tasks with certain characteristics in a textbook (Wijaya, van 

den Heuvel-Panhuizen, & Doorman, 2015), Carroll (1989) highlighted that it is what 

happens during lessons that matters most.  

With the aim of broadening the notion of opportunity to learn to examine other 

features of mathematics instruction, such as task implementation during lessons, 

Walkowiak, Pinter, and Berry (2017) re-conceptualized opportunity to learn in terms 

of teachers’ mathematical knowledge for teaching, time utilization, mathematical 

tasks, and mathematical talk. This conceptualization puts teachers as the main 

orchestrator in the lesson to provide students these opportunities to learn. More 

specifically, Walkowiak et al. (2017) positioned teachers’ mathematical knowledge 

for teaching (Ball, Thames, & Phelps, 2008) as a critical factor in relation to how 

teachers optimize time use during the lesson (Gettinger, 1989), how they design, 

select, and implements tasks (Mason & Johnston-Wilder, 2006), and how teachers 

orchestrate discussions (Smith & Stein, 2011). This paper examines how Mary 
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(pseudonym), a primary school mathematics teacher in Singapore, provided her 

Primary 4 students quality opportunities to learn mathematics by orchestrating the 

time, task, and talk for a lesson on decimal fractions. 

Orchestrating Time, Task, and Talk 

Although time allocated to teaching mathematics is important, Walkowiak et al. 

(2017) went beyond the number of minutes and investigated the amount of time spent 

in relation to the mathematical goal of the lesson. In particular, they examined 

whether teachers use “the majority of time in the lesson to reach the mathematical 

goal” and whether the lesson components are structured to “build on each other with 

explicit attention to the mathematical goal” (p. 12). This consideration is important for 

many classrooms because of the time constraints faced by teachers, especially in 

examination-driven education systems such as Singapore. In addition, many 

researchers suggest that it is crucial for students to have discussions around 

mathematically rich tasks as part of their learning experiences (Grootenboer, 2009; 

Smith & Stein, 2011). However, these tasks are usually time-consuming and 

pedagogically challenging to use in the classrooms. This raises the challenge of how 

teachers can optimize students’ opportunities to learn through mathematically 

meaningful tasks when given limited curriculum time. To this end, Choy and Dindyal 

(2018) highlighted how typical problems—standard examination or textbook-type 

questions—can be used to promote productive talk between students and teachers. 

While acknowledging the importance of using rich tasks, Choy and Dindyal (2018) 

not only suggested the possibility of using typical problems to orchestrate discussions, 

but also proposed how teachers can make connections between different 

representations of mathematics, which reflect a connectionist approach to teaching 

mathematics (Askew, Rhodes, Brown, Wiliam, & Johnson, 1997). 

The Role of Teacher Noticing 

Mathematics teachers, who use a connectionist approach to teaching mathematics, can 

notice and exploit the mathematical possibilities of instructional materials for different 

profile of students (Askew et al., 1997). Adopting a connectionist approach to 

teaching requires teachers to develop a keen awareness of the mathematical 

connections afforded by the tasks and use these connections to design opportunities to 

learn through orchestrating time, task, and talk during lessons. A key component of 

teaching expertise that enables teachers to do this ambitious work is mathematics 

teacher noticing, which  refers to what teachers attend to and how they interpret their 

observations to make instructional decisions during lessons (Mason, 2002; Sherin, 

Jacobs, & Philipp, 2011). Most of the earlier studies on teacher noticing were centered 

about the use of video recordings of teaching episodes but Choy (2016) brought task 

design into the realm of teacher noticing. His findings suggested that an explicit focus 

for noticing is useful, and an emphasis on pedagogical reasoning can increase the 

likelihood of teachers making instructional decisions that promote students’ reasoning. 

In this paper, researcher extends and applies the notion of productive noticing (Choy, 

2016) to examine what and how Mary noticed about the opportunities to learn during 
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a lesson on decimal fractions. Vignettes of how Mary planned and implemented the 

lesson will be discussed in relation to the time, task, and talk during the lesson. 

METHOD 

The data reported in this paper were collected as part of a larger exploratory study on 

building a culture of collaboration and listening pedagogy in classrooms through 

Lesson Study for Learning Community in Singapore. The study involved a Lesson 

Study team comprising of 10 mathematics teachers in Quayside Primary School 

(pseudonym), a government-funded school. The vignettes feature Mary, a beginning 

teacher who had only six months of teaching experience at the time of this study. 

Although newly trained, Mary has a strong foundation in mathematics as she had 

studied mathematics as a university major. Data for this paper were generated through 

the voice and video recordings of the lesson, and the lesson plan designed by Mary 

with support from her colleagues. A thematic analysis approach (Braun & Clarke, 

2006) was adopted for this study. Viewing the lesson plan as an instantiation of her 

thinking about the opportunities to learn, findings were developed through identifying 

aspects of the time utilization, tasks, and planned talk moves that provided 

opportunities for students to do mathematics. For the lesson, researcher analyzed the 

video and voice recordings by identifying segments, which corresponded to Smith and 

Stein’s (2011) five practices for productive discussions, and highlighted aspects of the 

time, task, and talk that presented opportunities for students to learn.  

NOTICING, DESIGNING, AND ORCHESTRATING OPPORTUNITIES TO 

LEARN 

In this section, researcher first presented an analysis of Mary’s lesson plan on 

Decimals for a Primary 4 class before researcher discussed her actual lesson 

implementation. Her students had previously learned about decimals and fractions, 

including the addition of decimals. The lesson of interest (an hour in duration) focused 

on developing students’ relational understanding (Skemp, 1978) of multiplication of 

decimals with a whole a number. Up to this point, students had not learned how to do 

multiplication involving decimals. It is also important to note that the Singapore 

Mathematics Curriculum only covers multiplication and division of decimals by 10, 

100, and 1000 in Grade 5. Mary started the lesson by recapping the idea of 

multiplication as repeated addition before she set them the task of the day, which was 

to find the answer to 0.8 × 4 and orchestrated a lesson around the different solution 

methods developed by the students, both individually and as a group. The episode 

reported here started when a student asked a seemingly trivial question: How will you 

know where to put the decimal point?  In the following discussion, researcher uses 

three of the four key dimensions of opportunities to learn—time, task, and talk—as 

developed by Walkowiak et al. (2017) to highlight what Mary might have noticed 

about the opportunities to learn for her students.  
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Designing Opportunities to Learn during Lesson Planning 

In terms of time utilization, Mary and her colleagues planned 45 minutes (out of 55 

minutes) of lesson time for students to work on two related forms of the question, 0.8 

× 4: (a) Solve 0.8 × 4, and (b) How many ways can you think of to solve 0.8 × 4? 

Referring to Table 1, we see that Mary planned to spend most of the time in the lesson 

to reach the mathematical goal. The students first worked on the problem 0.8 × 4 on 

their own (10 minutes). This was followed by students working in groups on 

developing multiple solutions to the same question (How many ways can you think of 

to solve 0.8 × 4?). Moreover, Mary planned to have the students discuss the different 

solutions during the whole class discussion so that she could draw their attention to 

the linkages between the various solutions and the standard multiplication algorithm 

(See Figure 1). Hence, the time was structured so that the tasks built on each other, 

paying attention to the goal of understanding the idea behind the multiplication 

algorithm.  

Components of Lesson Time planned (min) Actual time used (min) 

Introduction 5 3 

Understanding the Problem 

and Individual Work 

10 7 

Group work 15 15 

Whole Class Discussion 20 25 

Closure of lesson 5 5 

Table 1: Planned and actual time utilization.  

Next, the task “How many ways can you think of to solve 0.8 × 4?” was a 

modification of simply “Solve 0.8 × 4”, which opened up the solution space of a 

typical problem (Choy & Dindyal, 2018). Although this will not be categorized as a 

rich task, the design of Mary’s task provided students opportunities to use and 

translate among two or more representations so that they could make sense of the 

mathematics. In addition, Mary’s use of the typical problem highlighted that she was 

cognizant of how the question could support students in making connections between 

their prior knowledge and the new content. Therefore, Mary and her colleagues 

demonstrated a keen awareness of the affordances of such typical problems beyond 

their usual usage (Choy & Dindyal, 2018).  

More importantly, Mary did not plan to use the typical problem by simply explaining 

the procedure. Instead, as seen in Figure 1, she planned for students to explain their 

thinking and this could potentially allow students to move towards a better 

understanding of the multiplication algorithm. A closer examination of the lesson plan 

also reveals some planned talk moves similar to those proposed by Smith and Stein 

(2011). For example, she anticipated students’ different responses to the question and 

planned for the sequencing of sharing by different students (See Figure 1). This 
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corresponded to Smith and Stein’s (2011) practices of anticipating, selecting, and 

sequencing.  

As seen from Table 1 and Figure 1, Mary noticed the affordances of using a typical 

problem and modified the problem to open its solution space (Choy & Dindyal, 2018). 

Her planned use of time and planned talk moves around typical problem also provided 

students opportunities to learn about the multiplication of decimals, with a strong 

focus on mathematical reasoning.  

 

Figure 1: Snapshot of Mary’s lesson plan 

Orchestrating Opportunities to Learn during Lesson  

Mary also orchestrated several opportunities, as planned, for students to learn during 

lesson. While Mary circulated the classroom, she took notice of the strategies used by 

the different groups of students. Mary’s attention to students’ strategies was 

demonstrated when she called upon different students to present their solutions 

according to the sequence planned as indicated in Figure 1. More importantly, Mary 

pressed the students for their explanation beyond giving the correct answers:  

1  S1: So, first, we have four 0.8s, and after that we added all up, like 0.8 

plus 0.8, then we get the answer then we plus 0.8 again then plus 0.8 

again. Then…I thought that it will be easier if the number is smaller. 

But if the number is bigger, I think, then the multiplication method 

is easier? 

2 Mary:  Okay, so they [referring to the group of students including S1] did 

not choose this strategy as the most efficient one, but I ask them to 
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present this strategy. Can anyone tell me why they did not choose 

this one as opposed to this one? S1 actually mentioned it, how about 

S2? 

3 S2:  Because is, when you get other bigger number, it will be hard for 

you to … 

As with the above exchange, Mary continued to press her students to explain their 

solutions to make their thinking visible to the other students throughout the lesson. 

This was so even for unanticipated responses from her students:  

22 S3:  … First, you need to kick the decimal place away because you do 
not need it. And then you need to, er…, you need the time to, 
convert both the numbers you are multiplying into whole numbers 
and then you get the answer. And then you, you pick the decimal 
point, in between the tenth place and the ones place of your answer. 
And we chose this as the most efficient one because it takes only 2 
steps… 

23 Mary:  Is that all? Okay, any questions for S3’s method? S4? 

24 S4:  But the multiplication number reaches up to like a zillion, where 
will you know how to put the decimal point? 

25 S3:  Just put it between the tenth place and the ones place, and you are 
done. 

26 S4:  But how do you know which one [cross talk]? 

27 S3:  Yes, I checked it already.   

28 S5:  How do you know which number is in the tenth place?   

29 S3:  Because I checked just now.   

30 Mary:  How did you check? How did you know?   

Here, S4’s question at Line 24 was unanticipated. Instead of brushing aside the 

question, Mary stepped back and allowed students (S3, S4, and S5) to discuss S4’s 

question. By doing so, Mary brought the question to the center of the whole-class 

discussion and these students’ arguments were made available to all students, for them 

to think about and evaluate the validity of the points made: 

31 S3:  I put a big number times a big number and I tried it, and yes, it 
works. 

32 Mary:  So, it is always between the tenth and the ones place? Anyone 
disagrees? 

As seen from Mary’s response, she was comfortable in letting her students engage in a 

mathematical argument. The exchanges went on for several more turns before Mary 

tried to connect these responses: 

55 Mary:  … Let’s look at S3’s method, he started with 8 times 4, 32. How 
many ways can we actually put the decimal point. How many ways, 
S8? 

56 S8:  Er… you can put the decimal point in front of 2? 
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57 Mary:  In front of 2, in between 3 and 2? So, we can have 3.2. what else can 
we have? 

58 S8:  0.32 

59 Mary:  0.32. We can put it in front of the 2 numbers, we can have 0.32,32.0, 
and anymore? 

60 S9:  0.032 

61 Mary:  0.032. So, you see we can have many ways to place the decimal 
point, but why are we so sure that this is the final answer, that this is 
the correct answer? …Yes, S10? 

62 S10:  You could put it in between, because it’s a, you know because 0.8 
times 4, and then 8 is in the tenth place, so that 4 is actually the ones 
place, so it is like… since there is already a ones place that you need 
to multiply by, which is 4, it can’t be a zero 

  … [After some discussion] 

69 Mary:  It cannot be zero in a ones place, because you are multiplying by 4 
already. That is what he is (S10) trying to say. So, since you have 
0.8 times 4, it should be more than 1, is that what you are trying to 
say? So, we eliminate which two answers? This one, and this one. 
But why can’t it be 32.0? S11? Thank you, S10. 

70 S11:  Let us say the, since the question is 0.8 times 4, we can round 0.8 to 
1… 

In this series of exchanges between various students, Mary demonstrated her ability to 

orchestrate mathematically productive talk around the answers. Rather than endorsing 

or refuting the answers given by her students (See Line 32, and 69), she provided 

opportunities for her students to reasoning mathematically. She could have simply 

endorsed the students’ answers and the discussion could have ended. Instead, Mary 

attempted to build on students’ responses and moved the discussion towards 

strengthening the reasoning behind the answer. At the end, Mary used S11’s answer 

that 0.8 is approximately one to highlight the importance of thinking about the 

reasonableness of an answer using estimation. 

CONCLUDING REMARKS 

When Mary’s lesson plan and teaching moves are examined in terms of the 

dimensions of opportunities to learn (Walkowiak et al., 2017), it can be argued that 

Mary had optimised the time used during the lesson to orchestrate productive 

discussions around a modified typical problem. The lesson plan suggests her ability to 

notice the possibility of using typical problems such as 0.8 × 4 to create opportunities 

for students to reason, beyond simply explaining the procedure of multiplying 

decimals.  Her teaching moves also suggested that she was able to notice opportunities 

to develop students’ reasoning by engaging students to discuss the placement of the 

decimal point. Mary’s instructional decisions during planning and lesson enactment 

reflect those of an experienced competent teacher, which is surprising given that she is 

a beginning teacher. What, and how, did Mary notice the opportunities to learn 

through the task? A more in-depth study of Mary’s instructional decisions may yield 
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some insights into her pedagogical reasoning processes, which will have implications 

for teacher professional development. 
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While the affordances of problem-based learning are broadly recognized, 

implementation of this innovative approach is not common, particularly in tertiary 

mathematics education. This study investigates early stages of an implementation of 

problem-based instruction in 1st year mathematics courses for engineering students, 

within a project encompassing 12 universities and colleges across Europe. Twenty-

three lecturers from participating institutions took part in a preparatory workshop. 

Framing the project as a case of diffusion of innovations, we analyze post-workshop 

questionnaires to reveal the participants' conception-of and attitudes-toward the 

innovation. We highlight some challenges that the innovation entails, and how they 

relate to participants’ general attitude toward implementing the innovation. 

THEORETICAL BACKGROUND 

First year university mathematics courses are considered challenging in general, and 

for engineering students in particular (Jablonka, Ashjari, & Bergsten 2017). In 

addition to general issues of transition from high school, the abstract approach to the 

discipline that is common in mathematics departments may not be appropriate for 

students who will eventually use mathematics as a practical tool for solving problems. 

Problem-based learning (PBL; Savery, 2006) is an educational approach by which 

authentic real-world problem situations provide the impetus and the context for 

studying disciplinary content. Often this approach is implemented as project-oriented 

PBL (PO/PBL), where authentic problems emerge in the context of a long term 

project. While such approaches have been studied mainly in the context of pre-college 

education, PBL (project-oriented or otherwise) is common in some universities (e.g., 

Aalborg University, Denmark), and has, in particular, been found to be suitable for 

engineering education (Perrenet, Bouhuijs, & Smits, 2000). While the potential gains 

of such an approach are undisputed, implementing instructional innovation can be 

challenging (Begg, Davis, & Bramald, 2003). In this article we investigate challenges 

related to implementing PBL in 1st year mathematics courses for engineers. 

 

Processes of adoption of innovation have been studied for many years, and the 

adoption model elaborated by Rogers in his 1995 book Diffusion of Innovations 

(2003) has been used extensively in many contexts, including educational innovation 

(e.g., Sahin, 2006). Rogers has recognized four main elements in the diffusion of 

innovations – the innovation and its perceived consequences, communication channels 

of diffusion, evolution of the diffusion over time, and the social system in which the 
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diffusion takes place. Rogers has focused on the innovation decision process, which 

he describes as “an information-seeking and information-processing activity, where an 

individual is motivated to reduce uncertainty about the advantages and disadvantages 

of an innovation” (Rogers, 2003, p. 172). While approaches to teaching may often be 

prescribed by educational institutions, the details of what ultimately takes place 

behind the closed doors of classrooms and lecture halls are up to individual 

instructors. Hence, this decision process is highly relevant in any process of 

instructional innovation.  

Early stages of the decision process are influenced by three factors (see table 1): Prior 

conditions (in particular previous experiences related to the innovation); Knowledge, 

including how-to-knowledge about the implementation and use of the innovation and 

principles-knowledge about how and why the innovation “works”; Persuasion, 

whereby adopters develop an affective attitude toward the innovation, influenced by 

the characteristics of the innovation as perceived by individuals. These characteristics 

include: A. Relative advantage compared to the current state of affairs;  

B. Compatibility with past experiences and with existing conditions and values;  

C. Complexity – the degree to which the innovation is perceived to be difficult to 

understand or to use; D. Trialability – the extent to which the innovation can be 

experimented with on a limited basis.  

Prior conditions Previous 

practice 

Need for  

innovation 

Innovativeness Norms   

Knowledge  Awareness How to Principles   

Persuasion: Advantage Compatibility Complexity Trialability Observability 

 

 

Table 1: Rogers’s model of diffusion of innovations (relevant aspects are underlined) 

We conducted our research in the context of an international project whose objective 

is to improve teaching, learning and understanding of 1st year mathematics among 

engineering students in European countries. Innovative teaching methods, in particular 

PO/PBL, are the main vehicle for achieving this objective. We focus on a point in 

time immediately following a preparatory PBL workshop for participating lecturers. 

Eventually, these lecturers will decide whether, how and to what extent to implement 

the innovation. Their decision will be influenced by their perception-of and attitude-

towards the innovation. Hence our research questions are: 

Following a preparatory workshop on PBL, (1) What are the participants’ 

perceptions of PBL as an instructional innovation to be implemented in their 

teaching? (2) What are their attitudes towards the innovation? 

SETTING AND METHODOLOGY 

iTEM – innovative Teaching Education in Mathematics – is a Capacity Building 

project for higher education funded by the Erasmus Plus program (EU) as of 2019. Its 

main objective is to improve teaching, learning and understanding of 1st year 

mathematics among engineering students in Europe through the implementation of 
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PBL. Sixteen academic institutions are partners in the project. Twenty-three 

mathematics lecturers from partner institutions participated in a workshop organized 

by the University of Aalborg in Copenhagen, whose goal was to inform and inspire 

participants on how to integrate PBL-oriented ideas in their teaching. The workshop 

was preceded by online individual preparation, which included reading assignments 

on PBL approaches to teaching and learning and written exercises. The 2-day 

workshop comprised group-work and plenary sessions on the following topics: Real-

life problems and strategies for their integration in university teaching; the special 

nature of assessment in PBL; challenges and opportunities of the approach; active 

learning and group work on problem solving. At the end of the workshop participants 

submitted an anonymous questionnaire (see table 2), followed by a plenary discussion 

on some of the questions. While the primary purpose of the questionnaire was to 

provide formative assessment of the workshop, the participants gave their written 

consent for using their responses for the research reported herein. 

Data for the research consists of 17 completed questionnaires (6 were too incomplete 

to be useful). Pre-workshop submissions and video recordings of all the sessions 

including a plenary discussion following the submission of the questionnaire – were 

used as complementary data sources. Rogers’s (2003) model of diffusion of 

innovations was used as a conceptual framework for analyzing participants’ responses 

and utterances. To each response we ascribed one or more aspects of the model. 

Coding was for the most part consistent with Table 2, where we indicate for each 

question the categories of the framework that we expected respondents to attend to, 

though in some cases respondents attended to additional categories. The aspects of the 

innovation that respondents chose to attend to were very different, providing a rich 

qualitative image of different conception of the innovation and the challenges it poses. 

Reviewing respondents' questionnaires, it seemed clear that some had a more positive 

attitude toward the innovation than others. We operationalize this attitude as follows: 

Some questions invited a positive response, some a negative response, and others were 

phrased neutrally. Each response that was more positive/negative than the question 

invited scored ±1, and the sum of these scores over all questions constitutes the 

overall attitude. For example, responses to q1 (see Table 2) that only listed main ideas, 

but did not consider one that appealed to the respondent scored -1, and responses to 

q4 that did not list any ideas that the respondent will not implement scored +1. Our 

aim in this was to reveal which aspects of the respondents' perception of the 

innovation correlate with a general attitude toward the innovation. 

 Question Diffusion categories 

1 List the main ideas raised in the course. Consider one idea 

that appealed to you, and elaborate or exemplify it. 

Knowledge (neutral)  

Advantage (positive) 

2 Is there any idea discussed in the course that you already 

implement in your current teaching? If so, please indicate 

which and describe how. 

Prior practice (neutral) 

3 Was there an idea discussed in the course that was novel 

to you? What do you think of this idea? 

Innovation-
(dis)advantage (neutral) 
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4 Was there an idea discussed in the course that you do not 

think you will implement in your teaching? If so, why not? 

Innovation-
disadvantage/ 
compatibility (negative) 

5 Of all the mathematical examples discussed in the course, 

which did you most connect to? 

Innovation-advantage 
(positive) 

6 Which resources are needed in order to implement the 

ideas discussed in the course, or some of them, in your 

teaching? Which of these resources are already available 

to you in your institution and which would need to be 

developed? 

Innovation-
compatibility (neutral) 

7 To what extent do you feel ready to implement the course 

ideas in your teaching? What, if at all, are you missing in 

order to do that? What kind of support are you expecting? 

Knowledge-how 
(positive); Compatibility 
(negative) 

8 Towards summing up the ideas in a Teaching 

Methodology Document, which ideas in your opinion still 

need to be added or elaborated upon? 

Knowledge-how 
(negative) 

9 In the next course, which idea(s) would you like go deeper 

into? 

Knowledge (neutral) 

10 Please add any comments that you feel are not covered by 

your previous responses. 

Neutral 

Table 2: Questionnaire items mapped to framework categories,  

classified as inviting positive/negative/neutral response 

ANALYSIS AND FINDINGS 

We begin with a report of the diversity in respondents’ perception of the PBL 

innovation, organized according to the categories derived from Rogers’s model. We 

then focus on eight respondents whose attitudes were most/least positive. 

Prior Conditions: Previous Practices 

Many respondents reported prior practices pertinent to the PBL innovation, mainly in 

response to question 2. Practices included the use of real-world problems in 

homework, tutorials or lectures (7 respondents), some project work for course credit 

(4), and assessment practices that are consonant with those presented in the workshop, 

including varied and frequent testing, often based on real-life problems (4). One 

respondent’s response was particularly revealing in this respect: “I thought I did 

[implement ideas discussed in the course], but now I understand that I did not. I feel 

this is a big step forward for me”. This serves to remind us that self-reports of prior 

practices are highly subjective, and further indicates that at least this respondent 

gained some principles-knowledge regarding PBL, as discussed in the following 

subsection. 

Knowledge: Principles-knowledge and How-to-knowledge 

Eight respondents attended in their responses to principle-knowledge that they 

acquired during the course. Some responses were vague (e.g., attending to the general 

nature of PBL and recognizing its challenges), while others were more specific, 

attending to the independence of students (3) and the role of the teachers (1) where 

problems do not necessarily rely on prior teaching (1), the relationship between PBL 
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and courses based on project work (1), and the ability of PBL-based instruction to 

attend to variance in student background and prior learning (1). 

Nearly all respondents (15/17) attended to aspects of how-to-knowledge that were 

addressed in the course, including how to construct or find appropriate real-world 

problems (6) and integrate them in their mathematics courses (8), how to implement 

novel assessment methods (8), organize group work (2), motivate self-learning (2) and 

make use of visualization software (2). Nevertheless, many (11) attended to how-to-

knowledge that was still lacking or inadequate. For the most part, they felt a need for 

more detailed guidance for implementing aspects of PBL, including assessment 

methods (6), teaching methodologies (6) and in particular those that can motivate 

students’ independent learning (4). Some (2) attended to the challenge of connecting 

the innovation (real-world problems and novel teaching methods) with current 

practices (prescribed curriculum and traditional teaching methods). This need for 

more practical knowledge was further elaborated in the plenary discussion. It was 

recognized that while the workshop could teach principles, the details of 

implementation in mathematics courses for engineers are quite unique, and will need 

to be figured out and shared by the partners. One respondent, who recognized the 

benefits of PBL principles, felt a need to be introduced to alternate non-PBL ways of 

achieving them. This demonstrates that the persuasion stage of diffusion, discussed in 

the following subsection, is conceptually separate from the knowledge stage, as 

Rogers has claimed. 

Persuasion: Perceived Characteristics of the Innovation 

Relative advantage: Nine of the 17 respondents referred to advantages of the 

innovation over their current practices. The advantages they attended to were: the 

active nature of students’ participation in learning and their increased responsibility 

(5), increased applicability and relevance of student learning for their future studies 

and employment (3), utilization of existing technologies for enhancing learning (2), 

advantages of novel assessment methods, including frequent tests and oral peer-

assessment (4). Some respondents recognized inherent advantages in the way PBL 

learning is organized, whereby problem solving precedes instruction (1) and there is a 

stronger connection between lectures and homework (1). 

(In) compatibility and complexity: All but two respondents (15/17) attended to aspects 

of perceived compatibility and complexity of the innovation, mainly in response to 

questions 6 and 7. We do not distinguish between these categories, because they were 

often intertwined (e.g., incompatibility due to complexity). Once again, some 

responses were vague (2, e.g., I can’t implement full PBL), while others attended to 

specific issues, including a rigid curriculum (4), large numbers of participants in 

courses (4), student maturity and willingness to cooperate (3), university policy (1), 

rigid lecture-hall arrangement that does not support group-work (1), staff devotion (1) 

and time constraints (1). Few respondents attended to positive aspects of 

compatibility, stating that their institution is basically flexible (1), that changes in the 

way material is presented in courses (2) and in the way the budget is managed (1) can 

be accommodated, and that the necessary hardware, software and facilities are in place 
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(2). Mainly in response to question 6, respondents indicated some resources that 

would be required for implementing the innovation, including: curricular and 

assessment material (7), an increase in internal and external (censor) staff (4) and 

additional time (4), which would entail an increase in budget (2), classroom facilities 

(3), IT facilities and support (5), instructional resources – bot printed (1) and internet-

based (2). Two respondents noted that communication channels between the project 

partners would be a crucial resource. 

Trialability: Six respondents attended to their ability to try out the innovation on a 

limited scale. Five spoke of implementation with small pilot test groups, while one 

spoke of small scale integration of real-world problems across many courses. 

Attitude toward the Innovation 

According to our coding scheme, attitudes ranged between +6 (very positive) and -2 

(somewhat negative). We now focus on the four most positive and four least positive 

respondents, and describe some commonalities and differences. 

Positive attitude: Focusing on the four respondents whose attitudes were the most 

positive, measured at +6 (hereafter respondent A), +5 (B), +4 (C) and +3 (D), we find 

that all of them had some kind of previous practice related to the innovation – 

innovative projects integrated into coursework (A, D), use of mathematical software 

(A), diverse and frequent formative assessment (A, C), group work (A). The three 

most positive respondents (A, B, C) felt that their institutions (B), departments (A, C), 

and their students (C), would be supportive of the changes that the innovation would 

entail. In other respects, this group was indistinguishable from the rest. 

Negative attitude: Focusing on the four respondents whose attitudes were measured at 

-2 (P, Q) and -1 (R, S), we find that only one of them (P) attended to principle-

knowledge. Three of them listed significant incompatibilities of the innovation, 

including a large number of students per course (Q, S), and three of them (Q, R, S) felt 

that they lack how-to-knowledge for implementing appropriate assessment. In other 

respects, this group was indistinguishable from the rest. 

DISCUSSION 

We have analyzed what the respondents – 17 lecturers from participating institutions 

who attended a PBL workshop – attended to in their responses to a post-workshop 

questionnaire. There is a dialectic relationship between the data and the conceptual 

framework that guided our analysis. We first discuss what we have learned about the 

respondents’ perception-of and attitude-toward the innovation, relying on the 

framework. This part of the discussion has practical implications for the 

implementation of instructional innovation of a similar nature. We then discuss 

implications in relation to the conceptual framework based on Rogers’s (2003) 

categories and about its applicability in the context of tertiary instructional innovation. 

Elaboration on Decision-process in PBL as an Instructional Innovation 

All the participants in the workshop belong to educational institutions that have opted 

to participate in the iTEM project, and as such are expected to be committed to the 

instructional innovation that it entails. Yet the extent and nature of their 

implementation of the innovation is ultimately up to them, thus it makes sense to 
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analyze their responses to the post-workshop questionnaire as revealing a decision 

process about adoption of innovation, which Rogers’s model proved useful to analyze.  

One interesting finding of our study is the relationship between the participants’ prior 

experience with related innovative practices and their attitudes towards the current 

innovation. The four most-positive respondents all reported some prior experience, 

while only one of the four least-positive respondents reported such experiences. This 

suggests that prior exposure may be a significant factor in the decision process. 

How-to-knowledge was an explicit focus of the workshop, and nearly all the 

respondents attended to aspects of such knowledge in their responses. Of the 11 

respondents who attended to how-to-knowledge they were lacking, three were among 

the least-positive respondents, while only one was among the most-positive. In 

contrast, the two groups were indistinguishable regarding principles-knowledge (1 of 

4 attended to this in each of the groups). This suggests that a clear vision of the 

practical details of implementation may be a significant factor in the decision process.  

Regarding the perceived characteristics of PBL as an innovation to be accepted or not, 

more than half of the respondents attended to advantages of the innovation, nearly all 

attended to incompatibilities of the innovation, and one third attended to its 

trialability. Perhaps surprisingly, the most-positive and the least-positive respondents 

were not distinguishable in any of these respects. This suggests that a positive attitude 

to an innovation does not necessarily rely on optimal conditions for its 

implementation.  

Additional Implications  

Perceptions-of and attitudes-toward the PBL innovation discussed above have 

practical implications for the implementation of instructional innovation. A careful 

reading of the findings section may yield quite specific implications for similar 

contexts (tertiary mathematics for engineering programs), while the more general 

patterns that we have discussed in the previous subsection may have implications in a 

broader context.  

From a theoretical perspective, we have considered implementation of an instructional 

innovation as a case of diffusion of innovations, and have shown how Rogers’s (2003) 

model of decision-processes can serve as a conceptual framework for the analysis of 

emerging attitudes to the innovation. We have operationalized a notion of positive-

attitude regarding implementation, and have shown how it is constituted in the 

framework. We now discuss some peculiarities of the framework in the context in 

which it has been applied.  

Of the four main elements of diffusion of innovations we have attended primarily to 

innovation. We now turn our attention to time and communication channels, and 

suggest some extensions of the model. While for Rogers (2003) time is relevant 

primarily as a factor in the rate of innovation-adoption, the respondents in our 

investigation referred to the time element in varied contexts: as a crucial resource for 

implementation (scarce lecture and tutorial time, and the need for more preparation 

time), yet also as an important element in the decision process (“it takes time to 

process and think”). While for Rogers, the relevance of communication channels is 
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primarily in creating and changing adopters’ (i.e., lecturers’) attitudes, one respondent 

drew attention to the role of students in this process – “this year's students will 

advertise the change to the next year ones” – highlighting a systemic aspect of the 

diffusion. Additionally, some respondents viewed channels of communication as 

crucial for sharing knowledge and resources between project partners (examples of 

real-world problems, knowledge about educational software and it use, etc.), and also 

for sharing expertise within universities (help from the engineering department in 

formulating real-world problems that target particular mathematical content).  

In conclusion, our study has put forth the importance of an emerging infrastructure for 

collective and mutually supportive adoption of instructional innovations in tertiary 

mathematics education. We believe that such infrastructures can be developed within 

consortia of institutions, as the case of the iTEM project suggests.   
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Alternatives generation can be considered as knowledge-based prerequisite for 

conditional reasoning in elementary school students. This study examines the role of 

alternatives generation skills on conditional reasoning within an everyday and a 

mathematical context. A total of N=102 students from 2nd, 4th, and 6th Grade in Cyprus 

were interviewed. Alternatives generation skills predict correct conditional reasoning 

in both contexts, but interesting differences occurred. The results from the everyday 

context mirror previous results, predicting correct Acceptance of the Consequent and 

Denial of Antecedent reasoning and inhibiting correct Modus Tollens reasoning. In 

the mathematical context, alternatives generation predicted correct reasoning in all 

forms. The study points to the specific role of mathematical knowledge in conditional 

reasoning with mathematical concepts. 

INTRODUCTION  

Logical reasoning is considered as a key component of advanced thinking amidst 

human species (Markovits & Barrouillet, 2002) while if-then statements form the 

basis of scientific mathematical thinking (Markovits & Lortie-Forgues, 2011). 

Reasoning with if-then statements (e.g. ‘If Anna breaks her arm, then it hurts’) refers 

to conditional reasoning. Current theories describe conditional reasoning in younger 

students as a process that is based on semantic representations of the statements 

involved. Thus, it is an open question, to which extent domain knowledge influences 

conditional reasoning skills. In everyday contexts, reasoners’ ability to generate 

multiple alternative models for a given condition (e.g. ‘For which other reasons might 

Anna’s arm hurt?’) has been found as a predictive factor to draw valid inferences even 

from early age (e.g. De Chantal & Markovits, 2017). For conditions about 

mathematical concepts, this generation of multiple alternatives is similar to generation 

of alternative solutions for mathematical problems which according to Leikin and Lev 

(2007) is considered as an indicator of students’ creativity and mathematical 

knowledge. However, our knowledge about the connection between alternatives 

generation skills and conditional reasoning in the context of elementary school 

mathematics is still weak. 

  

CONDITIONAL REASONING  

Conditional reasoning tasks are formed of a conditional rule “if p, then q” as a major 

premise, and a minor premise (e.g. "q is not true"). The traditional interpretation of 

conditionals considers p as sufficient, but not necessary for q (Evans & Over, 2004). 

Four different minor premises lead to four possible logical forms of inference: Modus 



Datsogianni & Ufer 

2 -  178 

 

PME 44 -2021 

Ponens (MP; "p is true, so q is true"), Modus Tollens (MT; "q is false, so p is false"), 

Denial of Antecedent (DA; "p is false, so q or not q") and Acceptance of the 

Consequent (AC; "q is true, so p or not p"). Thus, the uncertain logical forms AC and 

DA do not allow for definite conclusions about p and q respectively. The other two 

forms (MP and MT) allow valid definite conclusions.  

According to Mental Model Theory (MMT) inferences are drawn through the 

construction of mental models (Johnson-Laird & Byrne, 2002). MMT has been found 

to describe conditional reasoning accurately not only in adults but also in the age 

group of primary school children (e.g. Markovits, 2000). Mental models are semantic 

representations of the possibilities, given the truth of the premises (Johnson-Laird & 

Byrne, 2002). To derive conclusions, individuals reconstruct the meaning of premises 

based on their knowledge, to represent what is possible given the premises 

(Nickerson, 2015). Based on working-memory considerations, Barrouillet and Lecas 

(1999) proposed an evolvement of individuals’ conditional reasoning skills starting 

from a conjunctive-like interpretation (only one model ‘p and q’; correct MP 

reasoning), to a biconditional (‘p and q’; ‘not-p and not-q’; correct MP and MT 

reasoning), and then a conditional interpretation (‘p and q’; ‘not-p and not-q’; ‘not-p 

and q’; correct reasoning in each logical form). This evolvement shows up in 

increasing solution rates for MT, followed by later changes towards a conditional 

interpretation with increased solution rates for DA and AC. ‘Alternatives’ are mental 

models of the type ‘not-p and q’, which are necessary to arrive at the indefinite 

conclusions in the AC and DA forms. Beyond model generation, other authors also 

state that MT and DA are more cognitively demanding compared to MP and AC 

forms due to the negation statements involved (Johnson Laird & Byrne, 1993). 

Conditional Reasoning & Alternatives Generation in Everyday Contexts  

According to MMT, generation of mental models, and in particular of alternatives, is 

based on knowledge about the content of the conditions. Alternatives generation for a 

given condition is considered as a crucial prerequisite to draw valid inferences 

(Johnson-Laird & Byrne, 2002; Markovits & Barrouillet, 2002).  

Studies on reasoning with conditions from an everyday context (e.g. De Chantal & 

Markovits, 2017) have shown that alternatives generation skills predict conditional 

reasoning even from pre-school age onward. In these studies, alternatives generation 

skills are associated with correct AC and DA reasoning, in particular (Cummins et.al, 

1991; Markovits & Vachon, 1990). In addition to alternatives generation, individuals 

might also generate disablers (mental models of the form ‘p and not-q’, contradicting 

the major rule) describing inhibitory factors which might prevent q from occurring, 

even in the presence of p (e.g., ‘Anna took a painkiller, so her arm does not hurt, even 

though it is broken’), according to Cummins et al. (1991). Disablers might lead to the 

rejection of valid conclusions for MP and MT inferences (Janveau-Brennan & 

Markovits, 1999). Many studies report a positive correlation between the numbers of 

generated alternatives and disablers (Thompson, 2000; De Neys, Shaeken, & 

D’Ydewalle, 2002).  
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In this line of reasoning, studies with university students revealed that correct DA and 

AC reasoning correlates negatively with correct MT reasoning (Newstead et.al, 2004). 

Hence, it is likely that alternatives generation is positively linked with AC and DA 

reasoning, being not or negatively related with MT reasoning. In prior research with 

young students, disabler generation is considered less relevant for logical reasoning 

than alternatives generation (Janveau-Brennan & Markovits, 1999; De Chantal & 

Markovits, 2017). 

Conditional Reasoning and Alternatives Generation in Mathematical Contexts  

While the role of alternatives for conditional reasoning is well-studied in the everyday 

context, it has not been studied for conditions that involve mathematical concepts 

(mathematical context; e.g., “If I arrange three rows of four squares each, then I need 

12 squares.”). In this case, alternatives generation concerns the mental construction of 

mathematical objects that fulfill ‘not-p and q’ (e.g., “12 squares could be constructed 

by six rows of two squares each”), beyond those that represent ‘p and q’ (or ‘not-p 

and not-q’). Generating such alternative perspectives to mathematical situations is 

often discussed in research on multiple solutions (Leikin & Lev, 2007). Based on this 

perspective, alternatives generation can be assumed to require mathematical 

knowledge of the conditional content (Leikin & Lev, 2007). Beyond a general link 

between mathematics skills and conditional reasoning skills (Attridge & Inglis, 2013), 

this could lead to a specific influence of mathematical knowledge on AC and DA 

conditional reasoning in the mathematical context. Studies in the field of mathematics 

with university students show negative correlation between MT form and DA as well 

as AC form (Attridge & Inglis, 2013; Morsanyi, McCormack & O' Mahony, 2017). 

This backs up the assumption that conditional reasoning in this context is based on 

mental model construction, similar to the everyday context. 

Overall, the existing literature in primary school pupils investigates the relation 

between alternatives generation and conditional reasoning only in the everyday 

context (with different levels of abstraction (Markovits & Lortie-Forgues, 2011). In 

the mathematical context, research with elementary school students either investigate 

conditional reasoning (Christoforides, Spanoudis & Demetriou, 2016) or multiple 

solution tasks (Sullivan, Bourke & Scott, 1997). Yet, to date research has not 

addressed alternatives generation in relation to conditional reasoning in two different 

contexts and this study aims to fill this research gap. 

STUDY GOALS AND QUESTIONS  

This study aimed to transfer results on the role of alternatives generation in 

elementary students’ conditional reasoning from everyday conditions to conditions 

from a mathematical context. The following study questions are addressed:  

(1) Is the influence of alternatives generation skills on conditional reasoning specific 

to the respective context (everyday vs. mathematical)? Based on the MMT account, 

we expected alternatives generation in each context to primarily predict conditional 

reasoning in the corresponding context (e.g. De Chantal & Markovits, 2017). 

(2) Do alternatives generation skills predict correct reasoning differently across the 

four logical forms? Based on prior results and the MMT account, we expected that 

alternatives generation skills in the everyday context would predict correct AC and 

DA reasoning (Markovits & Vachon, 1990). However, considering that alternatives 

generation skills are related with the generation of disablers in the everyday context 
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(Thompson, 2000; De Neys, Shaeken & D’Ydewalle, 2002), this might entail a 

decrease in MP and MT reasoning. For the mathematical context we expected 

alternatives generation skills to be related to correct AC and DA reasoning, but not to 

MT reasoning (Attridge & Inglis, 2013; Morsanyi, McCormack, & O' Mahony, 2017).  

METHODS 

In this cross-sectional study, N=102 students from 2nd, 4th, and 6th Grade in Cyprus 

(average age 12 years old) were interviewed individually. The feasibility of the 

instrument was piloted in a previous study, showing that it is accessible to this age 

group of students (Datsogianni, Ufer, & Sodian, 2018). Ethics approval, parental 

consent signed form, and students’ individual oral assents were obtained. 

Participants solved four conditional reasoning tasks on each context (Cronbach’s α: 

.62. for everyday and .68 for mathematical contexts respectively). The everyday 

conditions referred to daily life situations. Conditions in the mathematical context 

referred to situations that involved mathematical structures which were supposed to be 

familiar for the participants (e.g., “If a dwarf’s house has exactly 3 rows of 4 rooms 

each, then it has 12 rooms”). All forms (MP, MT, DA, and AC), were included in each 

task. The order of two contexts, the order of the conditions in each context, and the 

order of logical forms for each condition were randomized across students. 

Alternatives generation skills were measured afterwards with specific tasks in each 

context, using the same situations as in the conditions (4 mathematical and 

4 everyday). The reliability scores were good (Cronbach’s α=.86 for everyday and .76 

for mathematical contexts respectively). The experimenter (first author), asked 

students to find as many examples as they could that matched the model ‘not-p and q’ 

by drawing their ideas. Participants did not receive positive or negative feedback. The 

order of two contexts and the order of the conditions in each context were randomized 

across students.  

Example of alternatives generation task in the everyday context: “Remember what 

Peter found out before. If a glass is dropped on the ground in the kitchen, then there is 

a sound. Peter is at home and hears a sound in his kitchen. Find as many reasons why 

a sound in the kitchen may occur, as you can.” 

Example of alternatives generation task in the mathematical context: “Remember that 

dwarfs build their houses so that there are rooms which all have this form: The houses 

always have one or more rows of rooms which are all equally long. Remember what 

Peter found out before. If a dwarf’s house has exactly 3 rows of 4 rooms each, then it 

has 12 rooms. How could a dwarf house with 12 rooms look like? Draw as many 

different houses as you can.”  

In the end of the interview procedure, students solved a working memory test 

(backward digit span). Separate linear mixed models for each context were used to 

analyze the data using the package lme4 in R, controlling for working memory skills. 

The factor logical form and the alternatives generation scores were included in the 

model. Insignificant interactions between logical form and the alternatives generation 

scores were removed from the model prior to the final analysis. In the mathematical 

context, the random factor controlling for individual differences explained no 

variance. 
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RESULTS 

Overall, students solved 59.1% of the items correctly in the everyday context (ED), 

and 57.1% in the mathematical context (MA). In both contexts, MT was solved 

significantly less of than MP (ED: MP 88.9%, MT 73.7%, p< .001; MA: MP 84.3%, 

MT 61.5%, p< .001) and AC less often than MT (ED: AC 42.2%, p< .001; MA: AC 

37.2%, p< .001). DA was solved less often than AC in the everyday context (ED: DA 

31.5%, p < .05), while the difference was not significant in the mathematical context 

(MA: DA 45.65, p = .16). 

Students generated more alternatives per task in the everyday context (range 1-11, 

M = 4.25) compared to the mathematical context (range 0-5, M = 2.08). It is worth 

noting that the number of possible alternative solutions was more limited in the 

mathematical context compared to the everyday context. 

 
Figure 1: Estimated solution rates and 95% confidence intervals by alternatives 

generation and logical form for everyday context 

 
Figure 2: Estimated solution rates and 95% confidence intervals by alternatives 

generation and logical form for mathematical context 

Regarding study question (1), mathematical alternatives generation (F(1,398)=13.7, 

p < .001), but not everyday alternatives generation (F(1,398)=0.32, p = .57), showed a 

significant effect on conditional reasoning in the mathematical context. Conditional 

reasoning in the everyday context was related significantly to mathematical 

alternatives generation (F(1,98)=8.35, p < .001) but – over all logical forms – not to 

everyday alternatives generation (F(1,98)=0.70, p = .41). 
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Regarding study question (2), we found a significant interaction between logical form 

and alternatives generation scores only for everyday conditional reasoning 

(F(3,300)=6.57, p < .001, fig. 1). In this context, everyday alternatives generation 

predicted correct reasoning significantly positively in the AC (B = 0.039, 

CI95%[0.008, 0.070]) and in the DA (B = 0.040, CI95%[0.010, 0.071]) form, but 

negatively for MT (B = -0.034, CI95%[-0.065, -0.004]). For example, B = 0.039 

indicates an estimated increase in the conditional reasoning solution rate of 3.9% per 

generated everyday alternative. The non-significant interaction (F(3,398)=0.75, 

p = .52, fig. 2) between logical form and mathematical alternatives generation for 

mathematical reasoning indicates, that alternatives generation (positively) predicted 

conditional reasoning comparably strongly for all logical forms in this context. 

DISCUSSION  

Regarding study question (1), alternatives generation skills in the everyday context did 

not have a significant main effect on conditional reasoning in the same context in 

general (cf. De Chantal & Markovits, 2017). Given the significant interaction between 

everyday alternatives generation scores and logical form, this pattern is in line with 

prior results. Mathematical alternatives generation skills predicted logical reasoning in 

both contexts. Since alternatives generation is mainly based on prior knowledge of the 

respective content (Leikin & Lev, 2007), this is in line with previous evidence about 

the relation between logical reasoning and mathematical knowledge that has been 

found in the literature, before (Attridge & Inglis, 2013). 

Regarding study question (2) and the results for the everyday context were similar to 

those found in prior studies. Alternatives generation in the corresponding context was 

predictive for correct AC and DA reasoning (Cummins et.al, 1991; Markovits & 

Vachon, 1990). It is also observed that alternatives generation (in this context) inhibits 

correct MT reasoning; probably students extend the strategy of generating antecedents 

to generating and (incorrectly) interpreting inhibitors (De Neys, Shaeken, & 

D’Ydewalle, 2002). However, as for the mathematical context, it seems that 

alternatives generation is generally predictive of conditional reasoning skills, mostly 

independent of the logical form. As mentioned above this might reflect a general 

relation between logical reasoning and mathematical knowledge (Attridge & Inglis, 

2013). On the other hand, we cannot differentiate this explanation in this study – it 

might also be that knowledge about the mathematical content is necessary to generate 

a representation of mathematical conditionals and any kind of related mental model 

(not only of the type ‘not-p and q’). If the sole representation of mathematical 

conditions is indeed so strongly dependent on corresponding knowledge, this might 

cover a specific effect of alternatives generation for DA and AC in this context. 

Overall, the results of this study indicate that reasoning with mathematical conditions 

is, overall, not substantially harder, or easier than reasoning with everyday conditions. 

However, the analysis of the relation to alternatives generation points to possible 

differences in the reasoning process. For example, it might be that, in spite of early 

conditional reasoning skills in the everyday context, students are not able to activate 

the corresponding strategies in the mathematical context, due to restricted ability to 

represent the conditionals’ meanings in mental models. If indeed problem 

representation turns out as the primary problem, this implies the necessity not only to 

practice conditional reasoning, but also to carefully consider students’ mathematical 
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knowledge before engaging with basic deductions about mathematical concepts in 

mathematics instruction. However, reflecting deductions and the meaning of 

conditionals about mathematical concepts during classroom instruction might also 

help to build up this prerequisite knowledge. 

One possible limitation arising from this study is that alternatives generation tasks 

addressed only questions with given consequents, for which students had to create as 

many possible antecedents, as possible. Future studies might separately measure the 

generation of an initial mental representation of the conditional and alternatives 

generation. The negative relation between alternatives generation and MT reasoning, 

moreover, might be explained through investigating the generation of disablers in 

future research. However, alternative antecedents have been considered more central 

to conditional reasoning of young students than disablers (Janveau-Brennan & 

Markovits, 1999). Thus, this study provides first insights for the relation between 

alternatives generation and conditional reasoning with mathematical concepts, which 

can be extended in further research.  

Summarizing, the role of conditional reasoning in mathematics can hardly be denied. 

Thus, the results of this study imply the instructional necessity to include and practice 

conditional reasoning tasks in elementary school within the context of mathematical 

statements by providing opportunities to students to interpret and discuss 

mathematical conditions, as well as generate alternative antecedents for these 

conditions. Even though open question remains, the study extends evidence, that 

knowledge of mathematical concepts and being able to reason about them (with 

conditionals) are strongly related. 
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In this paper we conceptualise Lakatos-style proof instruction (LSI) as a teaching 

approach based on the formulation and refinement of conjectures through the 

examination of supportive examples and counterexamples. We identify aspects of 

mathematical knowledge that LSI requires from teachers (MaKTeLaP) in relation to 

content, student perceptions and teaching practices, and we report findings of ten 

primary school teachers’ MaKTeLAP based on in-depth, vignette-based interviews. 

Participants’ responses indicate satisfactory content knowledge, intermediate 

knowledge of teaching practices, and weak knowledge of students. This study offers a 

theoretical basis for further research on the incorporation of LSI into the classroom 

and on the provision of support for the development of teachers’ MaKTeLAP. 

INTRODUCTION 

Proof is considered as a key element of mathematics (Bundy, Jamnik, & Fugard, 

2005), but also a focal point of modern school mathematics (Hanna, 1990; Stylianides, 

2016). Many scholars have acknowledged the crucial role example examination can 

play in proving, including the philosopher Imre Lakatos. In his seminal book “Proof 

and Refutations”, Lakatos (1976) used an imaginary classroom setting to narrate 

historic moments in the evolution of conjectures around Euler’s theorem. Although his 

theory was not intended for use in actual classrooms, certain aspects of it have been 

considered in educational contexts (e.g., Balacheff, 1991; Komatsu, 2010, 2016; 

Larsen & Zandieh, 2008). These studies offered images of school and university 

students productively engaging in Lakatos-style proving activity, illustrating also the 

benefits of instruction that aims to engage students in this kind of activity. Despite 

their encouraging findings, teachers’ mathematical knowledge for Lakatos-style proof 

instruction has received no research attention thus far. In this paper we take a step 

towards addressing this gap. We developed a conceptualisation of Lakatos-style proof 

instruction and of important aspects of mathematical knowledge for teaching (Ball, 

Thames & Phelps, 2008) that Lakatos-style proof instruction requires from teachers, 

and we used those as a theoretical basis in an interview study with ten primary 

teachers to address the following research question: What is the state of primary 

school teachers’ mathematical knowledge for Lakatos-style proof instruction? 

THEORETICAL FRAMEWORKS 

LSI: Lakatos-style Instruction  

Considering Lakatos’ (1976) original theory and studies describing attempts for the 

incorporation of certain aspects of it into classrooms (e.g., Balacheff, 1991; Komatsu, 

2010, 2016; Larsen & Zandieh, 2008) we conceptualised LSI: a teaching approach 
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inspired by, and based on, Lakatos-style reasoning. LSI consists of four phases: P1- 

Formulation, P2- Validation, P3- Refutation, P4- Modification. First, students are 

presented with a task and are asked to formulate a relevant conjecture (P1). Then, they 

examine several cases to check whether it is true. The discovery of supportive 

examples may lead them to assume that it holds for all the cases of its domain (P2). 

However, the discovery of counterexamples may indicate to them that the conjecture 

does not hold (P3). Reflecting on the examined examples, students may modify the 

original conjecture (P4), and then test and refine it, going through the same steps 

again. 

Conjecture types and modification techniques, and student justification and refutation 

schemes are all relevant to LSI. We elaborate on them next.   

MT: Modification Techniques 

This aspect of our framework elaborates on P4 of LSI. To modify a conjecture, solvers 

may employ two Lakatosian techniques: Restriction and Expansion. As the names 

indicate, the domains of the conjecture can either be restricted to exclude the 

counterexample or expanded to include it as a supportive example. As an illustration, 

let us imagine that the conjecture “the digits of multiples of nine add up to nine” is 

refuted by 99. By employing restriction, one could examine whether this is applicable 

only for numbers up to 90, while by employing expansion one could conjecture that 

the digits of the sum should continue being added until they give a one-digit result.  

CT: Conjecture Types  

This is a categorisation of statements, as proposed by Tsamir, Tirosh, Dreyfus, Barkai, 

and Tabach (2008), that identifies three types of conjectures: Always True (AT), 

Sometimes True (ST), Never True (NT). The type of conjecture in LSI is determined 

by the kinds of examples a solver may discover during its investigation: while both 

supportive examples and counterexamples exist for an ST conjecture, only supportive 

examples and only counterexamples exist for AT, and NT conjectures, respectively. 

JS: Justification Schemes 

This is a three-level taxonomy of students’ perceptions about the role of supportive 

examples in proof based on Harrel and Sowder’s (1998) framework of justification 

schemes and their adaptation by Stylianides and Stylianides (2009). The students 

holding the least sophisticated perception believe that evidence from a few supportive 

examples suffices to validate general statements (naïve empirical justification 

scheme). Others continue to believe so, but demand that the examined cases be 

selected on the basis of a strategy or rationale (crucial experiment justification 

scheme). Finally, others realise that supportive examples cannot prove, no matter how 

many there are or how they have been selected (nonempirical justification scheme). 

RS: Refutation Schemes  

Aside from students’ views about supportive examples, their understanding about 

counterexamples has also attracted researchers’ attention (e.g., Balacheff, 1991; 

Stylianides & Al-Murani, 2010). Still, unlike supportive examples, there exists no 

widely accepted categorisation of student perceptions about counterexamples. Aiming 

to address this gap, we developed a three-level taxonomy of students’ refutation 
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schemes (Deslis, 2020). Starting from the least advanced level, some students resist to 

the idea that the existence of counterexamples can affect the validity of a convincing 

conjecture, treating them as exceptions (naïve objection to refutation scheme). Others 

acknowledge counterexamples’ power to refute, on the condition that several are 

found, usually coming from a strategical selection of cases (crucial experiment 

refutation scheme). Finally, students may realise that even a single counterexample 

suffices for the refutation of conjectures (refutation scheme). 

MaKTeLaP: Mathematical Knowledge for Teaching Lakatosian Proof 

Previous research has attempted to extend Shulman’s (1986) popular construct about 

teachers’ professional knowledge, to outline the knowledge required for the 

instruction of specific subjects, including mathematics (e.g., Ball, Thames & Phelps, 

2008) or even more specifically proof (e.g., Stylianides, 2011). Our Framework 

MaKTeLaP (Deslis, 2020) attempts to further specialise those constructs by describing 

the knowledge a teacher needs to implement LSI. MaKTeLaP consists of three 

interrelated types of knowledge: CoLaP, StuLaP, TeLaP (standing for knowledge of 

Content, Students and Teaching, respectively). CoLaP refers to knowledge of the role 

examples play in proving and refuting. It is expressed by the ability to produce valid 

example-based arguments or evaluate the validity of arguments raised by others. 

StuLaP focuses on knowledge of students’ typical understandings about the interplay 

between examples and proof. In the classroom, teachers are expected to anticipate, 

recognise, and analyse students’ relevant misconceptions. Finally, TeLaP refers to 

knowledge of appropriate instructional techniques that can effectively support 

students’ engagement with Lakatosian methods and procedures. It is associated with 

the ability to provide guidance through feedback or questions to promote the 

productive use of examples. All three components of MaKTeLaP revolve around two 

types of examples, which are the backbone of LSI: supportive examples (SEs) and 

counterexamples (CEs). Therefore, alongside with the previous analysis, we can also 

distinguish one strand of knowledge for each example type: MaKTeLaP-SE and 

MaKTeLaP-CE, which both run across the three components. 

RESEARCH METHODS 

Data were collected through in-depth, semi-structured, vignette-based interviews with 

ten in-service primary school teachers in Greece (2 males; 8 females; average teaching 

experience: 1y 9mo). The participants were recruited through a convenience sampling 

strategy, conditional upon teaching experience at fifth and/or sixth grade (10-12 y.o.). 

All of them held a bachelor’s degree in primary education while all but two 

participants also held a master’s degree in various education-related fields. 

During the 50-minute open-ended interviews the participants were presented with 19 

short classroom episodes (EP1-19) depicting students’ exchange of arguments within 

groups about the “Count the Squares” proof task (Zack, 1997). The problem asked 

students to examine how many squares there are in square grids of various sizes 

starting from the 4-by-4 grid and up to the 60-by-60 grid, and to prove their answers. 

The vignettes reflected situations that are likely to emerge in the classroom covering 

all the possible combinations of LSI phases, modification techniques, conjecture 
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types, justification and refutation schemes, as described in the theoretical framework. 

The vignettes were based on real classroom episodes reported by Zack (1997) and 

Reid (2002), although in some cases adaptations were necessary. To make the 

conversations more engaging and immersive, the vignettes were presented trough 

comic-style representations. Like in Lakatos’ original book, the protagonists were 

named after letters of the Greek alphabet. Aside from a tribute to his work, this (in 

conjunction with the comic characters’ generic appearance) enabled the concealment 

of characteristics like ethnicity and gender, thus preventing teachers from judging on 

the basis of potential biases. As an illustration, parts of two sample episodes are given 

below: 

EP6- CT: Sometimes True, LSI Phase: P2-Validation, JS: naïve empirical justification 

Stud. Iota: I checked the 5x5 grid and found 55 squares. Like in the 4x4 grid, 

the result is again a multiple of five. So, it will be a multiple of five 

in all grids! 

EP9- CT: Sometimes True, LSI Phase: P3-Refutation, RS: refutation 

Stud. Theta: I think I’ve found a grid that breaks the pattern. Imagine an 1x1 

grid: it has only one square. This is not a multiple of five. So, the 

rule is wrong! 

The design of the interview protocol was guided by our conceptualisation of 

MaKTeLaP and its three components. After each of the 19 episodes, participants were 

asked to (1) evaluate the validity of students’ arguments, (2) comment on the level of 

students’ understandings and predict their upcoming moves, and (3) explain what they 

would encourage students to do next by suggesting feedback and/or questions they 

would use in the classroom. In this way, information about participants’ perceptions 

was elicited, relevant to CoLaP, StuLaP, and TeLaP, respectively. After the 

transcription of the audio recordings, participants’ responses were analysed for themes 

with a twofold focus: MaKTeLaP components and example types. The qualitative 

findings were supplemented by the calculation of descriptive statistics. 

FINDINGS & DISCUSSION 

The thematic analysis in conjunction with the examination of the guiding frameworks 

generated one set of three themes for each possible combination of MaKTeLaP 

components and example type. These six sets are given in Table 1, with the themes 

presented in descending order of sophistication (SE2-SE0 and CE2-CE0), which was 

determined by the degree of their alignment with the respective frameworks. To 

enable the calculation of statistics, every response was given a score ranging from 0 to 

2, determined by the level of sophistication the respective response theme represented. 

Figure 1 visualises the variation of teacher participants’ (T1-10) responses in the three 

MaKTeLaP components and the two example types, with reference to the themes their 

responses represented. The overall MaKTeLaP score was 1.5/2. The average 

performance was better in the SE-related episodes (1.57/2) than in the CE-related ones 

(1.43/2), although the respective differences varied within each knowledge type. 
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SE CoLaP [SE] StuLaP [SE] TeLaP [SE] 

2 Non-empirical 

justification 

Awareness of SEs’ misuse and 

consideration of it as such 

Examination of SEs aiming at 

proper proof/refutation 

1 Crucial experiment 

justification 

Awareness but favourable 

consideration of SEs’ misuse 

Examination of SEs to 

terminate the investigation 

0 Naïve empirical 

justification 

Unawareness of SEs’ misuse Disregard of SE use 

CE CoLaP [CE] StuLaP [CE] TeLaP [CE] 

2 Refutation Awareness of CEs’ misuse and 

consideration of it as such. 

Examination of CEs aiming at 

conjecture modification 

1 Crucial experiment 

refutation 

Awareness but favourable 

consideration of CEs’ misuse 

Examination of CEs 

endlessly/ to terminate the 

investigation 

0 Naïve objection to 

refutation 

Unawareness of CEs’ misuse Disregard of CE use 

Table 1: Response themes for each MaKTeLaP component and example type.  

The formulation of response themes for CoLaP [CE] and CoLaP [SE] was informed 

by Frameworks RS and JS, respectively. As for the former (average score: 1.8/2), the 

wide acceptance of the idea that a single CE can sufficiently refute a statement (8/10 

participants) was amongst the most positive findings of the study. Yet, although the 

majority (6/10) was also aware about the limitations of SE use in proving, a large 

proportion of participants were found to believe that empirical arguments can also 

sufficiently validate statements, resulting in a relatively lower average score of 1.6/2. 

Despite this difference between the scores in the two example types, the sample’s 

overall CoLaP score was the highest among the three components of MaKTeLaP. 

In contrast, the overall performance in StuLaP was the lowest of the three components 

(1.3/2), while the sample had, in general, better knowledge of students’ perceptions 

around SEs (1.4/2) than those around CEs (1.2/2). As far as StuLaP [SE] is concerned, 

nine teachers showed an awareness of students’ tendency to base their proofs on 

empirical arguments and expected that their next moves would reflect this erroneous 

belief. However, only five of them were fully aware that this constitutes a 

misconception. The remaining four evaluated favourably students who hastily 

validated the conjecture after the discovery of a few SEs and/or unfavourably others 

who legitimately questioned this practice. To illustrate this finding, commenting on a 

student’s objection to example-based validation in EP8, participant T7 said: “This 

student has not understood how patterns work and how generalisations can come out 

of them. I believe that this view is unproductive.” 

Turning to StuLaP [CE], again nine participants were found to be aware of students’ 

tendency to treat CEs as exceptions. However, the majority (6/10) critiqued students 

who argued that one CE suffices and/or misperceived other students’ demand for 

additional CEs as productive or desirable. As an illustration, in EP16, where a student 

objects to the rejection of a conjecture after the discovery of one CE, T4 commented: 

“I like this student’s critical attitude! It is always good to be reluctant and demand 
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more evidence.” Still, the other three participants consistently argued against the 

treatment of CEs as exceptions across all relevant episodes. In the same episode 

another teacher (T3) said: “This student has weak understanding. The conjecture had 

already been proved wrong; any additional checks would be superfluous.” 
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Figure 1:  Comparative presentation of teachers’ (T1-10) performance in CoLaP, 

StuLaP, and TeLaP in relation to the two example types. 

The average performance in TeLaP was 1.5/2. In general, teachers promoted the 

search for, and examination of, both SEs and CEs, thus showing an appreciation of 

their role in proving. Overall, the responses indicate that participants are in a better 

place to support students’ productive use of SEs (1.7/2), in comparison with the use of 

CEs (1.3/2), although difficulties relevant to both emerged. Three teachers encouraged 

students to conclude the investigation after the discovery of many SEs, like T10 in 

EP3: “The examples have shown that the rule works; I’d give the students a new 

problem”. Furthermore, most teachers were either unable to suggest a sensible next 

step after the discovery of CEs, proposing a pointless never-ending examination of 

cases, or encouraged students to discard the faulty conjecture and replace it with a 

new one (unrelated to the starting conjecture). However, three participants took a step 

further giving responses that either implied conjecture modification in a generic sense 

or clearly referred to one of the Lakatosian modification techniques (usually 

conjecture restriction). T4’s and T9’s responses to EP10, and T6’s to EP9 are 

indicative: 

Part. T4: The student can investigate under which conditions the rule can be 

correct. 

Part. T9: Clearly not all numbers are multiples of five. The student can re-

examine the results […] This could lead to a new rule… for 

example: “only grids with side multiple of five give a result that is 

also a multiple of five”. 
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Part. T6: The student should improve the conjecture by investigating whether 

the rule is correct only for a subset of the grid for example, only for 

every n>2. 

Responses of this kind indicate that some teachers are capable of spontaneously 

encouraging students to employ this less obvious, but crucial, step of the Lakatosian 

investigation, which constitutes an encouraging finding. 

CONCLUSION 

This interview study explored the thus far uncharted territory of primary teachers’ 

mathematical knowledge about LSI, a style of teaching proof inspired by Lakatos-

style reasoning. The vignette-based interviews shed light on ten participants’ 

knowledge in relation to (1) content, student perceptions and teaching practices 

relevant to LSI, and (2) two example types that constitute the backbone of the 

Lakatos-style investigation: supportive examples and counterexamples. In general, the 

sample’s performance was better at situations relevant to supportive examples, 

although the results fluctuated within each knowledge type. Considering the 

performance in both example types, the participants’ responses indicated satisfactory 

content knowledge, intermediate knowledge of teaching practices, and relatively weak 

knowledge of students. Although each teacher’s strengths and difficulties were 

different, all teachers showed good intuitive perception of at least some aspects of 

LSI. No teacher performed excellently across all six scales, but for each scale there 

was at least one teacher who achieved the maximum score, despite the lack of any 

prior instruction. This shows that all aspects of LSI can lie within primary teachers’ 

reach, and they can overcome the difficulties they encounter if offered adequate 

support. 

A primary limitation of this study is the small sample size, due to which it is unknown 

whether any of the findings can safely be generalised. However, the theoretical 

frameworks and the exploratory findings of this study have laid the foundation for 

further research with larger samples and/or at different education levels. In future we 

will also explore appropriate ways of assisting teachers in refining the professional 

knowledge required for the implementation of LSI in classrooms, which may include 

the design of an interactive simulated environment based on choice-driven scenarios. 
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Introducing functional relationships with experiments has proven to be beneficial for 

functional thinking (FT). While hands-on material elicits modelling schemes, 

simulations open up a dynamic view. Combining both seems promising, but the 

question on how remains unanswered. Prevalent approaches set a numerical focus 

through measurement, but research on the development of a functional concept 

strongly suggest a rather qualitative view to foster covariational thinking. This 

ongoing study compares two experimental settings (numerical vs. covariational) in a 

pre-post-test intervention. Preliminary analyses (N = 66) show that both settings lead 

to a significant increase in functional thinking, with higher gains in the covariational 

settings, indicating that a focus on covariation seems to be beneficial for 7th graders.  

FOSTERING FUNCTIONAL THINKING 

According to Vollrath (1989), functional thinking is based on three main aspects: the 

correspondence of an element of the definition set to exactly one element of the set of 

values; the covariation of the dependent variable when the independent variable is 

varied and the final aspect, in which the function is considered as an object.  

Concept of function according to APOS 

This differentiation is in line with the developmental perspective on students’ 

conceptualization of functions derived by Breidenbach et al. (1992) using the Action-

Process-Object-Scheme (APOS) theory. The action concept on the lowest level is 

limited to the assignment of single output values to an input. With the more 

generalized process concept students consider a functional relationship over a 

continuum, enabling the reflection on output variation corresponding to input 

variation. Finally, functions conceptualized as objects can be transformed and 

operated on. Students with an elaborate concept of functions are supposed to be able 

to use the action, process or object conception depending on the mathematical 

situation (Dubinsky and Wilson 2013).  

Findings on experimental approaches to functional thinking 

Experiments provide a basis to enable constructivist approaches, that lead to higher 

learning gains in combination with digital technologies (Drijvers 2020). And learning 

environments with experimentation activities have proven to be beneficial for 

functional thinking (Lichti and Roth 2018). One possible explanation could be the 

proximity of functional thinking to scientific experiments as illustrated by 

Doorman et al. (2012): with a given variable as starting point, a dependent variable is 

generated in an experiment. Relating the output to the input clearly addresses the 

correspondence aspect and the action concept. Following manipulations of the input 
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and concurrent observation of the output make the covariation of both variables 

tangible and enables a process view.  

Lichti and Roth (2018) implement the scientific experimentation process – preparation 

(generate hypotheses), experimentation (test the hypotheses) and post-process (reflect 

results) – in a comparative intervention study to foster functional thinking of sixth 

graders with either hands-on material or simulations and report learning gains for both 

approaches (ibid.), but a closer look reveals disparities: while hands-on material 

promotes the correspondence aspect and the association to the real situation, 

simulations foster covariational thinking, the interpretative usage of graphs and lead to 

higher overall gains in functional thinking (Lichti 2019). 

Theory of instrumental genesis 

The instrumental approach (Rabardel 2002) and its distinction between artefact and 

instrument can be useful when interpreting these results: while the artefact is the 

object used as a tool, the instrument consists of the artefact and a corresponding 

utilization scheme that must be developed. This developmental process - the so-called 

instrumental genesis (Artigue 2002) - depends on the subject, the artefact and the task 

in which the instrument is used. Hence, different artefacts lead to different schemes.  

Artefacts that are more suitable for the intended mathematical practice of a task 

appear to be more productive for the instrumental genesis and facilitate the learning 

process (Drijvers 2020). In addition, embodied activities in a task seem to contribute 

to the instrumental genesis (ibid.). From the viewpoint of instrumental genesis, the 

results of Lichti (2019) can be interpreted as follows: when using simulations, 

schemes that develop are concerned with variation and transition, while measurement 

procedures of the hands-on material induce schemes that concentrate on values and 

conditions (ibid.). The students working with hands-on material associate their 

argumentation more often with the material, while the rationale of students using 

simulations frequently relates to the graph. Again, the instrumental genesis can 

explain these disparities: the hands-on material stimulates basic modelling schemes, 

relating the situation to mathematical description. Simulations already contain models 

of a situation and when used as multi-representational systems (Balacheff and Kaput 

1997) illustrate connections between model and mathematical representation (e.g. 

graph and table) that evoke schemes for these representations and their transfer.  

The study presented here attempts to make use of these beneficial influences on the 

instrumental genesis through an appropriate combination of hands-on material and 

simulations in experimental activities to foster functional thinking. 

Setting 1: Experiments with hands-on material and simulations (numerical) 

The learning environment is set in a story of two friends preparing to build a 

treehouse. The student activities are structured in six contexts (see below for details), 

each one laid out like a scientific experimentation process with preparation, 

experimentation and post-processing phase. Starting off with hands-on material to 

activate modelling schemes and enable embodied experience, students are asked to 

make assumptions about a pattern or relationship and on that basis, estimate values. 

During experimentation phase they take a series of measurements and data is recorded 
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in a table within a simulation (GeoGebra). The simulation is designed in accordance to 

the hands-on material and provides the opportunity to create a graph concurrent with 

the context animation and to display the measurements of the hands-on material (and a 

corresponding trendline). This gives students the opportunity for systematic variation 

and parallel observation of the altering quantities, to induce schemes with a dynamic 

view and covariational thinking. Above, it facilitates the time consuming but little 

challenging representational switch from table to graph (Bossé et al. 2011). In the 

post-processing phase the students verify their measurements and analyse the graph 

(interpreting and interpolating). Subsequently they get back to the real material to 

check their estimations from preparation phase. Finally, they elaborate on the answer 

to the overarching task (calculate the amount of material needed to build the 

treehouse) based on the insights from experimentation activities, bringing together the 

modelling and representational schemes developed.  

The learners go through these phases for three contexts subsequently, share their 

insight after each context with a partner and solve the overarching tasks as team. 

Contexts  

Both settings use a treehouse building story with identical overarching tasks. The 

contexts are implemented with the same hands-on material (see figure 1 and 2) and 

simulations, but different components of the simulations are visible in the settings.  

The students work in pairs (A and B), each working on three contexts. The contexts 

are chosen to represent a linear and a quadratic relationship and one with varying 

change rate. 

 

 

 

 

 

 

Figure 1: Hands-on material of the contexts for partner A  

For partner A (see Figure 1) these are: the perimeter of a circular disc determined by 

its diameter, the number of cubes needed for a “staircase” determined by the number 

of steps and the fill height of a vessel determined by the volume of water filled into. 

 

 

 

 

Figure 2: Hands-on material of contexts for partner B in both settings  

Partner B (see Figure 2) examines the weight of a package of nails determined by the 

number of nails, the number of beams needed for a woodwork determined by the 

number of floors and the fill height of cylindric vessels with different diameters 

determined by the volume of water filled into. A bonus context for quick learning 

teams depicts the diameter of an unrolling tape determined by the length of tape that 

has been unrolled.  
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Setting 2: Combination of artefacts with a focus on covariation (covariational) 

In setting 1 proposed above the measurement plays a dominant role, which sets a 

focus on the individual values of quantities and on single states of the relationship. 

This promotes the action concept of function and concentrates on the correspondence 

aspect (see above). In accordance with Breidenbach et al. (1992) and Dubinsky and 

Wilson (2013) it would be desirable to shift this focus to a process concept and to 

covariation, especially since possible sources of student’ difficulties with functional 

relationships are seen in the dominance of numerical settings in school (Goldenberg et 

al. 1992). Together with the close relation of covariation to the difficult concept of 

variables (Leinhardt et al. 1990), this led to the call for a qualitative approach to 

functions (Thompson & Carlson 2017) to facilitate the idea of covariation. Thus, in a 

second setting we explicitly choose a non-numerical approach for experimenting with 

immediate examination of covariation.  

The learning environment of setting 2 is structured accordingly to setting 1, with 

modifications in the experimental structure of the contexts: in the preparation phases 

the students estimate subsequent values of a quantity represented in the hands-on 

material, before they use simulations to identify the relation between quantities. In the 

following experimental phase, the students observe the variation and covariation of 

the quantities in the simulations and verbally describe the relationships discovered. 

Subsequently graphs are generated within the simulations and in the post-processing 

phase students are asked to analyse the form of the graphs and connect their insights 

with the relationship described in the previous phase. Similar to setting 1 the students 

then team up with their partner and share their insights, but here they are asked to 

compare both contexts and identify similarities in the relations. In an additional phase 

they take measurements in the context of their partner, represent the covariation in the 

measurement table and compare this to the results reported by their partner. As a final 

task the partners are asked to group the contexts by their kind of covariation, i.e. build 

pairs of similar contexts based on their findings.  

The settings can be accessed in digital classrooms: www.geogebra.org/classroom 

Code: HQX7 UZRQ for the numerical Setting (1) “Team of Engineers”    

Code: D3XM DDSB for the covariational Setting (2) “Team of Architects”.  

STUDY DESIGN 

A comparative intervention study (pre-post design) contrasts the two approaches with 

regards to their effect on students’ functional thinking to answer the following 

research question: 

1. Do both settings (numerical and covariational) based on experiments with 

hands-on material and computer-based simulations (GeoGebra) lead to 

significant effects on the FT of seventh graders?  

2. Does the covariational setting lead to a significant different effect on FT than 

the numerical setting? 

The intervention is designed for six lessons (split into three sessions) in the seventh 

grade and comprises of. It is preceded and followed by a short test on functional 

thinking (FT-short, 27 items, Rasch-scalable, see Digel and Roth 2020, online version 
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of test: www.geogebra.org/m/undht8rb), to compare the learning outcomes in both 

settings. Students work in groups of two pairs and two focus groups (low-/high-

performer in FT-short) per school class are videotaped. For an in-depth analysis on the 

learning progression throughout the intervention it is planned to evaluate the student 

products and videotapes regarding the aspects of functional thinking in general (Lichti 

2019) and covariational thinking in particular (levels of covariational reasoning, 

Thompson and Carlson 2017).  

A pilot study (Digel and Roth 2020) verified the comparability of the two approaches 

in terms of processing time and difficulty. Due to the corona shutdown the 

intervention was adapted to an online classroom supplemented with a “math box” 

containing the hands-on material. The qualitative analysis of group interaction was 

replaced by an expert rating and a reflective analysis with student teachers.   

METHOD 

Here we present preliminary results of the ongoing main study. It is an intermediate 

quantitative analysis on the data collected so far. Four additional intervention groups 

(N~100) are scheduled from January to May 2021 and a control group is planned as 

well. A statistical power analysis (2 groups, 2 measurements, power .85, α =.05) for a 

medium effect (ηp
2 = .06) in a mixed ANOVA gave a desired sample size of N = 144. 

Data analysis was conducted according to Item Response Theory. The dichotomous 

one-dimensional Rasch model and the virtual persons approach were used to estimate 

an item difficulty for every item of FT-short (N = 132). The person ability was then 

estimated with fixed item difficulties. We applied a mixed ANOVA (between 

factor: numerical/covariational setting; within factor: time) after controlling data for 

normal distribution and homogeneity of variance. Pairwise t-tests were used to 

investigate differences of both settings. 

RESULTS  

The estimation of the Rasch-model, which was used to determine the person abilities, 

showed good reliabilities in the pre- and post-test: EAP-Relpre = .73 and EAP-

Relpost = .77 as well as WLE-Relpre = .73 and WLE-Relpost =.76. 

The mixed ANOVA (see Figure 3 left) resulted in one significant effect and one minor 

effect: First, there was a significant main effect for time F(1.64, 0.42) = 45.54, p 

<.001, ηP
2 = .42. The results in FT-short for the total sample (numerical and 

covariational setting together) increased significantly with a large effect from M= 

−.61 logits (SD = .96) up to M= .21 logits (SD = .99). The subsamples of both settings 

did not differ before the intervention (t(64) = −.55, p=.132), but results of both 

increased significantly from pre- to post-test (numerical: t(66) = −2.61, p =.005, d= 

.32; covariational: t(62) = −3.84, p <.001, d= 0.50). The mixed ANOVA also showed 

a non-significant interaction effect between time and setting (F(1.64, 0.42) = 1.32, 

p =.256, ηp
2 =.02).  

The intersecting discrepancy in the effect sizes (pre/post) for both settings indicate a 

difference, that could possibly not be identify due to the lack of statistical power. 

Since there were large SDA SD for both groups a second analysis was performed on a 

subset of FT-short, using the 27 items assigned to covariation and object aspect of 
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functional thinking, representing a concept of functions developing towards a process 

scheme. 

   
Figure 3: Increase in FT-short (left) and reduced FT-short (right): 

comparison of covariational (A) and numerical (I) setting in pre- and post-test 

The estimation of the Rasch-model, which was used to determine the person abilities 

in the reduced FT-short showed acceptable to good reliabilities in the pre- and post-

test: EAP-Relpre = .71 / EAP-Relpost = .74 as well as WLE-Relpre = .67 / WLE-Relpost 

=.73. 

The mixed ANOVA (see Figure 3 right) resulted in two significant effects: again, 

there was a significant main effect for time F(1.64, 0.42) = 43.11, p <.001, ηP
2 = .40. 

The results in reduced FT-short for the total sample (numerical and covariational 

setting together) increased significantly with a large effect from M= −1.23 logits (SD 

= 1.12) up to M= -.45 logits (SD = 1.08). The subsamples of both settings did not 

differ before the intervention (t(62) = −.33, p=.371), but results of both increased 

significantly from pre- to post-test (numerical: t(66) = −1.85, p =.034, d= .23; 

covariational: t(62) = −3.84, p <.001, d= 0.51). The mixed ANOVA also showed a 

significant interaction effect between time and setting (F(1.64, 0.42) = 3.58, p =.050, 

ηp
2 =.053).  

The sum scores of the six items that were excluded from the FT-short were not 

significantly different between both settings in the pre- and post-test (pre: t(62) = .52, 

p =.696; post: t(64) = .59, p =.772). Sum scores are reported here since the subset of 

these items was not Rasch-scalable.  

DISCUSSION 

The results show an increase of FT in both settings from pre- to post-test, with a small 

effect for the numerical setting (FT-short d=.32 / reduced FT-short d=.23) and a 

medium effect for the covariational setting (d= .49 / reduced d=.51). There seems to 

be an influence of both interventions on FT. Regarding the function concept and the 

intended covariational thinking, we found a first indication, that the covariational 

setting seems to be more suitable to foster this aspect: there was a small to medium 

interaction effect of time and setting (F(1.64, 0.42) = 3.58, p =.05, ηp
2 =.053). The 
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results of FT-short in the items for covariation and object aspect increases 

significantly more in the covariational setting. Hence for our first research question, 

we can conclude that both learning environments, as designed in this study, lead to a 

significant increase of students’ FT. Considering the second research question, there is 

no evidence on significant differences on FT in general, but our results indicate that 

the setting with a focus on covariation tends to be more suitable to foster the 

covariation and object aspects of FT than the numerical approach. Since no data for a 

control group is available at the moment and with regards to the sample size that does 

not match the power analysis, this conclusion must be handled with caution and needs 

to be verified. Results on the extended sample will be presented at the conference. 

Overall, our results are not generalizable, they depend on the concrete settings 

developed in the study as introductory course for sixth to seventh graders. 

Nevertheless, with reference to our theoretical background, we can assume that in 

both settings hands-on material and simulations are combined in a supportive way for 

the instrumental genesis. The results for the reduced item set of FT can be interpreted 

as a first indication that the covariation aspect of FT is also accessible to learners in 

introductory courses on functional relationships and can be fostered through non-

numerical experiments with simulations and hands-on material. Moreover, this benefit 

for the covariational aspect is not on the expense of the correspondence aspect.  
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There is a growing interest in the international mathematics education community in 

research on teacher noticing as an important component of teaching expertise. 

However, it is likely that often the researchers’ understanding of good instructional 

quality influences what they expect teachers to notice. It is particularly not clear if 

and how different cultural norms of instructional quality influence how teacher 

noticing is operationalized in East Asian and Western cultures. Therefore, our cross-

cultural research project on teacher noticing in Taiwan and Germany focuses in a 

first step on eliciting such expert norms. By means of a vignette-based online expert 

survey, we explored culture-specific norms regarding instructional quality. In this 

paper, we provide evidence of culturally different norms for dealing with students’ 

thinking. 

INTRODUCTION 

Students’ mathematical thinking is a focus that has been frequently used for 

investigating and developing teacher noticing – especially in the US context (e.g., 

Colestock & Sherin, 2015; Jacobs, Lamb, & Philipp, 2010). An underlying reason for 

this focus is the idea that instructional quality depends heavily on whether and how 

teachers attend to, interpret, and deal with students’ thinking in the mathematics 

classroom. Corresponding research usually uses – at least implicitly – a frame of 

reference for what the teachers are expected to notice (so-called “target noticing”, 

Stockero & Rupnow, 2017). However, it is well known that Western and East Asian 

perspectives on what constitutes high quality mathematics classrooms are different in 

many aspects (Leung, 2001). Since such different norms probably influence how 

teacher noticing regarding students’ thinking is assessed by researchers in different 

cultures, it is questionable whether such research can be cross-culturally valid (Clarke, 

2013). Therefore, it is important in our inter-cultural research community to make 

such culture-specific norms, which may influence how teacher noticing is assessed, 

explicit and take them into account for the interpretation of findings. Consequently, 

this research report focuses on revealing how researchers’ (i.e., experts’) norms for 

dealing with students’ thinking can be different from a Western and an East Asian 

perspective. 

THEORETICAL BACKGROUND 

Especially in the last decade, teacher noticing has been established as an important 

component of teaching expertise in the international research community in 
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mathematics education. Although different conceptualizations of teacher noticing can 

be found in the growing body of research, essentially, they encompass the perception 

and interpretation of relevant features of instructional situations (Sherin, Jacobs, & 

Philipp, 2011). Hence, in line with Sherin (2007), we understand teacher noticing as 

attending to aspects of classroom situations that are relevant for instructional quality 

(selective attention) and interpreting them by drawing on corresponding professional 

knowledge and beliefs (knowledge-based reasoning). Similarly, many different 

operationalizations of the construct exist, but it is widely accepted that vignettes in the 

form of short videos, comics, or transcripts can be used as representations of practice. 

Furthermore, a common “operational trick” for assessing teacher noticing is to design 

or select vignettes in a way that in the represented instructional situation something 

occurs that does not meet the expectations of “good” teaching, that is, they include a 

breach of a norm regarding some aspect of instructional quality (e.g., Dreher & 

Kuntze, 2015; Herbst & Kosko, 2014). The teachers’ reaction in response to these 

critical incidents is then used as an indicator for the specific noticing expertise. 

This kind of operationalization makes particularly obvious that norms regarding 

aspects of instructional quality play a double role in teacher noticing research: Such 

norms are assumed to shape what teachers notice and they also form the frame of 

reference that is already implemented (more or less explicitly) in the 

operationalization by the researchers. In particular, researchers use the consistency of 

their own norms with what teachers notice as an indicator for noticing expertise (e.g., 

Stockero & Rupnow, 2017). Hence, it is not clear whether such research can be cross-

culturally valid, since corresponding norms may be culture-specific (e.g., Louie, 

2018). 

Especially East Asian and Western cultures, it is well-known that different 

perspectives on mathematics classrooms exist. Leung (2001) contrasted for instance 

characteristics and underlying values of East Asian and Western mathematics 

education by means of six dichotomies: product versus process; rote learning versus 

meaningful learning; studying hard versus pleasurable learning; extrinsic versus 

intrinsic motivations; whole class teaching versus individualized learning; and 

competence of teachers: subject matter versus pedagogy. He emphasized that these 

distinct characteristics “are based on deep-rooted cultural values and paradigms” 

(p. 35) and thus influence the perspectives of mathematics educators on mathematics 

classrooms. He pointed out for instance that although mathematics educators from 

both East Asian and Western countries would say that mathematics is both the product 

(a body of knowledge with distinctive knowledge structure) and the process (a 

distinctive way or process of dealing with particular aspects of reality), their position 

on the continuum between the two extremes is different: While the contemporary 

Western perspective is that the process of doing mathematics is more important than 

the content arising out of the process, the East Asian perspective is rather that 

ultimately the content and its correctness are essential (Leung, 2001, p. 39). Although 

there is also diversity within and among Western countries as well as East Asian 

countries (e.g., Clarke, 2013), Germany and Taiwan can be considered as 
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representatives of Western and East Asian cultures in this respect (Yang et al., 2019). 

Against this background, it can be assumed that aspects of instructional quality, which 

are in the focus of research on teacher noticing are perceived differently from 

researchers in Taiwan and Germany. Specifically regarding the focus of students’ 

thinking, Colestock and Sherin (2015) identified for instance different purposes for 

attending to student’ mathematical thinking, which may depend on different 

overarching instructional goals, such as diagnosing student errors or 

misunderstandings that need to be addressed or looking for students’ ideas that have 

the potential to serve as the foundations for new understandings. In their study, they 

explored different teacher-identified purposes for attending to students’ mathematical 

thinking and found that the teachers focused on these purposes to various degrees. 

However, Colestock and Sherin (2015) did not take into account the perspectives of 

experts in mathematics education or different cultural contexts and hence it is still an 

open question whether there exist different cultural norms for attending to and dealing 

with students’ thinking in the mathematics classroom. 

OBJECTIVE 

According to the need for research pointed out in the previous section, the objective of 

this research report is to illustrate how expert norms for dealing with students’ 

thinking can be different from a Western and an East Asian perspective. 

SAMPLE AND METHODS 

The vignette that we focus on in this contribution (see Figure 1) is part of a larger bi-

cultural instrument developed in a process comparable to the dual-focus approach 

(Erkut et al., 1999). The vignette was authored by the Taiwanese researchers in our 

team. Accordingly, from their perspective, the represented classroom situation 

contains a breach of a norm regarding how the teacher deals with students’ thinking. 

In this case: The teacher does not address S1’s misunderstanding and inadequate use 

of strategy (over-generalizing the strategy applicable in the case “𝑓 × 𝑔 = 0”) 

properly. 

 
Figure 1: Taiwanese vignette focusing on students’ thinking 
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When the German researchers in our team saw this vignette, they agreed with the idea 

that the teacher should have asked S1 how he or she obtained the answer. However, 

they had problems to see a misunderstanding or an inadequate strategy. We figured 

that these different perspectives on the student’s thinking in this classroom situation 

may not be restricted to our research teams and thus we anticipated underlying 

cultural differences between the perspectives of Taiwanese and German experts in 

mathematics education. To investigate whether this was indeed the case or whether 

this was just a matter of different perspectives in mathematics education in general, 

this vignette was presented to Taiwanese and German professors of mathematics 

education in an online expert survey.  

This online survey was conducted in the native languages of the experts 

(Chinese/German). The necessary translation processes were carried out according to 

the ITC Guidelines for Translating and Adapting Tests (ITC, 2017). A sample of 

n1=19 Taiwanese professors (6 females, 13 males) from 10 universities and a sample 

of n2=19 German professors (5 females, 14 males) from 14 universities completed the 

survey. All of them were researchers as well as educators in mathematics education. 

Most of them had experience as school teachers (TW: 14, GER: 17) and some of them 

had also conducted research in mathematics (TW: 5, GER: 6). To capture the experts’ 

frame of reference for investigating teacher noticing with a focus on students’ 

thinking, the experts were asked to answer the same open-ended prompt that would be 

used to assess corresponding teacher noticing: ”Please evaluate how the teacher deals 

with students' thinking in this situation and give reasons for your answer.” 

Their evaluations were analyzed with respect to two main aspects: 1) Did they see 

some breach of a norm regarding the teachers’ dealing with S1’s thinking? And if so: 

2) Which norm was breached from their perspective? Hence, in a first step, the 

answers of the participants were coded in a top-down process regarding the question 

whether the teachers’ dealing with S1’s thinking was evaluated as 

insufficient/inadequate. In a second step, the answers were analyzed regarding the 

question why the teacher’s dealing with S1’s thinking was evaluated negatively in 

order to infer which norm was breached from the perspective of the expert. This step 

was partly inductive: On the other hand, we coded whether the experts saw the same 

norm being breached as the developing Taiwanese researchers (S1’s misunderstanding 

and inadequate use of strategy is not addressed). Likewise, as mentioned above, we 

expected especially the German experts may see different reasons. Hence, reasons 

indicating a different norm were also extracted inductively from the experts’ answers.  

To allow all authors to engage in the coding process of all experts’ answers and to 

compare them directly across cultures, the answers were translated into English and 

all the language versions were included in the coding processes. Moreover, all of the 

answers were coded independently twice by all of the authors: In a first round, the 

coding scheme was complemented inductively and in the second round the resulting 

coding scheme was applied to all of the answers. In both rounds, the coding was first 

compared within the national research teams and discrepancies were resolved through 
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discussion. Subsequently, the resulting national coding was compared again, in case of 

discrepancies, a consensus was reached through discussion.  

In view of the aim to identify culture-specific or inter-cultural norms of instructional 

quality regarding the aspect “dealing with students’ thinking”, we finally took a look 

at how many of the experts in each country recognized a breach of a specific norm 

regarding this vignette. For interpreting this result, it should be considered that even if 

a specific norm exists, it cannot be expected that all the experts’ answers indicate that 

they noticed the corresponding breach. There may always be individual experts who 

do not agree with commonly accepted norms in their culture. Furthermore, like 

teachers, the experts had to accomplish a process of noticing which becomes visible in 

their answer in way that we could code it accordingly. Thus, we assumed that if most 

of the experts from one country actively recognized the breach of a specific norm, 

then there was strong evidence for the existence of this norm in the corresponding 

culture. 

RESULTS 

As the Taiwanese team authored this vignette, we start by focusing on the answers of 

the Taiwanese experts, in the sense of a validation within a culture. Indeed, almost all 

answers (17 out of 19) indicated negative evaluations of how the teacher dealt with 

Student 1 (S1)’s thinking, suggesting these experts saw breach of a norm for dealing 

with students’ thinking. A total of 11 experts’ answers indicated that they assumed 

that S1’s answer shows a problem to be addressed (misunderstanding/inappropriate 

strategy), which was not done properly by the teacher. These experts recognized the 

breach of the norm, which was implemented by the Taiwanese research team. To get 

some insight into these kinds of experts’ answers, we will now focus on two typical 

examples. 

TW1: The teacher allowed two students to propose their answers. However, after 

detecting that one student’s answer was incomplete, the teacher did not ask 

him further, how he got the answer to guide him to figure out where the 

problem is on his own. 

TW2: […] the teacher gave a correct method but did not bother to find out why S1 

found only one solution. 

Both experts criticize that the teacher did not ask S1 how he got his answers, 

indicating that they recognized a breach of a norm for dealing with students’ thinking. 

While TW2 identified a problem in the fact that S1 found only one solution, TW1 

makes even more explicit that there is a problem to be addressed regarding S1’s 

thinking. 

In view of the answers by the German experts, it became quickly obvious that the 

situation was different: While also most of the German experts saw some kind of 

breach of a norm for dealing with S1’s thinking, only one answer indicated that a 

problem was seen in S1’s thinking that should have been addressed. Instead, different 

reasons for why the teacher should have dealt differently with S1’s thinking were 

mentioned. To provide insight into these kinds of answers, we will give three 

examples. 
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GER1: […] The fact that S1 immediately saw a solution in the given equation, 

namely 2, is an expression of number sense or structure sense. However, 

this achievement remains completely without recognition by teacher in 

this situation. […] 

GER2: The teacher does not appreciate the achievements of the students to find 

solutions through thinking. However, it is appropriate to address other 

ways of solution as well. 

GER3: The teacher ignores the students’ abilities to use the method of looking 

closely (or Viéta’s formula). The teacher wants the students to use the 

standard way of solution via the “Mitternachtsformel” or p-q formula. 

This hinders the development of flexible solution strategies by the 

students. […] 

Hence, from answers like these, another kind of reason for seeing the teachers’ 

dealing with S1’s thinking as inadequate/insufficient was extracted and added to the 

coding scheme: S1’s answers hint at a valuable mathematical ability or strategy, 

which should have been appreciated and encouraged. To investigate further, whether 

these two perspectives reflected culture-specific norms of instructional quality 

regarding dealing with students’ thinking, the resulting coding scheme was applied to 

all the experts’ answers as described above. This is allowing to distinguish the 

following cases: i) breach of originally implemented norm recognized; ii) breach of 

alternative norm recognized, and iii) breach of unidentifiable norm recognized or no 

breach of a norm recognized. For the first three cases, it was necessary that the 

teachers’ dealing with S1’s thinking was evaluated as insufficient/inadequate. Which 

of the three cases were applied depending on the kind of reason that was identified for 

this evaluation. The comparison of the number of these cases among the experts in 

Taiwan and Germany presented in Table 1 clearly shows the differences. Most of the 

Taiwanese experts actively recognized the breach of the norm implemented by the 

Taiwanese research team. Most of the German experts’ evaluations indicated that they 

recognized a breach of a different norm corresponding to another kind of purpose for 

attending to students’ mathematical thinking in this classroom situation 

(“mathematical strategy/ability to be valued”). 

 Taiwanese experts German experts 

Breach of “original” norm recognized 11 1 

Breach of “alternative” norm recognized 0 10 

Breach of unidentifiable norm recognized 6 4 

No breach of a norm recognized 2 4 

Table 1: Numbers of experts in each case 

DISCUSSIONS AND CONCLUSIONS 

Regarding a specific representation of practice, we illustrated how expert norms for 

dealing with students’ mathematical thinking can be different from an East Asian and 

a Western perspective. While experts from both countries pointed out that the teacher 

should have attended to the student’s thinking, different purposes for attending to 

students’ thinking (Colestock & Sherin, 2015) were identified: The majority of the 

Taiwanese experts assumed that the student’s answer shows a misunderstanding or 
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inappropriate strategy to be addressed and the majority of their German counterparts 

assumed that the student’s answer indicates a mathematical ability or strategy to be 

valued. On other hand, these results suggest that attending to individual students’ 

thinking is considered as an important aspect of instructional quality in both countries. 

This may reflect the phenomenon that what is considered high-quality mathematics 

instruction in Taiwan today is not only shaped by traditional perspectives, but also by 

Western ideas of constructivist-based instruction, such as discussing individual 

students’ solutions as well as focusing on individual students’ thinking and 

misconceptions (Hsieh, Wang, & Chen, 2019). On the other hand, there appears to be 

a difference between Taiwanese and German experts regarding what is the most 

important frame of reference for the interpretation and evaluation of the students’ 

thinking: the content and its correctness or the students’ processes of doing 

mathematics. This result may be interpreted as evidence for how the deep-rooted 

cultural values underlying Leung’s (2001) dichotomy product versus process still 

shape the perspectives of researchers and educators in mathematics education on 

dealing with students’ mathematical thinking in a specific classroom situation.  

Before discussing possible implication for international research on teacher noticing, 

we would like to recall the limitations of this research, which suggest interpreting the 

evidence with care. Although the experts in the sample of this study were professors 

in mathematics education from many different universities and the response rate was 

about 60% in both countries, it is not entirely clear whether these experts’ answers can 

fully represent the perspectives of mathematics education researchers and educators in 

Taiwan and Germany. Furthermore, the results of this research report are based on 

only one vignette. The analysis of our data regarding further vignettes will soon allow 

us to draw a broader picture. Moreover, further research should complement these 

findings by means of different methodological approaches. 

Bearing this in mind, our findings give, however, insight into different expert norms 

for dealing with students’ mathematical thinking in different cultures. In view of the 

fact that such different norms may influence how teacher noticing regarding students’ 

thinking is assessed by researchers in different cultures, it is questionable whether and 

how such research can be cross-culturally valid (Clarke, 2013). Therefore, the 

question of how teacher noticing can be investigated in a way that is sensitive to 

different cultural context certainly merits attention in our international research 

community. 
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THE SHARED KNOWLEDGE OF THE CLASS VERSUS 

INDIVIDUAL STUDENTS' KNOWLEDGE IN A COURSE ON 

CHAOS AND FRACTALS 
Assaf Dvir, Tommy Dreyfus, & Michal Tabach  

Tel-Aviv University, Israel 

 

This study focuses on gaps between the knowledge which functions-as-if-shared 

in a class as a collective and the knowledge that is used by each individual 

student. We analyze to what extent knowledge and ideas that are shared by the 

class community are available to and have been applied by the individual 

students. The research is based on data collected in an introductory course on 

chaos and fractals. The course included challenging inquiry activities that led 

to genuine argumentation, and to the emergence of quite a few new (for the 

students) mathematical notions. Initial findings present important gaps. We 

investigate to what extent these gaps can be explained by individual students’ 

problem-solving skills, in heuristics. 

INTRODUCTION 

Understanding learning in mathematics classrooms requires coordinated 

analysis of individual learning and collective activity in the classroom (e.g., 

Cobb, Stephan, McClain, & Gravemeijer, 2001). A considerable amount of 

research has been dedicated to documenting collective classroom activity or 

group activities without considering individual students (e.g., Conner, 

Singletary, Smith, Wanger & Francisco, 2014; Stephan & Rasmussen, 2002). 

The research presented here investigates whether there are important gaps 

between the knowledge of individual students and the knowledge shared by the 

class as a collective. We performed a coordinated analysis of class discussions, 

followed by individual problem-solving in an interview situation. The class 

discourse was analyzed using the Documenting Collective Activity (DCA) 

methodology (Rasmussen & Stephan, 2008). The problem-solving activity was 

analyzed based on existing methodologies of problem-solving (Schoenfeld 

1992; Carlson & Bloom 2005). 

The mathematical domain selected for our research was chaos, fractals, and 

dynamical systems. Chaos is a phenomenon wherein a deterministic rule-based 

system appears to behave unpredictably. It is characterized by mathematical 

ideas whose in-depth comprehension is challenging. A major reason for 

selecting this domain are the counter-intuitive situations it affords; these 

situations give rise to challenging problems, for which deep and thorough 

knowledge is crucial; therefore, they are useful for the investigation of problem-

solving behaviors. 
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THEORETICAL BACKGROUND 

Collective activity is a sociological construct that addresses the construction of 

ideas through patterns of interaction (Rasmussen & Stephan, 2008). More 

specifically, this activity is defined as the normative ways of reasoning that 

develop in a classroom community. DCA methodology proposes a rigorous 

approach for analyzing this communal activity. It uses Toulmin’s (1969) model 

which considers an argument as composed of data, claim, warrant, rebuttal, 

backing and qualifiers. DCA uses three criteria to identify when a mathematical 

idea or way of reasoning becomes normative and functions in the classroom as 

if it is shared.  “Function-as-if-shared” (FAIS) means that particular ideas or 

ways of reasoning are functioning in classroom discourse “as if” everyone in the 

classroom community reasoned in a similar manner. It should be noted that only 

some mathematical ideas discussed in class become FAIS. 

Knowledge accumulated in problem-solving (PS) has shed light on both, what 

mathematical thinking involves and how learners can construct robust 

knowledge in problem-solving environments (Schoenfeld 1992). In this 

research, we focus on two major aspects of PS: Firstly, the use of PS 

methodology for analyzing students’ problem solution and knowledge 

reconstruction processes; secondly, PS heuristics, their variety, taxonomy and 

usage as fundamental means in students’ PS processes. A heuristic is "a 

systematic approach to representation, analysis and transformation of scholastic 

mathematical problems that solvers use (or can use) in planning and monitoring 

their solutions" (Koichu, 2010). 

The Multidimensional Problem-Solving Framework (MPSF) developed by 

Carlson and Bloom (2005) offers a method for investigating and explaining 

mathematical problem-solving behavior. The framework defines four phases 

during problem-solving, namely orientation, planning, executing, and checking. 

We used MPSF for analyzing how a student applies FAIS knowledge when 

dealing with the interview problems. We use the term gap to refer to all 

mathematical ideas which were observed to FAIS in the class but were not or 

incorrectly applied by a student during the interview. 

Dynamical systems (DS) theory is an area of mathematics used to describe the 

behavior of a time-dependent system, usually by employing differential 

equations or difference equations. The subset of dynamical systems which is 

relevant to our research is that of iterated functions (Feldman, 2012). The 

process of repeatedly applying the same function is called iteration. In this 

process, starting from some initial number 0x , a given function is iteratively 

applied, thus generating an infinite sequence called orbit. An initial number p 

satisfying f(p)=p is called a fixpoint. An orbit might reach or tend to a fixpoint. 

A fixpoint is called attractor (ATT) if it attracts any orbit in a small 

neighborhood. The behavior of dynamical systems can be analyzed analytically 

and graphically. The basic graphical tool is called Cobweb (see Figure 1). 
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Analytically, the value of the first derivative of f at the fixpoint xfp indicates 

whether xfp is an attractor ( ( ) 1fpf x  ) or not. This is called the fixpoint stability 

theorem (FPST). 

 

 

 

 

  
Starting from 0

x , drawing a 

vertical segment to f followed 

by a horizontal segment to y=x. 

 

, drawing a Starting from 

 

Figure 1: A cobweb plot (dashed segments) 

RESEARCH QUESTIONS 

1. In a class learning about chaos and fractals, which mathematical ideas 

related to attractors function-as-if-shared (FAIS) by the class? 

2. Among the FAISes identified in 1, which ones are used, possibly after 

reconstructing them, by individual students in interviews, and which 

ones are not used, thus suggesting the existence of gaps? 

3. If a student closes an initial gap by reconstruction during the 

individual interview, can the reconstructing process be explained by 

PS notions? 

While this paper focuses on ATT, other notions of DS have been analyzed 

similarly. 

RESEARCH DESIGN AND METHODOLOGY 

To answer the research questions, we needed data from a class as well as data 

from students’ individual interviews. To identify ways of reasoning that FAIS, 

we looked for a classroom where all members were actively engaged in 

producing, challenging, and modifying arguments. We chose an introductory 

course to chaos, fractals, and dynamical system for graduate level mathematics 

education students at an Israeli university. The course had 11 participants. Their 

degree program required a substantial mathematics component, and the chaos 

and fractals course fulfilled part of that requirement. 

A typical course session consisted of presentation of a new notion, such as ATT 

by the teacher, followed by group work and whole class discussions designed to 

develop the notion’s properties and relationships. Lessons were video-taped, 

transcribed and analyzed. Interviews on ATT were held with nine of the 

students about a month after the relevant lessons. The relevant part of the 

interview protocol dealt with orbits of an iterated function, cobweb diagrams, 

fixpoints and attractors.  
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The data analysis comprised three stages: Firstly, we analyzed the FAIS 

knowledge of the class using DCA analysis of the whole class discussions, 

resulting in a list of FAISes related to ATT. Secondly, we analyzed the 

interviews to identify which of these FAISes that each student mentioned or 

used; we categorized these uses into three levels: A - the student used the FAIS 

fully and correctly; B - the student used the FAIS partially; C - the student 

incorrectly used the FAIS or did not use it in spite of having an opportunity to 

use it. This resulted in a list of gaps: All cases of levels B and C. In the third 

stage, we focused on those cases in which a student reached either level A or 

level B by reconstructing their knowledge during the interview. On these cases, 

we carried out an MPSF analysis to identify the PS phases as well as the 

heuristics used by the student and examined how the heuristics supported the 

reconstruction. 

FINDINGS 

Stage 1: DCA Analysis 

The DCA analysis resulted in a total of 51 mathematical ideas which 

functioned-as-if-shared by the class. Here we focus on the ones related to ATT: 

• ATT term: An attractor is a term used in DS. 

• ATT definition: A fixpoint p  of the dynamic process generated by f  

is attractive, if there is a neighborhood of p  such that for any point x  

in this neighborhood, the x -orbit converges (in a finite or infinite 

sequence) to p . 

• ATT meaning: An attractor p  means that if the orbit is slightly 

"bumped" away from p , the orbit subsequently moves back to p . 

• ATT graphical solution: A fixpoint p  is potentially ATT if a cobweb 

starting in a neighborhood of p  moves back to p . 

• ATT analytical solution: A fixpoint p  is ATT if ( ) 1f p  . 

One important element of the analysis is our distinction between ATT term, its 

definition, its meaning, and its applications. This allowed us to refine our study 

of FAIS knowledge by students over a scale from lack of knowledge, 

remembering the term, via mastering the definition, up to competency in using 

and applying the knowledge in various scenarios. 

Stage 2: Interview Analysis: Levels of Students’ Use of FAISes 

The interview analysis provided the proficiency level of every student per each 

of the five FAISes. Three levels were defined to evaluate the extent to which the 

student mastered a FAIS. Tables have been prepared for each notion; an 

example related to ATT is given in Figure 2. 

In this case the aggregated results of mastering FAISes by level are: A - 41%, B 

- 17%, C - 22%, and undetermined - 20%. By undetermined we refer to FAISes 

which students did not have the opportunity to relate during the interview. 
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Figure 2: Student FAISes proficiency map for attractor (ATT) 

Stage 3: Interview Analysis by MPSF Protocol 

Our PS analysis protocol focused on students’ problem-solving phases and their 

use of heuristics. Special attention was given to 11 major heuristics which were 

either classified as useful by experts (Koichu, 2010) or appeared more than 

three times throughout all interviews. This stage resulted in a description of the 

variety of the heuristics that the student used while solving the problems in the 

interview and the general work-flow of the student according to MPSF phases 

(see four examples in Table 1). 

Heuristic Description 

Break down into modular 

sub-problems 

When the problem is difficult, trying to 

decompose it and examining smaller independent 

parts 

Use multiple 

representations 

Representing a problem by means of a 

representational system different from the given 

representational system 

Examine extreme cases Choosing extreme cases (e. g. a function with a 

large slope) to observe attributes at extreme ends 

Working backwards, 

reverse thinking 

Imagining having solved the problem and work 

backwards from visualizing the solution to the 

problem. 

Table 1: Examples of major heuristics 

In the following section we provide an in-depth analysis of one student, Bzl. We 

present his solution process for finding the ATTs for a given iterative function 

graph (Figure 5), which Bzl could not immediately answer. The analysis 

presents the mathematical solution behavior with special attention to heuristics 

which led to a successful response, bridging what initially was a gap. We 

selected this example since Bzl was a knowledgeable student (PhD in 

engineering) and very cooperative. He reflected deeply and shared his thoughts 

in a detailed manner. 
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Task 2.c.iv: Fixpoint type 

 

Task 2.c.iv: Fixpoint type 

 

Task 2.c.iv: Fixpoint type 

 
 

Figure 3: Interview task 

Bzl identified the three fixpoints and then continued with a global analysis, 

although the question referred to local points. "We can say that the world is 

divided into four parts" (Line 21); he used the heuristic of breaking-down the 

problem into modules, the four regions between the fixpoints. Using this 

heuristic was unusual: Most other students started with a local fixpoint analysis 

or did not manage to continue at all. 

Then, Bzl decided to navigate by random selection of a single region, selection 

of a point in this region, and using a cobweb diagram for graphically analyzing 

the orbit behavior around the middle fixpoint ("It maybe stated that the world is 

split into 4 regions and then I can randomly check what happen in each one of 

them", Line 22). 

Bzl did not remember how to draw a cobweb, but he managed to reconstruct 

this FAIS, step by step. We describe his PS process in detail, pointing to the 

observed heuristics according to MPSF. Later, after completing this task, Bzl 

explained that in similar situations he regularly uses a general heuristic: instead 

of remembering a mathematical item, understand the logic behind it and 

redevelop it. So, he knew where to begin and selected a starting point close to 

the designated fixpoint. He used the heuristic of check by example. He drew a 

vertical line to the f-graph since "if I start here on the x-axis, I know where f(x) 

is" (Line 23). The next step is tricky, one must find the next iteration. So, Bzl 

continued with "now f(x) turns into be the x for the next iteration". He thought 

for about twenty seconds and then drew a horizontal line to the auxiliary y=x 

line (the heuristic: use auxiliary elements). Now he graphically managed to turn 

the y-coordinate into the x-coordinate for the next iteration. He completed the 

iteration by a similar move drawing again a vertical line and reached f(f(x)). He 

continued to contemplate the viability of his approach, by generalizing that "I 

can repeat that and see that we have some sort of a process" (the heuristic of 

generalization). He continued by drawing three more cobweb iterations. We 

may claim that Bzl managed to reconstruct the cobweb procedure, a FAIS 

which he did not immediately remember. 

Can you tell whether the 

fixpoints you identified on this 

graph are attractive? 
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The cobweb convinced Bzl that this fixpoint is an attractor. This could be 

considered as a complete answer. However, right after the execution phase, Bzl 

turned to a checking phase by asking himself: 
Bzl25: Is it enough? Does one location suffice? Is it the same from both 

directions? 
I26:   What do you mean by both directions? 
Bzl27:  In principle, I do not think that the point selection really matters. I 

can see that the general behavior will be similar.  
I28:  So? 
Bzl29: I start another one here if I want [draws additional cobweb]. I can 

see the general behavior, which means that I always move up, go 
here [horizontally to y=x] and I have the overall picture how the 
orbits behave. 

From a PS perspective, Bzl used the check by example heuristic, followed by 

the generalization heuristic since he identified the pattern of the cobwebs about 

the middle fixpoint. We summarize that during his iterative execution-checking 

process Bzl managed to progress by using several common heuristics. 

Bzl continued by providing a long explanation of what he meant by the 

geometrical patterns. In order to understand the dynamic process behavior in the 

neighborhood, he had to build auxiliary segments between the function graph 

and the graph of y=x and analyze them graphically in combination with the 

algebraic meaning of moving between the graphs. He restored the cobweb 

algorithm by using multiple representations. In his own words: "I don't know 

why I was stuck here. When you move from this point, which is an intersection, 

you had to move up since you want to apply this value to f(x). And then you 

move back to y=x..." (Line 37). 

When summarizing his solution process, Bzl exposed an additional layer of 

thought. "The split into regions was not random... I think that the guiding 

principle was to start by observing something, decompose it, and this way I can 

move from the micro to the macro and vice versa.". Evidently, Bzl had very 

good reflection skills, which significantly helped in understanding his 

mathematical thoughts.  

We observed that Bzl used relatively large variety of heuristics and closed the 

temporary gap by reconstructing the relevant FAISes of ATT and cobweb. 

During the solution process he moved in cycles of execution-checking phases, 

skipping the planning, a solution behavior which resembles experienced 

mathematicians (Carlson, 2005). He was flexible and managed to change his 

focus and navigate between global and local views, which is prevalent among 

experienced mathematicians. 

DISCUSSION 

In response to the first question, the learning processes by group inquiries and 

class discussion in the specific chaos and fractals course resulted in a large 

number (51) of mathematical ideas which functioned-as-if-shared in the class. 

However, moving on to the second research question, we found gaps between 

what FAIS in the class and what students individually applied. Furthermore, we 
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found interrelationships between a student’s heuristic literacy and their ability to 

bridge initial gaps by reconstructing in the interviews. In particular, the 

heuristics proficiency, as shown in our research, might make the difference 

between students who manage to reconstruct and rebuild what they learned in 

class, and students who do not. The reasons for the gaps call for additional in-

depth future research, but their existence is ground for caution since the teacher 

might assume that the class masters FAISes, although the reality is different. 
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Aiming at unfolding possible cultural differences concerning pre-service 

teachers’ beliefs towards mathematics and its teaching, this paper presents a 

comparative study between nearby regions: Italy and Germany. The sample is 

composed by 460 pre-service teachers from three universities, one in Germany and 

two in Italy, one of them close to the Austrian border and multilingual. Using a 

clustering technique, we analyse responses to two multiple-answer questions, and we 

compare the composition of the obtained clusters in terms of linguistic background 

and origin. Relevant differences are evidenced and explained, at least partially, in 

terms of cultural differences. 

INTRODUCTION 

The importance of the effects of teachers’ beliefs on their practice was the motivation 

for the extensive research on teachers’ beliefs (cf. Fives & Gill, 2014). However, a 

major obstacle in interpreting locally obtained results about teachers’ beliefs from an 

international perspective is given by the impact of local culture on teachers’ beliefs 

(Felbrich, Kaiser, & Schmotz, 2012; Hofstede, 1986; Romijn, Slot, Leseman, & 

Pagani, 2020). Whereas Hofstede (1986) refers to cultural differences from a global 

perspective including the effect of high or low individualism that divides, for example, 

Europe from Asian countries, Romijn et al. (2020) refer to differences in beliefs of 

teachers from European countries. Thus, a seemingly homogenous cultural region may 

comprise cultural differences that are apparent in teacher’ beliefs. Following this line 

of research, our research aims at providing a contribution to unfold possible cultural 

differences concerning teachers’ beliefs towards mathematics and its teaching in two 

nearby regions, Italy and Germany.  

Following Felbrich and colleagues (2012) we understand common experiences of a 

group of people that are shared through generations as the basis of culture. 

Furthermore, according to Hofstede (1986, p. 314), we conceive language as “the 

vehicle of culture”. We investigate Italian and German pre-service teachers’ beliefs as 

a specific expression of culture. Taken the linguistical influence into account, we also 

consider Italian pre-service teachers from a border region where some teachers use 

German language and other teachers speak Italian at school and in their daily life.  

THEORETICAL LENSES ON TEACHERS’ BELIEFS 

We refer to beliefs on the basis of two aspects: First, teachers’ beliefs as part of 

teachers’ mathematics related affect (Hannula, 2012) play an important role in 
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teachers’ professional lives (Calderhead, 1996).  For example, Eichler and Erens 

(2014), starting from the definitions by Pajares (1992) and Philipp (2007), understand 

the term beliefs as an individual’s personal conviction concerning a specific subject, 

which shapes an individual’s ways of both receiving information about a subject and 

acting in a specific situation. Thus, beliefs strongly impact on the way teachers learn 

mathematics at universities and teach mathematics at school (cf. Philipp, 2007). As 

pointed out by Pajares (1992), teachers’ beliefs are often already developed during 

pre-service university courses; hence many studies focus on beliefs of perspective 

mathematics teachers (cf. Hannula, Liljedahl, Kaasila, & Roesken, 2007).  

The second one concerns the impact of cultural aspect on pre-service teachers’ beliefs 

towards mathematics and its teaching. One of the main obstacles to the general 

interpretation of results about to teachers’ beliefs obtained at national level is the 

influence of social and cultural factors on teachers' beliefs (Felbrich et al., 2012). 

Some studies highlight that the process of learning and teaching of mathematics is 

dependent on the teachers’ cultural background; this is evidenced both from global 

(Hofstede, 1986) and European (Romijn et al., 2020) perspectives.  

Our research moves within this stream of thought and our aim is to investigate the 

cultural differences concerning teachers’ beliefs towards mathematics and the 

teaching mathematics in two nearby regions, namely Italy and Germany. In details, in 

this paper we focus on pre-service teachers’ beliefs about features that are decisive 

both for being successful in mathematics and performing well as teacher. As detailed 

below, we frame pre-service teachers’ beliefs about mathematics within the model of 

mathematical giftedness by Pitta-Pantazi and colleagues (2011); we frame beliefs 

about mathematics teaching within the Knowledge Quartet (Rowland et al., 2005). 

Our research question is: What differences can we observe in beliefs manifested by 

primary pre-service teachers from different cultural and linguistic backgrounds? 

METHODOLOGY 

Sample 

Our sample consists of students of the university of Bologna and the University of 

Bozen-Bolzano (Italy) and the university of Kassel (Germany). The University of 

Bologna is an historical big university in the northern part of Italy, attended by 

students coming from many different Italian regions. The University of Kassel, in 

Germany, is younger and is attended mainly by students from the surrounding area. 

The University of Bozen-Bolzano is a small university located in the South Tyrol 

region (Italy), at the border with Austria. This region, originally Austrian, was 

annexed to Italy after World War I and it still is a bilingual region. There are both 

German and Italian schools for any school level. The university of Bozen-Bolzano 

provides two versions of each course, in Italian and in German. Among our 460 

respondents, 40% are from Bologna and 39% from Kassel. Pre-service teachers who 

attended their courses in Italian (we will refer to this group as Bozen ITA) are 15% of 

the sample; the remaining ones attended classes in German (Bozen GER). 

Respondents received the text of the questionnaire in the same language of their 
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courses. Translation of the questionnaire has been checked by all the authors and by a 

consultant speaking both languages. 

Questionnaire 

The data analyzed in this paper refer to two questions from a wider questionnaire 

(Ciani et al., 2019). We analyze the answers to two multiple-answer questions (Maffia 

et al., in press), corresponding to questions B2 (Fig. 1) and B4 (Fig.2) in the original 

questionnaire. 

 
Figure 1: Question B2 on beliefs about success in mathematics 

We selected the answer-options to question B2 according to the model of 

mathematical giftedness described by Pitta-Pantazi, Christou, Kontoyianni and Kattou 

(2011). Following this model, mathematical ability is the result of Learned Abilities 

(like verbal, spatial, quantitative abilities, etc. – options B, C, and H) and Creativity 

(defined as a combination of fluency, flexibility, and originality – options A, D, and 

N). Both Learned Abilities and Creativity are supported by Natural Abilities 

(including working memory, control, and speed of processing – options G, L, and M). 

We integrate this model adding the dimension of affect (options E, F, and I).  

 
Figure 2: Question B4 on beliefs about mathematics teaching 

Answer-options for question B4 were established according to the model of the 

Knowledge Quartet by Rowland and colleagues (2005). It is a theoretical framework 

for the analysis and development of mathematics teaching. From the perspective of 

the Knowledge Quartet, knowledge and beliefs evidenced in mathematics teaching 

can be seen in four dimensions: Foundation (options B, E, and N), Connection (A, I, 

and M), Transformation (C, F, and L) and Contingency (D, G, and H). 
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Data analysis 

Answers to the multiple-answer questions have been clustered using an agglomerative 

hierarchical clustering algorithm on the whole sample of 460 respondents. In terms of 

the method, single linkage may function to determine the outliers in the data, and then 

performing the Ward algorithm classifies the remaining elements. While this 

algorithm usually results in a valid clustering, in this work its performance was 

reduced, due to the lack of isolated data points (Maffia et al., in press). The complete 

linkage rule was then chosen aiming to find compact clusters of similar diameters, 

avoiding chaining phenomena (Everitt, Landau, Leese & Sthal, 2011). The number of 

clusters is established minimizing the absolute maximum deviation from the median 

of the number of respondents per cluster (Maffia et al., in press).  

RESULTS 

In presenting our results, we dedicate a sub-section to each of the two abovementioned 

questions, that is B2 and B4, providing information about the obtained clusters and 

comparing the composition of clusters in terms of respondents having different origin.  

Beliefs about success in mathematics 

For question B2 we obtained six clusters and, even if they differ one from the other, 

their characterization depends on a few answer-options. In general, we can notice that 

Natural Abilities are considered as not important for succeeding in mathematics, while 

attention to affective factors is high. Clusters differ mostly in terms of the percentage 

of selection of affective factors, being ‘Motivation’ and ‘Perseverance’ some of the 

most selected options in many clusters. Creativity is represented in the largest clusters 

by ‘Flexible thinking’, while ‘Originality’ is usually undervalued. In the same fashion, 

the most representative Learned Ability is ‘Analytic thinking’, while ‘Language 

appropriateness’ is rarely considered. 

As it is shown in figure 3, the composition of the six clusters differ in terms of the 

origin of respondents having some clusters mainly composed by Italian-speaking pre-

service teachers and other more populated by German ones. 

 
Figure 3: Composition of clusters (question B2) according to respondents’ origin.  

Respondents from Bologna are highly represented in the first three clusters where 

Affective factors are strongly considered. Clusters 1 and 2 comprehend respondents 

paying strong attention to ‘Motivation’. While respondents belonging to the first 
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cluster (10% of the sample) also often select ‘Organized working’, those in the second 

one (20% of the sample) selects more often ‘Flexible thinking’, showing a preference 

for Creativity over Learned Abilities. The third cluster (25% of the sample) gives high 

credit to ‘Flexible thinking’ and ‘Perseverance’ (Fig. 4). 

The percentage of pre-service teachers from Kassel is higher in clusters 4, 5, and 6 

(respectively 26%, 14%. and 5% of the respondents), characterized by a high selection 

rate of options related to Learned Abilities (mainly options H or B, e.g. Fig. 4). 

Cluster 6 is the only one having a high percentage of members opting for 

‘Predisposition’.  

  
Figure 4: Standardized frequencies (1 unit corresponds to a difference of 1 SD from 

the average) for the answer-options to question B2 for the two largest clusters.  

Respondents from Bozen-Bolzano are represented more evenly in the clusters, but we 

can notice that, among them, German-speaking pre-service teachers are more strongly 

represented in clusters 1 and 2. The percentage of Italian-speaking students from 

Bozen-Bolzano is higher in clusters where ‘Perseverance’ is considered one of the 

most important features. More generally, there is not a correspondence between 

clusters having the higher percentage of respondents from Kassel or Bologna and 

those having the higher number of respondents from Bozen-Bolzano speaking the 

same language. The only exception is cluster 3 that is composted by a large majority 

of Italian speakers. 

Beliefs about mathematics teaching 

The number of clusters obtained for question B4 is 11, much higher than the previous 

question. This result may suggest that per-service primary teachers’ beliefs about 

mathematics teaching are more various than those towards mathematics itself. 

Participants are distributed unevenly in the clusters having the smallest ones 

representing each 4% of the sample (clusters 1 and 6) and the larger ones 

comprehending almost 15% of the sample (cluster 2 and 5). Clusters 3 and 4 count 

each 8% of the sample while other clusters include the 10% of the participants circa. 

Even if the number of clusters is quite high, it is interesting to notice that most of 

them are characterized by four answer-options belonging to three of Rowland and 

colleagues’ (2005) dimensions: Foundations (knowledge about teaching methods 

and/or mathematics in particular), Transformation (mainly the effectiveness of 

explanations), and Contingency (mainly feedback on students’ errors) have a more 
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relevant role than Connections in characterizing our pre-service primary teachers’ 

beliefs about the teaching of mathematics.  

Figure 5 shows the composition of the eleven clusters in terms of the origin of 

respondents. We can see that there are extreme cases, where the cluster is almost 

entirely composed by pre-service teachers speaking the same language, while other 

clusters are more evenly composed. 

 
Figure 5: Composition of clusters (question B4) according to respondents’ origin.  

The first four clusters are all characterized by a high percentage of respondents from 

Bologna. In these clusters, there is a high rate of selection for the option ‘Knowing 

several teaching methods’, while other aspects of Foundation are often ignored. 

Cluster 3, the most “Italian” cluster, differs from the others since ‘Knowing 

mathematics’ is the most chosen option. Members of clusters 1 and 2 often select 

‘Giving feedback about errors’. However, these two clusters differ in their attention 

for Transformation: cluster 1 believes that ‘Giving effective explanations’ is as 

important as ‘Knowing several teaching methods’. A high attention to effective 

explanations characterizes cluster 4 as well, but this cluster does not have a particular 

preference for options belonging to the categories of Connection and Contingency. On 

the contrary, Contingency is the focus for the last three clusters, where students from 

Kassel are more present. Members of clusters 9 and 10 often refer to ‘Giving feedback 

about errors’, while cluster 11 selects mostly ‘Valorising students’ interventions’. 

Cluster 7, 8, and 9 pay strong attention to effective explanations. Cluster 7 – the one 

with the highest percentage of respondents form Kassel – often opts for ‘Planning 

with awareness’ and its attention to Foundation is lower than many other clusters.  

Clusters 5 and 6 reflects the composition of the whole sample. Cluster 6 is the one 

giving more credit to knowledge about mathematics (option B) and it is one of the two 

smallest clusters. Cluster 11 is characterized by a high presence of respondents from 

Bozen-Bolzano and by a high rate of selection for option D; this is also the only 

cluster paying a certain attention to answer-options related to Connections. 

DISCUSSION AND CONCLUSION  

Our analysis allowed to observe relevant differences in pre-service teachers’ beliefs 

about features that are decisive both for performing well in mathematics and for a 
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successful mathematics teacher. We obtained six different clusters related to 

mathematics (question B2) and 11 clusters concerning its teaching (question B4).   

Our results show that pre-service teachers from the three universities give less 

importance to natural abilities as basis of success in mathematics (B2). The clusters 

seem to show cultural differences. For example, the clusters more populated by 

students from Kassel are characterized by a strong attention to analytical thinking and 

creativity. By contrast, the percentage of pre-service teachers from Bologna is higher 

in clusters characterized by attention to flexible thinking and affective factors. 

Students from Bozen-Bolzano are almost distributed equally in all the clusters, 

suggesting a mix of beliefs. In relation to the basis for successfully teaching 

mathematics(B4), we observe that Italian speakers have a stronger attention to 

foundations than the German ones. Also, pre-service teachers from Bozen-Bolzano are 

characterized by the strongest attention to connections; a peculiarity of this border-

location differing both from the German context and the context of another Italian 

university. 

Considering together the results of both questions, we can state there are common 

features to all the linguistic and cultural contexts, but also peculiarities. These 

differences may depend on many factors related to the common experiences of the 

group of people attending the same university in the same city, that is what we have 

considered as their culture (Felbrich et al., 2012). Among these experiences we must 

certainly consider schooling and, in particular, the university courses attended by the 

pre-service teachers participating in the research. The organization of their university 

degree cannot be the only source of the observed differences. Indeed, in Italy, Primary 

Education degrees are regulated at national level and so pre-services teachers from the 

University of Bolzano-Bozen attend a degree course that is structurally similar to the 

course of the University of Bologna – the main difference being multilingualism. We 

are not assuming that all the observed differences could be explained in terms of the 

spoken language but, assuming that language is the vehicle of culture (Hofstede, 

1986), we can claim that cultural factors can affect pre-service beliefs even in nearby 

regions, and not only at the global level as most of research has shown up to date (e.g. 

Felbrich et al., 2012). However, more research is needed to better clarify the nature of 

these factors. Furthermore, it is an open question if and how the observed differences 

correlate with other constructs that shape the teachers’ professional lives, namely the 

teachers’ knowledge, emotions, or motivation. 
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WHEN GENDER MATTERS: A STUDY OF GENDER 

DIFFERENCES IN MATHEMATICS 
Ferrara, F., Ferrari, G., Robutti, O., Contini, D. & Di Tommaso, M.L. 

Università degli Studi di Torino, Italy 

 

This paper addresses gender differences in mathematics at the early grades of 

primary school, based on a research study conducted in Italy, in the region with 

the largest gender gap in mathematics in the National panorama. Borrowing 

from the literature around gender and its different conceptualizations, we focus 

attention on the possible relationship between the gap and the cognitive 

demand, task and formulation of mathematical test questions. Restricting the 

analysis to the content area of numbers, the one with the largest gap, we will 

highlight some of the variables that seem to affect the gender gap, arguing for a 

more equitable mathematical practice. 

INTRODUCTION 

In this paper we want to contribute to the current discussion on gender 

differences in mathematics. Differences in mathematical performances in favour 

of boys exist and are considered as having implications on the fact that females 

are substantially under-represented in STEM university subjects and in highly 

innovative and technological careers (Miyake et al., 2010). We refer to the 

difference in mathematical performance between males and females as the 

gender gap in mathematics (GGM). Research has shown that the GGM is a 

matter of concern for policies that address equity both at school and in the 

labour market (Di Tommaso et al., 2018), especially at a time of social crisis, 

like the current one in regard to the pandemic. On the other hand, patterns of 

gendered inequity provide a sobering counterpoint to claims of an equitable 

mathematical experience, thus troubling and disrupting given gender 

performances within contexts and conditions does matter more than ever 

(Walshaw et al., 2017). As Walshaw and colleagues underline, other constructs 

of social difference such as class, race, ethnicity also become significant, as do 

histories of mathematical access, success, production, underachievement or 

exclusion. Speaking of GGM is therefore important in relation to a wider 

perspective of binaries between diversity and equity. 

The latest international assessments of mathematics (like PIRLS and PISA) 

show Italy as one of the countries with the largest GGM. This emerges from the 

primary through upper secondary school test scores. In particular, Italy 

possesses the largest gap among the 57 countries taking part in TIMSS grade 4 

evaluation (Mullis et al., 2016), and is in the second position in the case of 15-

year-old students (OECD, 2016). These results are further problematized 

looking at data from the National Institute for the Evaluation of the Education 

System (INVALSI) in Italy, according to which a GGM is observable since 
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grade 2 and becomes more prevalent during secondary school. The primary 

purpose of this paper is to address issues concerning the GGM in grade 2 in 

Italy, starting from the results of the assessment of mathematics of years 2013 to 

2017. We are particularly interested in studying variables that might affect the 

GGM in this context, and in designing classroom-based interventions to reduce 

it in mathematics. To this aim, the research team is interdisciplinary and 

involves mathematics educators and social economic researchers. In the next 

section, we frame the research study into the literature that we see as relevant to 

highlight and discuss differences between male and female performances in 

mathematics. 

THEORETICAL HIGHLIGHTS 

Much international literature shows unique achievement trends of males and 

females in mathematics and reading across a number of countries (e.g., 

Robinson & Lubienski, 2011; Ajello et al., 2018). Math gaps favouring males 

were found to increase between kindergarten and third grade (Rathbun, West, & 

Germino-Hauskin, 2004). Also, the GGM is particularly pronounced among 

high-performing than among low-performing students and widens as children 

grow older even if it does not widen during lower secondary school (grade 4 

through 8; Contini et al., 2017). In the broader literature, developments in 

gender research endeavour to think differently about the GGM, with 

understandings of gender ranging from biological or cultural and environmental 

factors to family and teacher beliefs and biases, to girls’ low self-confidence 

and self-efficacy in terms of mathematical ability and performance within 

gendered identity-work (Else-Quest et al., 2010; Lubienski et al., 2013). The 

role of stereotypes and other socio-cultural forces is well established (see 

Aronson & Steele, 2005 for a detailed review). Some available research studied 

gender differences in mathematics in relation to performance and highlighted 

that they seem to be related to the cognitive processes that are investigated by 

the question and linked to the type of question. For example, Bolger and 

Kellaghan (1990) discovered that while boys outperform girls in multiple-

choice questions, girls outperform boys on open-ended questions. Other studies 

indicated strong association between aspects of reading and of mathematics 

tests (Marks, 2008; Caponera et al., 2016). Robinson and Lubienski (2011) 

further claimed that given that gender patterns in math performance tend to run 

counter to those in reading, examinations of both subjects together provide a 

more complete picture of girls’ and boys’ learning. Ajello et al. (2018) claim 

that the reading burden of mathematics questions is associated with student 

performance in mathematics, independently of mathematical ability. Due to the 

fact that girls are better performers than boys when facing reading tests, they 

seem to be advantaged in mathematics questions with a high reading demand, 

independent of their level of reading literacy. Questions with a low reading 

demand are instead more in favour of boys. According to Ajello and colleagues 

(2018), question difficulty and task can also be related to such differences, 
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therefore further research should investigate the type of cognitive process 

involved in answering the task, for example whether a computation or problem 

solving. Other research stresses that variations on question formulation affect 

differently male and female performances and that this might be concerned with 

different strategies used by the two populations (e.g., Bolondi et al., 2018). 

Borrowing from these considerations, we shift attention to studying the possible 

relationships between the type of task, formulation and cognitive demand in 

mathematical questions and the existence of a GGM, as we have defined it 

above. In this way, the paper wants: (a) to contribute to current discussions on 

mathematical gender differences at primary school, in a double manner: by 

confirming findings from the literature, and by expanding these focusing on 

variables strictly related to the questions; and (b) to examine the local context of 

Piedmont, which shows to be the Italian region with the largest GGM in grade 

2, supported by territorial funding for dedicated research. In the next section, we 

introduce context and method of the study. 

CONTEXT AND METHOD 

As mentioned above, in our research we take the GGM as the difference 

between average male and female scores in their mathematical performance. 

Our original data source is given by the scores of the National grade 2 

assessment tests of mathematics over the period 2013 to 2017. In order to avoid 

possible bias related to cheating, the estimation sample was reduced to 

including only those classes that were supervised by external inspectors during 

the tests. In addition, the sample was further restricted to a sub-sample including 

only the classes in Piedmont, where we work with an active network of policy 

makers and schools.  

The assessment test of mathematics delivered each year by INVALSI 

approximately contains 25 to 28 questions, each of which can be composed by 

more than one item, like in the case of True or False multiple complex choice 

questions. The scores to which we associate the GGM take into account all the 

items of the grade 2 assessment of mathematics in the period mentioned above, 

for a total of 6.732 observations. The items are associated to a content area, a 

dimension (the main cognitive process implied by the item) and a question 

intent (the item purpose). According to the Mathematics Assessment 

Framework of INVALSI (INVALSI, 2018), which follows the National 

Guidelines for the curriculum, three are the possible content areas for grade 2: 

Numbers, Data and previsions, Space and figures, and three the cognitive 

dimensions: Knowing, Problem solving and Arguing. The question intent is 

concerned with typical forms of mathematical thinking, like text 

comprehension, calculation, use of different representations or measurement 

tools, reasoning, data research, and problem solving. 

Table 1 offers the results of the initial descriptive statistics of our sample by 

content area, with average score and GGM, and the percentage of items for each 

area. The score provided for each student is measured as the percentage of 
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correct answers over the total items. The results show that the average score is 

lowest in the case of Numbers for both males and females, but also contains the 

majority of items. On average, the total gap is 0.028 (2.8 percentage points, or 

p.p.): while females answer correctly to 53.9% of the items, for males we get 

56.7%. Additionally, the area of Numbers has the largest GGM (3.7 p.p.), 

moving us to centre our investigation on this particular area. The number of 

items belonging to Numbers between 2013 and 2017 is 82 (the number of 

observations in the table; each observation was assessed on about 1340 

subjects). Focus was on these items to better understand which of their 

characteristics could partake of the GGM revealed by the statistics. The analysis 

was centred on the study of constant differences in the GGM concerned with 

item characteristics over the entire period rather than on the trend over time. 

Therefore, we adopted a mixed method, both qualitative and quantitative. The 

qualitative part borrows from the literature we refer to and regards an initial 

search for variables that constitute each item formulation and structure, beyond 

those variables that are considered already by the assessment framework. The 

second part of the analysis involves descriptive statistics of all these variables. 

This allows us to study the relationships between the GGM and the type of task, 

formulation and cognitive demand of the mathematical items. 

Variable Overall Males Females GGM (M-F) % items 

Average score 0.554 0.567 0.539 0.028*** 100 

Content area      

  Numbers 0.517 0.535 0.498 0.037*** 56.9 

  Data and previsions 0.614 0.620 0.608 0.012* 16.0 

  Space and figures 0.613 0.618 0.608 0.010** 27.1 

N. observations 6,732 3,387 3,345   
*p-value < 0,10; **p-value < 0,05; ***p-value < 0,01 

Table 1: GGM: Average score (% of correct answers) by content area 

QUALITATIVE ANALYSIS AND VARIABLE IDENTIFICATION 

As anticipated above, we identified the variables that characterise item 

formulation and structure through a qualitative analysis of all the selected items. 

This process brought forth the following as relevant variables: 

A. Cognitive dimension: Arguing, Knowing, Problem solving. 

B. Question intent: Calculation, Text comprehension, Reasoning, 

Different representations, Data research, Problem solving, 

Measurement tools. 

C. Type of item: Open-constructed response, Multiple choice. 

D. Item formulation: Situation, No Situation, Objective, No objective. 

E. Kind of figure: No figure, Drawing, Figure in context, 

Representation. 

While the first three classes of variables (A, B, C) refer to INVALSI framing of 

the items, the other two classes (D, E) were added to account for: the presence 

or absence of a situation which provides the context of the task, or of an 
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objective which gives the aim of the task (D); the absence or presence of a 

figure and the eventual kind of figure (E). We distinguish figures according to 

three kinds: drawings, figures in context, and representations (Fig. 1 shows 

three examples from specific questions of the 2017 assessment test). A drawing 

simply contains a number of objects to which the task refers (asking for 

example to count them, Fig. 1a). A figure in context implies an understanding of 

the sense to attribute to objects in specific contexts (like in the case of money, 

Fig. 1b). A representation requires a step forward to infer the relationships 

between objects (like when lengths of different objects need to be compared, 

Fig. 1c).  
Drawing Figure in context Representation 

 

 
 

item D1, 2017 item D11, 2017 item D21, 2017 

Figure 1: Examples of different kinds of figures 

After this identification process, we selected the particular variables for each of 

the 82 items of our sample and created a table, in which each row refers to a 

specific item Dn while the column cells are targeted with value 0 or 1 

depending on whether the corresponding variable is absent or present in that 

item.   

QUANTITATIVE ANALYSIS AND RESEARCH FINDINGS  

The attribution of values 0 and 1 to item variables was used to develop the new 

statistics for our quantitative analysis through simple linear regression, which 

allowed us to get some descriptive measure of the influence of particular 

variables on the presence of the GGM. In so doing, we focused on the 

difference across single items obtaining some information from which to begin: 

the mean percentage of correct answers across items is 52.5%, while the gender 

gap across items is 0.039; there is large variability embedded in this gap, with 

the minimum -0.10 (in favour of females) and the maximum 0.23 (in favour of 

males). This relevantly suggested that, as a matter of fact, the nature of the 

items (briefly, their formulation and structure) actually affects the gap, although 

without saying in which terms. Investigating the variables above exactly allows 

us to see how and to which extent this occurs. Tables 2 to 4 below help to better 

explain this. In all the tables standard errors are in parentheses and the number 

of asterisks defines how significant the gap is (the lower the p-value the more 

significant the gap is). In particular, Tables 2 and 3 are concerned with the 

influence of the variables from the INVALSI framework, that is, cognitive 

dimension and question intent. Table 4 instead refers to the additional variables 

we identified. 
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Cognitive dimension Item GGM 

Arguing 0.018 (0.015)    

Knowing 0.036*** (0.008) 

Problem solving  0.052*** (0.010) 

Obs. 82    

R2 adj. 0.348    

*p-value < 0,10; **p-value < 0,05; ***p-value < 0,01 

Table 2: Item GGM: influence of Cognitive dimension 

Question intent Item GGM   

Calculation 0.027** (0.011)       

Text comprehension 0.021 (0.018)      

Reasoning 0.012 (0.027)         

Different representations 0.048*** (0.013)   

Data research 0.067** (0.031)   

Problem solving  0.050*** (0.011)   

Measurement tools 0.038 (0.038)   

Obs. 82      

R2 adj. 0.348      

*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01 

Table 3: Item GGM: influence of Question intent 

 Item GGM     

Open constructed-response 0.028***  (0.008)          

Multiple-choice 0.053*** (0.009)          

No situation  0.061*** (0.016)      

Situation  0.035*** (0.006)      

No objective     0.039*** (0.006)     

Objective   0.036** (0.018)     

No figure       0.033** (0.011)   

Drawing    0.010 (0.013)   

Figure in context    0.064*** (0.013)   

Representation    0.045*** (0.010)   

Obs. 82    82 82 82     

R2 adj. 0.364    0.345 0.327 0.386     

*p-value < 0,10; **p-value < 0,05; ***p-value < 0,01 

Table 4: Item GGM: influence of Item type and formulation 

From Table 2 we see that problem solving is the cognitive dimension that 

affects the GGM the most. Table 3 shows that the use of different 
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representations and problem solving are the two most problematic aspects 

implicated by the items concerning the GGM. Regarding item type and 

formulation variables (Table 4), our results confirm (in the local context) the 

findings of the literature according to which males perform better than females 

in answering multiple-choice questions, showing a gap of 53%. On the contrary, 

open constructed-response items are more favourable to females (in fact, the 

gap is 28%). Further, the absence or the presence of a situation does not seem to 

affect the GGM in any particular manner (both contribute to it to an almost 

equal extent), while the presence of an objective seems to act in the direction of 

reducing the gap with respect to its absence (two asterisks instead of three). The 

bearing of a drawing is marginal as regards that of a representation or (even 

more) of a figure in context, while the absence of figures affects the GGM on 

average. These findings move us to make didactical considerations. For 

example, more work with representations seems to be needed within the 

mathematics classroom, both in terms of the treatment of different 

representations and in relation to their meanings, with the aim to reduce the 

documented GGM. Similarly, attention should be devoted to contextualising 

mathematical activity, like in the case that we use figures requiring knowledge 

of the context to be understood. The dimension of problem solving is another 

delicate one that calls for didactical intervention. 

CONCLUSIVE REMARKS  

Our study wants to contribute to existing discussions about gendered disciplines 

by shifting emphasis from available gender research to material, concrete 

experiences of gendered performances in mathematics. Borrowing from the 

existing literature and the findings from these performances, we suggest that 

lines of didactical intervention are needed to deeply engage both females and 

males in mathematical doings. This is particularly relevant in a time of social 

crisis like that of the pandemic, which also showed to intensify differences. A 

rethinking of educational practice is needed towards a more equitable 

mathematics, one that disrupts boundaries to overcome gendered identity 

discourses within the classroom, for example by de-centring consensus about 

practice mainly based on calculation and procedural knowledge and shifting 

attention to problem solving. Focusing on the local context of Piedmont, the 

Italian region with the largest GGM already at grade 2, we offered reflections 

about variables that seem to affect the presence of the gap and that we see as 

relevant to any discourse of mathematics teaching and learning. Future research 

is necessary to widen the horizon on possible interventions and efficiently 

inform policy making in these directions. 
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Sweden has a reputation for its equality work, but at the same time mathematics is 

still considered a male domain. We studied grade nine students’ attitudes about who 

could be considered best in mathematics, both from an individual perspective and how 

they perceived different groups in  society would answer. A questionnaire was used 

and the analysis showed that girls more often think that this is not a matter connected 

to biological sex, whereas boys more often state that boys and girls are equally good. 

Two groups are stereotyped as thinking that boys are better in mathematics both by 

girls and boys: boys in grade nine and boys in general. This is not reflected in their 

self-evaluation. Overall, the students showed an awareness of the concept of gender, 

including some intra-cultural dimensions of the concept. 

INTRODUCTION 

In many western countries, although there is no major differences in achievements in 

mathematics (OECD, 2013), the subject is often considered as a male domain; for 

instance, there are differences in enrolment in various STEM subjects, both at 

undergraduate level and at graduate level (Piatek-Jimenez, 2015), and stereotypical 

symbols have been attributed to boys and girls,  such that boys are creative and girls 

insecure (Walkerdine, 1998; Sumpter, 2016). Another example is that boys express a 

higher degree of ability and self-confidence compared to girls (OECD, 2013). In this 

way, gender is an issue relevant for research and discussion. This is true for Sweden 

too, which is interesting given it is a country with reputation for its work regarding 

gender equality (Weiner, 2005). In the curriculum for Swedish school, we can read 

that teachers should actively work to enhance and develop students’ critical thinking 

about gender stereotypes and this has been a central topic in governing school 

documents for over 50 years (Hedlin, 2013). Previous studies signal that students at 

different ages consider mathematics as a male domain (Brandell, Leder & Nyström; 

2007; Brandell, 2008) including boys reporting higher levels in measures of self-

evaluation (OECD, 2013; Sumpter, 2012), this despite that girls’ grades are higher 

throughout secondary school (age 13-19). At the same time, teachers state that gender 

is not an issue neither in their teaching nor for themselves as teachers (Gannerud, 

2009).  

Therefore, there is a paradox between the social, political norm and the symbols that 

individuals express including gender stereotyping. This paradox invites to further 

study how individuals perceive that different groups in the society view mathematics 

and gender, and how individuals would reply from their own perspective. Here, we 
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would like to study grade nine students’ expressed attitudes with a focus on attributed 

ability in mathematics. Our research questions are: (1) In what way do boys and girls 

attribution differ regarding ability in mathematics?; (2) How do they experience other 

groups attributions?; and, (3) To what extent do students express that this has changed 

over time?. 

BACKGROUND 

Our theoretical starting point is that gender is a social construction more than just a 

consequence of a biological sex, that gender is: 

“a pattern of social relations in which the positions of women and men are defined, 

the cultural meanings of being a man and a woman are negotiated, and their 

trajectories through life are mapped out.” (Connell, 2006, p. 839). 

These social relations include characteristics and traits that are cultural dependent, and 

in a longer time perspective, they create norms. This is a dynamic process meaning 

that the attributions, beliefs, identities, norms etc. are not static and as socially 

constructed differences, they support differences and inequality (Acker, 2006). In 

order to study attributed symbols, a further division of gender is fruitful. Here, we 

follow Bjerrum Nielsen (2003) and divide gender into four different aspects: 

structural, symbolic, personal, and interactional gender. The first aspect, structural 

gender, is about social structures alongside with other factors such as  class end 

ethnicity. One example of structural gender is the ratio men/women in enrolments in 

mathematics. The second aspect is symbolic gender which appears in the shape of 

symbols and discourses. It informs us what is considered normal and what is deviant 

(Bjerrum Nielsen, 2003).  One example is the idea of mathematics as a male domain 

(Brandell, Leder & Nyström, 2007; Brandell, 2008). Symbols as such can be very 

powerful; studies have shown that the main reason for gender imbalance at university 

level is the explanation for success that uses the two symbols ‘the hard working 

female’ (e.g. Hermione Granger) and ‘the male genius’ (e.g. Sherlock Holmes)  

(Leslie, Cimpian, Meyer & Freeland, 2015). The third aspect is personal gender which 

looks at how individuals perceive the structure with its symbols (Bjerrum Nielsen, 

2003). Given it is a dynamic process, the structure and symbols can influence and 

change which in turn affects personal gender.The following quote illustrates the 

experience of not fitting in to the created norm: 

An advantage of being male would be to have been more encouraged to pursue a 

career in mathematics/engineering/technology. I would also have fitted in at high 

school better than I did—my Years 9 and 10 were spent on an all-girls campus 

where it was supremely uncool to be good at maths and science (Leder, 2010, 

p.453).  

The last aspect described by Bjerrum Nielsen (2003) is interactional gender which 

focus on interactions of individuals within the structure with its symbols. In the 

present paper, we are interested in how individuals perceive themselves in the 

structure (i.e. personal gender) and symbols including stereotyping (i.e. symbolic 

gender).  
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METHODS 

The first step towards the data collection was a pilot study where a well-known 

questionnaire was used with the intention to reproduce studies of individual’s attitudes 

about gender and mathematics (e.g. Gómez-Chacón, Leder & Forgasz, 2014). 

However, although following “good practices”, the results indicated several 

limitations and not just intercultural differences but also intracultural (Nortvedt & 

Sumpter, 2017). The feedback stressed that “you can’t ask question like this” meaning 

a revision was needed to make the questionnaire function in a Nordic context. A 

literature review showed that most prior research treat gender as a cultural-neutral 

construct and do not consider cultural dimensions: that questionnaires very seldom 

gave the respondents opportunities to demonstrate knowledge about gender beyond 

the classic male –female dichotomy or nuances in gender symbolism. (Sumpter & 

Nortvedt, 2018). We therefore applied  Clarke (2013)’s seven dilemmas: (1) Cultural-

specificity of cross-cultural codes; (2) Inclusive vs Distinctive; (3) Evaluative Criteria; 

(4) Form vs Function; (5) Linguistic Preclusion; (6) Omission; and, (7) Disconnection. 

One solution to meet some of these dilemmas were to apply vignettes.  One example 

is the first question, Question 1a, “Who is best in mathematics, boys or girls?” with an 

vignette saying that different groups in the society might have different views of who 

is considered able in mathematics. By adding such a vignette, the question allow the 

respondent to express perceived gender stereotyping from others whilst expressing a 

personal attitude that might differ. The pilot study indicated that the questionnaire did 

allow students to demonstrate their awareness of a range of culturally rooted 

differences in attitudes towards boys’ and girls’ abilities to learn mathematics 

(Nortvedt & Sumpter, 2018).  

To answer the research questions in the present paper, we will focus on Question 1a, 

“Who is best in mathematics, boys or girls?”, Question 1b, “Do you think this has 

changed over time?” where the latter also allowed qualitative responses. We also 

analyse the responses to one of the background questions which was a self-evaluation. 

The data comes from lower secondary school students (grade 9; age 15; n=241) from 

seven schools in different locations in Sweden (north/south; rural/town/city). Given 

that online surveys have less response rate (Fan & Yan, 2010), the first author used 

personal contacts to find participating schools. Ethics rules provided by Swedish 

Research Council were followed. This means that those students who had not turned 

15 before December 2019 could not participate, which according to Statistics Sweden 

should be around 6% of the population meaning two students per class. The statistical 

analysis of the replies used stated gender (boy/girl) as a factor (n=222) and we applied 

chi-squared test to analyse where girls’ replies differ from boys. The qualitative 

responses were analysed using inductive thematic analysis (Braun & Clarke, 2006), 

and then compared to previous research as a second step. This means that we searched 

for similarities and differences in the written replies, gathering similar statements 

using a coding scheme. One example are statements that could be connected to a 
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broader theme describing gender as a dynamic concept, where the codes were words 

like “change” or “difference”. In this way, disjoint themes were created.  

RESULTS 

The first set of results focus on the attribution of ability in mathematics meaning the 

responses to the question “Who is best in mathematics, boys or girls?”. In Table 1, G 

stands for Girls and B for Boys:  

Groups Girls are best Boys are 

best 

They are 

equally 

good 

It is not 

about 

sex* 

I’m not 

sure 

p 

Girls in 

grade 9 

G: 27(24.5%) 

B: 57(53.3%) 

7(6.4%) 

5(4.7%) 

19(17.3%) 

14(13.1%) 

50(45.5%) 

27(25.2%) 

7(6.4%) 

4(3.7%) 

<0.05 

Boys in 

grade 9 

G: 17(15.6%) 

B: 23(21.9%) 

49(45.0%) 

45(44.9%) 

19(17.4%) 

14(13.3%) 

19(17.4%) 

18(17.1%) 

5(5.0%) 

5(4.8%) 

>0.05 

Dads G: 7(6.5%) 

B: 17(16.3%) 

21(19.4%) 

27(26.0%) 

31(28.7%) 

30(28.8%) 

36(33.3%) 

24(23.1%) 

13(12.0%) 

6(5.8%) 

<0.05 

Mums G: 12(24.5%) 

B: 23(53%) 

1(0.9%) 

9(8.7%) 

31(28.7%) 

40(38.5%) 

59(54.6%) 

28(26.9%) 

5(4.6%) 

4(3.8%) 

<0.05 

Male 

teachers 

G: 14(13.1%) 

B: 17(16.5%) 

10(9.3%) 

14(13.6%) 

31(29.0%) 

36(35.0%) 

48(44.9%) 

32(31.1%) 

4(3.7%) 

4(3.9%) 

>0.05 

Female 

teachers 

G: 10(9.3%) 

B: 23(28.7%) 

3(2.8%) 

7(6.7%) 

32(29.9%) 

41(39.4%) 

57(53.3%) 

28(26.9%) 

5(4.7%) 

5(4.8%) 

<0.05 

Girls in 

general 

G: 31(28.7%) 

B: 44(42.3%) 

10(9.3%) 

8(7.7%) 

19(17.6%) 

25(24.0%) 

36(33.3%) 

14(13.5%) 

12(11.1%) 

13(12.5%) 

<0.05 

Boys in 

general 

G: 24(22.2%) 

B: 18(17.5%) 

40(37.8%) 

40(38.8%) 

17(15.7%) 

22(21.4%) 

18(16.7%) 

12(11.7%) 

9(8.3%) 

11(10.7%) 

>0.05 

You G: 7(6.6%) 

B: 12(11.4%) 

2(1.9%) 

18(17.1%) 

13(12.3%) 

24(22.9%) 

81(76.4%) 

37(35.2%) 

3(2.8%) 

14(13.3%) 

<0.05 

 

 

Table 1: Responses to “Who is best in mathematics?”, n(%). Total responses differ 

from 106-110 (girls) and 103-107 (boys).*In Swedish, there is a difference between 

gender (‘genus’) and biological sex (‘kön’) 

The majority of boys and girls attributes no gender, both regarding what they think 

other groups would answer but also in their own responses. It is interesting to note 

that one difference between girls and boys is that girls more often has their main 

response ‘It is not about gender’ more often than boys, whereas boys more often 
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choose ‘they are equally good’. A few results stand out: both girls and boys reply that 

boys in grade nine and in general would reply that they are better. However, when 

responding as themselves (as ‘you’), this is not reproduced. Instead, the majority of 

boys (58.1%) think it is not a question about sex or that boys and girls are equally 

good. Here, there is a difference between what is attributed to boys as a symbol and 

what could be considered as a personal view on a group level. Continuing with self-

confidence and stereotyping, boys more often reply that girls in grade nine and in 

general would answer that girls are best in mathematics, a response pattern girls do 

not repeat. An interesting symmetry which is statistical significant appears in the 

responses about what the students think that mums and dads would reply: both boys 

and girls state that fathers would pick boys as better in mathematics, and for mothers 

to pick girls. This symmetry is not repeated regarding female and male teachers.  

On the question whether this has changed over time, girls and boys differ in their 

responses, Se Table 2: 

 Yes No I’m not 

sure 

p 

Girls 85(75.9) 9(8.0) 18(16.1) <0.05 

Boys 56(50.9) 22(20.0) 32(29.1)  

 

 

Table 2: Changed over time n(%) 

Although the majority of both groups states “Yes”, girls do it more so. In the 

motivations why, the analysis generated three themes. The first theme is based on the 

idea that things do change over time, especially stereotypes:  

I believe that before, one thought that boys were better. Women have always been 

oppressed and lads were the ones who got to show that they could do maths. Lately, 

I think that girls also have had a chance to show that they are good at maths and 

humans have realised that the difference is not so big [Girl 1]; I think that 

everything depends on the stereotypes what is male and [what is] not. We have 

[previously] related that men are often best in mathematics since they used to be 

[Boy1]. 

Both these motivations show an awareness of gender as a dynamic concept and that 

stereotyping is a part of the this changes of power. The second category is about boys 

and symbols attributed to boys: 

I believe that boys normally are less interested [in school] than girls and therefore 

are looked upon as worse than girls. Guys live a life where you should not care 

about school to be considered cool. [Boy2] 
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In this response, there is an awareness about the relationship between symbolic gender 

and personal gender. The third theme is that biological sex is irrelevant: 

Biological sex should not determine your knowledge in math and there is no sex 

better than the other. [Girl2]  

Since Swedish language uses different words for gender and biological sex, the focus 

here is that biological sex is extraneous in this matter. That doesn’t imply that gender 

is not relevant. 

Table 1 indicates that both boys and girls more often connect boys with the reply 

‘Boys are best’, but when looking at responses from a personal view, this is not 

repeated. As a final measure, we studied girls and boys responses regarding self-

evaluation (see Table 3): 

 Very good Good Average Below 

average 

Weak p 

Girls 13(11.7) 34(30.46) 39(35.1) 12(10.8) 13(11.7) >0.05 

Boys 19(17.1) 26(23.4) 40(36.0) 10(9.0) 16(14.4)  

 

Table 3: Self-evaluation n(%) 

In Table 3, most responses are ‘Good’ or ‘Average’ and the results do not 

significantly differ. As a summary, the students participating in this study indicated 

that overall, gender is not a determining factor or there is no difference between boys 

and girls. In their written motivation, they showed great awareness of gender as a 

dynamic concept. However, their responses still signalled that boys, as a group, would 

think that they are better in mathematics, either as a sign of self-confidence or ability.  

DISCUSSION 

Here, grade nine students’ attitudes about boys, girls and mathematics were studied 

with a focus on who could be considered better in mathematics: boys or girls, if they 

were equally good or if the question was not about biological sex at all. The majority 

of the respondents picked the latter two categories, but there were some differences in 

their response patterns. One pattern is that although the majority of responses, both 

from boys and girls, signal that neither boys nor girls are better at mathematics, boys 

more often answered that boys and girls are equally good and girls more often state 

that this is not about sex. When one take this result in comparison with  gender 

theories (e.g. Acker, 2006; Connell, 2006), it could be seen as a difference between 

the level of understanding of gender; that boys more often signal that there is a gender 

division whereas girls more often state that such division is not fruitful. Both groups, 

however, turn to traditional stereotypical patterns when answering the questions from 

a group perspective of boys in grade 9 and boys in general. Both groups are connected 
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to the statement ‘Boys are best’. This is in line with previous reports that boys more 

often than girls opt for higher levels in self-evaluations (OECD, 2013; Sumpter, 

2012). This it is not repeated when boys answer from a personal perspective: girls and 

boys responses in the self-evaluation do not differ. Here, we have a variation between 

what is attributed and what is reported from an individual perspective. Boys also 

attribute similar gender stereotyping to girls, which girls do not repeat. This difference 

needs to be further investigated since it can inform us about intra-cultural tensions 

(e.g. Clarke, 2013; Nortvedt & Sumpter, 2017) or, in the light of Bjerrum Nielsen 

(2003) different aspects of gender, relationships between symbolic gender and 

personal gender.  

When the students responded what they think their parents would reply, a symmetry 

appeared: fathers would say that boys are better in mathematics and mothers would 

choose girls. However, this symmetry should be viewed from the perspective that 

most of the students state that parents would express gender neutral attitudes. One 

possible explanation could be found in the written motivations where the main theme 

was that gender stereotypical views has changed in the society as a whole. The 

awareness of gender as a social construct, and not just a division of sex, among the 15 

year olds participating in this study was impressive. When comparing to Gannerud’s 

(2009) study where the teachers answered that gender is not an issue since the society 

is already equal, the students talked about an awareness of change including less 

oppression and how power has shifted (e.g. Acker, 2006). One possible explanation 

could be that this is a reflection of gender equality work in Swedish schools (e.g. 

Hedlin, 2013) or that progress has continued (e.g. Brandell, 2008). One implication is 

that if teachers want to fulfil the goals of the curriculum where it states that they 

should help students to critically analyse and discuss gender issues, they should be 

aware of that the students might have a developed gender view but that old stereotypes 

could still exists within this view.   
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Being able to analyse classroom situations forms an essential part of teacher 

expertise. Research into the development of what teachers identify and interpret 

as relevant for students’ learning merits, consequently, particular attention. 

Building on our prior research, this longitudinal study investigates N=100 

teachers’ analysing regarding the use of multiple representations and its 

development in the first year of teaching (induction phase). A vignette-based 

test with 12 classroom situations from the content areas fractions and functions 

was administered at two points of measurement. For each of the situations, the 

participants were asked to evaluate the observed use of representations. The 

findings show little growth in the teachers’ analysing as well as differences 

between analysing vignettes dealing with fractions or functions.   

INTRODUCTION 

Teachers’ analysing of classroom situations informs teaching decisions and is 

therefore highly relevant for instructional quality and student learning (e.g., 

Kersting et al., 2012; Sherin, Jacobs & Philipp, 2011). In the mathematics 

classroom, the essential role of multiple representations draws specific attention 

to teachers’ corresponding competence of analysing: Learning mathematics 

requires the use of multiple representations in a flexible and controlled manner 

(Acevedo Nistal et al., 2009). The complex cognitive demands related to 

changes between different representations can, at the same time, cause 

difficulties and hinder students’ learning (Ainsworth, 2006; Duval, 2006). 

Consequently, the competence to analyse the use of multiple representations 

can be described as an important aspect of mathematics teachers’ expertise 

(Friesen & Kuntze, 2016; Friesen, 2017).  

The study presented in this paper builds on our research into teachers’ 

competence of analysing and addresses in particular the development of such 

competence in the first year of teaching, the so-called induction phase in 

Germany. In most of the German federal states, an induction phase follows the 

university part of teacher education: For a period of mostly 18 months, the 

prospective teachers teach at a reduced level of hours and are supervised by a 

mentor, usually an experienced teacher in the subject. One day per week, they 

attend courses on mathematics education. The Standards for Teacher Education 

(here: for the Federal State of Baden-Wuerttemberg) highlight the importance of 

developing mathematics teachers’ competence of analysing during the induction 
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phase and explicitly describe analysing the use of representations in the 

mathematics classroom as an essential learning goal. There is, however, not 

much evidence how that important aspect of mathematics teachers’ professional 

competence develops in the first year of teaching. We addressed that need for 

research and describe the theoretical framework, the design of the study and 

selected results in the following. 

ANALYSING THE USE OF MULTIPLE REPRESENTATIONS 

The use of multiple representations plays a crucial role for the teaching and 

learning of mathematics. As mathematical objects are abstract in nature, they 

can only be accessed by using representations (e.g., Goldin & Shteingold, 

2001). According to Duval (2006), representations can stand for mathematical 

objects and often use so-called representation registers (e.g., oral or written 

language, symbols, drawings, diagrams, graphs, etc.). Since changing between 

representation registers is often a key to solving problems and mathematical 

understanding (Ainsworth, 2006), the use of multiple representation registers 

can be regarded as indispensable for the teaching and learning of mathematics. 

Teachers and students generate and use multiple representations for introducing 

new topics, for explaining, for solving problems and for sharing ideas in the 

classroom, among others (Duval, 2006; Acevedo Nistal et al., 2009).  

Numerous studies have shown, however, that using multiple representations of a 

mathematical object and changing between them involves high cognitive 

demands for the learners (Ainsworth, 2006; Duval, 2006). The changes between 

different representation registers, so-called conversions, can consequently lead 

to serious problems in understanding, e.g., when students fail to see how 

representations of the same mathematical object in different registers (e.g., 

verbal explanation, written symbols and drawing) are connected (Duval, 2006). 

For this reason, mathematics teachers have to be able to analyse classroom 

situations regarding the use of multiple representations to support their students 

in connecting different representation registers when conversions are carried out 

(Friesen & Kuntze, 2016). Based on the concept of teacher noticing (e.g., 

Sherin, Jacobs & Philipp, 2011), we described such ability as teachers’ 

competence of analysing the use of representations, in particular regarding 

learning obstacles arising from conversions between unconnected representation 

registers (Friesen & Kuntze, 2016). In earlier research, we found that such 

competence can be described empirically through a one-dimensional Rasch 

model (Friesen, 2017).  

Although analysing classroom situations as described above is regarded as 

highly relevant for the learning of mathematics, corresponding studies have 

found that both pre-service and in-service teachers often lack such competence 

(e.g., Friesen, 2017). Since it can be expected that practice-based learning 

opportunities can lead to further development in teachers’ analysing (cf. 

Stahnke, Schueler & Roesken-Winter, 2016), this study aims at contributing to 
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the field by addressing how teachers’ competence of analysing focusing on the 

use of representations develops in their first year of teaching. 

RESEARCH INTEREST AND RESEARCH QUESTIONS 

In previous studies, we used cross-sectional designs to compare pre-service and 

in-service teachers’ competence of analysing classroom situations regarding the 

use of multiple representations (e.g., Friesen, 2017). There is hence still a need 

for longitudinal studies allowing the assessment of teachers’ analysing at 

several points of measurement to better describe its development; also the role 

of specific learning opportunities can thus be taken into account (specific course 

contents related to the use of representations as well as teaching practice 

regarding particular content areas). Most studies investigating teachers’ 

analysing address only one particular content area, such as fractions, geometry, 

arithmetic or functions (cf. Stahnke, Schueler & Roesken-Winter, 2016). We 

were consequently particularly interested in comparing the development of 

teachers’ analysing in two content areas (fractions and functions). 

Consequently, this study addresses the following research questions: (A) How 

does teachers’ competence of analysing the use of representations develop 

during the first year of teaching (induction phase)? (B) Does teachers’ 

competence of analysing develop differently in the two content areas fractions 

and functions? (C) What is the role of specific learning opportunities (course 

content, teaching practice in the two content areas during induction phase) in 

the context of questions (A) and (B)? 

SAMPLE AND METHODS  

The data analysed in this study was collected from N=100 teachers (61.0% 

female; Mage=26.8; SDage=4.3) in their induction phase for teaching 

mathematics at secondary level (grades 5–10). The teachers’ competence of 

analysing was assessed at two points of measurement using a vignette-based test 

instrument (pre-test: at the beginning of the induction phase; post-test: 12 

months later). Vignettes can represent classroom practice in different formats 

(video, cartoon, text) and offer various possibilities for eliciting teachers’ 

analysis of classroom situations in systematically designed research settings 

(Buchbinder & Kuntze, 2018). In our prior research (Friesen, 2017), we could 

show that different vignette formats are equally suitable for eliciting teachers’ 

competence of analysing regarding the use of representations. Accordingly, we 

used twelve purposefully designed vignettes in the formats cartoon and text that 

represented mathematics classroom situations with a similar narrative: A group 

of students struggle with solving a task, they show the teacher their work in a 

certain representation register (e.g., calculation, written symbols) and ask the 

teacher for help. The teacher tries to support the students by unnecessarily 

changing the representation register (e.g., by making a sketch or drawing). 

However, the teacher does little to connect the students’ representations with 

this new representation and there is no specific support for the students to see 

that the different representations belong to the same mathematical object. Based 
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on the theory of learning with multiple representations as outlined above, such 

unconnected conversions are very likely to cause further problems in students’ 

understanding. 

The vignettes (Figure 1; cf. Friesen, 2017) were administered in a paper-and-

pencil test and the participants of the study were asked to evaluate the vignette 

teachers’ teaching in the twelve different classroom situations (six situations 

each from the content area of fractions in grade 6 and functions in grade 8). 

Each vignette was followed by an open-ended question (How appropriate is the 

teacher’s response in helping the students to solve the task? Please evaluate the 

use of representations and give reasons for your answer.) and four rating-scale 

items (e.g., By using an additional representation, the teacher supports the 

students’ understanding). 

          

Figure 1: Sample vignettes (left: cartoon-based function vignette; right: text-

based fraction vignette; drawings by Juliana Egete) 

In a prior study with N=175 mathematics teachers (Friesen & Kuntze, 2020), 

the empirical item difficulties of the twelve vignettes were computed using IRT 

scaling. Accordingly, different booklets for the pre-test and post-test were 

designed (eight vignettes at each point of measurement, four anchor items) to be 

able to control for test repetition effects (see Figure 2 for the design of the 

booklets). 

 
Figure 2: Design of the test booklets in pre-test and post-test (T: text-based, C: 

cartoon-based; 1–6: vignette numbers in the content areas of fractions or 

functions) 

To examine the role of specific learning opportunities for the development of 

the participants’ competence of analysing during their induction phase, they 

were asked in the post-test: (1) if multiple representations and their use had 

been provided as a course topic during induction phase and (2) if and how long 

(instruction time per week) they had collected experience in teaching fractions 

and/or functions. 
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DATA ANALYSIS AND SELECTED RESULTS 

The rating-scale items were scored dichotomously to examine if the participants 

of the study have perceived the potentially hindering changes of representations 

in the classroom situations in their analysis. This coding resulted in a maximum 

of eight points per measurement. Taking into account the design as shown in 

Figure 2, we analysed the data from pre-test and post-test using the joint 

calibration method (Wu, Tam & Jen, 2016). We could find a good compatibility 

with the Rasch model (0.88 ≤ wMNSQ ≤ 1.12; -1.2 ≤ T ≤ 1.7; cf. Bond & Fox, 

2015), indicating that the scores from pre-test and post-test can be modelled on 

a joint scale. Since the study contained vignettes from two different content 

areas (fractions, functions), we compared a one-dimensional model (containing 

all vignettes) with a model including two subdimensions (subdimension 1: 

fraction vignettes, subdimension 2: function vignettes). The model with 

subdimensions takes into account the potentially higher local dependencies 

amongst vignettes from the same content area (cf. Hartig & Höhler, 2009). The 

comparison of the two models indicated no significant difference (χ2(2)=3.70, 

p= .157). Since good fit values for the Rasch model could be found, we were 

able to use the raw scores for the following analysis to compare the results from 

pre-test and post-test.  

To answer research question A and B, we compared the participants’ scores for 

their competence of analysing between pre-test and post-test. The findings 

revealed different developments of the participants’ competence of analysing in 

the two content areas under investigation: Only in the content area of functions, 

a significant increase in the analysing scores could be found (Mpre=2.17, 

SDpre=1.11; Mpost=2.57, SDpost=1.19; F (1, 99)=8.800; p= .004), indicating a 

small effect (d= .308).  

 
Figure 3: Scores in pre-test and post-test: means and their standard errors  

Figure 4 and 5 illustrate these findings with sample answers to the open-ended 

items. As reported above, each of the vignettes was followed by the question: 

How appropriate is the teacher’s response in helping the students to solve the 

task? Please evaluate the use of representations and give reasons for your 

answer. Figure 4 shows a participants’ responses to a fraction vignette (C2 in 

Fig. 2) from pre-test and post-test. At both points of measurement, there is no 
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indication for a successful analysis regarding the use of representations: In the 

pre-test, the vignette teacher’s reaction to the students’ question is evaluated as 

“good”. Although the change of representations is described, its potentially 

obstructing role for the students’ understanding is not mentioned. In the post-

test, the answer focuses only on the potential of the bar model used by the 

vignette teacher, the change of representations is no longer mentioned. 

                  
Figure 4: Sample answers (pre and post) to the same fraction vignette  

Figure 5 shows another participants’ answers to a function vignette (C2 in Fig. 

2) illustrating the pre-service teachers’ growth in analysing this classroom 

situation: In the pre-test, the vignette teacher’s change of representation from 

equation to graph is mentioned but evaluated as helpful for the students’ 

understanding. The answer from the post-test indicates that the participant 

analysed both the students’ problem in understanding and the teacher’s reaction. 

The participant acknowledges the role of using another representation for 

helping the students in this situation, however, he also describes the lack of 

explanation when the change of representation is carried out. The missing 

connection between the students’ question and the teacher’s reaction is 

highlighted additionally by mentioning that the students’ question was not 

answered.  

 
Figure 5: Sample answers (pre and post) to the same function vignette 

To answer research question C, the items addressing the specific learning 

opportunities during the participants’ induction phase were examined. 58.0% of 

the participants reported that one of the weekly courses (lasting about two 

hours) focused on representations and their use in the mathematics classroom or 

that this topic was discussed frequently, regardless of grade level or content 

area. Asked about their teaching experience, 45.0% of the participants stated 

that they had taught fractions in grade 6 (or 7) and 23.0% stated they had taught 

functions in grade 8 (or 7) during their induction phase. This corresponded to a 

reported instruction time of four to five lessons per week. Examining relations 
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between the reported learning opportunities and the teachers’ post-test scores 

did, however, not yield statistically significant findings in terms of correlations 

or systematic relations in contingency tables.   

DISCUSSION 

Before we discuss the findings of the study, we would like to address its 

limitations. The vignette-based test is restricted to analysing the use of multiple 

representations in classroom situations from the content areas of fractions and 

functions. Since the sample is not representative for German mathematics 

teachers, conclusions should be drawn with care. Despite these limitations, we 

could find answers to our research questions: The results from the rating-scale 

items indicate that there was on average only little development in the pre-

service teachers’ competence of analysing during their induction phase. 

Furthermore, it could be shown that the development differed in the two content 

areas under investigation: Significant growth in the participants’ competence of 

analysing (indicating a small effect) could only be found in the content area of 

functions. However, no systematic relations of the teachers’ competence of 

analysing with any of the reported learning opportunities (teaching experience, 

course contents) could be revealed. Deepened analyses of the answers to the 

open-ended items might provide additional insight into the development of the 

teachers’ competence of analysing in their first year of practice since they allow 

to explore participants’ reasoning and also related difficulties in more detail. 

The findings of the study encourage further research into effective learning 

opportunities for facilitating teachers’ analysing during their induction phase, a 

phase during which teachers are particularly required to connect classroom 

observations with the professional knowledge developed at university. Our prior 

research related to developing such analysing in the context of teacher 

education courses (e.g., Friesen, Dreher & Kuntze, 2015) showed, for example, 

how (video) vignettes can be used to foster student teachers’ growth in 

analysing. We expect further insight how prospective and early career teachers 

can be supported in analysing classroom situations from follow-up studies 

carried out in the ERASMUS+ project coReflect@maths (Digital Support for 

Teachers' Collaborative Reflection on Mathematics Classroom Situations).  
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Research in teacher education over the past ten years has led to policy and practice 

implications for learning and instruction, including institutionalization of the world’s 

first academic program in ethnomathematics. The ethnomathematics program at the 

University of Hawai‘i empowers teachers as leaders to align professional practices 

with state and national standards via the innovative design, implementation, and 

assessment of culturally-sustaining research and praxis in formal and informal, place-

based contexts. The mission and vision of the program are inspired by its role in the 

worldwide voyage of the traditional canoe Hōkūle‘a, bridging Indigenous wisdom and 

21st century interdisciplinary knowledge and action toward the transformational 4th 

Industrial Revolution. The underlying goal is a shared commitment to equity, 

empowerment, and dignity for all. 

FOCUS AND OBJECTIVES 

Three decades after the 1984 International Congress on Mathematical Education’s 

declaration of “mathematics for all,” we have come to understand that mathematics is 

undergoing one of the most critical periods in its recorded history (Bishop, 1988; 

NSTC, 2018). The U.S. National Science & Technology Council’s Strategy for STEM 

Education (2018) is to “provide all Americans with lifelong access to high-quality 

STEM education, especially those historically underserved and underrepresented in 

STEM fields and employment…[and] an urgent call to action for a nationwide 

collaboration with learners, families, educators, communities, and employers—a 

“North Star” for the STEM community as it collectively charts a course for the 

Nation’s success” (p. v). The current era emphasizes the “dreams, possibilities, and 

necessity of public education,” and the role of mathematics in influencing the 

equilibrium of achievement (Weiss & Miller, 2006). 

The goal of this paper is to discuss how knowledge and action for change are achieved 

through professional practice in ethnomathematics, in an ongoing process of 

navigating toward the “North Star” in Hawai‘i and the Pacific (Furuto, 2018; Tuhiwai 

Smith, 1999). Specifically, our research has developed new theoretical insights into 

honoring and sustaining non-Western systems based on examples in mathematics 

teacher education. The premise is that “Mathematics is powerful enough to help build 

a civilization with dignity for all, in which ethnomathematics practices encourage 

respect, solidarity, and cooperation…in the pursuit of peace” (Rosa, D’Ambrosio, 

Orey, Shirley, Alangui, Palhares, & Gavarrete, 2016, p. ix). Our vision is grounded in 

a shared commitment to equity and empowerment, as required to responsibly and 
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ethically navigate toward the 4th Industrial Revolution (Maynard, 2015; Rosa et al., 

2016). 

THEORETICAL FRAMEWORKS 

Ethnomathematics is real-world problem-solving that empowers locally-minded, 

global citizens through interdisciplinary learning that is connected to the ecological, 

cultural, historical, and political contexts in which schooling takes place (Gutiérrez, 

2017; Rosa et al., 2016). Over the past three decades, research in teacher education 

has emerged to promote development in the areas of equity, empowerment, and 

ethnomathematics, including: culturally relevant pedagogy (Ladson-Billings, 1995), 

engaged pedagogy (hooks, 1994), critical care praxis (Powell & Frankenstein, 1997), 

and culturally sustaining pedagogy (Paris, 2012). According to Paris (2012), 

“Culturally sustaining requires that our pedagogies be more than responsive of or 

relevant to cultural experiences and practices…it requires that they...simultaneously 

offer access to dominant cultural competence” (p. 95). 

Research in Hawai‘i and Pacific communities demonstrates the importance of 

culturally sustaining pedagogy as we strive toward social justice and overcome deficit 

theories (Furuto, 2014; Kanaʻiaupuni, 2005). Through interconnected work with 

educational institutions, research organizations, and community partners, we have 

created an ethnomathematics program to further a deeper understanding of the 

psychological and other aspects of teaching and learning mathematics and the 

implications thereof (Adler & Venkat, 2014). 

A tradition that runs deep in Indigenous peoples of Hawai‘i and the Pacific for over 

2,000 years is deep sea voyaging by celestial navigation without modern navigational 

tools (Finney, Kilonsky, Somsen, & Stroup, 1986). Traditional wayfinding is guided 

by the sun, moon, stars, winds, currents, and mathematical modeling. When the 

navigation renaissance began in the early 1970s by the Polynesian Voyaging Society 

(PVS), Native Hawaiian and others voyaged to prove that purposeful migration 

occurred across the Pacific (PVS, 2016). Now, with the tradition of wayfinding 

revived and thriving, the voyages allow new generations to honor and sustain 

knowledge, culture, and values through education. The PVS prototype canoe Hōkūle‘a 

has sailed over 160,000 nautical miles and spawned a legacy of more than 25 deep sea 

voyaging canoes birthed across 11 Pacific Island nations (Finney et al., 1986; Furuto, 

2018). Hōkūle‘a serves as a powerful vehicle to draw on the strengths of our Pacific 

histories, identities, and cultures, and broadens the participation of groups historically 

underrepresented in mathematics. 

Hōkūle‘a’s most recent voyage circumnavigated the globe from 2013–2017 with a 

mission to mālama honua—to “care for Island Earth” and all people and places as 

‘ohana (“family”). The lead author was an apprentice navigator and education 

specialist on the voyage, sailing with leaders such as the Archbishop Desmond Tutu, 

His Holiness the 14th Dalai Lama, and United Nations (UN) Secretary General Ban 

Ki-moon. From outside the UN Headquarters on World Oceans Day 2016, Ban Ki-

moon stated, “I am honored to be part of the Mālama Honua Worldwide Voyage. I am 
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inspired by its global mission, and support our common cause of ushering in a more 

sustainable future and a life of dignity for all through education.” 

SETTING AND SIGNIFICANCE OF WORK 

Knowledge and action for enduring, transformational change toward the 4th Industrial 

Revolution comes from working with and learning from the populations we are 

endeavoring to serve, and co-constructing thinking skills necessary for the future 

(Powell & Frankenstein, 1997). According to Jaworski, Wood, and Dawson (1999), 

“In-service providers cannot just ‘deliver’ a course or workshop. They must become 

part of learning communities” (p. 12). This is what we have strived to do by bringing 

the voyages back to land. 

Hawai‘i’s population is among the most diverse in the nation. The breakdown is 

Caucasian (25%), Filipino (15%), Japanese (14%), Native Hawaiian/Pacific Islander 

(10%), and others (U.S. Census Bureau, 2010). There are a range of schools classified 

as urban, suburban, and rural. The Hawai‘i State Department of Education (HIDOE) 

serves many students in poverty, and 47% receive free and reduced lunch (HIDOE, 

2020). Moreover, Hawai‘i is the only statewide school district in the nation, and 

operates a single public higher education system at the University of Hawai‘i (UH). 

The data and context make Hawai‘i a valuable study, and provide a significant lens 

into the future of diversity in the U.S. with global implications. 

In Fall 2013, the PVS Promise to Children was authored by educational leadership in 

Hawai‘i and the Pacific, including the HIDOE Superintendent and UH system 

President who participated as crew members on the Mālama Honua Worldwide 

Voyage. This alliance spans early childhood education through graduate studies (P–

20), public and private sectors, and invites new partners to achieve collective impact 

(Kania & Kramer, 2011). As a result of P–20 collaborations, the HIDOE created 

learning outcomes to inform policy at the statewide level. Nā Hopena Aʻo (2015) is a 

framework to honor the unique context of Hawai‘i’s Indigenous language and culture. 

Similarly, interwoven in the UH System Strategic Directions 2015–2021 (2015) are 

key imperatives to being a foremost Indigenous-serving institution and advancing 

sustainability, with the Mālama Honua Worldwide Voyage as a catalyst.  

The College of Education at the UH system’s flagship campus, UH Mānoa, is ideal to 

help achieve P–20 knowledge and action for change through ethnomathematics. The 

College of Education directs teacher preparation programs, curriculum design, and 

research projects in Hawai‘i and U.S. affiliated Pacific Islands. It produces more than 

65% of Hawai‘i’s teaching force and prepares professionals to contribute to a just, 

diverse, and democratic society across the Pacific (UH IRO, 2020). 

RESEARCH METHODS AND DATA  

The Ethnomathematics Institute was developed to bring together research institutions, 

cultural practitioners, and community-based organizations in support of undergraduate 

STEM majors at UH West O‘ahu (2008-2013), and later, transitioned to UH Mānoa to 

strengthen professional development for P–20 STEM educators (2013-2018).  Grant 

funding was provided over the years by the National Science Foundation and U.S. 

Department of Education, among others. 
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The main objectives of the institute were to: (1) explore promising practices in 

historically marginalized populations in alignment with national and state standards, 

such as Mathematics Common Core State Standards (CCSS), Next Generation 

Science Standards (NGSS), and Nā Hopena Aʻo (HĀ); (2) prepare teachers as leaders 

to provide ethnomathematics instruction and professional development in their 

schools and communities that are relevant, contextualized, and sustainable; and (3) 

strengthen campus-community partnerships to build sustainable networks within 

Hawai‘i and the Pacific. 

From 2013-2018, the participants in the Ethnomathematics Institute represented a 

diverse range of experience, disciplines, grade levels, and locations (Table 1). 

Demographic Descriptions No. of teachers 
 

Grade level taught during study year (n = 78): 

Elementary school (Grades K–5) 12 

Middle school (Grades 6–8) 18 

High school (Grades 9–12) 28 

District resource teacher (K–12) 4 

Undergraduate students 6 

Post-secondary teachers 

Other (i.e., non-formal, informal educators) 

6 

4 

Ethnic background (n = 78): 

Asian  24 

Caucasian 24 

Native Hawaiian 18 

Hispanic 4 

Pacific Islander 4 

Other 4 

No. of years teaching (n = 78): 

<1 2 

1–4 30 

5–10 11 

11–15 13 

>15 22 

School type (n = 78): 

Public  58 

Public charter 15 

Private 5 

Disciplines taught during study year (n = 78): 

English   4 

Math 32 

Science 24 

Technology 6 

All subjects (elementary) 12 

 

 

Table 1: Demographic descriptions of participants 
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Within the Ethnomathematics Institute, learning occurred in formal and informal 

place-based contexts. Through real-world applications from mountains to sea, the 

project activities, assignments, and assessments bridged Indigenous wisdom and 21st 

century skills to classrooms and communities.  For example, content areas included: 

wayfinding by geometrical angles of the sun, moon, and stars; algebraic studies of 

currents and water quality in nearby rivers and streams; and monitoring the impact of 

climate change on school gardens, among others (Furuto, 2018).  

Project evaluation from 2013-2018 was based on mixed-methods grounded in 

strengths-based approaches. The evaluators collected both formative and summative 

data. Evaluation questions were aligned with the three objectives of the 

Ethnomathematics Institute (Table 2). 

Goals      Evaluation Questions 

  Increase knowledge of content and 

pedagogy in culturally sustaining 

mathematics aligned with Common 

Core State Standards (CCSS), Next 

Generation Science Standards (NGSS), 

and Nā Hopena Aʻo (HĀ) 

1. To what extent did the participants 

perceive that the project affected their 

knowledge of culturally sustaining 

mathematics pedagogies aligned with 

CCSS, NGSS, and HĀ?  

Prepare teachers as leaders to provide 

instruction and professional 

development in ethnomathematics in 

their schools and communities through 

high-quality learning that is relevant, 

contextualized, and sustainable 

2. How did the participants perceive the 

process of their lesson plan 

development and implementation? 

Strengthen campus-community 

partnerships within Hawai‘i and the 

Pacific for sustainable classroom and 

community networks 

3. To what extent did the participants 

report the project cultivated a 

supportive, sustained community? 

 

 

Table 2: Program goals and evaluation questions 

Qualitative data was collected using semi-structured focus groups. Content analysis 

was utilized to evaluate constructed response questions with a grounded theory 

approach (Corbin & Strauss, 2014). Participants reported that the program increased 

culturally responsive pedagogy and emphasized the importance of understanding 

student culture, promotion of cultural understanding, and adjustment of teaching 

practice to reflect student culture using pedagogical strategies familiar to students. 

One participant commented, “I am making…a point to connect almost everything I 

teach to something the kids know about already, something that is in our community 

or environment and close to their hearts. It is making all the difference.” 

Quantitative data analysis consisted of descriptive statistics. In general, participants 

perceived the Ethnomathematics Institute to be valuable and relevant to their teaching 

practice, as measured on a Likert scale from 1-5 with 1 = Do Not Agree and 5 = 
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Strongly Agree (N = 78, M = 4.84, SD = 0.37). At the end of the Ethnomathematics 

Institute, participants were most likely to agree that they understood and could 

incorporate culturally sustaining pedagogy aligned with state and federal standards 

into their classrooms. The disaggregated items had a reliability of 0.75 (Cronbach’s 

alpha) and an overall mean of 4.15 (select results in Table 3). 

Prompt N M SD 
Min,  

Max 

1. The project helped me better understand and 

incorporate culturally sustaining pedagogy 
78 4.74 0.45 4, 5 

2. The project helped me better understand and 

incorporate mathematics content  
78 4.42 0.69 3, 5 

3. The project helped me better understand and 

incorporate Common Core State Standards  
78 4.78 0.52 4, 5 

4. The project helped me better understand and 

incorporate Next Generation Science Standards 
78 4.52 0.65 3, 5 

5. The project helped me better understand and 

incorporate Nā Hopena Aʻo 78 4.78 0. 56 4, 5 

 

 

Table 3: Understanding and incorporation of pedagogy, content, and standards 

RESULTS 

Over the past ten years, the Ethnomathematics Institute has grown through successes 

and challenges. When the program was based at UH West O‘ahu, performance 

measures included a 1400% increase in undergraduate students enrolled in 

mathematics courses, as the population grew from 940 students in 2007 to 2,361 

students in 2013 (UH IRO, 2020). This led to the development of 11 new mathematics 

courses tied to institutional learning outcomes, accreditation, and graduation 

requirements, all of which are grounded in ethnomathematics. When the 

Ethnomathematics Institute transitioned into a yearlong professional development 

program for P-20 educators, the participants represented all HIDOE complexes and 

districts. This led to an integrated statewide network that extended to the Pacific and 

demonstrated a commitment to transform education. 

The world’s first academic program in ethnomathematics was institutionalized at the 

UH Mānoa College of Education in 2018, thus leading the way for mathematics 

education. The 15-credit program is designed to lead into the M.Ed. Curriculum 

Studies: Mathematics Education, providing an attractive option for graduate students. 

There are no master’s degrees in mathematics education at any other UH system 

institutions or U.S. affiliated Pacific Islands. 

Moreover, in an unprecedented move, the Hawai‘i Teacher Standards Board, which 

licenses teachers throughout Hawai‘i and U.S. affiliated Pacific Islands, officially 

approved ethnomathematics as a field of licensure in 2018. This approval indicates 
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that program assessments, rubrics, and frameworks aligned with the Council of Chief 

State School Officers’ model core teaching standards (CCSSO, 2013). 

CONCLUSIONS 

A decade of research, theory, and praxis has ultimately led our voyage to the creation 

of a new academic program. This illustrates how ethnomathematics has empowered 

teachers as leaders, through equitable practices aligned with state and federal 

standards that bridge Indigenous wisdom and 21st century learning. The skills 

necessary for the 4th Industrial Revolution require innovative and interdisciplinary 

research-based practices that further our understanding of teaching and learning 

mathematics (Adler & Venkat, 2014; Maynard, 2015). 

Three decades after the 1984 International Congress on Mathematical Education, we 

have increasingly hopeful responses to the challenge of re-examining the equilibrium 

of mathematics. “Mathematics for all” is not just a vision but a growing reality. As we 

reflect on our calls to action, we are inspired by the proverb, “‘A‘ohe hana nui ke 

alu‘ia—No task is too big when done together by all” (Pukui, 1993, p. 18). Through 

storms and calm seas, we will remain steadfast in our firm commitment to follow the 

“North Star” to equity, empowerment, and dignity for all. 
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FLEXIBILITY IN DEALING WITH MATHEMATICAL 

SITUATIONS IN WORD PROBLEMS – A PILOT STUDY ON 

AN INTERVENTION FOR SECOND GRADERS 
Laura Gabler1 and Stefan Ufer 

Ludwig Maximilian University, Munich, Germany 

 

Empirical studies have underlined students’ difficulties with arithmetic word problems 

involving comparisons of sets. Although research has proposed strategies to 

reinterpret difficult word problems into easier ones, no corresponding interventions 

have been designed and evaluated. This study takes up the idea and aims at (1) 

replicating and systematizing former results on the difficulty of word problems and (2) 

investigating, if second graders are able to identify similar situation structures in 

pairs of word problems, and use this information to solve more difficult word 

problems. Results did only partially replicate prior research on the difficulty of word 

problems, and did not show that students transferred situation structures between 

pairs of tasks. This underlines the necessity of a corresponding intervention study. 

INTRODUCTION 

Prior research has shown that the way an arithmetic problem is presented influences 

the difficulty for learners: The same problem presented in numerical format (e.g., 

3 + 5 = 8) is solved 10 to 30% less frequently, if it is embedded in a word problem 

(Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1980). This implies that factors other 

than arithmetic skills influence a word problem’s difficulty. Current research often 

distinguishes between comprehension obstacles, which relate to reading 

comprehension, and conceptual obstacles, which relate to problems with the 

acquisition of the semantic problem structure of a word problem (Prediger & 

Krägeloh, 2015). In this article, we present a preparatory study for the design of an 

intervention program with a focus on the analysis of conceptual obstacles: After 

summarizing processes and difficulties occurring when solving of word problems, and 

presenting strategies to tackle these difficulties, we investigate, if students already 

make use of these strategies spontaneously. 

CURRENT STATE OF RESEARCH 

In the past, there has been extensive research on solving word problems (Stern, 1993; 

Vicente, Orrantia, & Verschaffel, 2008), in particular focusing on one-step arithmetic 

word problems on addition and subtraction. Common frameworks on solving word 

problems (e.g., Kintsch & Greeno, 1985) include two models that need to be 

constructed individually: the situation model and the mathematical problem model. 

An alternative perspective focuses on structures that problem authors may have 

intended while writing word problems. According to this perspective, students need to 

reconstruct these structures in the form of situation models when solving the problem. 

The relationship between these two perspectives will be outlined in the following. 
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Problem authors can realize a word problem linguistically in different ways (text 

base). For instance, a description of the comparison of two sets requires relational 

terms. The authors can decide how they describe the relation (with terms like “more”, 

“less”, “bigger”, or “smaller”, etc.). (1) As a first step of solving a word problem, the 

learners decode this generated text base and integrate the information and prior 

knowledge into an initial situation model (Kintsch & Greeno, 1985). At best, the first 

“draft” of an individual situation model contains the basic components of the author’s 

intended situation structure. In course of the solution process, learners can enrich their 

situation model so that it also reflects alternative situation structures, using inferences 

based on their prior knowledge (Kintsch, 1998). (2) Furthermore, the learners need to 

transfer the situation model to a mathematical problem model by describing their 

situation model with mathematical concepts (Kintsch & Greeno, 1985). At best, this 

mathematical problem model corresponds to the author’s intended mathematical 

structure of the word problem. To find an adequate mathematical problem model 

based on the situation model, the learners need to know, which mathematical 

structures can describe a certain situation structure. The constructed situation model is 

essential during this process. Depending on the aspects of the situation structure, 

which are available in the individual situation model, the learners are assumed to 

activate different facets of their individual knowledge, which might be more or less 

helpful for the construction of a mathematical problem model. 

Various prior studies have investigated, which factors influence the difficulty of 

solving word problems (e.g., De Corte & Verschaffel, 1987). One line of research 

indicates that the linguistic presentation influences the difficulty of word problems 

(Bailey & Butler, 2003). Beyond this, the intended situation structure of word 

problems has been found as another relevant factor. Different characteristics of this 

situation structure may influence the difficulty of a word problem on addition and 

subtraction: the semantic structure, the unknown set, and the additive or subtractive 

wording. 

Regarding the semantic structure, research on word problems on addition and 

subtraction often distinguished between change, combine, compare, and equalize 

situations (e.g., Riley, Greeno, & Heller, 1983). While change and equalize word 

problems describe a dynamic action, combine and compare word problems are 

considered static situations. Past research has shown that students’ solution rates vary 

with the semantic structures in a word problem, and compare problems seem to be 

particularly challenging for learners (Riley & Greeno, 1988; Stern, 1993). One reason 

might be that the difference set in compare problems does not describe an existing 

quantity but a relationship between two sets and therefore is hard to represent in a 

situation model. In the sequel, we mostly exclude combine problems from our 

analysis, since they have a substantially different situation structure and are usually 

not among the more difficult problem types. 

Moreover, one of the three involved sets of a one-step word problem is usually 

unknown initially (unknown set). In change word problems, this can be the start set, 

the change set, or the result set, whereas these options are called reference set, 
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difference set, or compare set in compare word problems (Riley et al., 1983). Studies 

on the impact of the unknown set agree that word problems with an unknown 

reference set or start set are most difficult (Stern, 1993). 

Additionally, additive or subtractive wording (a/s wording) (Fuson, Carroll, & Landis, 

1996) can be seen as a part of the situation structure: It determines a certain direction 

of the action or a certain perspective on a compare situation, which can be represented 

in a situation model. While the a/s wording of dynamic change and equalize problems 

is expressed with action verbs (additive wording: e.g., “to get”, “to win”, subtractive 

wording: e.g., “to give”, “to lose”), the comparison of sets requires relational terms 

such as “more than”, “bigger than” (additive wording) or “less than”, “smaller than” 

(subtractive wording). Combined with the mathematical structure of a word problem, 

the a/s wording influences the difficulty of a task: If the a/s wording and the directly 

applicable mathematical operation do not match (e.g., additive wording in a problem 

that can be solved by a direct subtraction) lower solution rates for the word problem 

are observed. These word problems are called inconsistent (Lewis & Mayer, 1987). 

Differences in performance caused by the various characteristics of the situation 

structure led to the idea that reinterpreting more difficult types of word problems by 

reinterpreting them in terms of easier situation structures could be useful for solving 

them. Greeno (1980) proposes to use easier accessible semantic structures: Instead of 

solving change word problems, he suggests that students could adapt their situation 

model by reinterpreting the situation as a combine word problem. Alternatively, Stern 

(1993) proposes to reinterpret a word problem’s a/s wording. Being able to transfer 

between different directions of mathematical relations (e.g., “Anna has two marbles 

more than Ben.” equals “Ben has two marbles less than Anna.”) or actions might help 

learners to reinterpret inconsistent word problems as easier, consistent word problems. 

For this, learners need to understand the equivalence of such symmetric relational 

expressions. Both approaches describe processes that require the enrichment of the 

initial situation model with an alternative situation structure that represents a different 

perspective on the situation. Being able to make such inferences towards alternative 

situation structures provides flexibility in dealing with mathematical situations. We 

assume that this flexibility might support learners to find a mathematical problem 

model based on the enriched situation model. A lack of this flexibility could be one 

cause for the described differences in performance when solving word problems. 

Accordingly, an intervention supporting students in acquiring this flexibility might 

improve the students’ performance in solving difficult word problems. 

However, it is currently unclear why learners do not apply the reinterpretation of 

situation structures spontaneously. On the one hand, learners might not have gained 

flexibility in dealing with mathematical situations yet. This would imply the need for 

an intervention study to determine, whether the skill can be trained. On the other hand, 

learners might have acquired the required skill but fail to apply it. In this case, solving 

two consecutive, structurally similar tasks should elicit the application of this 

flexibility: Students might transfer features of the empirically easier situation structure 

(e.g., equalize situations) to the situation structure of the next, more difficult word 
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problem (e.g., compare situations), if it is embedded in the same context situation. 

Finally, if providing a hint to use this structural similarity of consecutive tasks would 

trigger learners to apply the described strategy, an intervention would need to focus on 

the application rather than the acquisition of this flexibility.  

AIMS AND RESEARCH QUESTIONS 

To study if an intervention based on Greeno’s and Stern’s suggestions could be 

helpful, two main issues need to be resolved: The first aim of this contribution is to 

replicate prior results regarding task difficulty, which are fundamental for the 

intervention. 

Q1: Which of the task features semantic structure, a/s wording, and unknown set 

cause differences regarding the difficulty of word problems on addition and 

subtraction? 

Based on prior studies, we expected that compare word problems would be more 

difficult than equalize (H1.1) and change word problems (H1.2). Solution rates should 

be higher for consistent word problems than for inconsistent word problems (H1.3). 

Moreover, existing studies have varied surface features of the word problems (names, 

quantities, involved objects) together with the mentioned task features. Our study 

controls the variation of difficulty caused by these surface features. We expected only 

minor differences in solution rates due to surface features (H1.4). 

The second aim of this study was to study the (spontaneous) use of the described 

strategy to reinterpret situation structures. 

Q2: Do students use similar situation structures spontaneously for the solution of 

word problems? Does a hint support the use of the strategy? 

The successful use of this strategy should cause higher solution rates for items for the 

second of two structurally similar, consecutive word problems (as compared to the 

first problem in the pair, H2.1). We expected stronger differences, when compare 

situations occurred after a dynamic situation, than in the reverse sequence (H2.2). In 

the case that students have already gained the required knowledge but fail to apply the 

strategy spon-taneously, we assumed that the effects in H2.1 and H2.2 would be more 

pronounced, if the learners receive an explicit hint on the similarity of the situation 

structures (H2.3). 

METHOD 

To answer the research questions, paper-and-pencil based tests were used in a cross-

sectional study with second graders from eight classrooms in Germany (N = 139). 

Each student solved twenty different word problems on addition and subtraction, 

which were selected from a larger collection of task variations. To examine Q2, the 

word problems were arranged in pairs. Each pair of word problems contained two 

structurally similar word problems with the same surface features, a/s wording, and 

unknown set, but differed only in their semantic structure. An exemplary pair of word 

problems could consist of task A: “Anna has 13 marbles, Ben has 8 marbles. How 

many marbles does Anna have to give Ben, so that she has as many as Ben?” and task 

B: “Anna has 13 marbles, Ben has 8 marbles. How many marbles does Anna have 

more than Ben?” In this example, the first word problem deals with the equalization of 
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sets, while the second word problem describes a similar comparison of sets. For the 

compilation of all possible versions of pairs of word problems, we varied 

combinations of semantic structures (change and compare, equalize and compare), the 

a/s wording, and the unknown set systematically. These prototypical types were each 

embedded in twelve different situation contexts. In the end, we generated a second set 

of word problems by reversing the order of the two word problems within each pair. 

Procedure: Each student solved ten randomly selected pairs of word problems in a 

random sequence. Each questionnaire also contained two distractor pairs of word 

problems, which had dissimilar mathematical structures in the two tasks. This was 

done to keep students from solving only the first task and automatically transferring 

the answer to the second word problem. Each page of the questionnaire showed one 

word problem and students were instructed to not move backwards through the pages 

to avoid them from adjusting their answers retrospectively. In half of the participating 

classrooms, students received an explicit hint, which aimed to encourage them to use 

similar structures for solving the following word problem. 

Coding: Students’ solutions were coded in two different ways: The first option 

(correct result) classified the answer of a student as correct, if the numerical result 

was correct. The second option (correct operation) classified the answer of a student 

as correct, if at least the calculation or the result was correct. 

Statistical analysis: For the inferential statistical analyses, we used generalized linear 

mixed models for dichotomous data with a logit link function (Bates, Maechler, 

Bolker, & Walker, 2014), which predict the correctness of an operation or a result for 

each task based on individual person features and task features. Dependencies 

between answers of the same person were taken into account by including a random 

intercept. For the examination of main effects and interaction effects of the task 

features, we used likelihood ratio (LR) tests based on a chi-square statistic. To 

compare solution rates under different conditions, we calculated contrasts between the 

respective estimated marginal means. The reported regression coefficients can be 

interpreted as difference values on a log odds ratio scale similar to differences of item 

parameters in an IRT model. All calculations were executed in R with the packages 

lme4 (Bates et al., 2014) and emmeans (Lenth, Singmann, Love, Buerkner, & Herve, 

2018). 

RESULTS 

To answer Q1, we analyzed only the first task of each pair of word problems 

excluding the distractor pairs. As expected (H1.4), the variation of the situation 

context explained only a small proportion of variance (less than 0.01%). First, we 

analyzed the main effects of a word problem’s semantic structure, unknown set, and 

a/s wording. There were no significant differences between the semantic structures 

concerning the frequency of correct results (change: 77.1%, equalize: 71.0%, 

compare: 72.1%; LR test χ2(2) = 4.06; p = 0.13). However, students identified the 

correct operation significantly less frequently (B = -0.60; p = 0.03) in equalize word 

problems than in change word problems (change: 82.4%; equalize: 75.4%; compare; 

76.3%; LR test χ2(2) = 6.71; p = 0.027). Concerning compare word problems, there 
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were no significant differences regarding the frequency of correct operations in 

comparison to change and equalize word problems. These results did not confirm 

H1.1 and H1.2. The main effects of a/s wording on the frequency of correct results 

(LR test χ2(1) = 0.54; p = 0.46) and the frequency of correct operations (LR test 

χ2(1) = 2.70; p = 0.10) were not significant. However, we found significant differences 

for the frequency of correct results (LR test χ2(2) = 20.99; p < 0.001) and correct 

operations (LR test χ2(2) = 32.72; p < 0.001) depending on the unknown set. Students 

gave the correct result significantly more often, if the result/compare set (78.1%; 

B = 0.51; p < 0.001), or the change/difference set (74.0%; B = 0.81; p = 0.001) was 

unknown, than if the start/reference set was unknown (66.8%). Similar effects 

occurred, when the identification of correct operations was analyzed. This matches 

with results by Stern (1993). 

Second, we analyzed the interactions between the three main effects. The results 

showed a significant interaction effect of unknown set and a/s wording for the 

frequency of correct results (LR test, χ2(2) = 22.40; p < 0.001) as well as the 

frequency of correct operations (LR test, χ2(2) = 30.84; p < 0.001). Furthermore, there 

was an interaction of semantic structure and a/s wording (LR test, χ2(2) = 8.20; 

p = 0.017). The triple interaction was not significant for both performance measures 

(results: LR test, χ2(4) = 2.75; p = 0.60; operations: LR test, χ2(4) = 2.61; p = 0.62). As 

expected (H1.3), correct results and operations occurred more frequently, if the a/s 

wording matched the operation necessary to solve the problem (consistent word 

problems). 

For Q2, we analyzed both tasks of each word problem pair. The main effect of task 

position (first vs. second task in a pair) was not significant for both coding options and 

all variations of word problem pairs (e.g., LR test for pairs of compare and change 

word problems: correct results: χ2(1) = 1.61; p = 0.20, correct operation: χ2(1) = 1.67; 

p = 0.28). Consequently, the hypothesis that the processing of a structurally similar 

word problem supports at solving the following task was not confirmed (H2.1). Also, 

the interaction of task position and semantic structure was not significant in all cases. 

Thus, the assumption that the solution of change or equalize word problems improves 

the solution rates of structurally similar, subsequent compare word problems was not 

confirmed (H2.2). Finally, we included the effect of hint into the models. This main 

effect and its interaction with task position was not significant for both combinations 

of semantic structures. In addition, the interaction of hint and semantic structure and 

the triple interaction of hint, task position, and semantic structure was not significant. 

Consequently, the hint showed no effect on the use of structurally similar word 

problems (H2.3). 

DISCUSSION 

One aim of this contribution was to investigate if prior results concerning factors 

influencing the difficulty of word problems on addition and subtraction could be 

replicated (Q1). Results indicate higher, more homogenous solution rates compared to 

previous studies (e.g., Stern & Lehrndorfer, 1992 in grade 1). In particular, substantial 

solution rates for compare word problems contradicted prior results that classified this 
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type as the most difficult type. This finding could be explained by the assumption that 

learners in grade 2 might already have gained experiences with all semantic structures. 

Additionally, students might benefit from the advancement of mathematics education 

since the reported studies were conducted (early 1990s). Results underline, that the a/s 

wording of a word problem is far more important for the identification of a correct 

operation or result. Consequently, an intervention supporting students in solving word 

problems should not only focus on the understanding of semantic structures, but also 

on equivalent statements concerning the a/s wording of a word problem.  

Regarding the use of similar situation structures for the solution of consecutive word 

problems (Q2), results indicate that the participating students did not use preceding, 

structurally similar word problems to solve subsequent tasks in the same situation 

context, even if the students received a hint on their structural similarity. One 

explanation could be, that because of the similar difficulty of both tasks in each pair of 

word problems, learners might not have considered the transfer of situation features 

useful. Another reason might be that students were not capable of applying this 

strategy. Finally, it is also possible that the students did not apply the described 

strategy for other, unknown reasons, although they were able to apply it in principle. 

Each of these explanations speaks for further research to obtain more evidence 

whether and how flexibility in dealing with mathematical situations can support 

students in solving word problems. 

Although the present study allows statements on causal relationships between task 

features and task difficulty because of its experimental design, some questions remain 

open. For example, the study provides valuable information for the design of an 

intervention, but cannot predict its potential effect. In order to understand mechanisms 

underlying the identified relations better, an in-depth analysis of individual problem 

solving and learning processes would be valuable. Another open question concerns the 

conscious restriction of task variety in this study, as only one-step word problems 

were considered. In which way learners apply the examined skills in more complex 

situation should be analyzed in further research. Nevertheless, this study provides an 

update on older results concerning factors influencing the difficulty of word problems 

on addition and subtraction, which need to be integrated in further investigations. 

Regarding an intervention study to support students, this study contributes essential 

implications for the focus of a training program. The result that students do not use 

strategies of dealing flexibly with situation structures underlines the need to analyze 

potential obstacles. 
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Laura Gabler1 and Stefan Ufer1 
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Prior research confirmed language and situation structure as factors 

influencing a word problem’s difficulty. Until now, instructional approaches to 

encounter these difficulties still need empirical foundation. This paper describes 

an intervention to develop second graders’ flexibility in dealing with arithmetic 

situations. During ten sessions, two strategies to enrich students’ situation 

models were introduced supported by macro-scaffolding. We investigated the 

development of four preselected second graders by applying qualitative content 

analysis and compared their development to the intended learning trajectory 

(LT). Results point to potential key processes when gaining such flexibility and 

to required adaptations of the LT. 

Many learners struggle with solving additive (including subtractive) one-step 

word problems. Language skills play an important role during word-problem 

solving, since textually represented descriptions of arithmetic situations need to 

be decoded (Dröse, 2019). This process can be more or less difficult depending 

on the text’s linguistic features, such as syntax or semantics (e.g., Stern, 1993). 

Such potential difficulties have led to ideas how students could reorganize their 

situation model by integrating different perspectives on the depicted situation. 

In this paper, we describe an intervention program that intends to support 

students with describing arithmetic situations displayed in word problems 

flexibly from different perspectives. Since it is an open question, if and how 

students respond to the intervention, this paper aims at the detailed analysis of 

four preselected students’ development during the program. 

PRIOR RESEARCH  

Various studies have investigated the difficulty of additive one-step word 

problems and emphasized features of the problems’ underlying situation 

structure, such as semantic structure, unknown set, and additive or subtractive 

wording (a/s wording), as factors determining a word problem’s difficulty (e.g., 

Daroczy, Wolska, Meurers, & Nuerk, 2015; Gabler & Ufer, 2020; Stern, 1993). 

For example, a problem’s semantic structure can relate to either a change, 

combination, comparison, or equalization of sets (Riley, Greeno, & Heller, 

1983). Research identifies problems on the comparison of sets as particularly 

challenging and assumes that the difference between two compared sets is a 

main reason for students’ difficulties (Riley & Greeno, 1988). Moreover, 

understanding quantitative comparison statements, such as “Susi has 2 marbles 

more than Max” is considered linguistically demanding. Fuson, Carroll, and 
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Landis (1996) emphasize the importance of deriving from a quantitative 

comparison statement which quantity is more or less (qualitative information) 

and how big the difference between the two quantities is (quantitative 

information). The a/s wording of a word problem defines a certain perspective 

on a situation (e.g., expressed by “more than” as additive, “less than” as 

subtractive wording in compare problems). Finally, the difficulty of a problem’s 

situation structure varies depending on which of the three involved sets is 

unknown. For compare problems, either the reference set, the difference set, or 

the compare set can be missing (Stern, 1993). Problems with an unknown 

reference set (e.g., “Susi has 5 marbles [compare set]. She has 2 marbles 

[difference set] more than Max. How many marbles does Max have [reference 

set]?”) are considered the most difficult type. The unknown set also affects the 

directly applicable mathematical operation (addition or subtraction). In 

combination with the a/s wording, the variation of the unknown set results in 

either consistent or inconsistent compare problems: Problems, in which the 

directly applicable mathematical operation is inconsistent with the a/s wording 

(e.g., directly applicable subtraction but additive wording, like in the example 

above), are usually harder than consistent problems (Lewis & Mayer, 1987). 

To address students’ difficulties, a theoretical account of solution processes 

during word-problem solving is crucial. Common models on this matter assume 

that students decode the problem text into an initial situation model (Kintsch & 

Greeno, 1985) by reconstructing features of the situation structure as close as 

possible. To find a matching mathematical operation, they need to identify 

corresponding mathematical concepts that describe this model adequately. 

During these processes, students can extend and enrich their situation model 

with further information (Kintsch, 2018). 

These theoretical foundations led to the idea of introducing strategies that aim at 

enriching the situation model by reinterpreting the problem’s situation structure 

as an easier accessible problem type. Some authors assume that this 

reinterpretation can make it easier to mathematize an individual situation model: 

One suggestion originates from Greeno (1980), according to whom students 

could make use of easier accessible semantic structures. For example, they 

could reinterpret difficult compare problems as dynamic situations on the 

equalization of sets (Dynamization Strategy, see Fig. 1). Alternatively, Stern 

(1993) suggests to rely on the inversion of the a/s wording: By transferring 

between different perspectives on relations (e.g., “Susi has 2 marbles more than 

Max” and “Max has 2 marbles less than Susi”), learners could reinterpret 

inconsistent problems as easier, consistent problems (Inversion Strategy, see 

Fig. 1). We summarize these strategies to enrich the individual situation model 

with further aspects of the situation structure under the term flexibility in 

dealing with arithmetic situations. Understanding and describing situations 

flexibly is tightly connected to language skills: While the Inversion Strategy 

requires well-connected vocabulary on relations, equalization within the 
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Dynamization Strategy builds on action verbs (“to take away”, “to get”) and 

conditional sentences (“If…, then…”). 

 

 

Figure 1: Examples for Inversion Strategy and Dynamization Strategy 

CONTEXT OF THE CURRENT STUDY 

To build up such flexibility, and to support students to progress from easier to 

more complex applications of the mentioned strategies, macro-scaffolding was 

included in the intervention as pre-organized support (Hammond & Gibbons, 

2005). In addition, the intervention was guided by an intended learning 

trajectory (LT) describing a sequence of phases and activities, which were 

distributed over ten 40-50 min sessions over five weeks. After an initial phase 

of Basics in session 1 and 2 (e.g., on understanding quantitative comparison 

statements or the concept behind equalizing), students worked with given 

statements to encounter crucial linguistic means needed for the application of 

the two strategies. During Verifying in session 2, students decided if given 

statements on a situation displayed as text or as a picture were true and 

discussed their decision afterwards. In session 3 and 4, students matched 

statements to two situations with swapped concrete sets in the Matching phase 

(e.g., Susi has one piece of candy less in the first picture, and one piece of candy 

more in the second picture). Contrasting statements on these inverse situations 

should systematize the provided linguistic means and raise the students’ 

language awareness in the context of comparison and equalization. During the 

Describing phase, which spanned over the sessions 5 to 10, students were 

encouraged to make use of the provided linguistic means and describe situations 

flexibly. Tutors provided sentence templates, sentence starters and word cards 



Gabler & Ufer 

2 -  268 

 

PME 44 -2021 

(“more”, “less”, “If…, then…”) oriented at the two strategies and removed 

these scaffolds gradually. Overall, the difficulty of the tasks progressed from 

empirically easier to more difficult compare situations. Explicitly solving 

traditional word problems was not part of the intervention. 

AIMS AND RESEARCH QUESTIONS 

Since the intervention was implemented for the first time, we were interested, if 

and how students made use of the learning opportunities in the intervention, and 

how this related to their development of flexibility in dealing with arithmetic 

situations. To this end, we investigated two questions: 

Q1: Which differences in students’ learning paths point to parts of the 

intervention at which the intended LT is not sufficiently adapted to individual 

students yet? 

We expected that learners would respond differently to the offered learning 

opportunities of the intervention. Investigating these differences may help with 

the identification of typical patterns or obstacles and result in potential “key 

processes”, which need to be considered when supporting students to develop 

the pursued flexibility. These key processes may provide first indications, which 

adaptations of the intended LT are necessary to meet the students’ individual 

needs.  

Q2: How does students’ flexibility develop during the intervention? 

Taking the key processes from Q1 under consideration, we analyzed how the 

students’ flexibility in dealing with arithmetic situations developed during the 

intervention. We expected the learners to become familiar with the introduced 

strategies and to be able to describe arithmetic situations richly from different 

perspectives at the end of the intervention. 

METHOD 

Sixty second graders from elementary schools in southern Germany participated 

in ten different the intervention groups. For the qualitative analysis, four of the 

sixty students were selected based on the pre-test. Since we were particularly 

interested, if the intervention was helpful for students with lower language 

skills, we selected students with relatively low scores in a reading test (ELFE 

II). Valerie and Anna were selected from group 6, and Adrian and Emil from 

group 5. Both groups were trained by the same tutor.  

Coding: Following the principles of qualitative content analysis (Mayring, 

2014), the transcripts from all intervention sessions were investigated together 

with the students’ answers on work sheets. Based on theoretical implications, 

we developed a coding manual to identify different manifestations of flexibility. 

While the first two categories address assumed prerequisites for the pursued 

flexibility, such as the verbalization of comparison and equalizing statements, 

the other two categories reflect the application of the two strategies. Each 

student statement counted as one coding unit. Phases of group work were 

omitted, since contributions could not be attributed to specific individuals.  
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Analysis: To identify key processes, we started from the coded data and 

proceeded to the raw data to check and enrich our initial interpretations. 

Additionally, we used coded data to substantiate remarkable observations in the 

raw data (Q1). The students’ development of flexibility was traced by analyzing 

codes during activities, in which students should describe situations without 

explicit instruction (Q2). 

RESULTS 

Q1: During the analysis, three main differences in students’ learning paths 

emerged (key processes, “KP”). KP1 showed in the raw data that students 

seemed to interpret difference sets in comparison statements differently. Thus, 

we investigated the codings for such situations systematically. In contrast to 

Adrian and Emil, Valerie and Anna’s answers frequently related to concrete 

sets, although questions targeted quantitative comparison. This is exemplified in 

the following excerpt: 
Session 1, group 6, Basics: The students play a game with the tutor. After 

determining who has more chips, the tutor encourages Valerie to quantify the 

difference. 

Tutor: Valerie, what do you think, how many do I have more? 

Valerie: You have six. 

Tutor: I do have six, but how many do I have more than you? Think about it. 

Valerie: Four. 

Tutor: Four, exactly. So, how many [chips] am I allowed to take? 

Valerie: Four. 

With the help of the tutor, who contrasted the concrete set and the difference set 

verbally, Valerie determined the difference set correctly. However, the codings 

indicate that Valerie and Anna still related to concrete sets instead of difference 

sets occasionally during the intervention. The data suggest that they often 

seemed to understand statements on quantitative comparison, such as “Susi has 

two marbles more than Max” as two messages: “Susi has two marbles” and 

“Susi has more marbles than Max”. This observation indicates that the Basics 

phase, which should tackle such difficulties, was not adapted sufficiently to 

some of the students’ needs and that the interpretation of compare statements 

might require more attention. 

KP2 relates to the transfer of linguistic means from the Verifying phase to the 

Matching and Describing phase. Since the encounter with relevant linguistic 

means played a crucial role in the intended LT, we decided to investigate 

transcripts on Matching and Describing tasks with a specific focus on instances 

where students made use of language support. While Adrian and Emil had few 

problems to integrate the provided linguistic means in their active language use, 

Valerie and Anna received more language support by the tutor. For example, 

Valerie struggled with the expression of an equalization first, since she did not 

find an adequate action verb to complete her sentence (e.g., “add”). Session 5, 

group 6: 
Elisa: [reads aloud the provided sentence frame] If I …, then my tower is 
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as tall as yours. 

Tutor: What should she do? Valerie. Do you remember what we did there? 

Valerie: If I one… eh? From Sebastian? 

Tutor: So, try to think about it again. 

Valerie: If I one, then… at this tower… as tall as yours. 

Tutor: If you do what? “Then my tower is as tall as yours.” 

Valerie: If I… 

Tutor: What can you do, so that the tower is as tall as this one? 

Valerie: One away? 

Tutor: Exactly! Let’s do that. 

Providing a sentence frame and the subsequent possibility to follow a peer’s 

example helped her to broaden her vocabulary and to make progress in 

formulating equalization statements. This emphasizes the importance of 

individual language support especially during the transfer to the active 

description of situations. 

In some transcripts from Matching tasks, students based their explanations why 

certain statements or pictures were similar or different on different aspects of 

the underlying situation (KP3). To back up these observations, we compared the 

codes for each student during such activities. While Valerie and Anna mostly 

referred to concrete sets (Valerie: 8 statements on concrete sets; Anna: 2 

statements on concrete sets, 2 on equalization), Adrian and Emil reasoned with 

comparison statements frequently (Adrian and Emil: 4 resp. 5 statements on 

involved difference sets). It seems that such reasoning activities can uncover 

students’ perception of situation structures and thus help the teacher to identify 

corresponding need of support. 

Q2: To analyze the students’ development of flexibility over the ten sessions, 

we selected three activities, which required describing situations freely without 

explicit support or instruction, distributed over the sessions 2, 5, and 10. The 

codes during these activities indicated that, despite relatively low language 

skills, all four students progressed in developing flexibility, but in different 

ways and different pace.  

Adrian was the only one who already formulated a comparison statement 

spontaneously in session 2. Very low general language skills and comparably 

low arithmetic pre-test scores did not prevent him from quickly adopting the 

two strategies. In line with his consistent focus on relations, he preferred 

formulating comparison statements and applying the Inversion Strategy to 

equalizing statements and the Dynamization Strategy. In contrast to Adrian, 

Emil did not focus on the relation between sets initially. Although he missed 

session 5 and 6, Emil managed to adopt both strategies and gained flexibility 

with a strong focus on equalizing statements until session 10. Valerie developed 

flexibility more slowly and did not follow all parts of the intended LT: While 

her focus laid on concrete sets during session 2 and 5 (in line with KP1), she 

formulated an (incorrect) comparison statement and correctly applied the 

Inversion Strategy with equalizing statements in session 10. To make further 
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progress in flexibility, an even stronger focus on supporting her with 

comparison statements might have been helpful. Anna had similar problems 

with understanding and formulating comparison statements. However, she 

progressed more quickly in developing flexibility and already focused on 

equalizing in session 5. In session 10, Anna attempted to formulate comparison 

statements and their inversion. Her answers indicated a misunderstanding of the 

strategy: Instead of inverting the a/s wording, she formulated the opposite of 

each comparison statement, which did not match the given situation. Similar to 

Valerie, a stronger focus on the Basics phase might have allowed her to benefit 

more from subsequent learning opportunities regarding both strategies. In 

particular, Anna’s possibly superficial application of the Inversion Strategy 

deserves further attention when developing the LT. 

DISCUSSION 

The students’ different learning paths point to parts of the intended LT, which 

require adaptation and reveal insightful implications in the context of fostering 

the pursued flexibility (Q1). KP1 emphasizes the importance of developing an 

adequate understanding of linguistic means to describe situations from different 

perspectives, in particular in the context of comparison statements. This issue 

could be addressed by providing tasks that emphasize the difference between 

statements such as “Susi has 2 marbles more than Max” and “Susi has 2 

marbles, and more marbles than Max”. KP2 underlines the necessity to not only 

encounter and understand linguistic means, but also to be able to use them in 

descriptions. Developing further ideas how to support students with this transfer 

may be a next step in refining the intervention. KP3 delivers a tool to determine, 

which support might be helpful to encourage a specific student to enrich the 

situation model. If students focus on concrete sets in their descriptions and 

explanations, teachers could encourage students to consider other aspects of the 

situation structure, for example with word cards (“more”, “if…, then…”). 

Despite different learning paths and learning paces, the students’ progress along 

the intended LT supports the assumptions that the intervention is a feasible way 

to foster students’ flexibility. This allows to study, if such flexibility supports 

word problem solving as has been argued, but not studied systematically in the 

past (Gabler & Ufer, 2020; Greeno, 1980; Stern, 1993). Beyond the mentioned 

adaptations to the LT, other factors than the fit of the LT may have caused 

different learning paths. For example, Adrian already had a tendency to focus 

on relations at the beginning (McMullen, Hannula-Sormunen, & Lehtinen, 

2013), which might have given him a good starting point to adopt both 

strategies. We also cannot exclude that motivational aspects or the mathematical 

self-concept influenced the students’ development. 

The analyses yield information on possible learning paths to develop flexibility 

in dealing with arithmetic situations and necessary adaptations of the intended 

LT. However, quantitative analyses are necessary to investigate, whether the 

intervention caused a substantial gain in students’ flexibility for some students 
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or the whole sample, and if students could transfer the corresponding skills to 

word-problem solving. 
1 An extended version of this work is published in the journal ZDM Mathematics Education. 
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In interdisciplinary teaching, students’ attitude to generalize mathematical knowledge 

to new contexts of application is encouraged naturally. Moreover, it fosters the 

development of creativity and critical thinking. In our research, we focused on 

integration of Mathematics and Arts in primary school. We designed and tested a 

Teaching Learning Sequence about axial symmetry, to develop mathematical skills 

through the execution of artistic techniques and reflections on products and actions 

carried out. In this paper, we present tasks and results about students’ mathematical 

activity obtained analyzing classroom implementations with children in 4th and 5th 

grade in Italy. The generalization processes make interesting information about their 

conceptualization and schemes application and validation emerge.  

INTRODUCTION 

When students, by themselves or guided by teachers, search for new situations and 

contexts in which applying and revising their mathematical knowledge, they develop 

successfully key aspects of mathematical thinking, like problem solving and 

generalization; design research should “offer teachers an empirically grounded theory 

on how a certain set of instructional activities can work.” (Gravemeijer, 2004). In 

interdisciplinary tasks, students’ attitude to generalize mathematical knowledge to 

new contexts of application is encouraged naturally. The European Union recently 

published recommendations (EU Council, 2018) to integrate all areas of the scientific 

disciplines with their applications in technology and engineering, and with artistic 

expressions (STEAM). Benefits would be, for example, the positive effects of art in 

interaction with different disciplines, including mathematics, from the affective and 

motivational point of view. Moreover, it fosters the development of creativity and 

critical thinking (ibid., 2018). Among the several possibilities to pursue such goals, 

we focused on integration of Mathematics and Arts in primary school. We decided to 

design and test a Teaching Learning Sequences (TLS, Psillos & Kariotoglou, 2016) 

about axial symmetry, where students were asked to “reinvent” mathematical concepts 

(Gravemeijer, 2004) and develop mathematical skills through the execution of artistic 

techniques and reflections on products and actions carried out.  

In this work, we present some tasks of this interdisciplinary TLS and some results we 

obtained analyzing classroom implementations. We focus particularly on the students’ 

mathematical activity. We worked with children in 4th and 5th grade in different 

schools across Italy. We collected data through video and audio recordings, 
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observation and materials produced during the lessons by the students. Results show 

that encouraging students to generalize make interesting information about their 

conceptualization emerge. Moreover, we show how linguistic practices and 

discussions are important to self-realize this generalization and conceptualization 

mechanism. 

LITERATURE REVIEW 

In many research, it has been shown that learning axial symmetry is not trivial for 

primary school students. First of all, the term “symmetry” might be used in different 

ways (Chesnais, 2012): (a) symmetry as a property of a given figure; (b) axial 

symmetry as a ternary relationship involving two figures and an axis and/or (c) 

symmetry as geometrical transformation involving points.  

Moreover, axial symmetry is a mathematical concept but also an everyday concept 

(ibid., 2012). From a mathematical point of view, the geometrical transformation 

comes before symmetry as a property, being the property a result of the invariance of 

the figure under the transformation. On the other hand, in the everyday concept, the 

geometrical transformation could be seen only in the paper folding movement. If not 

expanded upon, it can lead to the main misconceptions about symmetry, that can be an 

obstacle to global characterization of the properties of a figure and of the geometrical 

transformation of the plane (ibid., 2012). It is possible for the teachers not to see these 

conceptions, since students will continue to produce results as constructing the mirror 

image of a figure or identifying axes of symmetry on a single simple figure. In 

general, students are more confident with tasks that require an intrafigural perspective 

(Piaget & Garcia, 1989),  where  attention  is  directed  towards  the  internal  

relationships  of  figures,  than  with tasks involving interfigural demands requiring 

attention to the relationships between the figures and objects that are external to them 

(Healy, 2004). Relying on this review, we decided to orient the students’ activity 

gradually towards the construction of the mathematical concept and an interfigural 

approach, encouraging them, by means of generalization and verbalization tasks, to 

reframe the everyday characterization of the axial symmetry.  

THEORETICAL FRAMEWORK 

In this study, we refer to generalization as the process of applying a given argument in 

a broader context (Harel & Tall, 1991). Generalization is classified as expansive 

generalization when the subject expands the applicability range of an existing scheme 

without reconstructing it; reconstructive generalization when the subject reconstructs 

a scheme to widen its applicability range (ibid., 1991). A common trait is the need to 

change the applicability range of a given concept, extending it to a broader concept. In 

reconstructive generalization, the old scheme is changed and extended, to be 

embedded in a more general scheme, that still “contains”, or is a generalization of, the 

first schema.  

According to Vygotsky (2012), concepts can be spontaneous or scientific, where the 

former are the result of a generalization process of everyday personal experience. 

Considering our tasks and our target grade, we refer essentially to the Theory of 

Conceptual Fields (Vergnaud, 1998) to frame the notions of concept and scheme. 
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According to Vergnaud (1998; 2013), mathematical knowledge is centered and 

constructed around a concept; a concept results from a process of actions and 

perceptions. Concept is constituted by three components: the set of situations the 

concept is rooted in and has meaning on, a set of operational invariants and the set of 

different linguistic and non-linguistic representations used to represent it.  

A scheme (Vergnaud, 2013) is defined as “invariant organization of activity and 

behavior for a certain class of situations” (p. 47); to tackle new situations extend the 

scope of application of the scheme. It is made of four categories of components: goals 

and anticipation, a set of rules of action, operational invariants and possibilities of 

inferences. Operational invariants, which make the scheme operate and often remain 

implicit, can be of two kinds: theorems-in-action and concepts-in-action (ibid., 2013). 

They can be expressed by words and sentences, but their original function is action 

and the application of schemes is based on them.  

METHODOLOGY 

We designed the TLS following these principles: a growing challenge level; to foster 

generalization (in the meaning given by Harel and Tall (1991), to promote linguistic 

practices that can be meaningful to connect the different activities and to build up to a 

gradual conceptualization (in the sense of Vergnaud’s Theory of Conceptual Fields, 

1998; 2013), developing a more precise language and promoting argumentation.  

In the first two tasks, students met the first two situations:  

Task (1), artistic symmetry: folding the paper with colors, a “similar” figure is 

obtained (same shape, same, area, same colors). 

Task (2), modelling the art: doing “the same things” on the left and on the right, at the 

same height and the same distance with respect to a line, a figure is obtained that 

resembles the figure obtained by folding. 

We told the students that the line obtained folding and the line drawn in the second 

situation were both called ‘axes of symmetry’, that the figure obtained by folding was 

‘the symmetric figure’ with respect to the starting one and that the whole ‘figure is 

symmetric’. Thus, we introduced some terms and the relationships between different 

elements of a conceptual field named ‘symmetry’.  

Task (3), TEP: “explain to a younger student how it is possible to build a symmetrical 

figure with respect to another figure”. 

Here students are asked to produce a textual eigenproduction (TEP, D’Amore & 

Maier, 2002), i.e. texts produced by students in an autonomous way to describe some 

mathematical situation. The goal of TEPs is that of better understanding and exploring 

the true conceptualization of the student. We expected the students to find linguistic 

and/or not linguistic representations of their concepts and to start making explicit their 

actions that they should then organize to make them become schemes.  

Task (4), square: “find, by folding, the axes of symmetry of a square”. 

Students are expected to generate a first version of their concept of axis of symmetry 

including: three situations (1, 2 and 4), an operational invariant (concept in action: if, 

folding, the two parts are overlapping exactly, the fold represents an axis of 

symmetry) and graphic and linguistic representations of the axis. Meanwhile, since 
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they have to solve a new task, they are also asked to start generalizing their previous 

actions to a scheme, composed by: one goal (to find axes of symmetry), the rules of 

action (correct procedure to build a fold that is an axis and a control procedure to 

check if it is an axis or not), an operational invariant (concept in action of axis of 

symmetry), a set of possibility of inference (conditions to carry out the procedure: 

possibility to fold the paper, possibility to check if the pieces of the figure have the 

same features).  

Task (5) star: “find, by folding, the axes of symmetry of a regular 5-pointed star”. 

Students are expected to enrich their previous concept, including another situation and 

to reinforce the previous scheme. Students are expected (and encouraged) to use their 

linguistic characterization of the concept in action, on which the scheme should be 

based (task 3), to validate their actions in the different situations (4 and 5).  

Task (6), snowflake: “build, as you want, this snowflake” (see Figure 1). 

 
Figure 1: The snowflake to build from a blank sheet of Task 6. 

Students are expected to recognize that the figure is symmetric, what are the axes of 

symmetry, and to decide to exploit this property to build the figure without retracing 

it, folding a sheet of paper (scheme 1) and/or using the distances from the axes 

(scheme 2). To do this, the students should: study the situation in terms of possibilities 

of inference; recognize the same goals of Task 4 and 5 (to find axes of symmetry) 

even if it is not mentioned in the description of the task; carry out a set of rules to 

identify the correct folds. Only after the application of the scheme, the students should 

draw the starting figure, reproducing it symmetrically, to have the most correct result. 

Our research questions are:  

1. How do the students face spontaneously tasks in which a concept is expected to 

be applied in a new situation? What kind of information can the observation of 

a process of generalization give about the students’ conceptualization? 

2. Whether and how the verbalization tasks and the classroom discussions lead 

the students to a refinement or a generalization of their personal concepts? 

Context and participants 

The TLS was implemented in classes of students 8 to 10 years old (two 4th grade and 

four 5th grade classes of primary school) as part of an in-service teacher training 

lasting one semester. Class context and formation are variable both geographically 

through the country and in terms of background of the students. The class teacher 

acted as main teacher for the TLS; one or more of the authors planned the lesson with 

the teachers involved, collected data about the students, assisted and helped, 

intervening occasionally, during all teaching blocks.  

Data collection and analysis 

The explorative nature of the study led us to use qualitative techniques for data 

collection towards an interpretative approach. The research data were collected over 
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several sessions at school and consists of (1) audio and video recordings, (2) 

documents review, (3) researchers’ field notes and (4) students’ textual productions 

(TEPs, D’Amore & Meier, 2002).  

In particular, (1) videos were analyzed by more researchers and transcripts were 

finally used as data which we present here. Video analysis (Powell et al., 2003) has 

been done in more phases: a first review of the videos, cataloguing their content and 

annotating some particular episodes; a deeper analysis with transcription of some 

episodes, that were flagged as occurring of generalization; connection of single 

episodes to consider the overall development of the students’ conceptualization. Focus 

was, as said, on the understanding of the students’ conceptualization of axial 

symmetry, analyzing data inside Vergnaud’s Theory of Conceptual Fields (1998; 

2013) and with an eye on the generalization processes that took place (Harel & Tall, 

1991).  

RESULTS 

In relation to our first research question, we observed, in the majority cases, in the 

tasks from Task 3 to Task 6, spontaneous application of previous knowledge to the 

new situations they are facing. However, is the procedure always correct? Re-applying 

the spontaneous concepts (in this sense, generalizing; Vygotsky, 2012) can lead the 

students to different situations. A spontaneous expansive generalization process can 

be correct but still lead to some non-correct conclusion, due to a concept in action that 

is either incomplete, and therefore not extendable to other cases without adding other 

conditions, or valid only in some situations, thus becoming not correct when the 

related scheme is applied to a new range of situations. Examples can be seen in Table 

1.  

We can observe that one of the main risks here is that students go on with what they 

think is a good property (concept in action), and apply it in a range where it will not 

work without realizing it will not actually be valid. However, without asking students 

questions that encourage them to apply their schemes in a new situation, these 

incomplete or situated concepts would not be identified and revised by the students. 

From the video analysis, we could pinpoint also different cases in which correct 

generalization occurs, both expansive and reconstructive. Some students connect the 

two schemes, performing in this way a sort of reconstructive generalization. Viola and 

Andrea, for instance, in Task 6, overlapping the drawing with a folding, realize that 

“sides cannot be longer or shorter, they need to have the same measures!”, connecting 

the two schemes and reconstructing 

Scheme (2), which allows them to re-describe the concepts in action of the paper 

folding Scheme (1) in terms of measures and distances.  
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Table 1. Examples of data analysis 

Expansive generalization occurs in many more cases, in all tasks: Task 3 – Task 6, i.e. 

students keep one scheme they built, always applying the same to a new situation and 

expanding it, without seeing the connection between folding and overlapping on one 

hand, lengths and measures on the other hand. This is for example the case of Dora, 

who generalizes in every situation her scheme about symmetry as folding (1), even 

when it was easier to use Scheme 2, and never compare the two.  

On some occasions, the attempt to generalize the concept will first lead to a non-

correct conclusion in a broader situation, but it can also help realize the mistake and 

therefore adjust the concept and definition the students are trying to identify. For 

example, as in the transcript below, after an I2 occurring, Elin and then Sara realize 

Initial concept  
Situation / 

Concept 

Examples of students’ 

sentences/indicators 

What happens when re-

applying the concept 

Incomplete 

concept 

I1 
Folding 

the paper 

“Axes of Symmetry are 

lines” (also “zigzag” 

lines) 

“Symmetry is just 

folding the paper” 

Students identify every 

fold/line, or every line 

dividing the figure in two 

parts with the same area, with 

an axis of symmetry. The 

right answers based on this 

incomplete concept, are true 

but partial. 

There is a need for a 

strengthening of the concept 

in action. 

I2 

Two parts 

with the 

same area 

“a line that divides the 

paper in two halves 

with the same area” 

Concept valid 

in some 

situation but 

that becomes 

not correct if 

changing the 

applicability 

range 

S1 

Axis has 

to be 

vertical 

“the axis of symmetry 

is a vertical line 

dividing the figure in 

two parts” 

Students apply the concept 

they inferred from a particular 

example, but it is not working 

when changing the setting. 

More difficult to correct, there 

is a need to revise the concept  

in action, removing some 

features of the line (S1) or 

referring the concept to a 

given figure (S2). 

S2 

Axes not 

related to 

the figure 

when “finding all the 

axes of symmetry of a 

figure”, students iterate 

the procedure, with the 

new figures obtained 

by folding the first one. 
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there is something not working with their previously discussed definition of axis of 

symmetry as “a line that divides the paper in two halves with the same area” (Andrea 

I2 misconception).  

Teacher:  Why is the diagonal of the square an axis of symmetry? 

Andrea:  Because it is a line that divides the paper in two halves that are the 

same, the quantity is the same. […] 

Teacher:  So, if I do this, showing a square that is folded in two parts with the 

same area, but where the fold is not an axis of symmetry, I fold the 

square and obtain two pieces with the same area, are they the same? 

Is this fold representing an axis of symmetry? 

Class:  Yes! No! Yes! 

Teacher:  Why is it or why not? Please try to provide some arguments. 

Michael:  Yes, because there is a line, anyways… [I1 misconception] 

Andrea:  It works because there is the same half [on both sides – I2 

misconception] 

Elin:  I say no, because…because the figure is rotated. It is the same half 

on both sides, but one goes up and the other goes down… the same 

figure is turned one facing up and the other facing down […] 

Sara:  I say no, because…so, it looks like it is, because it forms a line that 

divides the sheet into two parts that are equal. But in my opinion, it 

is not an axis of symmetry because…it should have been like this” 

indicates the diagonal folding with the hands […] 

James:  “the angles are not corresponding…” 

Sara: Ok, if I try again with the colors experiment and fold the paper it 

will not work. If I do once more the thing with the thread, it could 

not work on the other side. The two sides are different [they will not 

overlap]”. 

During the discussion, students realize their starting point was correct only if applied 

to the initial problem of a rectangle divided in two parts, but also that not all lines, 

even if dividing the figure in two equal parts with the same area, are axes of symmetry 

for a figure. Therefore, the discussion led to an enrichment of the concept, 

reconstructed to be adapted to the new situation.  

DISCUSSION AND CONCLUSION 

We observed that students facing tasks in which a concept is expected to be applied in 

a new situation re-apply their previous schemes and concepts in action to the new 

situation. While this spontaneous generalization inclination does not surprise, as it 

seems to be in fact natural in the students, it is interesting to observe the complete 

process students are undertaking, to get information about their conceptualization. The 

kind of tasks proposed are revealing students’ misconceptions (as in Table 1), which 

cannot always be observed with standard “textbook exercises” and which cannot be 

identified by the class teachers themselves, who were surprised by this discovery 

during the implementations.  

While re-applying schemes is a spontaneous process, the same cannot be said of the 

processes of evaluation of the consistency between the concept in action and the 

linguistic representations and the control of the rules applied in the new situation. 
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With an appropriate mediation by the teachers and encouraging discussion with peers 

and argumentation, the lack of a proper control or validation structure for the 

generalization process can be identified. Properly guided by the teacher, students can 

understand that their set of rules might not be applicable to every situation and revise 

their concept in action and scheme to adapt them to the new situations. In Task 3 and 

Task 6 students are encouraged to connect two schemes based on two different 

concepts in action and to carry out a reconstructive generalization by means of a 

verbalization task and a problem- solving activity. While in the first task this process 

of generalization never occurs, we observed it in the problem-solving activity, and 

other students did it during the discussion about their solutions, using one Scheme (2) 

to check the validity of the procedure carried out with the other Scheme (1). 
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EARLY DROPOUT FROM UNIVERSITY MATHEMATICS: 

THE ROLE OF STUDENTS’ ATTITUDES TOWARDS 

MATHEMATICS 
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Ruhr University Bochum, Germany 

 

High dropout rates in mathematics during the first year at university underline 

students’ difficulties in the transition from school to university mathematics. In this 

contribution, we present a quantitative study based on the three-dimensional model 

for attitude towards mathematics. Using questionnaires, we analyse differences 

concerning attitudes towards mathematics between dropped out students and students 

who continued their studies of mathematics. Our results show that dropped out 

students are less interested in university mathematics and report a lower 

mathematical self-concept than those students who continued their studies. Moreover, 

dropped out students report a decline of their mathematical self-concept during the 

transition from school to university mathematics. 

INTRODUCTION 

Dropout is a major concern in university mathematics. In Germany nearly 80 % of all 

mathematics students drop out or change their subject (Dieter & Törner, 2012) – most 

of them during their first year at university, so called early dropout. These facts reveal 

students’ difficulties during the transition from school to university mathematics.  

One obstacle during the transition are the major differences between mathematics at 

school and at university. These differences have been extensively discussed in the 

literature – for a detailed discussion see Ufer, Rach and Kosiol (2017). At school, new 

concepts are introduced with many examples aiming at an intuitive understanding. In 

contrast, new concepts at university are introduced via formal definitions. Whereas 

tasks in school mathematics are often focused on solving real-world problems and 

schematic calculations, typical tasks at university involve proofing (cf. Ufer et al., 

2017). These tasks usually are not directly connected to the real world and cannot be 

solved by schematic calculations. In Germany, freshmen traditionally attend the 

courses Real Analysis and Linear Algebra which are focussed on formal definitions 

and deductive proofs (Halverscheid & Pustelnik, 2013). Both courses are usually 

accompanied by weekly tutorials and homework tasks with a strong focus on proofs. 

 

According to theories of person-environment-fit (e.g. Swanson & Fouad, 1999) a 

sufficient fit between the characteristics of the students (e.g. attitudes, prior 

knowledge, learning behaviour) and the characteristics of the university (e.g. contents, 

learning environment) is necessary for a successful transition. Due to the already 

mentioned differences between mathematics at school and at university, this fit does 

not seem to be self-evident. However, a sufficient fit between the characteristics of the 

students and the characteristics of the university leads to satisfaction and appropriate 
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achievements of the students (Swanson & Fouad, 1999) while an insufficient fit 

increases the risk for dropout. According to Haak (2017), an insufficient fit leads to a 

personal crisis. This crisis is frequently mentioned in the mathematics education 

literature (e.g. Di Martino & Gregorio, 2019). Haak (2017) proposes two ways to 

overcome this crisis: Students can either adapt their personal characteristics (e.g. their 

attitudes or their learning behaviour) or they can decide to drop out.  

While early studies in the field of transition to university mathematics had mainly a 

cognitive orientation (Artigue, 2016), recent research pays attention to affect and the 

role of attitudes during the transition as well (e.g. Rach & Heinze, 2017; Di Martino & 

Gregorio, 2019). In this contribution, we focus on the role of students’ attitudes 

towards mathematics for early dropout from university mathematics. 

ATTITUDES TOWARDS MATHEMATICS 

The question how to conceptualise attitudes and mathematics related affect has been 

frequently discussed in the mathematics education literature (Di Martino & Zan, 

2011). Di Martino and Zan (2011) have proposed a Three-dimensional Model for 

Attitude (TMA) towards mathematics (comprising the dimensions emotional 

disposition, vision of mathematics and perceived competence), which is based on an 

analysis of school students’ narratives about their attitudes to and experiences with 

mathematics. Following the TMA, we understand attitudes towards mathematics as an 

interplay between interest in mathematics (emotional disposition), beliefs concerning 

the nature of mathematics (vision of mathematics) and mathematical self-concept 

(perceived competence) (cf. Di Martino & Gregorio, 2019). The TMA has already 

been used in qualitative studies focussing on students’ experiences and difficulties 

during the transition to university mathematics (e.g. Di Martino & Gregorio, 2019).  

Interest in Mathematics 

Individual interest is considered to be a rather stable relationship between an (abstract) 

object and a person, comprising of emotional (e.g feeling of joy while engaging with 

the object of interest) and value related (e.g. personal esteem of the object of interest) 

components (Krapp, 2007). Since people are motivated to engage with the objects of 

interest, interest is considered to play a crucial role for successful learning processes.  

Studies concerning the role of interest during the transition from school to university 

mathematics have reported contradictory results (cf. Ufer et al., 2017). Ufer et al. 

(2017) have argued, that a clear distinction between interest in school mathematics 

and interest in university mathematics is necessary, when dealing with interest during 

the transition. Otherwise it is not clear whether students have school or university 

mathematics in mind, while answering items measuring interest in mathematics. 

Kosiol, Rach and Ufer (2019) found that interest in university mathematics goes hand 

in hand with more satisfaction during the first term at university, while interest in 

school mathematics is connected with less satisfaction. We follow the argumentation 

of Ufer et al. (2017) and differentiate between interest in school mathematics and 

interest in university mathematics in this contribution. 
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Beliefs Concerning the Nature of Mathematics 

Philipp (2007, p. 259) describes beliefs as “propositions about the world that are 

thought to be true”. Traditionally we distinguish between rather static and dynamic 

beliefs concerning the nature of mathematics (Grigutsch & Törner, 1998). Static 

beliefs are characterized by the view that mathematics is a static summary of different 

(unconnected) procedures, rules and formula. In contrast, dynamic beliefs highlight 

that mathematics is a creative process and field of research with applications in other 

domains and everyday life. 

Regardless that university teachers hold static as well as dynamic beliefs (Grigutsch & 

Törner, 1998), dynamic beliefs seem to be more beneficial than static ones during the 

transition. Dynamic beliefs correlate positive with interest in mathematics during the 

first year at university (Liebendörfer & Schukajlow, 2017). Moreover, students with 

rather dynamic beliefs are more successful in exams than students with rather static 

beliefs (Crawford, Gordon, Nicholas & Prosser, 1994). 

Mathematical Self-Concept 

Bong and Skaalvik (2003) describe self-concept as a person’s perception about herself 

or himself with emphasis on the own skills and abilities. The self-concept is 

influenced by prior experiences especially mastery experiences and the feeling of 

competence and success in a particular domain (Bong & Skaalvik, 2003). 

Di Martino and Gregorio (2019) found that most mathematics students start their 

studies with a high mathematical self-concept but report decreasing self-concept 

during the transition due to experiences of failure. Rach and Heinze (2017) found that 

students’ mathematical self-concept predicts their exam attendance in the first term at 

university. Students who do not attend their exams – according to Baars and Arnold 

(2014) an useful indicator for dropout – report a lower mathematical self-concept than 

those students who attend the exams. 

RESEARCH QUESTIONS AND METHODS 

In this contribution, we want to clarify the role of students’ attitudes towards 

mathematics for early dropout during the first year at university. Since the character of 

mathematics changes during the transition from school to university, changes in 

students’ attitudes during this transition phase are likely. Furthermore, an adaption of 

attitudes is one possibility to overcome the crisis that occurs if students’ attitudes do 

not fit to the characteristics of university mathematics (Haak, 2017). Therefore, we 

consider students’ attitudes at the beginning of the first term and during the first term 

at university. This leads to the following questions and hypotheses: 

1) Do students who dropped out from mathematics and students who continued 

with their studies already differ concerning their attitudes towards mathematics 

at the beginning of the first term? 

2) Do students who dropped out from mathematics and students who continued 

with their studies differ concerning their attitudes towards mathematics in the 

middle of the first term? 
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Overall, we expect the differences between the two groups of students during the first 

term to be larger but in the same direction as the differences at the beginning of the 

term. In detail, we phrase the following three hypotheses: 

Since interest in university mathematics goes hand in hand with more satisfaction 

(Kosiol et al., 2019), we expect that students who dropped out report less interest in 

university mathematics than those students who continued their studies of 

mathematics (H1). We have no special hypothesis concerning the interest in school 

mathematics. 

With regard to beliefs concerning the nature of mathematics, dynamic beliefs seem to 

be more beneficial for a successful transition than static beliefs (Crawford et al., 

1994). That is why we expect that dropped out students tend to agree more to static 

beliefs and less to dynamic beliefs than those students who continued their studies 

(H2).  

Based on the result that students with low mathematical self-concept often do not 

attend their exams (Rach & Heinze, 2017) – which is an indicator for dropout – we 

believe that dropped out students will report a lower mathematical self-concept than 

those students who continued their studies of mathematics (H3). 

In order to answer the research questions, two questionnaires – one at the beginning of 

the first term (at the end of the second week, T1) and one in the middle of the first 

term (at the end of the ninth week, T2) – were used. At the end of the first year we 

checked whether students continued their studies or dropped out. The questionnaires 

have been handed out in the Real Analysis and the Linear Algebra lectures (which 

German freshmen usually attend during their first term) at a large public German 

university. The instruments used in the questionnaires can be found in table 1.  

Variable Source # (T1/T2) Example 

Interest School 

Mathematics Ufer et al., 

2017 

5 0,80/ 0,80 In school, mathematics was 

very important for me.  

Interest University 

Mathematics 

5 0,88/0,87 The kind of mathematics that is 

done at university is fun for me. 

Beliefs: static 
Laschke &         

Blömeke, 

2013 

6 0,52/ 0,64 Mathematics means learning, 

remembering and applying.  

Beliefs: dynamic 6 0,71/ 0,76 Mathematics involves creativity 

and new ideas.  

Mathematical  

Self-Concept 

Kauper et 

al., 2012 

4 0,84/ 0,82 I am very good in my study 

subject mathematics.  

 

 

Table 1: Instruments used in the questionnaire with number of items (#) and reliability 

(cronbachs ) 

All items had to be answered on a five-point likert scale (1= totally disagree; 5=totally 

agree). 271 freshmen (mathematics majors and mathematics pre-service teachers) 
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voluntarily filled out the first questionnaire. 222 freshmen participated in the second 

survey. All used scales had at least satisfying reliability, except the static beliefs scale, 

which has therefore been excluded from the further data analysis.  

RESULTS 

To answer the research questions and to check the hypotheses, multivariate analyses 

of variance (MANOVA) were used – to avoid the cumulation of the -error compared 

with single t-tests. In the following, we first describe the results concerning students’ 

attitudes at the beginning of the first term (T1), before discussing the results 

concerning students’ attitudes during the term (T2). 

Attitudes at the Beginning of the first Term (T1) 

A large group of students who dropped out during their first year did not attend the 

lectures at the middle of the first term (T2) anymore. Therefore, we compare three 

groups of students: students who continued their studies (no dropout), students who 

dropped out prior to T2 (very early dropout) and students who dropped out during the 

first year but after T2 (early dropout). Table 2 shows the results concerning the 

differences between these groups: 

 

 

Variable 

Very Early 

Dropout 

N=59 

Early 

Dropout 

N=40 

No 

Dropout 

N=172 

 

2 

M SD M SD M SD  

Interest School Mathematics 3,41 0,65 3,45 0,63 3,62 0,69 0,02 

Interest University Mathematics 2,55 0,79 2,86 0,78 3,17 0,83 0,09*** 

Beliefs: dynamic 3,50 0,54 3,60 0,53 3,74 0,59 0,03* 

Mathematical Self-Concept 2,41 0,62 2,76 0,58 2,97 0,70 0,10*** 

 

 

Table 2: Means, standard deviations and results of the MANOVA concerning the 

attitudes towards mathematics at T1; N=271; *p<0.05;   ***p<0.001 

As expected, dropped out students report less interest in university mathematics (H1), 

less dynamic beliefs (H2) and a lower self-concept (H3). No significant differences 

can be found with regard to interest in school mathematics. Due to the fact, that the 

static beliefs have been excluded from the analysis, H2 can only be confirmed 

partially. 

Post-Hoc-tests (with Bonferroni correction) show that mainly the differences between 

the very early dropped out students and the students who continued their studies are 

significant. Furthermore, the very early dropped out students report significantly lower 

self-concept than the early dropped out ones. However, early dropped out students do 

not differ significantly in their attitudes from students who continued their studies.  

Attitudes during the First Term (T2) 

Since the very early dropped out students did not attend the lectures at T2 anymore, 

differences concerning the attitudes during the first term can only be compared 
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between early dropped out students and those students who continued their studies. 

Table 3 shows these differences. As expected dropped out students report significantly 

less interest in university mathematics than the students who continued their studies 

(H1). We found no significant differences with regard to interest in school 

mathematics and dynamic beliefs. However, early dropped out students report 

significantly less mathematical self-concept than the students that continued their 

studies (H3).  

 

Variable 

Early Dropout 

N=56 

No Dropout 

N=166 

 

2 
M SD M SD 

Interest School Mathematics 3,62 0,72 3,70 0,72 0,00 

Interest University Mathematics 2,97 0,79 3,27 0,81 0,03* 

Beliefs: dynamic 3,40 0,60 3,42 0,64 0,00 

Mathematical Self-Concept 2,51 0,63 2,95 0,66 0,06*** 

 

 

Table 3: Means, standard deviations and results of the MANOVA concerning the 

attitudes towards mathematics at T2; N=222; *p<0.05;    ***p<0.001 

This is remarkable because at the beginning of their studies, these two groups of 

students did not differ significantly concerning their mathematical self-concept. A 

closer look at the means at T1 and T2 reveal that the mathematical self-concept of 

those students who continued their studies remains nearly constant while the early 

dropped out students report a clear decline of their self-concept. 

DISCUSSION 

Our results indicate that dropped out students and students who continued their studies 

of mathematics differ mainly concerning their interest in university mathematics and 

their self-concept. The differences found depend on the time of measurement.  

At the beginning of the first term, only the very early dropped out students report less 

interest in mathematics, less agreement to dynamic beliefs and a lower mathematical 

self-concept than the students who continued their studies. It seems that the very early 

dropped out students start their studies of mathematics with unfavourable attitudes 

that do not fit to university mathematics (in the sense of person-environment-fit). It 

seems that these students do not try to adapt their attitudes (as proposed by Haak 

(2017)) and therefore drop out very fast. It remains the question, whether some kind of 

supporting program would be beneficial for this group or if the very early dropout has 

to be understood as a fast correction of a wrong study choice. In this case it would be 

helpful to inform future students better about mathematics at university to enable them 

to make deliberate and appropriate study choices. Especially information about major 

differences between mathematics at school and at university should be given – 

preferably already during secondary school. 
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The early dropped out students did not differ from those students who continued their 

studies concerning their attitudes towards mathematics at the beginning of the first 

term. However, in the middle of the first term, the early dropped out students report 

significantly less interest in university mathematics and a lower mathematical self-

concept than the students who continued their studies. While the self-concept of the 

students who continued their studies remained nearly constant during the transition, 

the self-concept of the early dropped out students decreased. This is in line with the 

findings of qualitative studies like the one of Di Martino and Gregorio (2019) who 

found that the mathematical self-concept of many students – even those that continued 

their studies – decreases during the transition from school to university due to the 

unexpected experiences of failure in mathematics. Many experiences of failure during 

the transition are connected to students’ problems with the weekly homework tasks 

(Liebendörfer & Hochmuth, 2017). Therefore, the design of these tasks could be 

reconsidered. Tasks that are challenging but offer experiences of success might help 

strengthening students’ mathematical self-concept. 

All in all, we found clear evidence for differences concerning the attitudes towards 

mathematics between students who dropped out and those who continued their 

studies. However, our study has some limitations. We only collected data at one 

university, thus our results might only reflect the local situation. The questionnaires 

relied on self-reports that can be biased. In addition, questionnaires were filled out 

during lectures. Students who do not regularly attend the lectures were not captured in 

our study. Our ongoing research will now focus on supporting measures that foster 

students’ mathematical self-concept.  
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Häufigkeitsauszählungen des BMBF-Projektes. [PaLea – Panel of Teacher 

Education: Documentation of the Scales used in  the BMBF-Project.] Retrieved 

from http://www.palea.uni-kiel.de/wp-content/uploads /2012 

/04/PaLea%20Skalendokumentation%204_%20Welle.pdf. 

Kosiol, T., Rach, S., & Ufer, S. (2019). (Which) Mathematics Interest is Important for 

a Successful Transition to a University Study Program? International Journal of 

Science and Mathematics Education, 17(7), 1359–1380.  

Krapp, A. (2007). An educational-psychological conceptualisation of interest. 

International Journal for Educational and Vocational Guidance, 7 (1), 5–21.  

Laschke, C., & Blömeke, S. (2013). Teacher Education and Development Study: 

Learning to Teach Mathematics (TEDS–M). Erhebungsinstrumente. Münster: 

Waxmann.  

Liebendörfer, M., & Hochmuth, R. (2017). Perceived competence and incompetence 

in the first year of mathematics studies: forms and situations. In R. Göller, R. 

Biehler, R. Hochmuth, & H.-G. Rück (Eds.), Didactics of Mathematics in Higher 

Education as a Scientific Discipline (p. 286-293). Kassel: Universitätsbibliothek 
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DATA-BASED MODELLING WITH EXPERIMENTS – 

STUDENTS’ EXPERIENCES WITH MODEL-VALIDATION 
Sebastian Geisler 

Otto-von-Guericke-University Magdeburg, Germany 

 

Validating mathematical models is important yet challenging for many students. One 

pedagogical approach to foster validation is to use tasks that combine modelling with 

experimental data collection. In this paper we present a modelling-task with related 

experiment concerning the decay of beer froth. We analyse students’ validation of 

their models using qualitative content-analysis. Our results indicate that even if 

students are aware of substantial deviations between their model and their 

experimental data, they struggle with the validation of their models. Furthermore, 

students seem to put more trust in their models than in the data they measured during 

the experiment. Therefore, students tend to suggest to improve the measurement 

during experimentation instead of revising their models in order to improve fit 

between model and data. 

INTRODUCTION  

According to Niss (1994), modelling is a central contribution of mathematics for a 

modern society. Accordingly, mathematical modelling is considered a key 

mathematical competence to be taught. This is reflected by several national curricular 

documents (e.g. National Governors Association Center for Best Practices and 

Council of Chief State School Officers, 2010; KMK, 2012) as well as the PISA-

framework (OECD, 2017). However, modelling is a complex cognitive process. 

Therefore, modelling tasks are challenging for many students. Specially the absence 

of validation of the formulated models is an often reported shortcoming in students’ 

modelling processes (e.g. Blum & Leiß, 2007). 

In the case of data-based modelling with functions, Engel (2010) criticises that some 

tasks in textbooks use unrealistic data which already fit well to the intended model. 

The necessity to validate ones’ models becomes not apparent for students in this case. 

Therefore, Engel (2010) argues that real data – which usually does not fit perfectly to 

a mathematical model – is necessary for authentic modelling and to illustrate the 

relevance of model-validation. One possibility to integrate real data in the modelling 

process to stimulate validation is to combine modelling tasks with data which students 

gather themselves via (scientific) experiments (cf. Zell & Beckmann, 2009). 

Even though this approach is often described in articles that offer concrete teaching-

ideas for teachers at different educational levels (e.g. Ludwig & Oldenburg, 2007), 

only a few empirical studies deal with benefits and constraints of modelling tasks with 

experiments. In the exploratory study reported here, we analyse students’ validation in 

a modelling task concerning the decay of beer froth. 
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THEORETICAL BACKGROUND 

Mathematical Modelling and Model-Validation 

Even though different conceptualisations exist for mathematical modelling in 

educational contexts, most researchers assume modelling to be a circular process (e.g. 

Galbraith, Stillman, & Brown, 2010). We follow the conceptualisation of Blum and 

Leiß (2007) describing an idealized modelling-cycle with seven steps (see Figure 1). 

 
Figure 1: Modelling-Cycle following Blum & Leiß (2007) 

During the validation step, students examine whether the fit between their model and 

their obtained results is adequate. According to Niss (1994, p. 369) validation is the 

“single most important point related to mathematical modelling”. For many students, 

validation is also a hurdle in the modelling process. Blum and Leiß (2007) report, that 

the model-validation is absent in many students’ modelling-processes. Some students 

even seem not to see model-validation as necessary (Stillman & Galbraith, 1998; 

Hankeln, 2020). However, some scholars report, that students validate their models 

but sometimes rely on rather intuitive feelings that their model might be wrong 

(Borromeo Ferri, 2006). In an intervention-study aimed at fostering students’ 

modelling-competencies, Borromeo Ferri, Grünewald and Kaiser (2013) found that 

ninth grade students’ validation-competence was the weakest developed sub-

competence. Furthermore, they found that validation-competence can be fostered even 

in short interventions. 

Modelling Tasks with Experiments 

Experiments related to mathematics find their natural place in the framework of 

mathematical modelling because they represent the “rest of the world” for which 

mathematical models are built. (Halverscheid, 2008, p. 226) 

Carreira and Baioa (2018) describe that students see modelling tasks with experiments 

as credible. Furthermore, Ludwig and Oldenburg (2007) argue that experiment-based 

tasks tie the whole modelling-process to students’ practical experiences and allow 

models to be validated with students’ own measurements. Similarly, Zell and 

Beckmann (2009) see valuable opportunities for validation and reflection upon models 

when using measurements from real experiments: 

Because of measurement errors the formula is never correct. So it is natural to talk 

about the correctness and the limitations of the model and its results. […] Hence 
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there is a strong emphasis on the validation process […]. (Zell & Beckmann, 2009, 

p. 2216) 

They report that secondary students were able to validate their models based on 

physical experiments during classroom discussions. Maull and Berry (2001) found 

that undergraduate students did not validate their experiment-based models on their 

own and that prompts from the teacher were necessary for the validation process. 

However, even if students notice divergences between their model and experimental 

data, this does not ensure useful validation: Carrejo and Marshall (2007) describe how 

students justify systematic shortcomings in their models by measurement errors in 

their data.  

So far, empirical studies do not draw a consistent picture of the benefits and 

constraints of experiment-based modelling tasks. More research on how students 

approach modelling tasks with experiments focusing specially on how they validate 

their models with respect to their experimental data is needed. 

THE CURRENT STUDY 

The study at hand is part of the Design-Based-Research (DBR) project “Mathematical 

Modelling with Experiments” (MaMEx). MaMEx objectives are the design and 

evaluation of modelling tasks with experiments and research concerning the benefits 

and constraints of such tasks for fostering students’ modelling- and especially 

validation-competencies. Before addressing the research-questions of our study, we 

give a brief overview of the modelling tasks used in the MaMEx-project. 

Design-Principles and Modelling Task “Stale Beer” 

The modelling tasks and related experiments used in the MaMEx-project satisfy the 

following design-principles (cf. Galbraith et al., 2010): (1) The context should be 

realistic and use only physical quantities that are familiar to students. (2) Experiments 

should be easy to conduct and not take too much time so that mathematical modelling 

is foregrounded. (3) Setting up a mathematical model should not be too complicated 

but the task should offer useful occasions for validation. (4) Since not all students 

validate their model spontaneously, a validation prompt should be implemented. We 

illustrate these design-principles for the task “Stale Beer”. In this task, students model 

the decay of froth from alcohol-free beer using data measured in an experiment. 

Similar tasks without the experiment can be found in several mathematics textbooks 

from Germany (Leike, 2002). The initial task was formulated as follows:  

The quality of beer is (among other criteria) evaluated by the speed of decay of its 

froth. Since people drink beer at different paces, there are different opinions on 

how long froth should be stable. Model the decay of froth for the alcohol-free beer 

at hand and evaluate the quality of the beer.  

The context is realistic (1) since the quality of froth is a quality-criterion of beer for 

both: consumers and breweries (Evans, Surrel, Sheehy, Stewart & Robinson, 2008). 

Furthermore, consumers from different countries prefer different characteristics of 

beer froth (Evans et al., 2008). Students were advised to conduct an experiment by 

measuring the height of froth from freshly poured beer for five minutes. The quantities 

time and height are familiar to students. The experiment takes only a few minutes and 

materials used (alcohol-free beer, measuring cylinder, ruler) are easy to handle (2).  
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After conducting the experiment, students were asked to set up a function serving as a 

model for the decay of froth. Mathematising is not too complicated (3) since the decay 

of froth can be approximated by exponential decay: 𝑓(𝑥) = 𝑏 ∙ 𝑎𝑥, 0 < 𝑎 < 1, 𝑏 > 0. 

A reasonable solution is to use the first measured height (in cm) as an estimate for the 

parameter b. a can be estimated as the quotient of two consecutive measured values 

(e.g. 𝑎 =
height(1 min)

height(0 min)
). Occasions for validation are given, since the decay of froth is 

not perfectly exponential (Leike, 2002). This subtask served as validation prompt (4): 

Compare your function with your measurement-data. Does your function describe 

the data accurate enough? How could your model be improved? 

One possibility to improve ones’ model is to consider several pairs of consecutive 

measured values and using the mean of their quotients as an estimate for a.  

Finally, students were asked to reflect upon their validation: 

In which way was the former subtask relevant for evaluating the quality of the 

beer? Why does it make sense to ask yourself the questions in the former subtask? 

Research-Questions 

This paper reports results from the first DBR-cycle of the MaMEx-project. Within this 

cycle the task “Stale Beer” was implemented in German upper-secondary schools in 

order to analyse students’ model-validation and – if necessary – to refine the task for 

the next DBR-cycles. In particular, we were interested in the following questions: 

• How do students validate their models with respect to their experimental 

data?  

• In which way do students explain the relevance of validating their models? 

Methods 

19 German upper-secondary students from two classes of a grammar-school serve as 

the sample for the study at hand. The students were familiar with exponential 

functions of the type 𝑓(𝑥) = 𝑏 ∙ 𝑎𝑥 as well as the typical characteristics of exponential 

growth and decay. However, so far they had not worked with empirical data and did 

not all already know how to compute the parameters b and a based on given values. 

In order to answer the research questions, students’ answers on the aforementioned 

validation prompt and the reflection subtask were analysed using qualitative content 

analysis (Mayring, 2010). Inductive categories have been derived from students’ 

answers, resulting in a coding guide. Based on this guide, all answers were coded 

independently by two coders, reaching a good intercoder-reliability of 𝜅 = 0.75. 
Given the limited space, we cannot present the coding-guide here. 

RESULTS 

Except of two, all students were able to construct an exponential function as a model 

for the decay of beer froth. The students used their first measured value as an 

estimation for b. Ten students computed a as the quotient of consecutive measured 

values (see Fig. 2a). Only three of these students used more than two consecutive 

measured values and computed a mean as an estimate for a (see Fig. 2b for an 

example). However, three students indicated that they systematically tried different 

values for a and compared the resulting functions with their measurement data. Five 

students did not provide an explanation for how they set up their model. 
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Figure 2: a) Solution using two consecutive measured values to estimate a, b) Solution 

using in sum four consecutive measured values and the mean of their quotients to 

estimate a 
Model Validation 

Nine students indicated that they identified no or only a small deviation between their 

model and experimental data. These students stated that their models described the 

data adequately enough (e.g. “The function describes the measured values precisely. 

There are hardly any major deviations.”). Even if they identified no significant 

deviations, five students proposed ideas for improvement of the fit between model and 

data. Two of them proposed to measure the height of the froth more precisely during 

the experiment (e.g. “by using more precise measurements”) and three suggested to 

take into considerations more decimal places while computing a (e.g. “You can make 

the function more precise by adding more places after the comma.”). Four students 

described no concrete idea to improve their models. 

 
Figure 3: Model and data of a student who identified no significant deviations (left 

picture), and of a student who identified significant deviations (right picture) 

Ten students indicated that they see significant deviations between their models and 

experimental data (e.g. “The values differ greatly. The measured values are not 

described adequately by our function.”). All of these students suggested to improve 

the fit between their models and the experimental data by increasing the number and 

precision of the measurements during the experiment (e.g. “The model can definitely 

be improved by better measuring.”). No student suggested to use more or even all 

measured values to estimate a. 

It is noteworthy that students’ judgement, whether the deviations between the 

experimental data and the model are significant is very subjective. Comparing models 

from students who did not indicate relevant deviations and models from students who 
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did, reveals that the models and deviations from the data are quite similar. For 

example, both models in Fig. 3 reveal similar systematic shortcomings.  

Relevance of the Validation 

Being asked, why the validation subtask was relevant, two students stated that it was 

not important for them (“It was not relevant for us!”).  

16 students argued that comparing their model with their experimental data was 

relevant for their modelling-process. Three different argumentations could be 

identified in students’ answers:  

Eight students wrote that it was important in order to understand how fast the froth 

decreased and to determine the quality of the beer froth (e.g. “It was important to 

notice the speed of the decay. With the speed you can recognize and explain the 

quality of the beer.”). However, these eight students did not explicitly explain how the 

validation contributed to the evaluation of the quality of beer froth.  

Two students argued that validation was necessary in order to set up a model that can 

adequately predict the further decay of beer froth (“It was important since – 

theoretically – the function can approximately predict the quality and the amount of 

froth that is still there after »x« time.”). These students saw their model not only as a 

description of their data but as a tool to predict the further decay. 

Evaluating the fit of ones’ model with the data, as a reason why validation is relevant, 

was mentioned by six students (e.g. “Verification whether function and data can fit 

together.”). Two of these students explicitly linked the comparison of model and data 

with the evaluation of the froth quality (“It was important to see that – in contrast to 

our function – the decay of froth was faster, indicating that the quality was not 

good.”). 

DISCUSSION AND OUTLOOK 

Mathematical modelling and in particular model validation are very important (Niss, 

1994). In the context of modelling with functions, the results of our study show that 

many students struggle with validation. Some students did not recognize systematic 

shortcomings of their models (e.g. Fig. 3, left). Those students who noticed relevant 

deviations between their model and experimental data argued that these deviations are 

the result of imprecise measurements during the experiment. Systematic shortcomings 

of fit between model and data – as apparent in the right picture in Fig. 3 – are 

attributed to measurement errors (cf. Carrejo & Marshall, 2007). Consequently, 

students suggested to improve the data by more precise measurements instead of 

revising the model in order to increase the fit between data and model. It is surprising 

that even the three students who used more than two consecutive measured values to 

estimate a, did not suggest using the rest of their data in order to further improve their 

models. 

It seems that the majority of students put more trust in their mathematical models than 

in their experimental data, with the result that they try to adjust their data to the model 

instead of the other way around. However, in the reflection statements of those two 

students who linked the comparison of model and data with the evaluation of beer 

froth quality some doubts about their models came through (“It was important for 
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judging the beer quality, because – in contrast to our function – the beer froth 

decreased much faster.”). But even these students wanted to improve the fit between 

model and data by more precise measurements during the experiment.  

Since we worked with a small group of students from two classes using only one task 

and experiment, our results are rather explorative and should be confirmed by further 

studies with similar tasks and experiments as well as a larger sample of students. 

The question remains, why students put more trust in their models than in their data 

and why they prefer to adjust the data instead of revising the model. A possible reason 

is that students are more familiar with tasks which use unrealistic data, already fitting 

well to the intended model (cf. Engel, 2010). Furthermore, it is possible that students’ 

hesitation to change the model is rooted in a belief that mathematics is always precise 

and that mathematical tasks have only one correct solution (cf. Schoenfeld, 1992). 

With this belief, students might assume that the first model they set up is “correct”. 

However, another reason could be that students simply find it easier to improve their 

measurement than to revise their model. Stimulated recall interviews (with students 

who worked on experiment-based modelling tasks) could be used to gather more 

insights into students’ reasons for putting more trust in their models than in their data. 

We will follow this strategy within the next DBR-cycle of the MaMEx-project.  
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We report how an inquiry-oriented, open source, and open access calculus textbook 

shaped one university instructor's planning and enactment of his lessons. We use two 

analytical lenses—curricular noticing (Dietiker et al., 2018) and Inquiry in 

Mathematics Instruction (Gerami et al., 2020)—using various sources of data 

(surveys, bi-weekly logs, classroom observations, and instructor interviews). We 

found that the instructor relied heavily on the textbook to plan his lessons and that his 

enactment of the lesson plans resulted in meaningful interactions about calculus ideas 

in the spirit of inquiry. 

INTRODUCTION AND BACKGROUND 

University calculus instruction, specifically lecturing, has been blamed for the high 

proportion of students leaving science and engineering programs (Rasmussen & Ellis, 

2013). Citing current evidence that ‘active learning’ is associated with higher student 

performance (Freeman et al., 2014; Laursen et al., 2014), the popularity of inquiry-

oriented teaching and learning in university mathematics has increased, as has the 

interest in creating curriculum materials that can support inquiry (Haberler et al., 

2018). Whereas there is empirical research on how inquiry-oriented research-based 

curriculum materials  support teaching and learning (e.g., Rasmussen & Kwon, 2007), 

there is scant research on how non-research-based textbooks that are designed to 

engage students shape instructors’ teaching. An exception is Fukawa-Connelly’s 

(2016) study about an undergraduate abstract algebra instructor who used his own 

non-research-based inquiry-oriented curriculum. He showed that even though the 

instructor wanted students to engage in various defining and proving practices and 

some elements for inquiry were present in his curriculum, the enactment of the 

curriculum did not seem to support that goal because of the absence of design 

principles that would allow the instructor to “devolve much responsibility to [the 

students] in the defining and conjecturing phase” (p. 747). 

Our study contributes to this body of research, as we seek to understand how a 

textbook designed to create inquiry opportunities in a first-year calculus course shaped 

two teaching processes of one university instructor (Casey, pseudonym): planning and 

instruction. We chose a case study approach (Yin, 2003) because it afforded us an in-

depth analysis of the processes of planning and instruction in a bounded system: the 

teaching of calculus by one instructor. We chose to work with Casey, because he 

mentioned wanting to implement inquiry into his calculus course, after having some 

success implementing inquiry in a few of his upper-division courses. Because we were 

interested in how the textbook entered the processes of planning and instruction, we 
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thought that an instructor interested in incorporating inquiry but who lectured in his 

calculus course would be ideal to see whether the textbook was the catalyst to 

implement inquiry. We pose the following research questions: How does an inquiry-

oriented calculus textbook shape lesson planning by a calculus instructor in inquiry-

oriented ways? and, How does an inquiry-oriented calculus textbook shape one 

college instructor’s interactions with students and the mathematics at stake in inquiry-

oriented ways? 

The inquiry-oriented textbook: Active Calculus 

To teach his course, Casey used Active Calculus (Boelkins, 2019), an open source and 

open access textbook created in PreTeXt (https://pretextbook.org) in an HTML 

format. The book is designed to “actively engage students in learning the subject 

through an activity-driven approach in which the vast majority of the examples are 

generated by students” (Boelkins, 2019, preface for instructors). The textbook is 

conceived as a workbook with activities that have to be done with peers in class; 

students are expected to ask questions, make mistakes, and write about and talk 

through the concepts (see preface for students). The textbook includes three 

interactive features: links to GeoGebra animations (interactive applets), preview 

activities (students can submit their responses to questions about the upcoming 

material), and WeBWorK (https://webwork.maa.org) exercises that provide immediate 

feedback to students. Each section is designed to map class time in a five-phase 

instructional sequence: 1) students completing a preview activity prior to each class 

meeting, 2) short class discussion, 3) short lecture and discussion based on the 

preview activity, 4) students working on an activity while engaging with peers, 5) 

instructor wrapping ideas up. The materials include a YouTube channel with short 

videos for every section and a set of worksheets (prep assignments) that are given to 

the students to do as homework before class. 

THEORETICAL FRAMEWORK 

In this study, we see artefacts as an interdependent element that mediates and modifies 

the interactions between the teacher and his or her students and the mathematics at 

stake as they engage in activities that bring them together (Rezat, 2013). We attend to 

two activities, planning and enactment of a lesson, and seek to understand them from 

the perspective of the teacher. 

We conceive of planning as the set of activities instructors engage in to generate a 

plan that outlines the goals, activities, times, roles, etc., of the teacher and the students 

in the classroom. We used Dietiker and colleagues’ (2018) curricular noticing 

framework to conceptualize this activity vis a vis the textbook. Curricular noticing 

refers to how teachers “take advantage of the opportunities in curricula in 

mathematically and pedagogically productive ways” to create such plan (p. 524). The 

framework consists of three phases: 1) curricular attending refers to the set of actions 

involved in viewing or visually taking in information within the curriculum; 2) 

curricular interpreting includes the actions teachers take to make sense, 

mathematically and pedagogically, of the information they have visually taken in 

during the attending phase; and 3) curricular responding describes the actions teachers 

https://pretextbook.org/
https://webwork.maa.org/
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use to make curricular decisions and the way in which those decisions are carried out 

in the classroom. The three phases follow one another consecutively, but teachers may 

refer to prior phases as needed (see Figure  1). 

 
Figure 1: The curricular noticing framework (adapted from Dietiker et al., 2018) 

Instruction is conceptualized here as the interactions between the teacher, the students, 

and the mathematics, bounded by particular contexts. Attending to the interactions, we 

identify various dimensions of inquiry (or pillars, Laursen & Rasmussen, 2019) to 

define inquiry instruction as instruction that supports inquiry in the classroom (see 

Figure 2). 

 
Figure 2: Dimensions of inquiry in the classroom (adapted from Cohen et al., 2003) 

Inquiry in the classroom can refer to: 1. Individual student inquiry, that is, the extent 

to which students engage with “coherent and meaningful mathematical tasks”; 2. 

collective student inquiry, that is, the extent to which “students collaboratively process 

mathematical ideas”; 3. instructor inquiry, that is, the extent to which the instructors 

express interest and curiosity about how individual and groups of students are 

thinking about and processing mathematical ideas and use that information to guide 

the interactions; or 4. environment that supports inquiry for all, that is, an 

environment in which equitable participation is expected and supported through lesson 

design and facilitation choices (Laursen & Rasmussen, 2019, p. 138). To define the 

specific inquiry-oriented processes under each dimension, we identified actions 

(behaviours or items) from 15 extant observation instruments and questionnaires 

concerned with inquiry-oriented classroom practice (e.g., Cawley et al., 2018; Laursen 

et al., 2014; Shultz, 2020; full list of instruments and definitions provided upon 

request). We mapped them into the interactions outlined in Figure 2. This process 
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resulted in The Inquiry in Mathematics Instruction framework, shown in Figure 3, 

with 28 behaviours (which we identify by a number representing a dimension and a 

letter, e.g., “3a: Interactive lecture” is a behaviour under the third dimension). 

 
Figure 3: The Inquiry in Mathematics Instruction framework (Gerami et al., 2020) 

METHODS 

Data for this case study were collected over the Fall 2019 semester, as part of a large 

project (Beezer et al., 2018) that involved 18 instructors. Casey had nine years of 

experience in teaching at the university level and taught at a small private university in 

the Midwestern United States. He had eight students (three females) in his calculus 

course, all majoring in STEM fields. The data included a teacher survey (collected 

before teaching started), five teacher logs (short surveys collected through the 

semester), course syllabus, audio recordings and fieldnotes of three one-hour 

interviews with the instructor, and video-recordings and fieldnotes of four classroom 

observations (during the 10th week of the term: Monday, Wednesday, and Friday 

morning, and a lab on Friday afternoon). In the first interview, we video-recorded 

Casey to capture his lesson planning process. In the second interview, we discussed 

his enactment process using clips from classroom observations and lesson planning. In 

the third interview, we revisited some themes of planning and enactment. 

To analyse Casey’s planning, we focused on the set of actions that constituted Casey’s 

curricular noticing using relevant pieces from his records: We listened to each 

interview, reviewed the field notes, and highlighted aspects that were directly relevant 

to planning or instruction with the textbook. To analyse Casey’s instruction, we 

identified video segments that exemplified interactions between Casey, his students 

and the mathematics that were shaped by the textbook features and resulted in 

mathematically meaningful exchanges. Here we showcase the results of our analyses 

of two such segments, using the Inquiry in Mathematics Instruction framework. We 

shared a summary of our findings and assertions with Casey to make sure that he 

agreed with the representation and interpretation of our findings. 

Student     

Calculus

Student     

Student

Instructor     

Student

Instructor    

Calculus

Environment

1a Open problem/discovery

1b Critiquing

1c Proving

1d Individual work time 
(including assessment)

1e Sense-making

1f Making connections 
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connections across 

representations

2a Group work

2b Student presentation

2c Explaining or listening to 
each other’s ideas

2d Assessing each other’s 
work

2e Seek help from one 
another

3a Interactive lecture

3b Hinting without telling

3c Orchestrating whole-
class discussions

3d Elicit student thinking

3e Examining student 
thinking

3f Using student work

3g Creating opportunities 
for discovery

3h Making connection 
across content

3i Connecting student 
thinking to formal 

mathematics

3j Using and connecting 
mathematical 

representations

4a Climate of inquiry and 
curiosity

4b Teacher attending to all 
students equitably

4c Adjusting instruction to 
meet students’ needs

4d Climate of respect

4e Public-acknowledgment 
of students’ contributions

4f Sharing mathematical 
authority with students

Dimension 1: Individual 
Students Inquiry

Dimension 2: Collective 
Student Inquiry

Dimension 3: Instructor Inquiry
Dimension 4: 

Environment that 
supports inquiry by all
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FINDINGS 

Using Active Calculus during Planning Inquiry Instruction 

Casey’s planning exhibited the three phases of curricular noticing as he produced two 

documents: the lesson plan (a to-do checklist to be used in class) and the prep 

assignment (a plan for student work to be completed in advance of the lessons). First, 

he searched within and reflected on the resources he had at hand—the textbook, 

Boelkins’ and his own previous notes and prep assignments—searching for specific 

content and features; this gave evidence of the curricular attending phase. In the 

second phase, curricular interpreting, he made sense of the materials by interacting 

with them and by anticipating students’ difficulties and the time needed to complete 

each activity. He recognized opportunities embedded in this particular set of 

curriculum materials, thinking they might “provoke discussion among his students” or 

be redundant because they repeat the content in the textbook. Casey questioned and 

made sense of the amount of class time that he would need, should he choose to 

include these textbook features. In the curricular responding phase, Casey made 

several decisions related to use of textbook features in both his lesson plan and his 

prep assignment. Casey’s decisions were mainly about selecting and sequencing 

textbook features in both documents, and how he and his students were going to 

interact with them (e.g., in whole-class discussion or group work). Casey closely 

followed the textbook and its supplemental materials in designing these documents, 

consequently embedding the author’s inquiry-oriented intentions for textbook use. For 

instance, following the author’s suggestions, Casey expected his students to come to 

class after interacting with the content via the prep assignment, so that whole-class 

discussions could be generated at the beginning of the lessons. 

Using Active Calculus during Inquiry Instruction 

We documented several actions using the Inquiry in Mathematics Instruction 

framework in all of Casey’s lessons that we observed. He started each lesson by 

collecting the prep assignment for the day and asking students if they had any 

questions. This opening generated whole-class discussions or interactive lectures (3a, 

3c), with Casey inquiring into student thinking (3d), evaluating their thinking (3e), 

and making connections across content and representations (1f, 1g, 3h, 3j). 

Throughout the lesson, they followed the textbook and its activities, often referring to 

the mathematics as sections of the textbook. When working on problems at the board, 

Casey interacted with the students by asking them next-step questions, calling them by 

their names, and eliciting their thinking (3a, 3d, 3e, 3f). When students worked 

individually or in groups (1d, 2a), Casey spent time with all students (4b), going back 

and forth between groups (4c), eliciting student thinking (3d), and checking their work 

and connecting it to formal mathematics (3i). During these interactions, Casey seemed 

comfortable not answering students’ questions directly, allowing them to struggle with 

open problems (1a). Moreover, we analysed two segments of instruction and coded 

every utterance by Casey and his students. Although we cannot show our analyses of 

these segments here due to lack of space, in Figure 4 we present a summary of the 

inquiry actions observed in instruction and those supported by the textbook. 
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Figure 4: Actions enacting inquiry by dimension; a circle represents that the particular 

action was identified in the episode; a filled circle means that the textbook supported 

the interaction. 

DISCUSSION 

In this study, we perused two research questions: How does an inquiry-oriented 

calculus textbook shape lesson planning by a calculus instructor in inquiry-oriented 

ways? and, How does an inquiry-oriented calculus textbook shape one college 

instructor’s interactions with students and the mathematics at stake in inquiry-oriented 

ways? We answer our first research question as follows: Casey designed his prep 

assignments and lesson plans carefully and efficiently because the textbook and its 

supplemental materials made it easy to do so. We think that the availability of the 

resources, especially the textbook with its interactive features and its ancillary 

materials, afforded Casey time to think through the available information, 

meticulously tweaking the details that were not aligned with his goals and visions. 

Because this was his first time teaching the course with Active Calculus or with 

inquiry, Casey might have relied on the textbook and the author’s suggestions more, 

as he built up knowledge and experience with the textbook. It has been reported that 

instructors tend to be more attentive to new textbooks and that as they gain 

confidence, they tend to use it less (Mesa & Griffiths, 2012). To answer our second 

research question, we assert: Casey’s instruction was inquiry-oriented because he 

closely followed his prep assignments and lesson plans which were based on a 

textbook and its supplemental materials that supported inquiry. Regarding this 

assertion, we believe that this was the case in part, because Casey had wanted to use 

inquiry in calculus in the first place. From interviews we know that he had had some 

success doing inquiry in his upper division courses and was already predisposed to use 

it. That the students also did the work required of them ahead of time was important 

for the inquiry enactment to happen—and he had planned for it. Students came to 

class with questions that were freely asked and got into the relevant topics much 

quicker and with more focus. Casey might have created a classroom climate that 

supported students being comfortable with inquiry, included the appropriate incentives 

for students to do the work (homework credit), or students may have found the prep 

assignments (including the YouTube explanations and animations) interesting and the 

amount of work appropriate. 
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Thus, we believe that we have evidence demonstrating that this textbook facilitated a 

shift in Casey’s way of teaching the course towards inquiry compared to his previous 

teaching of calculus. From our interviews with him, we know that Casey used to 

lecture before using Active Calculus and was dissatisfied with it but had not engaged 

in a change because his textbooks did not support his visions and goals. Casey had 

been slowly building more inquiry into his upper-division classes but found it very 

time consuming to design calculus activities that would enable students to explore the 

ideas in class. This hurdle was resolved when he had the opportunity to take part in 

the research project and teach with a textbook that supports inquiry in calculus. 

Our study suggests that investigating how textbooks shape undergraduate mathematics 

education is an important area of research. Research should describe and analyse 

curriculum on aspects beyond their content to see how they afford opportunities for 

altering practice. Our study shows that a textbook that is oriented towards inquiry can 

support instructors in implementing it. Although supporters of inquiry have 

traditionally focused on shifting university instructors’ practices via professional 

development opportunities or participation of faculty in research projects, our findings 

suggest that they could consider curriculum materials as a complementary resource 

and catalyst for instructional change (Laursen, 2019). Our findings are encouraging 

for advocates of reshaping teaching of university calculus by promoting inquiry using 

a resource that is readily and freely available to all. 
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“I DON’T NEED THIS” - UNDERSTANDING PRESERVICE 

TEACHERS DISAFFECTION IN MATHEMATICS 
Lara Gildehaus1 and Michael Liebendörfer1 

Paderborn University, Germany 

 

In some countries, preservice mathematics teachers enrol in specific teaching degree 

programs but share some lectures with mathematics majors. In this setting, we 

analyse the phenomenon of preservice teachers’ deeming university mathematics as 

irrelevant through the lens of social psychology. Group interviews of in total 14 

preservice teachers were analysed for students’ positioning of themselves and others 

within the mathematics community. The students experienced the two conflicting 

communities of mathematics and teacher education, which seem incompatible. 

Feeling excluded, they may project their negative experience against the community of 

mathematics. The proclaimed irrelevance should thus be seen as an expression of 

tensions in their identity and a reaction on their rejection by the mathematics 

community.  

TEACHER TRAINING IN MATHEMATICS 

In their training, secondary mathematics teachers often take courses together with 

mathematics majors. Yet, they may have separated programs. In Germany, preservice 

higher secondary teachers formally chose a different degree from the beginning and 

have different study schedules than mathematics majors. Yet, they often attend the 

first-year lectures on analysis and linear algebra together. Later, preservice teachers 

tend to have more and more specific courses on mathematics education and 

pedagogical contents (e.g., Bauer & Hefendehl-Hebeker, 2019). 

While it is well known and discussed, that university mathematics can be challenging 

for all beginners, “it is striking, not to say frightening, how negatively preservice 

teachers assess their studies” (Mischau & Blunck, 2006, p. 49). While differences in 

learning prerequisites between mathematics majors and preservice teachers are rather 

small at the beginning of their studies (Bauer & Hefendehl-Hebeker, 2019), preservice 

teachers strongly lose their interest in university mathematics after the first weeks and 

some describe themselves as being excluded from the mathematics community (Ufer, 

Rach & Kosiol, 2017; Liebendörfer, 2014). They drop out of mathematics studies 

more often and are disaffected with their study content. Many students criticize 

university mathematics as being irrelevant for their future profession and demand 

more practice-related content (Bauer & Hefendehl-Hebeker, 2019; Liebendörfer, 

2014). Accordingly, they report to copy homework and use surface learning strategies 

more often (Liebendörfer & Göller, 2016).  

Current interventions therefore address this desire for more practical relevance (e.g. 

practice semesters and internships in schools) and relevance of content (e.g. specific 

tasks connecting university mathematics with school mathematics; Eichler & Isaev, 

2017). Whereas such interventions are meant to comply with the demands of 
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preservice teachers, their critique often seems to sustain (Bauer & Hefendehl-Hebeker, 

2019) and may have further reasons. We therefore aim to understand preservice 

teachers’ disaffection from mathematics from a social psychological perspective. 

STUDENTS’ IDENTITY AND PROJECTIONS 

With their concept of “leading identity”, Black et al. (2010) introduced a construct 

that may frame preservice teachers’ concrete career aspirations. “Leading activities 

are those which are significant to the development of the individual’s psyche through 

the emergence of new motives for engagement.” (Black et al., 2010, p. 55). Alongside 

those motives comes a new understanding of self – the leading identity –, which 

reflects the hierarchy of motives. A leading identity focused on the later career 

aspiration would rather see the “use value” in studying mathematics to pursue the 

aspirations, in contrast to a leading identity that is focused on the activity of studying 

and becoming a university student, which values qualification one may obtain (Black 

et al., 2010). Accordingly, preservice teachers may rather search for a “use value” of 

their studies, than mathematics majors, who are more diverse in their career 

opportunities. 

Similar to these results on individual level, Solomon (2007) found that mathematics 

undergraduates may find themselves within potentially conflicting communities 

during their studies. While one may expect first-year students, who managed to 

participate successfully in the mathematics community, will built a functional 

mathematics learner identity, this was not the case for all students. “On the contrary, 

students who describe identities of heavily alignment can appear unworried by their 

lack of participation in mathematics, successful as they are in the more dominant local 

communities” (Solomon, 2007, p. 79). Considering preservice teachers as a specific 

community with their own leading identities and ways of participation may thus 

explain the differing behaviour compared to mathematics majors. It remains unclear, 

however, if, and if so, how this community relates to the mathematics community.  

The social psychological concept of projection (Baumeister et al., 1998, p. 1090) may 

clarify this relation, as it provides a frame to analyse preservice teachers’ disaffection 

from mathematics along their positioning to the mathematics community. A projection 

is a psychological mechanism of attribution that is usually triggered by experiences 

that challenge one’s own identity, e.g. fear. It describes a defence mechanism to 

repress impulses that the individual does not allow for self-perception – because they 

contradict the self-image, for example. For this purpose, a projection screen is sought 

to transform fear, into hatred of something that is not supposed to belong to oneself, 

and to relieve the self of psychological strains. The projection screen is then “the 

foreign” – a construct that developed from one's own unconscious fantasies and 

affectation. Obviously, “the foreign” is constructed to take ambivalences out of the 

self and to clarify one’s own identity. In contrast to “the foreign” one can easily 

determine oneself, by what one is not. A group-stabilizing mechanism of exclusion 

and inclusion succeeds: “The foreign” is generalized and perceived as fundamentally 

incompatible with the own identity.  One valorises oneself as belonging to “one's 
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own” by devaluing “the foreign”. A longing for a community of wholesome identity 

arises and legitimates defence against “the foreign” (Pohl, 2017).  

The preservice teachers’ challenge to mediate between one’s leading identity on the 

individual level and to be torn between different communities might be seen as a base 

for projections. If students’ disaffection from university mathematics could be seen as 

part of a projection, then the demand for more practice-oriented content could not 

easily be satisfied by including some practice-oriented elements in their studies.  

Research questions  

To explain preservice teachers’ disaffection and demand for practice-oriented content 

from a social psychological perspective, we pose the following research questions:  

RQ1: How do preservice teachers position themselves and others in relation to 

university mathematics?  

RQ2: Which elements of projection (according to Pohl) can we find in the 

positioning?  

METHODS AND DESIGN  

To answer these questions, three semi-structured group interviews with four to five 

preservice teachers each (n=14, 8 female) were analysed. The interviews were 

conducted at the University of Paderborn two months after the first semester started. 

The interviewees participated voluntarily and they were guaranteed anonymity.  

German secondary teachers need to study two subjects and the participants 

represented diverse second subjects (e.g. sciences, foreign languages, or social 

science). In Paderborn, the first semester includes a regular lecture on linear algebra 

together with mathematics majors and a specific introductory course for preservice 

teachers only.  

The interviews focussed on the students’ experiences in the first semester and their 

identity. Questions in the guide included the following: “To what extent do you 

identify yourself here at the university? How much do you feel yourself as 

mathematicians? How would you describe your parents what mathematicians are and 

do?” 

In the data analysis, we first coded passages with statements about one's own position 

and descriptions of other persons within the study program (lecturers, fellow students, 

tutors). These passages were then examined and structured for specific references to 

the teaching profession. In a second pass, indicators of projections were sought in the 

identified passages (generalizations, revaluations/devaluations, longing for a 

wholesome identity), which were then interpreted based on theory (Pohl, 2017). All 

presented citations were translated from German by the first author.  

RESULTS  

Regarding RQ 1, all students said they had always been good in mathematics and 

mostly had enjoyed it in school. Facing cognitive struggle, especially in linear algebra, 

challenged their mathematical identity. They felt frustration and irritation (“Here you 

think to yourself: I work and work and still nothing comes of it”). Very quickly, they 

developed a leading identity of becoming a teacher. The profession was very 

dominant in students’ self-descriptions and teaching was labelled as “the dream-job”. 
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For most students, teaching itself was described to be more important than the subject 

was: 

Anna:  So, maths is not my big love now either, so it's not that I'm happy 

like some mathematician there in my math world, but I just want to 

teach it to someone. 

Hence, their new motives of engagement were quickly orientated towards formal 

requirements, particularly on the graded weekly homework:  

 Thomas:  So at the beginning, it [the goal] was to understand that. And then, 

after the first two results or so, it was then: “we need points now and 

no matter how”. 

Although they had been studying for only two months, all groups substantially 

questioned the relevance of the content:   

Melissa:  Well, I actually don't see the point of having our lectures with 

mathematics majors. Sure, maybe a certain part, but not as it is at 

the moment. And as abstract as it is at the moment, I don't think 

you'll ever need it in school, not even in a few years. I don't see that 

being purposeful. 

Positioning along this content-relevance started from Melissa’s mostly individual 

statement, but also referred to generalizations that were legitimatized with the school 

curricula (“You don’t need it. It is simply not part of the school curricula”). In 

contrast, the specific lecture for preservice teachers was widely accepted. We should 

note, however, that students experienced less cognitive demand in this lecture.  

Thus, for most of the students, the uncertainties experienced in the transition to 

university mathematics seemed to strengthen the focus on their actual goal of 

becoming a teacher. In addition to this inner struggle, the students also described 

external struggle, feeling degraded by mathematics major students and faculty 

members: 

Marc:  I think it's always a pity when people come and say, oh yeah, you're 

only doing a teaching degree. 

They argued that mathematics majors as well as the professor in their linear algebra 

course see themselves as something better and therefore exclude preservice teachers. 

Part of this exclusion was also being recognized as less competent:  

Melissa: They [mathematics majors] really think as if they are something 

better. And I think that preservice teachers are always a bit 

excluded.  

Melissa:  […] But you always have the feeling that he [the professor] doesn't 

really think much of preservice teachers either. […] 

Miranda: So you always notice that you're talked down to. 

Melissa:  Like: “Yes, we do that so that the future teachers sitting here can 

teach their students that, so they can then solve the math problems 

of tomorrow.” And then you think to yourself: “are we too stupid for 

that or what”? 

Anna: […] for them [mathematics major tutors] it's all logic and easy of 

course and in their point of view we're just stupid because we don't 

understand it. 
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In line with this degradation, the students positioned themselves as more distant from 

the professor and less part of the mathematical community than mathematics majors: 

Melissa:  Well, they're already into this abstract thinking, which we all don't 

seem to be yet. 

Laura:  They are more on the professor's level than ours. 

Melissa:  Well, they always get along really well with him and he also makes 

jokes with them. But we just don't understand it. 

The two communities seemed rather incompatible: 

Melissa: So, computer scientists and mathematicians always sit together and 

preservice teachers always sit together somehow. And I think that it 

just doesn't come together at all. 

This perceived incompatibility made it difficult to participate in both communities or 

to negotiate ones positioning. The preservice teachers’ community was formed based 

on their common career aspirations. Being positioned as preservice teacher, however, 

resulted in downgrading and separation from the mathematics community, e.g. being 

considered less competent. Some students quickly adapted to this position and 

described themselves as preservice teachers rather than mathematicians: 

Marc:  I would never call myself a mathematician, for that I also see more 

and more in the homework that it's just not like that.  

Other students struggled with this positioning, trying to avoid the attribution as less 

competent. However, they failed negotiating this position and could not participate 

successfully in the mathematics community (e.g. they felt marginalized by their tutors 

and struggled with the weekly exercise). One female student reported participating 

mathematically as she successfully discussed her homework with tutors. Notably, she 

is the only student who did not show a strict leading identity of becoming a teacher. 

Her participation in the mathematics community lead to distance herself from the 

preservice teachers’ community, but she tried to negotiate this incompatibility: 

Lydia:  That's why I don't know yet if I'll eventually be a computer scientist 

instead of a teacher, I don't know. I wouldn't either/ Why can you 

only be one thing, // why can't you be everything? 

There is an ambivalence in students’ self-positioning. Being positioned as a preservice 

teacher, who is generally less competent, was mostly denied and criticized. However, 

it was also accepted sometimes and used to legitimate lower effort and achievement, 

as the content was proclaimed not relevant: 

Miranda:  As if my students would ask me: “What is a group 

homomorphism?” […] So, if I have basics with which I can 

understand that, then I think that's enough. Then I don't really need 

to do all the stuff in LinA [linear algebra].  

Mathematically, a group homomorphism is a very basic concept, from which Miranda 

distances herself, claiming she only needs basics to become a teacher. Such 

ambivalences are now discussed in the framework of projection in RQ 2:  

Projections related to mathematics majors could be found in all interviews. Notably, 

they varied in their extent, mostly linked to the perceived identity tensions. Those, 
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who could not identify themselves as “just teachers” described most precisely their 

projection based on the nerd stereotype:  

Anna  Well, I don't know if they look different, but, I don't know, I often 

find that their behaviour is a bit/[…] They are a bit in their own 

world. For them, everything is always logic. They all understand it 

immediately. And I think that these mathematics majors, in part, that 

it is more difficult with them, for example, to form learning groups, 

because I think they are often so on their own level. And they are 

not the kind of people who are capable of social interaction and 

empathy, who sit down with others and do that. But I think they are 

also often really loners, lone fighters. 

This description used the stereotype that higher mathematical competence implies 

lower social competence. Major students were seen to live in their own world, which 

separates them and their active living from the preservice teachers. Projecting their 

label of being incompetent, preservice teachers described major students to always 

understand everything. Those interrelations can also be found in Miranda’s quote. 

Additionally, she deemed the majors responsible for the separation of the two worlds:   

Miranda:  You just have the feeling that they don't have any other topics 

among each other. So I don't want to generalize that either, but there 

are so many: "Yes, that was quite simple, it was totally logical. That 

was it, I understood it all." And then you think to yourself, "Yes, 

that makes me happy for you, maybe you can explain that to 

someone." But then they all just hang out with each other. They also 

don't manage to break it down, to make it more understandable.” 

As Miranda directly answered to Anna, we see that they constructed a contradictory 

perspective: Majors were described to be “lone fighters”, who “hang out with each 

other”. This perspective includes generalizations that are negatively attributed for 

majors and positively attributed for the preservice teachers: Mathematics majors are 

conceived as a homogeneous group of nerds, with no other themes than mathematics:  

Miranda:  I just think that all the mathematics students really only, so from the 

feeling, they all just hang out at home after university and only deal 

with maths.  

Preservice teachers instead are described to be “still all okay” and “more social”. This 

separation associated with positive or negative attributions was not limited to fellow 

students, but also projected on tutors who are higher semester students: 

Melissa:  And I honestly have to say, that you can really recognize a 

difference between the tutors in EmDA [the specific lecture] and 

LinA [the linear algebra lecture] […]. In EmDA, I think, there are 

only people who are real preservice teachers and where you realize, 

they are really nice. 

In contrast to this, Lydia, who did not have the leading identity of becoming a teacher, 

described the least downgrading of mathematics majors and hence the lowest extent of 

projection: She only referred to the “cute nerds” she met at a first-semester party. 

Following the framework of projection, we found that the interviewed students 

experienced tensions between their developing leading identity of becoming a teacher 
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and their perceived position as downgraded, less competent preservice teachers with 

less access to the mathematics community. Students who struggled with this 

positioning distanced themselves from mathematics. This can be reconstructed as a 

projection: Based on their fear of being unsuccessful in their studies and being 

excluded from the mathematics community, preservice teachers constructed the image 

of mathematics majors being nerds who lack social skills and developed a negative 

identity towards these students. This, however, inevitably goes hand in hand with their 

own disaffection from the scientific content. 

DISCUSSION  

We analysed three group interviews investigating preservice teachers positioning and 

possible projections with regard to their disaffection. We firstly found that the 

interviewed students quickly defined themselves in terms of their career goal and only 

secondarily in terms of mathematics. This is consistent with previous research (Bauer 

& Hefendehl-Hebeker, 2019). The results indicated a situation of incompatible 

communities of preservice teachers and mathematics majors. The preservice teachers 

described their position as downgraded and perceived to be less competent. Hence, 

they experienced challenging identity work, positioning themselves to this attribution, 

which formed a base to build projections. Secondly, the analysis of this projection 

made visible, that the demand of preservice teachers for more relevant content is not 

(only) a rational fact, neither exclusively indicated by their leading identity. It is also 

part of the projection that occurred in the disaffection from university mathematics 

including the content and the major students. At the same time, this projection is 

caused by the ambivalent identity tensions that the preservice teachers experience in 

their attempt to find their way into two conflicting communities. 

The split into two communities is ambiguous: On the one hand, the preservice 

teachers’ community forms the basis for specific participation and identity formation. 

On the other hand, it reinforces the downgrading, which could legitimize actions such 

as copying homework and surface learning based on students’ leading vocational 

identity. The resulting projections thereby exclude participation in the mathematics 

community.  

Changes towards more and more equal participation of preservice teachers thus need 

to consider the outer circumstances, such as faculty members’ implicit positioning, as 

well as preservice teachers’ inner tensions along their leading identity. Specific 

preservice teachers’ lectures provide a basis for experiencing the wholesome identity 

students seek in regard to their projection. Hence, such interventions may have mostly 

situated effects. As long as preservice teachers share lectures with mathematics majors 

and experience inner tensions due to excessive cognitive demands, we may assume 

that they will position themselves as future teachers. They may use this position to 

participate less intensive and will represent their position publicly, e.g. articulate their 

demands. Specific interventions must thus not only serve students' longing for 

practical relevance, but also reduce their tensions by valuing the content they learn as 

relevant for their profession, as well as worth to participate mathematically (e.g., 

Eichler & Isaev, 2017). Our research highlights a need to examine not only student 
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satisfaction with the interventions, but also whether they promote identification with 

mathematics.  

Limitations & further indications  

The results presented here are highly dependent on the study context and thus at most 

exemplarily for very similarly organized teacher education. Further research, for 

example in the context of pure teaching degree programs or entirely mixed degree 

programs, is desirable. Furthermore, the identified incompatibility of the two 

communities could not be fully reconstructed. Further research is needed here to more 

concretely understand the positioning of preservice teachers. In particular, future 

research should take into account the perspectives of major students and faculty 

members, to better reflect the social context of the communities. The “all knowing” 

mathematics majors are obviously the preservice teachers’ construct and usually face 

similar struggle, probably positioning themselves along a different leading identity. 
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This paper presents an extension of the unidimensional PISA 2003/2012 mathematics 

self-efficacy scale to a four-dimensional measuring model related to the mathematical 

subdomains algebra, applied mathematics, geometry, and probability theory. Its first 

application in a Swiss large-scale assessment shows the following results: 1) The 

four-dimensional model allows a more fine-grained analysis of group differences, 

illustrated here with respect to gender and schools levels. 2) The subdimensions of 

self-efficacy are good predictors for the mathematics test outcome, but work 

differently: algebra and applied mathematics are most important. 3) The explanatory 

value of the predictors is different in homogeneous and heterogeneous groups and can 

be supplemented by a scale on mathematics self-concept (only) in homogeneous 

groups. 

INTRODUCTION: PISA’S MATHEMATICS SELF-ASSESSMENT 

In 2016, the first national school assessment took place in Switzerland, focussed on 

mathematics in grade 9 (Konsortium ÜGK, 2019). Typical for a large-scale 

assessment, this survey consisted of two parts: a performance test and a context 

questionnaire gathering data that are suspected to allow a deeper insight in the 

outcome of the performance test (cf. Martin, Mullis, Arora, & Preuschoff, 2014). 

Some variables of a context questionnaire are often linked to self-assessment, 

following the idea that students’ beliefs about their own abilities could be a good 

background variable to analyse and interpret their test scores. Mathematics self-

assessment can be measured in different ways. Usually, two approaches are used: The 

first one is related to a person’s so-called mathematics self-concept. It is measured by 

items based on general statements like “I have always believed that mathematics is 

one of my best subjects” (cf. Marsh, 1990). The second approach is called 

mathematics self-efficacy and is based on Bandura’s theory of (academic) self-efficacy 

(cf. Bandura, 1977 & 1986). Bandura defined self-efficacy expectation as “people’s 

judgments of their capabilities to organize and execute courses of action required to 

attain designated types of performances” (Bandura, 1986, p. 391). Applied to 

mathematics, Bandura’s theory implies the strategy to measure mathematics self-

assessment by items that allow a person to express his or her level of confidence about 

feeling able to solve specific problems that are relevant to mathematics in general or 

to a specific mathematical subdomain of interest. Research has shown that scales 

based on these two approaches are correlated, but empirically distinguishable (cf. 
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Multon, Brown, & Lent, 1991). Both of them are good predictors of test performance 

(Hackett & Betz, 1989). 

The supervising group of researcher that were responsible for the Swiss context 

questionnaire decided to measure both mathematics self-concept and mathematics 

self-efficacy (cf. Hascher, Brühwiler, & Girnat, 2019). They followed the PISA 

framework, adopting the items of PISA 2003 and 2012 (OECD, 2005, pp. 291–294, & 

OECD, 2014, pp. 322–323). However, a Swiss pre-study with about 2,000 participants 

in 2015 had shown that the PISA self-efficacy scale could not be regarded as 

unidimensional. A factor analysis led to the conclusion that the different subdomains 

of mathematics formed related, but empirically distinguishable factors that should not 

be mixed up in one unidimensional scale (cf. Girnat, 2018). An independent study 

came to the same result analysing the original PISA data of 2003 (Oberski, 2014, p. 

13). Therefore, the supervisors of the Swiss test decided to use a multidimensional 

measuring model. As far as possible, the PISA items were reused. However, the PISA 

scales did not contain enough items to implement this idea: With regard to the Swiss 

curriculum, it was necessary to measure self-efficacy with respect to elementary 

geometry and probability theory – the PISA scale contains neither of them –; for 

statistical reasons, each scale should consist of at least four items to be a sufficient 

measurement tool (cf. Beaujean, 2014, pp. 145–152). Insofar, the supervising group 

decided to use a “4x4 arrangement” that relies on four scales, each of them containing 

four items to measure the following mathematics subdomains: applied mathematics 

(app), algebra (alg), elementary geometry (geo), and probability theory (prb), reusing 

as many PISA items as possible: 
seff.app1) Calculating how much cheaper a TV would be after a 30% discount. 

(PISA) 
seff.app2) Calculating how many square metres of tiles you need to cover a floor. 

(PISA) 
seff.app3) Calculating the petrol consumption rate of a car. (PISA) 
seff.app4) Finding the actual distance between two places on a map with a 1:10 

000 scale that problem. (PISA) 
seff.alg1) Solving an equation like 3x+5= 17. (PISA) 
seff.alg2) Solving an equation like 2(x+3) = (x + 3)(x - 3). (PISA) 
seff.alg3) Developing and simplifying an algebraic expression like 2a(5a-3b)². 
seff.alg4) Solving an equation like 2x-3=4x+5. 
seff.geo1) Applying the Pythagorean Theorem to calculate the length of one side 

of a tri-angle. 
seff.geo2) Constructing a perpendicular bisector using compass and ruler. 
seff.geo3) Calculating the area of a parallelogram. 
seff.geo4) Constructing the focus of a triangle. 
seff.prb1) Calculating the probability of throwing a dice twice in succession to 

achieve two sixes. 
seff.prb2) Calculating the probability of getting the first prize in a lottery. 
seff.prb3) Calculating how likely it is to take two sweets of the same colour from 

a sweet jar. 
seff.prb4) Calculating how likely it is that two pupils in a class have the same 

birthday. 
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As mathematics self-efficacy is related to mathematics self-concept, a short scale to 

measure the latter (abbreviated as matcon) was included in the questionnaire, also 

based on items used by PISA (cf. OECD, 2013b, p. 95): 
matcon1) I get good grades in mathematics. (PISA) 
matcon2) Mathematics is one of my best subjects. (PISA, shortened) 
matcon3) I have always been good at mathematics. 

The research questions related to these scales are as follows: 1) Are the statistical 

properties of the four-dimensional model of self-efficacy sufficient? 2) How can this 

model be used to gain deeper insights into the test population? Following PISA, 

gender differences and differences concerning different school level are of a special 

interest (cf. OECD, 2013b, p. 91). 3) How are the four scales related to each other and 

to the mathematics self-concept scale? 4) Are the four scales good predictors for the 

test scores of the participants? After a short description of the Swiss test, these 

question will be answered in the following section. 

CONTENT, SAMPLE, AND METHODS 

A total of 22,423 students took part in the Swiss test in 2016. This population was a 

representative sample of Swiss students in class 9 (according to the Swiss numbering 

grade 11). Insofar, exactly the same grade was tested, which is also the basis of the 

PISA studies. The context questionnaire was available in two variants: The first 

variant was focussed on sociological issues. Only the second variant contained 

questions related to mathematics. This variant was worked on by 11,131 students and 

is the basis of the following analysis (Konsortium ÜGK, 2019). The performance test 

(cf. Girnat & Linneweber-Lammerskitten, 2019) consisted of 180 test items that were 

related to five subdomains of mathematics (data and probability, quantities and 

measurement, functional relationships, numbers and variables, space and shape) and 

five mathematical processes (reasoning and argument, representation and 

communication, concepts and knowledge, mathematisation, operations and 

calculations). This framework is quite similar to that one used in PISA (cf. OECD 

2013a, p. 26), however, the items were designed in such a way that they meet the 

Swiss curriculum more precisely than a worldwide study like PISA can do. The 

sampling design and the evaluation of the test followed the standards of PISA (cf. 

Angelone & Keller, 2019). The data from the test are linked to the questionnaire data. 

A Rasch model is used for the test, including 50 plausible values as technical tools (cf. 

Mislevy, 1991). The questionnaire data and the plausible values are evaluated using 

structural equation modelling (Loehlin & Beaujean, 2017, pp. 95–125). This is the 

same method that PISA applies (cf. OECD, 2005, p. 293). The calculations were done 

using the R packages TAM (Robitzsch, Kiefer, & Wu, 2019) and lavaan (Rosseel, 

2012). 

RESULTS 

According to the research questions, the first step of the evaluation is to check the 

statistical properties of the scales. Cronbach’s alpha is used as a measure of reliability 

(cf. Cronbach, 1951). Various quality criteria (fit indices) are known from the context 

of the structural equation modelling. CFI, SRMR and RMSEA are reported here (for 

the definition and interpretation of these values cf. Beaujean, 2014, pp. 153–166; a 
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short summary: CFI should be greater than 0.95, but definitively not below 0.90, 

SRMR should be lower than 0.06 and RMSEA lower than 0.05 or 0.08 according to 

different sources). 

Scale Cronbach’s alpha CFI SRMR RMSEA 

matcon 0.89 n.a. n.a. n.a. 

seff.app 0.79 0.993 0.017 0.047 

seff.alg 0.90 0.951 0.036 0.076 

seff.geo 0.76 0.994 0.013 0.039 

seff.prb 0.88 0.982 0.026 0.079 

Table 1: Reliabilities and fit indices of the scales 

The values reported in Table 1 indicate good reliabilities and fit indices (the latter are 

not available for matcon, since this scale consists of three items only). Hence, the 

scales are usable measuring instruments. Next, the correlations between the scales and 

the test outcome are reported. Since a structural equation model is used, the 

correlations reported here are latent correlations, i.e. these correlations are stripped 

from the measurement error observed variables are contaminated with and, hence, 

they reflect the relationship between the underlying latent concept more accurately 

than normal (Pearson) correlations between the row sums of the scales (cf. Beaujean, 

2014). The asterisks here and in the following denote the usual significance levels. 

 matcon seff.app seff.alg seff.geo seff.prb 

test 0.36*** 0.55*** 0.53*** 0.55*** 0.30*** 

matcon  0.56*** 0.38*** 0.45*** 0.41*** 

seff.app   0.66*** 0.87*** 0.69*** 

seff.alg    0.73*** 0.39*** 

seff.geo     0.49*** 

Table 2: Latent correlations (SRMR 0.052, RMSEA 0.059) 

The correlations reported in Table 2 are mostly moderate (maybe except for the pair 

seff.app and seff.geo), which indicates that the underlying concept are empirically 

distinguishable and do in fact measure different aspects of mathematics self-efficacy. 

The next focus is set to group differences. Following the PISA framework, gender 

differences are regarded first, and different school levels are the second part of this 

examination. In Switzerland, mathematics is taught from grade 7 to 9 on three 

different levels: Level “a” is the lowest, “e” the middle, and “p” the highest. 

In PISA 2012, there are some remarks on gender difference concerning mathematics 

self-efficacy: “No gender differences in confidence are observed when students are 

asked about doing tasks that are more abstract and clearly match classroom content, 

such as solving a linear or a quadratic equation. However, gender differences are 

striking when students are asked to report their ability to solve applied mathematical 

tasks.” (OECD, 2013, p. 91). This statement is based on analysing the single items of 

the PISA scale. By doing so, the authors implicitly admit that is questionable to 

combine these items to a unidimensional scale. Analysing single items is a 

questionable method, since single self-efficacy items are focussed on just one specific 

task and are much more affected by random measurement errors than a scale based on 
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several items. Having the scales introduced here, this issue can now be answered on a 

profound basis. 

Table 3 shows the mean differences between the relevant groups. The differences are 

reported in terms of Cohen’s d (Cohen, 1988), i.e. the mean of one group (the 

“reference group”) is set to zero (in Table 3 the group following “vs”, e.g. “male” in 

case of gender) and the mean of the other group is given as the difference to the 

reference group using the standard deviation as the measurement unit. Cohen’s d is 

usually interpreted as follows (Cohen, 1988): d = 0.2 indicates a small effect, d = 0.5 a 

medium effect, and d = 0.8 a strong effect. 

 

 

scale female vs male e vs a p vs a p vs a 

test -0.14*** 1.02*** 0.96*** 1.92*** 

matcon -0.63*** 0.06* 0.00 0.06* 

seff.app -0.60*** 0.39*** 0.40*** 0.79*** 

seff.alg 0.00 0.56*** 0.57*** 1.13*** 

seff.geo -0.23*** 0.43*** 0.57*** 1.00*** 

seff.prb -0.54*** 0.14*** 0.06* 0.20** 

Table 3: Mean differences concerning gender and school levels 

Table 3 shows some remarkable results: The mean difference between male and 

female students is relatively small (d = -0.14), however, the differences concerning 

self-concept is approximately four times as large (d = -0.63). In view of this 

discrepancy, one can speak of a considerable self-underestimation of female students, 

if they rated themselves on an abstract level of items related to their mathematics 

abilities. This observation does also hold with respect to the self-efficacy scale 

focussed on applied mathematics and probability theory, but not on the one related to 

algebra. Insofar, the conjecture stated in PISA 2012 can be verified: Female students 

report a lower ability to solve applied mathematical tasks, but this is not the case as far 

as algebraic topics are concerned. If this finding holds beyond algebra and can be 

extended to tasks “that are more abstract and clearly match classroom content” is an 

open question. 

With regard to the different school level, one observation is most striking: There are 

(very) large differences concerning the test outcome, however, mathematics self-

concept does not reflect these differences to the slightest extend. The self-efficacy 

scales reflect this difference at least about half. This suggests the hypothesis that self-

concept is a measure that does not work across groups, if the groups differ 

substantially in their performance. The self-efficacy scales, however, – probably 

because they are linked to specific mathematical tasks – are able to determine cross-

group differences. 



Girnat 

2 -  318 

 

PME 44 -2021 

 
Figure 1: Linear model to predict test outcome (SRMR 0.037, RMSEA 0.052) 

The last part of the analysis is dedicated to linear models (Searle & Gruber, 2016). In 

Figure 1, a path diagram is shown that uses all the scales as predictors of the test score 

(the value on top of each arrow expresses the unstandardised regression coefficient, 

the second value (in brackets) is the standard error of this coefficient, and the third 

value (bold) is the corresponding standardised regression coefficient; only the latter 

can be compared between different arrows and models). Overall, the variance 

explained by this model is considerable (R² = 0.362). However, the impact of the 

predictors is rather diverse: Geometry is not significant; and – very astonishing – 

probability theory has a negative impact. Only self-efficacy concerning algebra and 

applied mathematics are powerful predictors, whereas self-concept has just a very 

small impact. 

 
Figure 2: Linear models for gender and school levels (SRMR 0.039, RMSEA 0.053) 

Figure 2 shows two models in which the regression was carried out differently for the 

grouping variables gender and school types (only the standardised regression 

coefficients are reported here, and the insignificant predictor related to geometry is 

omitted). While the model on the left shows no remarkable gender differences, the 

model on the right reveals informative information about self-concept: If you divide 

the overall sample (Figure 1) into the more homogeneous subsamples related to school 
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levels (Figure 2, right side), the self-concept will become a strong predictor, while the 

role of self-efficacy in algebra will decrease. This supports the hypothesis that was 

already expressed in the context of group differences (Table 3): The self-concept 

seems to be a scale that is only meaningful in relatively homogeneous groups, whereas 

the self-efficacy scales allow a comparison of students even in heterogeneous groups. 

CONCLUSIONS 

The four-dimensional extension of the PISA mathematics self-efficacy scale presented 

here allows deeper insights than the original unidimensional PISA model: It provides 

a valid statistical basis to examine group differences related to different subdomains of 

mathematics. It can be confirmed that gender difference do not appear with respect to 

algebra, while they are remarkable (and excessively high) concerning applied 

mathematics, geometry, and probability theory. Both, the group differences related to 

school levels and the linear models, reveal a fundamental difference in the nature of 

the self-concept and self-efficacy scales: The first do only work within relatively 

homogenous groups; the latter are able to determine cross-group differences also 

within a heterogeneous sample. The reason may be the fact that self-efficacy items a 

formulated on the basis of concrete mathematical tasks that seems to work as 

“objective anchors” across groups, whereas the abstractly worded self-efficacy items 

appears to be understood by students as being relative to their classmates and their 

average abilities. Overall and across groups, the two self-efficacy scales on applied 

mathematics and algebra are the most powerful predictors to test outcome. 
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In this paper, we try to systematize and to explain different types and sources of 

frustrations which arise in the transition from school to university with Pekrun’s 

control-value theory. Empirical basis are problem-centered interviews with 21 

mathematics students during their first year of study at university. The results show 

that a low action-outcome control can be considered as the main source of 

frustrations, but also that the importance of certain values should not be 

underestimated. In particular, the consideration of consequences of frustrations 

allows new approaches to explain phenomena known in higher mathematics 

education, such as the copying of exercises or a devaluation of mathematical contents, 

which are discussed. 

FRUSTRATION IN UNIVERSITY MATHEMATICS 

Frustration is a commonly reported emotion of first-year university mathematics 

students (Göller, 2020), and yet, like emotions in general, is relatively rarely 

considered by research in undergraduate mathematics education. Theoretical and 

empirical evidence indicates that frustration as a deactivating negative emotion 

undermines motivation, reduces flow, and is related to task irrelevant thinking, 

shallow information processing, and weaker academic achievement (Boekaerts & 

Pekrun, 2015) and is therefore rather undesirable in academic contexts. 

However, studies in undergraduate mathematics education report various sources of 

students’ frustrations in the transition from school to university, such as being stuck 

during problem solving, perceiving limited autonomy, the fast pace of the courses, 

inefficient learning strategies, the need to change previously acquired ways of 

thinking, difficult rapport with truth and reasoning in mathematics, insufficient 

academic and moral support on the part of teachers, and poor achievement 

(Liebendörfer & Hochmuth, 2015; Martínez-Sierra & García-González, 2016; 

Sierpinska, 2006). Such frustrations may differ in their duration, intensity, type and 

genesis. In this paper, we try to systematize and to explain these types and sources of 

frustrations with Pekrun’s (2006) control-value theory and investigate concrete 

consequences of such frustrations, which highlight the importance of increased 

attention to frustration, or emotions in general, in teaching and research in 

undergraduate mathematics and teacher education. 



Göller & Gildehaus 
 

2 -  322 

 

PME 44 -2021 

THEORY: CONZEPUTALIZING EMOTIONS 

Emotions, as we consider frustration, are understood as affective episodes which 

constantly mediate between changing events and social contexts and the reactions and 

experiences of the individual (Scherer & Moors, 2019). Such emotion episodes 

comprise various components which include appraisals of the situation, action 

preparation, physiological responses, expressive behavior, and subjective feelings 

(Scherer & Moors, 2019).  

Emotions can be categorized by their valence (positive – negative) and degree of 

activation (Boekaerts & Pekrun, 2015): For example, joy and hope are activating 

positive emotions, whereas contentment and relief are deactivating positive emotions. 

Anger and fear are negative activating emotions, whereas hopelessness and frustration 

are deactivating negative emotions. As mentioned above, negative deactivating 

emotions (and frustration and helplessness in particular) negatively interfere with 

desirable learning processes and performance (Boekaerts & Pekrun, 2015). In the 

following, when we speak of frustration, we refer to these deactivating emotions 

described by words like “frustrating”, “helpless”, “despair”, and “depressed”. 

In academic contexts, achievement emotions (e.g. pride, shame, hope, anger, anxiety) 

which refer to achievement activities (e.g. learning or studying) or achievement 

outcomes (e.g. grades), and epistemic emotions (e.g. curiosity, surprise, frustration at 

unsolved problems) which refer to the comprehension process of novel information or 

to problem-solving can be distinguished (Boekaerts & Pekrun, 2015). For example, in 

mathematics problem solving, frustration as an epistemic emotion (e. g. at not 

deriving a correct solution to a mathematics problem) can be considered less 

problematic, as the focus is on the cognitive incongruity that resulted from the 

unsolved problem, than frustration as an achievement emotion, where the focus is on 

personal failure and the inability to solve the problem (Muis, Psaradellis, Lajoie, Di 

Leo, & Chevrier, 2015). 

Sources of frustration in Pekrun’s control-value theory 

The control-value theory of achievement emotions (Pekrun, 2006) posits that 

achievement emotions are a multiplicative function two groups of appraisals: (1) The 

subjectively perceived control over achievement activities and their outcomes and (2) 

the subjective values of these activities and outcomes. Both, subjective control and 

subjective values can refer prospectively and retrospectively to outcomes as well as to 

activities, and accordingly result in prospective outcome emotions (e.g., anticipatory 

joy, when subjective control and value is high, and helplessness, when subjective 

control is low), retrospective outcome emotions (e.g., pride, when subjective control 

and value is high, and anger, when subjective control is low), and activity emotions 

(e.g., enjoyment when subjective control and value is high, and frustration, when 

subjective control is low, Pekrun, 2006). 

The (prospective) total outcome-control expectancy appraises the overall 

controllability and probability of an achievement outcome on the basis of situation-

outcome, action-control and action-outcome expectancies. Situation-outcome 

expectancies are expectancies of (positive or negative) outcomes that the situation will 



Göller & Gildehaus 

2 -  323 

 

PME 44 -2021 

produce without self-action, respectively if no countermeasures are taken. Action 

control expectancies are expectancies that actions can be initiated and executed 

autonomously. They are closely related to Bandura’s self-efficacy (Bandura, 1997). 

Action-outcome expectancies are expectancies that one’s own actions will produce a 

positive outcome, or prevent, reduce, or end negative outcomes. Retrospectively, 

perceived outcome control attributes the causes of success and failure to one’s own 

actions, the self, external circumstances, or other people. External attributions are 

related to situation-outcome expectancies and internal attributions are related to 

action-control and action-outcome expectancies (Pekrun, 2006; Weiner, 1985). Values 

in control-value theory are distinguished in intrinsic and extrinsic values, whereby 

intrinsic values refer to the value of an activity or outcome per se, and extrinsic values 

refer to the instrumental utility of actions or outcomes for achieving other goals. 

Outcomes and activities in control-value theory can be negatively valued, e.g., in form 

of the subjective value (respectively cost) of an outcome that is appraised as failure, or 

when the effort required by an activity is experienced as unpleasant (Pekrun, 2006). 

According to the control-value theory, frustration and helplessness can occur as 

prospective and retrospective outcome emotion, as well as activity emotion: As a 

prospective outcome emotion frustration occurs in terms of helplessness when 

outcome control expectancy is low. As a retrospective outcome emotion, frustration 

results from a negatively valued outcome „attribution-independent" (Boekaerts & 

Pekrun, 2015), but especially in the case of a low perceived outcome control. As 

described above, frustration as an activity emotion is aroused by low action control 

(Pekrun, 2006), especially when the subjective, intrinsic value of the learning activity 

is negative, or if a task is perceived as too demanding and effortful (Boekaerts & 

Pekrun, 2015). In sum, frustration is expected to appear in different forms of 

emotions, with low perceived control being the main source in each form. It should be 

noted that due to the theoretically assumed multiplicative structure in control-value 

theory, when the perceived control is low, the level of frustration is expected to 

increase with the value. Recapitulating the sources of frustrations of mathematics 

students mentioned at the beginning of this paper, it shows that these sources all refer 

to low perceived control, with different foci in terms of outcomes and activities.  

Studying mathematics in Germany: institutionally predetermined situation-

outcome expectancies and values 

Perceived control and value, and thus emotions, are influenced by the academic 

environment. Some recent studies report frustrations of (German) mathematics 

students within the first year at university (Göller, 2020; Liebendörfer & Hochmuth, 

2015). However, sources and consequences of these reported frustrations have not yet 

been systematically investigated in these studies.  

Mathematics modules of the first semesters at German universities normally consist of 

lectures and related exercises, for several study programs. The lectures introduce 

mathematical theory, i.e., definitions, examples, theorems and their proofs are 

presented. The exercises are handed out weekly and have to be worked on by students 

in self-study. Students’ solutions are submitted, corrected and discussed in a separate 
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lesson. In order to pass such a module, usually a certain number of exercises (often 

50 % of all exercises) has to be solved correctly and a written exam has to be passed.  

This institutional setting predetermines some situation-outcome expectancies and 

values: If the exercises are not successfully completed and the written exam is not 

passed, the module will be failed. Hence it can be assumed that (1) students’ situation-

outcome expectancy is that they will fail these modules if no self-action or 

countermeasures are taken and that (2) the exercises and the written exam have a high 

extrinsic outcome value. 

Research Questions 

In the following, sources and consequences of frustration and helplessness in the 

academic environment just described shall be identified. For this purpose, the 

following research questions will be investigated: 

RQ1: Which sources of frustrations with learning mathematics at university do 

students report? Or more precisely: In which contexts do students use words like 

“frustrating”, “helpless”, “despair”, or “depressing” in self-reports? 

RQ2: Which consequences of frustrations with learning mathematics at university do 

students report? 

METHODS AND DESIGN 

The empirical basis for the results of the present study are problem-centered 

interviews on self-regulated learning (Göller, 2020) with a total of 21 students (14 of 

whom were female) at up to four interview times in their first year of study at 

university. Ten interviewees (9 female) were enrolled in the degree program for 

mathematics teachers at upper secondary level, seven (3 female) in the degree 

program Mathematics B.Sc., two (1 female) in the degree program Physics B.Sc., and 

two (1 female) in the degree program business education. The respective interviews 

had a duration of about 45 minutes, were audio-recorded, and completely transcribed.  

To investigate the questions listed above, these transcripts were searched for the word 

fragments “frust”, “hilfl” (German hilflos = helpless), “verzw” (German verzweifeln = 

(to) despair), and “depri” (German deprimiert/deprimierend = depressed/depressing), 

as operationalization of frustration. These words were not used by the interviewer, i.e., 

they were used by the interviewees on their own initiative. As context for identifying 

sources of frustration, the transcript segments (between two interview questions) that 

contained these words were analyzed using Grounded Theory coding methods. The 

Interview excerpts presented here were translated from German by the authors.  

RESULTS 

Of the 21 interviewed students, 17 used one of the words like “frustrating”, 

“depressing”, or “despair” at least once in at least one interview. Frustration is 

experienced in varying degrees of intensity and duration and can occur both 

situationally (as epistemic emotion) when working on a specific exercise  

This exercise is just very frustrating, because you see: Fixed point, you recognize 

that, you’re happy and think, okay, then I can just take the lecture and apply it. 

And then you realize that it doesn’t work at all. That’s a mean exercise. 



Göller & Gildehaus 

2 -  325 

 

PME 44 -2021 

as well as in form of continuous, recurring frustration as achievement emotion that 

becomes a rather permanent condition: 

It’s the same thing over and over again. You look at the exercise sheet, think you 

don’t understand anything. You’re depressed. You go for a drink. Still don’t 

understand anything. Saturday won’t be any better. 

Table 1 lists the categories found with regard to control and value in the context of 

students’ reports of frustration as achievement emotion.  

Code (N° codes/persons) Example quotations 

Low action-outcome 

expectancy understanding 

(38/12) 

 

… and then at some point you get frustrated, because it’s 

just stuff that you don’t understand anymore. 

It’s depressing when you’re about halfway somewhere in 

the middle of nowhere and you don’t know what to do. 

Low outcome control score 

(16/8) 

 

I expect to get it [the exercise sheet] back and then be 

depressed again. 

Exercise 2 was really frustrating. I really thought: “Cool. 

This is probably right. Definitely 1 and 2 is probably 

correct.” And then I only scored 30 percent on 1.   

Low intrinsic value (13/5) 

 

But in math, I have to say, it has frustrated me more than it 

has cheered me up. And a bit of the fun in mathematics is 

already lost. 

… the fun factor is really nil at the moment. 

Low extrinsic value 

profession (5/3) 

I’d rather learn the content for school more intensively 

which I need, instead of learning so much background 

knowledge. 

I don’t need it later in life [as a teacher]. 

(Too) high cost (22/9) 

 

And just this inner voice that keeps saying: “Yes, you still 

have a whole math exercise sheet, which takes forever.” 

That […] somehow already completely destroys me 

psychically, knowing that I still have such a huge amount of 

work ahead of me that I somehow still have to do. So 

somehow that already makes me psychologically totally 

unstable, unhappy, I don’t know. It frustrates me. 

Social comparisons (12/7) 

 

It’s really frustrating sometimes when you talk to other 

people and they accomplish some exercises just totally 

easily. 

But of course, it’s depressing when you see people who can 

do it easily. 

Table 1: Codes and example quotations of sources of frustration. In parentheses, the 

number of units coded and persons who used statements assigned to these codes. 

Accordingly, the most frequent source of student frustration is a low action-outcome 

expectancy in the sense that students try to solve mathematics exercises or understand 

lecture content but fail to do so. For some students, this is a rather permanent 
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condition. However, in addition to this understanding-related outcome-control, 

frustrations resulting from low outcome-control of exercise scores are also reported. 

In terms of values, a low intrinsic value in the form of not enjoying the engagement 

with the mathematical contents is reported in the context of frustrations. In addition, 

some student teachers also reported a low utility (extrinsic value) of university 

mathematics content with regard to school in the context of frustrations. As further 

sources of frustration, (too) high costs in terms of time, effort and also psychological 

cost, as well as social comparisons were also identified, which are regarded here as 

specific forms of values, or as influencing them (see discussion). In particular, the 

social context can both frustrate and inhibit frustration, depending on whether or not 

similar difficulties are attributed to others: 

Well, because you’re usually not the only one or the only one in math, who 

despairs, it is actually okay. So as long as you have some kind of contact with 

your peers, it works. I mean, you’re usually not alone. If an exercise is completely 

difficult, then there are at least five other people you know who can’t do it either. 

And that’s always a little comfort. But of course, it’s depressing when you see 

people who can do it easily. 

Consequences of frustrations (RQ2) can be assigned to these sources and may all be 

interpreted as attempts to avoid or reduce frustration. The most frequent consequences 

are less autonomous strategies (6 codes / 6 persons) and an adjustment of values 

(14/5). Less autonomous strategies, such as searching for exercise solutions on the 

internet or copying the solutions of others aim to reduce frustrations caused by low 

action-outcome expectancy or outcome control and may even be supported by 

exercise scores: 

The second exercise sheet was the most depressing, because I did exercises 1, 2 

and 4 myself. And I only had 30 to 50 percent everywhere. And the exercise I got 

from the internet or from someone else, of course I had 90 [percent], and then I 

thought to myself: Great! Well, hm. 

An adjustment of values usually consists of devaluing activities that are perceived as 

frustrating (e.g., solving exercises autonomously, trying to understand lecture 

contents) or outcomes that are difficult to achieve (being good at mathematics, 

achieving good grades)  

And then you say to yourself, okay, I want to be a teacher, I don't have to be such 

a superb mathematician. 

and instead valorizing other activities (e.g., thinking along with the exercises, working 

on certain types of exercises autonomously) and outcomes (e.g., understanding 

exercise solutions of others, pass exam). The following quotation sums up all these 

considerations quite well: 

I could kind of work more on the exercises or read the lecture notes. I do think it 

is helpful that you know roughly, where which definition is, but I don’t know. 

Actually, I could manage that, but as I said, you are desperate after the two 

lectures where you sit there and take notes. If you then get out and then think, 

okay, let’s sit down somewhere, to understand everything. I think that would just 
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frustrate me for the whole semester that I don’t understand it, that I am then 

completely in despair in the end. That’s why, at the moment, I find that I could 

just do more thinking along with the exercises. I think that would be the most 

important thing. Because I really don’t do that at the moment. Some exercises I 

just copy. Calculation exercises are fine, but some proofs or something like that I 

occasionally have the meaning explained to me and stuff like that. But that you 

really know what you’re doing, like last semester, I don’t know anymore. 

DISCUSSION 

Consistent with control-value theory, low subjectively perceived control over 

achievement outcomes was identified as the main source of students’ frustrations in 

the present study. In particular, low action-outcome expectancies (for understanding), 

but also low outcome control in terms of exercise scores were identified as 

problematic, but not action control. Obviously, this may relate to the fact that 

university students are confident to read lecture notes or books and perform outer 

actions to work on exercises (writing, looking things up, etc.). However, there is a 

high degree of uncertainty about what to do in order to achieve the desired outcomes 

(e.g., understand lecture content, develop correct exercise solutions autonomously, cf. 

Göller, 2020). Copying exercise solutions or searching for exercise solutions on the 

internet, and not re-reading lecture notes, which were reported here as consequences, 

can thus also be seen as strategies to avoid frustration by avoiding situations with low 

perceived control (such as working on the exercises autonomously). 

The results also highlight the importance of values for the emergence of frustration 

and suggest a more detailed differentiation of values that includes costs and social 

comparisons (as done e.g. by Wigfield, Rosenzweig, & Eccles, 2017). It is not clear 

whether the low intrinsic and extrinsic values reported here should be considered a 

source or a consequence of frustration. On the one hand, frustration could emerge 

because students feel forced to engage with intrinsically or extrinsically low-valued 

mathematical content. On the other hand - and this is an advantage of Pekrun’s (2006) 

approach over Wigfield et al.’s (2017) - due to the high extrinsic value of the exercises 

with simultaneous low outcome control, a devaluation of exercises or lecture contents 

can reduce the value of the exercises or lecture contents as a whole and thus also the 

frustration aroused. The consequences described here as adjustments of values also 

illustrate ways of valorizing or devaluing certain activities and outcomes in order to 

achieve a (subjectively) valuable and preferably frustration-free (because the valorized 

activities and outcomes are easier to control) participation in university mathematics. 

Limitations and prospect 

When interpreting the results, the institutional characteristics and the interview 

situation, in which students reported emotions and activities either retrospectively 

with knowledge about the outcomes or prospectively with regard to their outcome 

expectancies, must be taken into account. Different and possibly additional sources of 

frustration may occur in other environments. Due to the small qualitative sample and 

due to the rather superficial data analysis (keyword search and no systematic analysis 

of the complete material), the categories presented here are not necessarily exhaustive. 
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In particular, the numbers given here for units coded and persons are only lower 

limits, since interviewees may refer to these codes in other parts of the interviews 

which were not analyzed for this study. However, the categories are suitable for 

qualitatively illustrating and further differentiating all sources of frustration described 

in Pekrun’s (2006) control value theory. Overall, the approach taken here for a 

systematic consideration of emotions provides relevant perspectives and new 

explanations for phenomena that are known from practice and research (e.g., copying, 

devaluing mathematical contents) but are not yet sufficiently understood. Further 

research is desirable at this point.  
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Teachers’ mathematical knowledge and beliefs are important components of 

teachers’ professional knowledge. In this work, we compared the primary 

school mathematical knowledge and beliefs of prospective primary school 

teachers and prospective secondary school mathematics teachers at the 

beginning of their first year of undergraduate studies. The school mathematical 

knowledge of prospective secondary math teachers was in general higher than 

that of prospective primary teachers, particularly in Algebra. It was also higher 

across the three TIMSS cognitive domains (Knowing, Applying, Reasoning). 

Prospective teachers’ beliefs about the teaching and learning of mathematics 

were more similar across programs than beliefs about the nature of 

mathematics and about one’s self-concept as learner of mathematics. 

INTRODUCTION 

Different models have established the domains of knowledge and practice that 

an individual should develop to become a mathematics teacher (Shulman, 1987; 

Ball, Thames, & Phelps, 2008). Other authors have enriched these models of 

knowledge by incorporating the individual’s belief system (e.g. Beswick, 

Callingham, & Watson, 2012; Carrillo, Contreras, & Flores, 2013). 

There are many studies aiming at measuring prospective teachers’ and in-

service teachers’ different types of professional knowledge: content knowledge, 

pedagogical content knowledge, and/or beliefs (e.g. Beswick & Goos, 2012; 

Blömeke, Suhl, & Kaiser, 2011; Tatto & Senk, 2011). These studies, however, 

show great variability in the populations considered. For instance, Depaepe et 

al. (2015) contrasted mathematics knowledge in the domain of rational numbers 

between prospective primary school teachers (PST) and secondary school 

mathematics teachers (SSMT), showing that SSMT students have higher 

content knowledge than PST students. However, it should be noted that in some 

countries PST and SSMT programs are not directly comparable, as the former 

tend to be undergraduate programs or programs not offered by universities and 

therefore not leading to an academic degree, whereas the latter may take the 

form of undergraduate or graduate programs.  
 

The Chilean Context 

In Chile, legal regulations allow only universities to offer teacher training 

programs of any educational level and modality (early childhood education, 
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primary school, special education, secondary school). Moreover, recent legal 

changes require these programs to follow specific guidelines such as the 

application of diagnostic assessments to all enrolled students at the beginning of 

the training programs, and the design and implementation of formative actions 

based on the results. 

Martínez Videla et al. (2019) developed an assessment of mathematics content 

knowledge and beliefs for students enrolled in primary school teacher training 

programs. The knowledge section of the instrument focuses on school 

mathematical knowledge, that is to say mathematical content knowledge 

specific to the primary school levels, as these contents are those that the 

prospective teachers are expected to teach once working in the school system. 

School Mathematical Knowledge and Beliefs 

School Mathematical Knowledge (SMK) is considered as the contents and skills 

that  a school curriculum defines in order to foster greater capacities in a 

country’s citizens, such as the abilities to think abstractly and systematically, to 

experiment and learn to learn, to communicate and work collaboratively, to 

solve problems, to handle uncertainty, and to adapt to change (Kerr, 2002). This 

definition of SMK includes not only mathematical content, but also skills 

related to mathematical activities. Martínez Videla et al.’s (2019) instrument 

conceptualized mathematical skills using the TIMSS framework (Grønmo, 

Lindquist, Arora, & Mullis, 2013), which appears to be more consistent with 

instruments that seek to determine how much a person knows according to a 

prescribed curriculum. 

The second element, beliefs, is understood not only as a verbalization of what is 

believed, but also as the willingness to act in a certain way (Wilson & Cooney, 

2002). It is also considered that beliefs do not operate independently, but rather 

as a belief system that may be understood as a metaphor to represent a possible 

structure of the beliefs of an individual, considering them as understandings and 

premises about the world, perceived as true by who sustains them, that imply 

personal, cognitive, and affective codes and that predispose people towards 

certain forms of action (Lebrija, Flores, & Trejos, 2010; Lester, Garofalo, & 

Kroll, 1989). There are different ways of categorizing beliefs about mathematics 

education, describing different aspects of the mathematical activities and 

interactions that take place in the classroom. Martínez Videla et al. (2019) chose 

to use the following categories, based on the proposal by Op’t Eynde, De Corte, 

and Verschaffel (2002): Beliefs about the nature of mathematics, Beliefs about 

the process of teaching and learning of mathematics, and Beliefs about one’s 

self-concept. 

The Present Study 

At the beginning of the academic year 2019, our Institution applied the 

aforementioned instrument to all first-year students of its six undergraduate 

teacher training programs. This report focuses on the data collected in the 

primary school teacher (PST) and the secondary school mathematics teacher 
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(SSMT) training programs, contrasting their mathematics knowledge and 

beliefs across programs. As a starting hypothesis, we expected SSMT students 

to obtain higher knowledge scores and to exhibit more positive appreciations of 

mathematics and of themselves as mathematics learners than PST students. The 

specific research questions that guided our analyses were the following: [RQ1] 

Do SSMT students obtain higher scores than PST students across all content 

and cognitive domains of mathematics knowledge, or this difference varies 

across domains? [RQ2] In what aspects do the mathematics beliefs of SSMT 

and PST differ the least and the most? [RQ3] Are these answers affected by 

gender composition differences between programs? 

METHODS 

Participants 

The assessment was applied to all first-year students of the six undergraduate 

teacher training programs of Universidad de O’Higgins, before the beginning of 

the academic year. In this report, we analyzed the data from 47 students of the 

primary school teacher (PST) program [40 women, 7 men] and 41 students of 

the secondary school mathematics teacher (SSMT) program [17 women, 24 

men]. Data from additional 5 students (2 from PST and 3 from SSMT) were 

excluded because they omitted more than 25% of the mathematical knowledge 

items. All students gave written consent to use their data for research purposes. 

Instrument 

We applied the Mathematics Knowledge and Beliefs Instrument developed by 

Martínez Videla et al. (2019). The knowledge section contains 40 multiple 

choice items organized into the five content categories of the Chilean primary 

education mathematics curriculum—Number, Geometry, Measurement, Data 

and Chance, and Patterns and Algebra—(MINEDUC, 2012) as well as the three 

cognitive domains of the TIMSS 2015 Mathematics Framework—Knowing, 

Applying, and Reasoning—(Grønmo et al., 2013). The beliefs section contains 

Likert scale items in which students indicate their degree of agreement with 47 

statements about teaching and learning, about their self-concept as learners of 

mathematics, and about the nature of mathematics. The Likert scales had 4 

levels: 1-strongly disagree, 2-somewhat disagree, 3-somewhat agree, 4-strongly 

agree. 

Data Analysis 

We analyzed students’ knowledge by computing percentages of correct answers 

with respect to non-omitted items, first considering the full instrument and later 

separating items according to their content and cognitive domains. Students’ 

beliefs were compared across programs by looking at the difference between the 

agreement scores indicated by students in each program for each statement. 

RESULTS 

Mathematics Knowledge 

Figure 1 shows the distributions of overall scores in the mathematics knowledge 

section. Pre-service secondary math teachers showed significantly better overall 



Gómez1 & Videla 

2 -  332 

 

PME 44 -2021 

knowledge scores than pre-service primary teachers (74% vs. 61% correct). 

Table 1 presents the results by content domains. Geometry was the domain with 

the highest scores, whereas Data exhibited the lowest ones. A direct comparison 

between PST and SSMT showed that, although the SSMT students obtained 

higher scores across all categories, the magnitude of the score differences was 

the smallest for geometry items and the largest for algebra items.  

Beliefs 

We analyzed prospective teachers’ beliefs by contrasting their degrees of 

agreement to the presented statements across the two programs. Table 2 

presents the statements that showed the smallest and largest magnitude 

differences in agreement between PST and SSMT. Interestingly, the statements 

showing the smallest differences between programs were all related to teaching 

and learning, whereas four out of the five items with the largest differences 

were about students’ self-concept as mathematics learners and one was about 

mathematics. 

 

 

 

Figure 1: Histograms of overall mathematics knowledge scores. 

Vertical dashed lines depict each group’s average score. 
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  PST SSMT Overall Difference 

Content 

domains 

Number 61% 73% 67% 12% 

Geometry 79% 83% 81% 4% 

Measurement 64% 79% 71% 15% 

Data 44% 60% 51% 16% 

Algebra 47% 73% 60% 26% 

Cognitive 

domains 

Knowing 63% 77% 69% 14% 

Applying 63% 75% 68% 12% 

Reasoning 49% 63% 55% 14% 

 

 

Table 1. Knowledge scores by mathematics content and cognitive domains 

 PST SSMT Diff. 

Good math teachers are creative.TL 3.37 3.38 -0.01 

Math teachers must know what contents their students 

know, to build their lessons from that information.TL 

3.83 3.82 0.01 

In a good math lesson, the teacher constantly asks their 

students to reflect about the newly acquired knowledge.TL 

3.84 3.82 0.02 

Good math teachers must propose clear and simple 

problems.TL 

2.74 2.77 -0.03 

Math teachers must adapt to their students’ needs and 

work from the abilities of each of them.TL 

3.76 3.73 0.03 

Math is interesting for me.SL 2.87 3.91 -1.04 

Math is mechanical and boring.MA 2.28 1.23 1.05 

Learning math is difficult for me.SL 3.11 1.93 1.18 

I struggle to understand math.SL 3.20 1.87 1.33 

I enjoy doing math.SL 2.46 3.80 -1.34 

Table 2: Statements that show the smallest (top) and largest (bottom) agreement 

differences between students in the PST and SSMT programs. Statement 

categories: TL: Teaching and learning, SL: Self-concept and learning, MA: 

Mathematics. 

Gender Perspective 

It is possible that our results are affected by gender differences, given the large 

difference in gender composition between both programs: 85% of PST students 

were women, as opposed to 41% of SSMT students. To explore this issue, we 

repeated our previous analyses considering only female students (40 in PST, 17 

in SSMT). Given the smaller sample sizes in the analyses of this section, 

however, our results should be considered as preliminary and investigated in 

more depth in the future. 
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Looking at female students across both programs, we observed a similar pattern 

of results to that of the full sample (Table 1) across content domains and 

cognitive domains with one exception: the gap between programs in Reasoning 

grew to 23% mostly driven by a higher Reasoning score of 70% of women in 

SSMT. As for beliefs, the five statements with the largest difference across 

programs remain related to self-concept and mathematics, whereas only three of 

the five statements with the smallest differences across programs remain in the 

teaching and learning category. The two statements eliciting the most similar 

agreement scores were in this case about math (“mathematics establishes a 

single path to solve a given problem”) and about self-concept (“only the most 

capable math students can solve problems requiring multiple steps”), with 

students in both programs highly disagreeing with both statements (ratings of 

1.83-1.82 and of 1.53-1.54 for PST and SSMT students, respectively). 

DISCUSSION 

We have presented the results of a mathematics knowledge and beliefs 

diagnostic assessment applied to prospective primary school and secondary 

school math teachers at the beginning of their undergraduate studies. 

The knowledge section of the test focused on contents of the Chilean primary 

school curriculum, ensuring that the level of difficulty of the mathematics 

involved was appropriate for the students of both programs. Answering RQ1, 

we observed systematic differences in knowledge scores in favor of SSMT 

students with variations across content domains but not across cognitive 

domains. In terms of contents, a large difference was expected to emerge in 

algebraic items because algebra is a traditionally difficult domain for the 

general student population (Stacey & Chick, 2004). On the other hand, the 

content domain with the smallest score difference between PST and SSMT was 

geometry, which could reflect a less marked focus on geometry learning 

objectives in secondary school. Differences between both programs in scores 

across cognitive domains were quite similar. 

Regarding RQ2, it was foreseeable that PST and SSMT students would differ 

importantly in their beliefs about mathematics and about themselves as learners 

of mathematics, but it was surprising that both groups largely agreed on how a 

good math teacher/lesson looks like. 

We also explored gender differences (RQ3), observing that mathematics content 

knowledge scores were very similar in the full sample and the women 

subsample, with the exception of an increased Reasoning score exhibited by 

female students in the SSMT program that deserves to be further investigated. 

It is relevant to note that results of our assessment are not directly comparable to 

some large-scale studies such as the Teacher Education and Development Study 

in Mathematics (TEDS-M), because this one focuses on the knowledge of PST 

students at the end of their program whereas the present research focuses at the 

beginning. Our results show that PST and SSMT students differ importantly in 

their mathematical knowledge and beliefs already at the beginning of their 
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training, meaning that these differences are unlikely to be directly driven by the 

training, but rather indirectly through students’ program selection preferences. 

Further comparative research between PST and SSMT programs may have a 

relevant impact in the quality of school mathematics education. A better 

understanding of the initial state of mathematics knowledge and beliefs of PST 

and SSMT students is essential for institutions to design and implement their 

training programs, and a more comprehensive focus on PST and SSMT 

programs can also contribute in facilitating school students’ transition process 

from primary to secondary school. 
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This research investigated students’ intermediate stages in understanding the dense 

structure of rational numbers. A cross-sectional study with 953 students from 5th to 

10th grade was performed. After an inductive analysis coding the open answers to a 

question about how many numbers there are between two given rational numbers, a 

TwoStep Cluster Analysis was carried out revealing different student reasoning 

profiles. Results showed that the most naïve natural number bias did not disappear at 

the end of secondary school. Moreover, different intermediate stages in the 

understanding of density were found along grades. A characteristic of these stages is 

that the understanding of infinity was reached in decimal numbers earlier than in 

fractions. 

THEORETICAL AND EMPIRICAL BACKGROUND 

Recent research has focused on natural number knowledge interference as one of the 

main explanations of students’ difficulties in understanding rational numbers - a 

phenomenon called natural number bias (Smith, Salomon, & Carey, 2005; Van Hoof, 

Verschaffel, & Van Dooren, 2015). This phenomenon has been studied in three 

domains: Rational numbers size, arithmetic operations, and density (Gómez & 

Dartnell, 2018; McMullen, Laakkonen, Hannula-Sormunen, & Lehtinen, 2015). 

In the present research, researchers focus on the domain of density. This has been 

considered the most difficult and natural number biased domain (McMullen et al., 

2015; Smith et al., 2005). However, studies focusing on individual differences over 

age in this domain are scarce. The natural number set is discrete since between two 

numbers there is a finite (possibly zero) number of numbers (e.g., only the number 4 is 

between the numbers 3 and 5). However, the rational number set is dense since there 

is an infinite number of numbers between any two rational numbers (Smith et al., 

2005).  

The idea of discreteness, developed through experience with natural numbers is 

considered by Vamvakoussi and Vosniadou (2004) as a “fundamental presupposition 

which constrains students’ understanding of the structure of the set of rational 

numbers” (p. 457) and causing numerous conceptual difficulties in primary and 

secondary school students (Merenluoto & Lehtinen, 2004; Vamvakoussi & 

Vosniadou, 2004) and even in undergraduates (Tirosh, Fischbein, Graeber, & Wilson, 

1999). Students believe that between two rational numbers there are no other numbers 

or there is a finite number of numbers. For instance, students believe that between the 
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“pseudo-consecutive” fractions 5/7 and 6/7 there are no numbers, or that between 1/2 

and 1/4 is only the number 1/3 (Merenluoto & Lehtinen, 2004; Tirosh et al., 1999). In 

decimal numbers, students think that between the “pseudo-consecutive” decimals 0.59 

and 0.60, it is not possible to find other numbers, or that between 1.22 and 1.24 is only 

the number 1.23 (Moss & Case, 1999). 

Rational numbers can be represented as both fractions or decimals numbers (e.g., 3/4 

and 0.75 are alternative representations of the same rational number) (Carpenter, 

Fennema, & Romberg, 1993). Previous research has shown that students sometimes 

treat fractions and decimals numbers as unrelated sets of numbers, rather than as 

interchangeable representations of the same number (Khoury & Zazkis, 1994). 

Furthermore, regarding the different representations, previous research has obtained 

opposite results. In some studies, students were better able to explain the dense nature 

of decimals numbers than the dense nature of fractions (McMullen & Van Hoof, 2019; 

Tirosh et al., 1999; Vamvakoussi & Vosniadou, 2010). Other studies (e.g., 

Vamvakoussi & Vosniadou, 2004) found an opposite result. Moreover, some students 

tend to believe that there are only decimals numbers between two decimals numbers 

and fractions between two fractions (Vamvakoussi & Vosniadou, 2010). 

Vamvakoussi and Vosniadou (2004; 2010) found that understanding the density of 

rational numbers is not an all or nothing issue: They identified some intermediate 

stages in the understanding of density in secondary school students. They described 

several expected students’ answers patterns (hypothesised profiles) and then, with 

interviews (Vamvakoussi & Vosniadou, 2004) or a test (Vamvakoussi & Vosniadou, 

2010), they found examples of students’ answers for these hypothesized profiles. The 

profiles were: Students who considered that there is a finite number of numbers 

between two pseudo-consecutive rational numbers; students who thought that 

decimals are dense, whereas fractions are discrete, and vice versa; students who were 

reluctant to accept that there may be decimals between two fractions, and vice versa; 

and finally, students who correctly considered that there is an infinite number of 

numbers between any two numbers regardless of their symbolic representation. 

However, no, or very few students could be fit in some of these profiles. Therefore, 

these profiles could not be representative. Furthermore, they obtained other students’ 

answer patterns that differed from the profiles hypothesized. 

Researchers extend previous research by performing a cross-sectional research with a 

large sample of primary and secondary school students (from 5th to 10th grade) and by 

determining profiles after an inductive analysis of students’ answers to an open 

question about how many numbers there are between two given rational numbers. 

Therefore, the aim of this research is to identify and characterise intermediate stages 

in primary and secondary school students’ understanding of density. Furthermore, 

researchers examine the evolution of these stages over a large age range, from primary 

to secondary education. 

METHOD 

Participants were 953 Spanish primary and secondary school students from 5th grade 

(n = 115), 6th grade (n = 139), 7th grade (n = 162), 8th grade (n = 173), 9th grade (n = 
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174), and 10th grade (n = 190). There was approximately the same number of boys and 

girls in each age group. The participating schools were five primary schools and five 

secondary schools, and students were from mixed socio-economic backgrounds. 

To design the instrument, researchers adapted the density items of the Rational 

Number Sense Test (RNST), developed and validated by Van Hoof et al. (2015). It is 

a paper-and-pencil test that contains six density items in which students had to answer 

how many numbers there are between two fractions or two decimal numbers given. 

There are three fraction items: 2/5 and 3/5 (pseudo-consecutive fractions); 2/5 and 4/5 

(non-pseudo-consecutive fractions with the same denominator); 5/9 and 5/6 (non-

pseudo-consecutive fractions with the same numerator). There are three decimal 

items: 1.42 and 1.43 (pseudo-consecutive decimals); 1.9 and 1.40 (non-pseudo-

consecutive decimals); 2.3 and 2.6 (non-pseudo-consecutive decimals). Students were 

asked individually to solve the test during a mathematics lesson at school. The items 

were presented in random order in eight different versions. No time limit was used, as 

a time limitation could encourage natural number biased reasoning. 

Four researchers inductively analyzed the students’ answers to identify categories 

according to the nature of the answer. Seven categories were identified: i) Infinite: 

Students who answered that there is an infinite number of numbers between the two 

given ones; ii) Difference: Students who calculated and reported the difference 

between the two numbers given (e.g., 0.3 is between 2.3 and 2.6); iii) Naïve 

consecutive: Students who answered that there is no other number between two 

pseudo-consecutive numbers (e.g., between 1.42 and 1.43 or between 2/5 and 3/5, 

there are no numbers) and between two non-pseudo-consecutive numbers they gave a 

finite list of consecutive numbers (e.g., the numbers 2.4 and 2.5 are between 2.3 and 

2.6 or 3/5 is between 2/5 and 4/5) or the number of numbers of this list (e.g., there are 

2 numbers between 2.3. and 2.6 or there is 1 number between 2/5 and 4/5); iv) Finite 

consecutive: Students who gave a finite list of consecutive numbers between the 

numbers after adding a decimal and then counting on in decimal numbers (e.g., the 

numbers 1.421, 1.422, 1,423…, 1.429 are between 1.42 and 1.43) or after adding a 

decimal in the numerator in fractions (e.g., the numbers 2.1/5, 2.2/5, 2.3/5…, 2.9/5 are 

between 2/5 and 3/5) or they gave the corresponding number of numbers of these lists 

(e.g., there are 9 numbers between 1.42 and 1.43 or there are 9 numbers between 2/5 

and 3/5); v) Finite: Students who gave other specific numbers included between the 

numbers given; vi) Rest: Students who gave specific numbers not included between 

the numbers given; vii) Blank answers. 

With these categories, a TwoStep Cluster Analysis with categorical data was 

performed to identify groups of students (profiles) with qualitatively similar answers 

patterns. Given the complexity of our coding scheme, many intermediate states of 

understanding could be expected. Therefore, we analyzed data separately for age 

groups, obtaining students’ profiles in 5th and 6th grade, in 7th and 8th grade, and in 9th 

and 10th grade. The statistical software used was SPSS version 25. 

RESULTS 
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In this section, firstly, researchers determine the number of profiles and describe them. 

Secondly, we show the evolution of these profiles from 5th to 10th grade. 

Determining and Describing the Profiles 

The number of profiles was determined according to a low BIC and from an 

interpretative viewpoint. In 5th and 6th grade, researchers chose the five students’ 

profiles solution. Figure 1 shows the characteristics of the profiles identified in 5th and 

6th grade. The X-axis consists of the six test items, and the Y-axis consists of the 

percentages of frequency of the largest group(s) (categories) identified in the inductive 

analysis. 

 

 

Figure 1: Characteristics of students’ profiles in 5th and 6th grade 

• Naïve: Students who considered that there is no other number between two 

pseudo-consecutive numbers, and there is a finite number of numbers 

between two non-pseudo-consecutive numbers. 

• Decimal finiters: Students who started to consider that there is a finite 

number of numbers between two pseudo and non-pseudo-consecutive 

decimals (there is a subgroup of students that still considered that between 

two pseudo-consecutive decimals there is no other number). However, they 

considered that there is no other number between two pseudo-consecutive 

fractions. 

• Differencers: Students who calculated the difference between two decimals 

but considered that there is no other number between two pseudo-

consecutive fractions, and there is a finite number of numbers between two 

non-pseudo-consecutive fractions. Although a subgroup of students also 

calculated the difference in fractions. 
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• Infinite decimals: Students who considered that there is an infinite number of 

numbers between two decimals, but there is no other number between two 

pseudo-consecutive fractions, and a finite number of numbers between two 

non-pseudo-consecutive fractions. However, there is a subgroup of students 

who started recognizing that there is an infinite number of numbers between 

fractions. 

• Rest: Students with a low performance in general who solved the items 

without any recognizable pattern. 

In 7th and 8th grade, we chose the six students’ profiles solution. Figure 2 shows the 

characteristics of each profile identified. 

 

 

Figure 2: Characteristics of students’ profiles in 7th and 8th grade 

In these grades, the same profiles than in 5th and 6th grade were identified and we 

identified a new one: 

• Correct profile: Students who considered that there is an infinite number of 

numbers between two fractions and two decimals. 

In 9th and 10th grade, we chose the 6 students’ profiles solution. Figure 3 shows the 

characteristics of each profile identified. 

Figure 3: Characteristics of students’ profiles in 9th and 10th grade 
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Figure 3: Characteristics of students’ profiles in 9th and 10th grade 

In these grades, the Decimal finiters profile was not identified, but researchers 

identified a new profile: 

• Finiters profile: Students who started to consider that there is a finite number 

of numbers between two pseudo and non-pseudo-consecutive decimals and 

fractions. 

Evolution of the Profiles 

Figure 4 shows the evolution of each profile from 5th to 10th grade. The Naïve profile 

decreased as the grades advanced (29.50% in 5th and 6th grade, and 11.30% in 9th and 

10th grade). However, this result indicates that the most naïve natural number bias 

seems not to disappear in the last grades of the secondary school, neither in fractions 

nor in decimal numbers. 
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Figure 4: Evolution of the profiles from 5th to 10th grade 

The Decimal finiters profile also decreased along grades, disappearing in 9th and 10th 

grade, where it got replaced by a Finiters profile. This result seems to show that 

students started to believe that there is a finite number of numbers between two 

decimals and then between two fractions. 

The decrease of the Naïve and Decimal Finiters profiles corresponded to an increase 

of the Correct profile (0.0% in 5th and 6th grade, and 42.60% in 9th and 10th grade) and 

of the Infinite decimals profile (5.10% in 5th and 6th grade and 8.80% in 9th and 10th 

grade). This result shows that density is first understood with decimal numbers and 

later with fractions. Moreover, decimal infiniteness was reached even in some primary 

school students. Finally, the Differencers profile remained stable along grades. 

DISCUSSION AND CONCLUSIONS 

The aim of this research was to identify and characterize intermediate stages in 

students’ density understanding and to examine the evolution of these stages from 

primary to secondary education. Through an inductive and a cluster analysis, different 

profiles were identified showing different stages in students’ density understanding.  

The clearest natural number bias, denoted as Naïve profile, was higher in 5th and 6th 

grade and decreased along grades, but it did not disappear towards the end of the 

secondary school (Vamvakoussi & Vosniadou, 2010). The following stage of 

discreteness corresponds to the Decimal finiters profile (it was identified from 5th to 

8th grade). These students had overcome the naïve discreteness in decimal numbers. 

However, this profile was not identified in 9th and 10th grade, where the Finiters 

profile appeared. These last students showed to have overcome naïve discreteness 

both in fractions and decimal numbers. The Differencers profile evidenced a group of 

students who determined the number of numbers between the two given by 

subtracting both numbers.  

The transition from discreteness to infiniteness in decimal numbers was shown by the 

presence of the Infinite decimals profile. In this profile, students considered that there 

is an infinite number of numbers between two pseudo and non-pseudo-consecutive 

decimals numbers. However, students of this profile were still reluctant to recognize 

the infiniteness in fractions. The last stage was reached by the Correct profile –not 

identified in 5th and 6th grade- and showed an understanding of the density concept 

both in fractions and decimal numbers. However, at the end of secondary school, still 

less than half of the students were in this profile. 

Further research could focus on longitudinal designs to examine how learners’ 

individual understanding of rational number density progresses over time. This could 

clarify possible transitions between profiles. 
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Although there is abundant research literature on the difficulties, students face in 

learning derivatives, research on teaching practices is lacking. This paper proposes a 

study of teachers’ practices and use of resources in teaching derivatives to better 

identify the teachers’ decisions and their justifications. Our study focuses on 

Cameroon, a country with strong institutional constraints (a single textbook and a 

national examination). Our study of three teachers reveals that these constraints have 

a very strong influence on their activity, including their approach to teaching and 

their use of resources. 

INTRODUCTION 

Derivatives are one of the most important topics studied in high school (in many 

countries) and in postsecondary mathematics programs. For many students, this topic 

is a prerequisite to university studies and a gateway to other mathematical topics in 

various fields. Research in mathematics education has already reported many 

difficulties linked to the learning of derivatives (e.g., Hitt & González-Martín, 2016) 

and of its different aspects (e.g., Zandieh, 2000). This has led to experiments in 

attempting to improve the learning of derivatives (e.g., Giraldo, Tall, & Carvalho, 

2003). While a number of studies have examined the learning of derivatives and have 

proposed interventions to facilitate this learning, the number of studies analyzing 

teaching practices, or how derivatives are presented in textbooks and other resources 

used by teachers, remains quite low. 

One recent study on the teaching of derivatives is by Park (2015; 2016), who analyzed 

three teachers’ approaches to defining the derivative at a point using limits and then 

transitioning to the derivative of a function on an interval (Park, 2015). Park (2016) 

also examined how derivatives are introduced in three manuals widely used in the 

United States. Park’s work shows that both the teachers and the textbooks use 

symbolic notations and graphic illustrations without making explicit links between 

them. Moreover, the teachers used secant lines, tangents, and symbolic notation to 

explain the derivative at a point without making the links between these explicit. They 

also used the symbolic notation of the derivative at a point to shift to the derivative 

over an interval by simply changing the coordinates of the point by the variable. 

Moreover, the teachers presented the properties of the derived function with only a 

few explanatory examples. 

We emphasize again that there is not an abundance of literature on teaching practices 

related to derivatives, or on the introduction of the notion of derivative in resources 

used by teachers. Topics ripe for exploration include teachers’ perspectives on their 
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students' prior knowledge; teachers’ visions of the important topics to cover when 

teaching derivatives (Park, 2015); and the analysis of resources other than textbooks. 

Numerous studies have highlighted the way in which teachers at different levels make 

use of resources in their teaching (e.g., González-Martín, Nardi, & Biza, 2018; 

Gueudet, 2017), as well as the constraints and opportunities provided by these 

resources (Gueudet & Trouche, 2009). National examinations also have a major 

impact on teachers’ practices, influencing content and course planning (e.g., 

Rozenwajn & Dumay, 2014). 

The research described in this paper seeks to contribute to the scant existing literature 

on teaching practices used to introduce derivatives. We seek to study the similarity of 

teachers’ practices and the way derivatives are presented in teaching resources, while 

also considering the various constraints that may hinder teachers’ work. In addition, 

we note that the existing literature on derivatives (which mostly focuses on how 

students learn them) and on mathematics teachers’ practices and use of resources 

primarily concerns studies conducted in Europe and North America, with very little 

mathematics education literature reporting on studies conducted in developing 

countries. To help bridge this gap, our study focuses on the African context, and more 

specifically Cameroon, a context with which this paper’s second author is very 

familiar. We hope this study may help to identify issues that may not always be 

present in developed countries, but that may have a significant impact on the teaching 

and learning of mathematics. 

THEORETICAL FRAMEWORK 

Since we are interested in teachers’ practices and their use of resources in teaching 

derivatives, we have applied elements of the anthropological theory of the didactic 

(ATD – Chevallard, 1999) and of the documentational approach (DA – Gueudet & 

Trouche, 2009), following the work of González-Martín et al. (2018). 

In analyzing practices, ATD proposes the useful tool of praxeology, which is 

composed of four elements: a task (or type of task) to solve, techniques used to carry 

out the tasks, technologies (or rationales) that justify and explain the techniques, and a 

theory that justifies the technologies. Chevallard (1999) distinguishes didactic 

praxeologies to describe the act of teaching. 

ATD also suggests that teaching institutions, through their official documents and 

guidelines, establish an institutional relationship to the content being taught and 

learned; in other words, institutions influence what individuals in a given position 

(e.g., teacher or student) can do, and how they relate to the content in question. 

Individuals who have belonged (or who belong simultaneously) to different 

institutions have their own personal relationship to this content. For instance, Bronner 

(1997) showed that some secondary teachers in France have ideas concerning 

irrational and real numbers that are not reflected in France’s official national 

education program. Faced with this situation, some teachers restrict their teaching to 

the program’s requirements (thus their teaching conforms to the institutional 

relationship with real numbers), whereas others supplement their teaching with 

additional details in the hope that their students will better grasp the content’s 

subtleties (thereby making their personal relationship include in their teaching items 

not anticipated by the institutional relationship). 
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Finally, DA acknowledges that teachers use a variety of resources when preparing to 

teach. These can be either physical (the official program, textbooks, etc.) or intangible 

(a discussion with a colleague, their own training, etc.). The various resources used to 

teach content, together with these resources’ schemes of use, are termed a document 

(Gueudet & Trouche, 2009). González-Martín et al. (2018) showed that many of these 

schemes of use are influenced by the teachers’ own personal relationship with the 

content they teach. 

With these tools, we can reformulate the aim of this paper. We wish to study the link 

between the institutional relationship with derivatives on the one hand and teachers’ 

practices and use of various resources in teaching derivatives on the other. We also 

seek to identify specific elements in the African context that may be less present in 

existing literature. 

THE CAMEROONIAN CONTEXT 

In Cameroon, students attend secondary school between the ages of 12 and 18. 

Cameroon calls secondary that which in other countries may be considered as pre-

university or college-level studies. Derivatives are introduced in the penultimate year 

of this cycle, called première (students are 17 years old), after the study of functions, 

limits, and continuity. The content on derivatives in première includes: differentiable 

function at a point; derivative of a function at a point (including left and right 

derivatives); geometric interpretation of the derivative at a point; equation of the 

tangent of a curve at a point; derivative function; derivative of the addition, the 

product, and the quotient of functions and of f(ax + b), with f being differentiable; 

variation of a function in an interval depending on the sign of the derivative; extrema. 

The Ministère des enseignements secondaires [Ministry of Education] asks teachers to 

introduce derivatives at a point by calculating the limit of (f(x) – f(a))/(x – a) when x 

→ a, but it does not provide any didactic suggestions on how to make this 

introduction, or about making the shift from a derivative at a point to a derivative 

function. 

The Ministry provides the public schools with a list of approved textbooks; however, 

as of the 2018-2019 school year, only one approved textbook has been available to 

teach each course, including mathematics (Tegninko, Sielenou, Bouda, Pokam, & 

Boudy, 2014). This means that all public schools use the same textbook chosen by the 

Ministry. Moreover, there are national examinations for students in May and June). 

For students in première, questions concerning functions, limits, continuity, 

derivatives, and sketching the graph of a function represent approximately 42% of the 

examination questions concerning derivatives usually concern the derivative of a 

function and studying the variation of a function using the sign of the derivative. 

Finally, the training of secondary teachers falls under the auspices of the Ministère de 

l’enseignement supérieur [Ministry of Higher Education]. Teachers’ pre-service 

training is provided by the Écoles Normales Supérieures (ÉNS). When students enter 

an ÉNS after finishing their secondary studies, they must complete a three-year 

Bachelor of Mathematics (first cycle), followed by two more years of training (second 

cycle). This second cycle includes additional courses in university mathematics 

(approximately 50% of the cycle) along with courses in education. Throughout this 
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training, relatively little emphasis is placed on the specific aspects of mathematics 

education. 

METHODS AND ANALYSES 

The research presented in this paper is part of the second author’s doctoral thesis, 

which, under the qualitative paradigm, is developed as a multi-case study. Semi-

structured interviews, class observations and documents (textbook and other 

resources) were used to collect the data. All three teachers who volunteered to 

participate in the research (T1, T2, T3) are male; all are legally qualified, teach in 

première during the 2019-2020 school year, and work in three different schools in 

Yaoundé. 

In this paper we focus on data from the participants. The data collection was 

structured in three stages: 1) preliminary interviews concerning the teachers’ personal 

relationship to derivatives, their use of resources, and their lesson preparations; 2) 

observations of the teaching of derivatives in class; 3) post-teaching interviews to 

compare the teachers’ planning with the actual teaching and discuss some episodes. 

The interviews and observations provided data to study the teachers’ adherence to the 

institutional relationship with derivatives, as well as their documentation work in their 

specific context, with major institutional constraints (the imposition of an official 

textbook, an official exam). We note that, for this paper, we have mostly used data 

from the interviews, with some additional details culled from our observations. 

The analysis of the interviews was performed using the theoretical tools provided by 

ATD and DA. We first examined the teachers’ statements to identify elements 

associated with their personal relationship to derivatives (how they define derivatives, 

what they consider important about them, the exercises they value, etc.). We then 

identified the main techniques they used to teach the content (providing definitions, 

working on exercises, etc.) and their rationales (technologies). We also identified the 

resources they use, as well as their schemes of use (mainly, rationales concerning why 

they used the resources, their aims, etc.). The following section summarizes our main 

results. 

DATA ANALYSIS 

During the preliminary interviews, each of the three participants discussed his vision 

of derivatives – a vision that encompassed many of derivatives’ mathematical 

meanings (Figure 1): 

T1 T2 T3 

The derivative has several meanings 

[…] mathematically, it is the slope 

of the tangent line to the curve of the 

function at a point. Practically, it 

represents a speed […] in the 

Cameroonian context, children must 

master the derivative much more 

like the slope of the tangent line at a 

given point. 

The derivative for me is a 

mathematical tool […] 

which has many physical 

applications and, 

therefore, I associate it 

more with a speed. 

For me, the derivative 

is first the result of a 

limit… and so, I see it 

as the limit of the rate 

of change of a 

function. 

Figure 1: The participants’ views on derivatives 
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Their responses show that their personal relationship to derivatives includes several 

aspects of this topic (slope, speed, limit, rate of change). However, despite the 

different elements present in their personal relationship, all three teachers follow a 

similar technique to introduce derivatives using rates of change (Figure 2): 

T1 T2 T3 

By calculating the limit 

of a certain rate of 

change to determine the 

derivative at a point. 

First, I wanted to make them 

understand that the notion of 

derivative is linked to rate of 

change, which they have seen in 

previous years. 

Because of the requirement 

of the program, I restricted 

myself to the limit of the 

rate of change. 

Figure 2: The participants’ choice to introduce derivatives 

Three of them also stated, at various points in the interviews, that their choices are 

determined by the official guidelines: they follow the Ministry’s instructions and 

begin with the limit of a rate of change because this is what the official program 

dictates. Therefore, their technique for introducing derivatives is mainly explained by 

the rationale (technology) that they had to do what the program requires. The teachers 

also noted that they followed the approach of the textbook. We see, therefore, that the 

introduction students receive to derivatives is restricted to an abstract, limit-focused 

approach, and that the teachers do not call for connections with speed or use other 

more intuitive approaches. Moreover, we can see that the three participants are “good 

subjects of the institution,” doing what the institution expects individuals in their 

position to do (institutional relationship). This may explain why T1, who sees 

derivatives primarily as a slope, introduces them as the limit of a rate of change, or 

why associations with physical meaning (T1 and T2) are not present. Their statements 

are supported by classroom observations: all three teachers start introducing 

derivatives at a point, and they do so by calculating the limit of a rate of change. 

Our classroom observations also confirm that the three teachers organize their 

introduction to derivatives by using the textbook as their main guide. In this sense, the 

passage from the derivative at a point to the derivative as a function is made in a very 

immediate way (between the first and second lessons, by simply replacing a generic 

“x0” with “x”), and the teachers move quickly to introduce techniques to solve tasks 

concerning derivatives. In this sense, their approach is like the participants in Park’s 

(2015) study. Our participants’ approaches prioritize computational aspects to provide 

students with a set of rules and formulae that will be later applied in the exercises. 

Despite this, the three stated during the interviews that they hoped students would be 

able to develop a better understanding of what they were doing (e.g., T1: “they 

discover by themselves”). 

Our data also indicate that, despite occupying the same position and following the 

same program, the teachers exhibited some differences in their views concerning 

which elements to highlight in the chapter on derivatives (Figure 3): 

T1 T2 T3 

In the Cameroonian 

context, what matters more 

is the use of the derivative 

In the chapter about derivatives, what 

is more important to teach is how to 

find the derivative of polynomial and 

What is more 

important in the 

teaching of the 
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to construct functions 

[meaning studying 

functions to later sketch 

their graph] […] to use the 

tangent [meaning 

calculating the equation of 

the tangent line at a point]. 

rational functions. I start with the 

aspects that are necessary for the 

exam […] we must respect the 

institutional guidelines. The State 

limits the way in which we must 

teach the derivative, we do not have 

a choice to change [this approach]. 

derivative are its 

applications […] 

the search for 

extrema, the search 

for the direction of 

the variation of 

functions. 

Figure 3: The participants’ views about the most important aspects of derivatives 

As we can see, even if they hold the same position, the teachers may emphasize 

different aspects of the content in the classroom. This behavior is consistent with the 

results of González-Martín et al. (2018), where five participants using the same 

resource exhibited variations in their teaching. However, in opposition to González-

Martín et al.’s (2018) results, where the participants had some conceptual objectives 

in their teaching, we may observe here that the three participants highlighted 

operational aspects concerning derivatives as the key aspects to be learned. We 

conjecture that this may be a consequence of the strong influence that the program and 

the examination (which focus on operational aspects) exert on their practices. In the 

interviews, many of the teachers’ rationales for the way in which they organize their 

teaching were reduced to the program and the exam. We also conjecture that their pre-

service training, with its emphasis on mathematics to the detriment of didactic 

components, may influence their views. 

We note that, in Figures 2 and 3, the program is seen as somehow restricting what 

teachers can do: T3 states that, because of the program, he limits himself to 

introducing derivatives in a certain way, while T2 claims that the State (through the 

program) limits the way in which teachers can teach derivatives. We emphasize that 

the program was mentioned as a factor at several points during the interviews. 

We also note that all the elements concerning derivatives mentioned by the 

participants as important for students to learn are aligned with the objectives of the 

official mathematics program. These objectives are usually reflected in the questions 

on the national exams that take place at the end of the school year, and this 

examination has a strong influence on the teachers’ practices and on their choice of 

resources in preparing their courses. In fact, the three participants stated that their 

main resource is the official textbook, since it allows them to cover the required 

content that will appear on the national examinations. We see how institutional 

constraints limit the teachers’ documentation work. They also discussed their use of 

the Internet, particularly their participation in online forums for teachers, but they 

insisted that they use this resource minimally, as a complement to the activities 

provided by their main resource. Figure 4 presents some interview excerpts 

concerning the influence of the national examination on the teachers’ practices: 

T1 T2 T3 

The goal of the students is 

to pass their end-of-year 

exam. So, everything 

related to the derivative 

What seems more important to me is firstly 

their examination because you know that if a 

student does not pass his examination, the 

parent will say that the teacher did a poor 

Keep in 

mind that 

these 

students 
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must be what often comes 

up in the examination or 

what the official 

examination requires […] If 

you look in the official 

textbook it is the type of 

activity like that […] It is 

clear, that is not open to 

debate. The textbook is 

much more interested in 

this [type of activity]. 

job. So, what is important for me now is to 

use the derivative as a mathematical tool for 

the study of functions… For now, derivatives 

[are taught] to help students pass their 

examination and move on to higher studies 

in [the last year of secondary] and later at 

university. […] I try to stick to [the content 

and activities of] the official textbook. When 

we do problem-solving lessons [travaux 

dirigés], we first do the exercises that are in 

the official textbook. 

must prepare 

for the year-

end 

examination; 

this is our 

main 

objective at 

the moment. 

Figure 4: The role of the national examination in the participants’ practices 

In this case, we can clearly see how the three participants keep the national 

examination in mind, and how they see their role as preparing their students to pass 

this examination. Here, the three teachers are explicit about the constraints to which 

teachers are subject in the Cameroonian context, namely the ministerial evaluations 

that generally take place at the end of the school year. We can see how this 

examination, together with the official textbook provided by the Ministry, strongly 

directs their documentation work. 

FINAL REMARKS 

Our preliminary results are consistent with previous research: teachers prioritize 

algebraic aspects to the detriment of all other aspects such as graphic tools for 

introducing the derivative. They follow the institutional relationship and emphasize 

the derivative as the limit of a rate of change, which limits their use, for example, of 

the notion of tangent to introduce the derivative. As in Park’s (2015) study, they favor 

symbolic notation and shift quickly from the derivative at a point to the derivative 

function. 

Our data show that the participants’ activity is strongly conditioned by the injunctions 

of the official program, by the official textbook, and by the Ministry-imposed 

evaluations. Although their personal relationship includes several aspects of 

derivatives, these are not present in the teachers’ introduction of this content to their 

students. In this sense, their practice reflects the content of the main resource (the 

textbook), with some possible variations and additional exercises. We also note a lack 

of agency: most of the rationales (technologies) they use to justify their teaching 

techniques are reduced to their need to follow the dictates of the program. Another 

important element influencing their resource use and their practices stems from 

institutional constraints: the teachers believe their main goal is to prepare students to 

pass the national examination. They use expressions such as “the goal of the students 

is to pass,” “derivatives [are taught] to help students pass their examination and to 

move on to higher studies,” or “these students must prepare for the year-end 

examination.” Note that these elements are very strong in the Cameroonian context. 

This, in addition to the weaker didactic component in the teachers’ pre-service 

training, may lead the teachers to not question the official guidelines. 
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Regarding the use of ATD and DA to study these issues, we believe that they allow a 

better understanding of some of the teachers’ practices, both in terms of their planning 

and their use of resources. Even though their personal relationship with derivatives 

encompasses several different aspects, the latter are not mobilized. Given the 

institutional constraints, the main rationales seem to be “to follow the program” and 

“to prepare for the national examination.” In this context, we can clearly see how 

these constraints influence the participants’ choices in introducing derivatives, as well 

as their use of resources, which is mostly reduced to a single textbook. 
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Recent literature and engineering reports suggest that the mathematical training of engineers 

should include more applications to help students connect mathematical content with 

professional engineering practices. In this paper, using tools from the anthropological theory 

of the didactic (ATD), we analyse data from interviews conducted with five calculus teachers 

in engineering programs, all of whom possess different academic and professional 

backgrounds. Our data suggest that, while they all seek to make their course more 

“engineering-oriented,” the teachers’ practices seem to be quite different. Only those 

teachers with extensive professional engineering experience provide realistic applications. 

INTRODUCTION 

The training of engineers is putting increased emphasis on the development of mathematical 

competence to meet industry needs in the 21st century. For instance, a document discussed at 

and drafted by the SEFI Mathematics Working Group in 2013 (Alpers, 2013) highlights and 

exemplifies eight mathematical competences required by students: thinking mathematically; 

reasoning mathematically; posing and solving mathematical problems; modelling 

mathematically; representing mathematical entities; handling mathematical symbols and 

formalism; communicating in, with, and about mathematics; and making use of aids and 

tools. More recently, van der Wal, Bakker, and Drijvers (2017) also proposed a set of skills 

(what they call techno-mathematical literacy) to highlight the fact that 21st-century engineers 

need to go beyond the ability to calculate and estimate, which is now insufficient. In addition, 

Beswick and Fraser (2019) state the following: 

“For mathematics teachers to contribute to STEM and 21st-century competence agendas 

they need knowledge of their discipline and how to teach it as a foundation upon which to 

build their capacity to integrate mathematics with other disciplines and to teach 21st 

century skills beyond discipline knowledge.” (p.963) 

The above authors call for a shift from merely learning mathematical content to developing 

mathematical competence specifically for the workplace. In engineering programs, 

mathematics is usually taught separately, in isolation from engineering courses (González-

Martín, Gueudet, Barquero, & Romo-Vázquez, in press), which may reduce the likelihood 

that students will develop the above competences. Specifically, mathematics courses in 

engineering tend toward a significant level of abstraction, without explicit connections to 

engineering practices (Christensen, 2008). This may result in students failing to develop 

crucial mathematical competences, and is one reason why mathematics courses in 

engineering programs often have high failure and dropout rates (González-Martín et al., in 

press). Indeed, the relationship between calculus and engineering’s client disciplines is ripe 

for research (Rasmussen, Marrongelle, & Borba, 2014). 
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Modelling activities are usually recommended to bridge the gap between mathematical 

content and engineering practices (e.g., González-Martín et al., in press), as well as the use of 

Project-Based Learning; however, certain modelling activities can be unrealistic or artificial. 

For instance, Alves et al. (2016) identified that some calculus teachers in engineering 

programs believe they should focus on simply teaching the course content, without 

incorporating it into “fake” (p.137) projects. One may presume that teachers who have used 

mathematics in non-academic contexts (engineering or other) are more likely—and better 

equipped—to offer concrete applications of mathematical content than teachers who lack this 

experience (e.g., Nathan, Tran, Atwood, Prevost, & Phelps, 2010; Nicol, 2002), thereby 

avoiding unrealistic or “fake” modelling activities. For instance, Nicol (2002) pointed out that 

when a teacher has experience using mathematics in a non-academic context, this could 

“[help] students connect mathematics, to real life and work” (p.291). This echoes the results 

of Nathan et al. (2010), who argue that “practicing engineers present a more nuanced picture 

of the relationship between mathematics knowledge and engineering practice” (p.420). The 

results of our recent study (González-Martín & Hernandes-Gomes, 2020) on two teachers 

with different backgrounds suggest that engineering teachers lean on their professional 

experience to justify some of their teaching practices. It is still uncertain how teachers with 

different backgrounds are likely to tackle the same mathematical content, and what kind of 

applications to engineering they may provide their students. 

To help close this research gap, this paper examines how calculus instructors in engineering 

programs use applications, paying special attention to the connections between the teachers’ 

background and these applications. Despite the recommendations to integrate mathematical 

content with modelling activities, the structure of many engineering programs still separates 

mathematics from engineering courses, imposing institutional constraints that may hinder the 

use of modelling. Our research question can be formulated as follows: What type of 

applications do calculus teachers in engineering programs provide, and how do these 

applications relate to their professional and academic backgrounds? 

THEORETICAL FRAMEWORK 

We seek to study one aspect of calculus teachers’ practices (their use of applications) in a 

specific institutional context and relate these practices to their background (acquired in other 

institutions). We therefore have adopted a framework that provides tools to study 

institutionally situated practices: the anthropological theory of the didactic (ATD) 

(Chevallard, 1999). ATD uses the construct of “praxeology,” which considers the following: 

types of tasks (what to do); techniques (ways of performing tasks of a given type); 

technologies (rationales that describe, explain and justify techniques); and theories (which 

function as a basis of and support for the rationales). ATD also acknowledges that individuals 

are influenced by their belonging (or having belonged) to different institutions. Consequently, 

they may use techniques and rationales acquired in one institution to solve the same task in 

another institution. For more details, see González-Martín & Hernandes-Gomes (2020). 

Our research focuses on calculus teachers in engineering programs. Although these 

individuals occupy the same institution and perform the same general task (teach a calculus 

course), their experience in other institutions may affect the way they accomplish this task. 

For instance, they may choose to engage in the sub-task, provide applications of the content, 
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and, in that case, use different techniques and rationales to support their techniques. Our aim 

is to identify these techniques and rationales and observe how they relate to the teachers’ 

professional and academic backgrounds. 

METHODOLOGY 

For this paper, we use data from interviews conducted in September 2015. To investigate the 

practices of calculus teachers with different backgrounds, we interviewed five university 

teachers with extensive experience teaching mathematics courses in engineering programs 

(see Hernandes-Gomes & González-Martín, 2016). They all had been teaching in São Paulo, 

Brazil, for at least 10 years. At the time of the interviews, Teachers A, C, and D were 

teaching calculus at the same engineering school, Teacher E was teaching at another school 

and Teacher B was teaching at both schools. They each received a preliminary survey on 

their academic and professional backgrounds, which allowed us to categorize their profiles 

(Figure 1). 

 
Figure 1: Academic (blue) and professional (green) profile of five participants 

The five semi-structured interviews were conducted and audio recorded in each participant’s 

office (with an average duration of one hour each), and then transcribed and coded. For each 

teacher, we identified the main praxeologies (tasks, techniques and rationales) they use to 

teach calculus by identifying points in the interviews where they described specific sub-tasks. 

For instance, for the sub-task involving the presentation of properties and results, a statement 

such as “to understand this or that result, we end up doing some proofs” (Teacher A) was 

seen as evidence of the teacher using the technique “do some proofs” to accomplish this sub-

task. We then used thematic analysis to describe each participant’s praxeology. The 

transcriptions were analysed separately by each researcher and differences were then resolved 

to arrive at a consensus. We created tables for each teacher, identifying the main sub-tasks 

(e.g., providing examples, creating tables, choosing appropriate exercises, etc.), their 

techniques and the rationales given for these techniques. 

In this paper, we focus on interview excerpts in which participants discuss their use of 

applications. We examine their techniques (e.g., the type of applications they consider), their 

justifications for providing these applications, and the connection with the participants’ 

backgrounds and experience. 
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RESULTS 

At the beginning of the interviews, the participants were asked to reflect on the types of 

exercises they propose most often in their praxeologies in teaching calculus courses. Figure 2 

synthesizes the main elements of the participants’ practices: 

Teacher Types of exercises 

A 

• “we work more than just practice… Since it’s calculus [we do] exercises 

concerning graphs, those things… […] We don’t do many proofs. But in order 

to understand this or that result, we end up doing some proofs too. So, it’s a 

mix of everything.” 

B 

• “[The exercises I provide] are more practical. […] Some problems, and, when 

I have problems applicable to engineering, I think it’s quite interesting, this 

type of exercise, which can exemplify the application of this concept in [the 

student’s] field.” 

C 

• “[The exercises are] more practical, since we are in engineering. For instance, 

yesterday [in class], I wanted to justify the first fundamental limit, and I said, 

‘now, I’m going to provide a justification for engineers.’ […] I made a table, 

inserted some values […] It’s more practical; I believe that in engineering, 

theory must be minimized as much as possible.” 

D 
• “As any teacher, you have a preference for some type [of exercise], some type 

of function, and obviously I end up using things that have more applications 

for electrical engineering.” 

E 

• “The part regarding functions and limits is quite theoretical. So, it goes: 

calculate this limit, find the inverse function […], sketch the graph […]. Later, 

in derivatives […], we explore the determination of maxima and minima, 

problems concerning rate of change. Then, problems of maxima and minima 

and rate of change — they are more practical, they have a practical 

application. Before that, problems are more conceptual. Do this, do that. Later, 

rate of change, we have… ah… you can have an inverted cone with water 

escaping… it’s being filled at a given rate of cubic meters per minute, what is 

the rate of change of the height in relation to the time […]?" 

Figure 2: The participants’ views on the exercises they propose 

We may observe a variety of approaches. Although the five teachers use the rationale that 

engineering students need more “practice,” we see that their techniques vary. Whereas 

Teachers B and D appear to consider the professional profile of their students more directly 

(“I have problems applicable to engineering” or “applications for electrical engineering”), 

Teachers A, C, and E appear to propose more “classic” activities, typical of a mathematics 

course. They see “doing exercises concerning graphs,” creating tables or proposing (classic) 

exercises about maxima and minima as ways to make their course more “applied” and better 

attuned to their students’ profile. 

We then asked participants for concrete examples of applications they provide to get a clearer 

idea of the activities they develop in their praxeologies. Figure 3 summarizes their answers. 

Teacher Applications provided during the interview 

A 

• Exercises about graphs;  

• “we are actually missing some applications”; 

• “[students being in their first year is a constraint], since they still haven’t seen 

anything about engineering. They are actually seeing basic mathematics.” 

B • “Let’s consider a course on maxima and minima, with a two-variable function. So, 
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you can […] calculate the tangent plane to a given point, you can exemplify your 

surface with a spherical surface, calculating the minimal distance. You can provide 

an example of a satellite in orbit, and there you want to calculate the minimal 

distance […] to the position of the antennae. These are examples that you give them 

[…] Then, you obviously get to connect theory and some applications. It’s obvious 

that you make some approximations […] since you are talking about satellites, and 

you cannot consider all those […parameters…] in a simulation that you should 

obviously consider in a real job, but there you provide a practical example about that 

concept.” 

• “We are going to talk about definite integrals. [Students] will use that a lot. Because 

[engineers] want numbers. […] He will have a variation from a value a to a value b, 

then he wants to calculate something. And that thing comes from applications.” 

C 

• “I always found [providing applications] difficult. First, I’m not an engineer, and I 

don’t have the experience of an engineer. And then, students do not yet have that 

experience, since I start with [students in their] first and second semesters, so they 

haven’t acquired concepts from engineering. So, I always found that very difficult, 

but when I talk to other engineer colleagues, I always try to find out, ‘do you use 

this?’ […] Then, I say that [in my course]: ‘this thing here, there is somewhere in 

engineering, in the professional courses, where you are going to use it.’ […] But I 

think it’s not very helpful for the student.” 

• “It’s easier with physics, since physics and calculus go together […] But I think that, 

to do that type of work, the teacher needs to be a mathematician and a physicist. If 

not, he won’t do it well […].” 

D 

• “I have a look at the exercise and see where one can apply it. I then give a 

contextualization in addition to the exercise.” 

• “[…] I’m going to do, for instance, an integrator circuit; I need to know what an 

integrator circuit does; I need to know the integral, how I throw a pulse and it starts 

integrating, the curve goes up. Then, I have my differentiating circuit, we model 

circuits with mathematics. With an equation… a second order filter is a polynomial 

equation of […] second grade. Then, I cannot dissociate one thing from the other.” 

•  “I think that engineering is equations, graphs, and tables. If the engineer cannot 

interpret that, he doesn’t know anything. […] So, when I’m teaching to production 

engineering [students], for instance, I provide analogies with examples from the stock 

market, since they work a lot with that. And I ask them how you create a function for 

interest rates…” 

E 

• “Since [the course] is in the basic cycle [the first years of basic courses], you have 

diverse applications. You have something from production engineering, something 

more from mechanical engineering, something from electric engineering. So, it’s 

generic. It’s not specific, I won’t … give specific applications for a field. They are 

more generic, more towards physics. I’d say that it’s because it’s the first semester, 

and the student is not yet taking professional courses. So, [the activities] are more 

generic.” 

Figure 3: Applications provided by the participants 

We observe three distinct positions. The first technique does not provide specific 

applications, or provides only classic applications when teaching optimization and calculation 

of areas. This is the case with Teacher A, who uses the rationale that first-year students lack 

experience. A second technique provides some applications (mainly using physics or 

contextualized exercises), while also possibly informing students that they will use this 
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content elsewhere; we observe this in Teachers C and E, who state the common rationale that 

students are in their first-year (interpreted as “students do not know applications yet” or as 

“there are many different profiles”). A third technique provides more realistic applications, 

directly related to engineering practices. We see this with Teachers B and D, who, in 

justifying their use of this technique, occasionally fall back on their experience and their 

vision of engineers’ preferences (e.g., “because [engineers] want numbers”) and professional 

needs (e.g., “engineering is equations, graphs, and tables”). 

First, we note that the only teachers who use realistic applications are Teachers B and D. 

They are also the only ones with experience working as engineers. This is consistent with 

Nicol’s (2002) and Nathan et al.’s (2010) observations. Second, we note that Teachers A, C, 

and D use the fact that their students are in their first year as a rationale to justify the 

teachers’ difficulty in finding suitable applications. This correlates with the study conducted 

by Alves et al. (2016), in which only calculus teachers stated that including mathematical 

content in applications in the first year of engineering could be “useless” or “fake.” This 

perspective could stem from a lack of knowledge of engineering practices. The participants 

also reflected on how their own training and experience influence their teaching practices 

with respect to the kind of applications they offer as examples to their students (Figure 4). 

Teacher Types of exercises 

A 

• “since my training is in mathematics, we want to do many proofs, which I 

think are not always suitable for an engineering course […] So, [my training] 

has an influence in that sense. But the good thing is, there’s always a curious 

student, and they pose the question, and then you must do a proof, even if it’s 

as an aside…” 

• “I think I limited much of my content to mathematics, due to my training. 

Because we hear […] that [students] will need [this content] later.” 

B 

• “[in my training] I had teachers who were mathematicians, also 

mathematicians with an engineering perspective, and also engineers. And I 

believe that influenced my training a lot. I believe that a […] pure 

mathematician has a different perspective on mathematics, on this differential 

and integral calculus. […] I don’t think you need that much rigour. A 

mathematician teaching calculus, he doesn’t think about application. He thinks 

of mathematics as mathematics. How and where it comes from, how I prove it 

[…]—not how the temperature will go up or down, or how you apply air 

conditioning … an engineer is more preoccupied with the latter.” 

• “[my training] contributed a lot, having this perspective for applications. An 

engineering student won’t want much theory; he wants to know how he’ll use 

these concepts in his practical life. […] Therefore, this heterogeneous training 

that is not just linked to thinking and proofs, is very beneficial in an 

engineering course, I have no doubt. Since, when a student asks me, ‘how 

could I use that?’ […], even the book I use can have no practical examples, 

but […] it takes me five minutes to think and be able to tell him: ‘look, in that 

course you’re going to use this.” 

C 

• “First, I’m not an engineer, and I don’t have the experience of an engineer.” 

• “In the beginning, I had a lot of difficulty, since most of the time I had to 

teach a topic that I myself didn’t know too well. So, I had to study a lot; I used 

different books; I was always self-taught […] And so books became essential. 

I always tell [my students]: “you cannot be an engineer if you don’t have a 
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book at home; you need to have a library.”” 

D 

• “[my training influences me] in how I contextualize, in the application of 

exercises; it influences quite a bit. […] And us, in electrical engineering, let’s 

say we model engineering, circuits, components, through mathematics. So, 

one thing becomes another. […] I have my differentiating circuit; we model 

circuits with mathematics. With an equation … a second order filter is a 

polynomial equation of […] second grade. Then, I cannot dissociate one thing 

from the other. For me, it’s just one thing.” 

• “My vision of calculus for engineering is that it’s modelling. I see our 

oscilloscope and I see a function, in the same way that I see a function, and I 

think of the electrical signal associated with that function.” 

E 

• “[my training] influences, yes. For instance, when we’re solving a problem 

later in the semester. How do I explain to my students, “you’ll be engineers, 

what does an engineer do?” […] How can we think when analyzing? What are 

the data of the problem? What is being asked? And then I’ll think of a 

strategy. […] What knowledge will I gather and how do I articulate it to get 

there? Here, my training as an engineer is very influential at that point.” 

• “Look, I don’t know the day-to-day practice [of engineers] […], since 

although I’m an engineer, I didn’t work for long in the field; I spent very little 

time there.” 

Figure 4: The participants’ reflections on their training 

We observe that all participants see their training as an important source of justification 

(rationale) for some practices. Teachers A and C state clearly that their training is not in 

engineering, and that this fact influences some of their practices in teaching calculus. We also 

observe a possible justification for Teacher E’s lack of realistic applications: he does not have 

knowledge of the day-to-day practice of engineers. However, he believes his experience 

allows him to come up with a strategy for solving problems. 

FINAL CONSIDERATIONS 

We believe our results provide further insight into Nicol’s (2002) and Nathan et al.’s (2010) 

observations. As we noted in our previous study concerning two teachers (González-Martín 

& Hernandes-Gomes, 2020), teachers’ backgrounds and experience may provide important 

rationales for their teaching practices. In the case of engineering programs, it appears that 

experience in the professional workplace may provide teachers with a different way of 

looking at mathematics and of connecting with applications, as seen with Teachers B and D. 

Professional engineering experience also appears to provide teachers with a wider repertoire 

of applications for their calculus courses. In our study, the teachers who believe first-year 

engineering students do not have a solid enough background to connect calculus with realistic 

applications had no experience working as professional engineers. 

As stated above, the data presented in this paper come from interviews conducted in 2015 for 

a more general purpose. However, we believe the interviews provide sufficient data 

concerning the participants’ knowledge of realistic applications, and their ability to include 

this knowledge in their techniques. These five teachers, with their different backgrounds and 

different teaching practices, make up an interesting pool of participants. We intend to conduct 

another set of interviews to delve deeper into the participants’ practices and gather more 

information about their praxeologies in their calculus courses. This will provide material for 

future publications. 
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CONCEPTUALIZING EXPERTISE FOR TEACHER 

PROFESSIONAL DEVELOPMENT IN TEACHING 

STOCHASTICS 
Birgit Griese1 

1Paderborn University, Germany 

 

In order to address the intended aims of a professional development (PD) 

intervention adequately, the purported expertise must be conceptualized in 

detail, including a specification of the learning at classroom level. This paper 

utilizes an expertise framework (Prediger, 2019a, following Bromme, 1992) that 

distinguishes between jobs, pedagogical tools, thinking categories, and 

orientations to illustrate the concept-ualization of a PD unit that focuses on 

explanations, interpretation, and understanding when deploying digital tools for 

the teaching of stochastics at secondary level.  

INTRODUCTION: CHALLENGES IN TEACHING STOCHASTICS 

Teaching stochastics (statistics and probability calculation) presents a challenge 

for many teachers, for various reasons (Batanero, Burrill, & Reading, 2011): Some 

have little or no personal experience of being taught stochastics themselves, 

others feel insecure because of the uncertain nature of statements referring to 

probability, and others again deem themselves unprepared for the technological 

demands. All these issues have led to a high demand for PD courses covering 

stochastics in Germany.  

The designers of PD courses on stochastics at the German Center for 

Mathematics Teacher Education, DZLM, intend to address understanding, and 

not (only) procedure (Barzel & Biehler, 2016), at the classroom level as well as 

at the teacher PD level. This is in keeping with the standards of higher 

education, but it presents the challenge for PD designers and facilitators to 

attend to content and didactics. (For other more popular areas of mathematics, 

like calculus or geometry, PD courses can concentrate on didactical and 

methodical consideration alone.) For example, in a DZLM PD course on 

stochastics developed at Paderborn University, only 20% (9 out of 44 

participants) found they had fully attained the goal of learning about the didactic 

value of simulations, although this was an explicit focus. One participant stated 

“sometimes simulations are more confusing than helpful”, another wrote that it 

was “not clear in which situations simulations make sense”, and more than one 

complained that it would not be worth the lesson time to teach students how to 

code the simulations. Consequently, a sound theoretical basis for the expertise 

in teaching stochastics is indispensable when aiming at a systematic re-design 

of the course. 
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THEORETICAL BACKGROUND 

Theory elements for Design Research (van den Akker, 2013) in teacher PD can 

be distinguished as categorical, descriptive, normative, explanatory, or 

predictive, each with different functions and structures (Prediger, 2019b). These 

elements are closely related and help to answer what should be addressed and 

how this can be orchestrated (like in Griese, Rösken-Winter, & Binner, 2020), 

thus offering a perspective of how to re-conceptualize PD design. The idea of 

this paper is to explore a framework (Prediger, 2019a) in regard to describing 

the expertise necessary for teaching stochastics and for conducting PD courses. 

Thus, insights into the structure and interdependencies of teacher expertise (and 

how to promote it) can be obtained.  The objective is to use the framework for 

both the re-design of PD courses and the qualification of facilitators. The idea 

behind this model differs from the approach to describe teacher competence and 

their impact on teaching quality (Kunter, Klusmann, Baumert, Richter, Voss, & 

Hachfeld, 2013) insofar as it focuses is on the development of teaching skills 

and thus seems better suited for the PD perspective. 

Following Bromme (1992), Prediger (2019a) developed a framework for 

conceptualizing content-specific teacher expertise which describes jobs as 

“typical, often complex situational demands of subject-matter teaching that are 

most relevant to the PD content in view” (p. 369) and how teachers cope with 

them. This situated approach allows to disentangle teacher practices by also 

describing their categories for thinking and noticing, the pedagogical tools they 

employ, and their underlying beliefs (orientations) that in their complex 

interplay influence the effect of a PD intervention. The specifications naturally 

relate to the teaching content that is the focus of the PD intervention. By 

utilizing these categorical and descriptive constructs, normative elements can be 

phrased in detail – and explanatory and maybe even predictive statements are to 

be gained. This is worthwhile, so the central question of this paper is: 

Can a framework for content-specific teacher expertise that describes expertise 

in jobs, pedagogical tools, thinking categories, and orientations help to improve 

a PD course on stochastics by offering answers to what and how questions? 

CONTEXT OF THE PD COURSE 

This paper is based on the design of and research around a five-day PD course 

for stochastics at upper secondary level (Oesterhaus & Biehler, 2014) that 

specifically addresses the use of digital tools. In particular, we focus on that part 

of the first day of the course where suggestions are presented on how to 

promote a deeper understanding of distributions, and participants experience 

and discuss various tasks and activities. The evaluation of the PD course 

showed that the intended aim of displaying the advantages of employing digital 

simulations fell short of expectations. When considering reasons for this 

feedback and pondering options for improvement of the PD course, the question 

how to proceed emerged. One answer was to use a framework for teacher 
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expertise in order to comprehend the learning obstacles in this context and find 

approaches to overcome them. 

UTILIZING THE FRAMEWORK FOR CONCEPTUALIZING 

TEACHING EXPERTISE IN STOCHASTICS 

Classroom Level 

Following Prediger (2019a), we start with compiling a learning map for 

stochastics for the classroom level (summarized in Table 1). In analogy to her 

structure of the categories, we describe the content goals, the activities and 

linguistic practices, and the lexical means and resources.  

 Content goals Activity and 

linguistic practice 

Lexical means and 

resources 

Procedural / 

local 

- probabilities  

- characteristic variables  

- accumulation limits 

- … 

calculate apply formulae (e.g. 

binomial distribution, for 

mean or variance) 

Conceptual / 

global 

- interpret probabilities 

- make evidence 

statements 

- vary scenario (e.g. 

increase 𝑛 in a binomial 

distribution) 

use tables, 

calculator, software 

etc. 

elaborate on if-then 

scenarios; 

employ dynamic 

software; 

conduct repeated 

simulations 

Table 1: Learning map for stochastics at classroom level 

Content goals cover what the students are expected to master, in different levels 

of complexity. The basic level comprises goals for stochastics that can be 

classified as procedural or local (middle row in Table 1), where the view is 

quantitative on one specific characteristic or value of a distribution. For students 

to show they have reached these goals, they will apply formulae or rules, and 

use calculators, software, or tables (which we sum up under resources) and do 

calculations (which we term an activity). At this level, no verbal utterances are 

necessary, and therefore no lexical means are employed. Another level of 

content goals refers to conceptual or global aspects (bottom row in Table 1), 

where the view is on a distribution as a whole, on understanding its 

characteristic features, thus on qualitative aspects. Learners are here expected to 

vary scenarios, e.g. change a parameter in a distribution, and come to the 

conclusion that if you increase 𝑛 in a binomial distribution, then the histograms 

of absolute frequencies will become flatter and wider, but the histograms 

showing relative frequencies will be narrower. In order to show that learners 

have reached these goals, more complex activities are needed which include 

language and will therefore be termed activities and linguistic practice. At this 

goal level, learners will interpret, conclude, explain, and give reasons. The 

resources employed to realize these activities are more complex and are 

therefore extended to lexical means and resources. Learners elaborate on 
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conditional deliberations and consider if-then scenarios (like the conclusion 

described above in this paragraph). 

Apart from lexical means to explain the scenarios, learners can also resort to 

technical resources. Dynamic software seems well-suited to represent varying 

scenarios, as it allows to vary parameters, e.g. via sliders. Obviously, in a 

changing scenario, the focus is not on certain values or numbers (as in the 

procedural / local level), as they do not carry potential for explanations in 

themselves but only in comparison to other values or numbers. The same is true 

for simulations, where the specific value of a relative frequency is not very 

informative, but repeating the simulation can reveal both what is characteristic 

of a distribution and what is random. These resources (dynamic software and 

repeated simulations) can support an understanding which is then 

operationalized with the help of the lexical means described above. 

Teacher PD Level 

The learning map described in Table 1 is an essential resource for teachers to 

identify which category, thought pattern, or reference frame is addressed by a 

learning activity. The map supports teachers to make informed decisions when 

planning and performing teaching sequences. It is crucial that students 

experience teaching that covers not only the procedural / local content goals, but 

also the conceptual / global ones (this refers to what should be covered). The 

learning map offers activities and linguistic practices that attend to them 

(suggesting to how to accomplish the intended goals).  

The jobs for teaching stochastics (Table 2) are phrased in analogy to Prediger 

(2019a) as demanding, noticing, developing, and supporting resp. explanations, 

interpretations, and reasoning. They each address different aspects of teacher 

behavior. Demanding explanations, interpretations, and reasoning means 

teachers set tasks and activities that refer to the activities and linguistic practices 

of that level. Noticing stresses that teachers need to have a reference system to 

diagnose which goal is being addressed at a certain moment. Developing and 

supporting emphasize the fact that teachers address the learning process. The 

job of identifying the language and resources relevant for stochastics is another 

basic job which is crucial for all others. This equally means identifying what is 

not relevant – as it is quite easy to get sidetracked by the technical specificities 

of software coding, or by inconsequential language issues like declension. 

The pedagogical tools for stochastics, that support teachers in how to address 

certain learning goals, comprise, among others, motivating and cognitively 

activating tasks with authentic background, experiments (e.g. throwing coins or 

dice), in particular utilizing equivalent random experiments for authentic 

situations, which is an essential element of stochastics modeling, interactive 

visualization (e.g. with sliders for the parameters of a distribution), pre-coded 

simulations, and language scaffolding. 
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Jobs demanding … noticing …  developing …  supporting … 

 … explanations / interpretations / reasoning 

 identifying language and resources (not) relevant for stochastics 

Pedagogical 

tools 

cognitively 

activating 

tasks  

interactive 

visualiz-

ations 

pre-coded 

simulations 

equivalent 

random 

experiments 

language 

scaffolding 

Categories learning map for stochastics at classroom level (Table 1) 

Orientations addressing understanding 

and procedure 

considering digital tools as 

means to a goal 

regarding certain 

language issues as 

relevant  

Table 2: Specification of the framework for teaching stochastics, classroom 

level 

All these aspects refer to what can be observed in a classroom situation. They 

are, however, influenced by the orientations of the teacher who orchestrates the 

classroom activities. The orientations relevant for teaching stochastics are an 

awareness that both procedure and understanding are to be addressed in 

stochastics (as in any other mathematical content area), regarding certain 

language issues as relevant for stochastics (which involves the job of identifying 

these issues), and considering digital tools as means to reach a goal, and not as a 

goal in itself.  

Table 2 summarizes the framework for stochastics-specific teacher expertise. 

Various entries there will help to avoid unsatisfactory feedback on the didactic 

value of simulations, e.g. recommending pre-coded simulations (a tool) or 

considering digital tools as means to a goal (an orientation). The matrix in 

Table 2, however, is not to be read vertically, but horizontally, meaning that the 

jobs are to be understood as one unit, and the pedagogical tools, the categories, 

and the orientations reflect the complex practice. Moreover, the tools and 

orientations are not to be understood as a closed list. The relations between the 

rows in Table 2 are points of interest and further exploration.  

Exemplification: Teaching Sequence for Addressing Distributions 

We will look into these interrelations in more detail, exemplified by a teaching 

sequence for addressing distributions. The sequence starts with the 10/20-test 

problem (Figure 1), which represents a pedagogical tool, and sets the goal of 

exploring what lies behind it (demanding reasoning, a job). To incorporate 

students’ intuitive thinking, their ideas as to which test is easier to pass and why 

are collected and discussed, without yet revealing if their reasoning is correct 

because the learning goal is to allow them to reflect upon the problem in detail, 

and not to memorize the correct answer. This serves to develop reasoning skills, 

and its realization is based on the teacher’s orientation that understanding is a 

worthwhile learning goal.  
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One test has ten questions with two answers each, one correct and one false. Another test has twenty 

questions with two answers each, one correct and one false. You pass each test if you have 60 % or 

more correct answers. 

If you are merely guessing, which test is easier to pass: the test with ten, or the test with 

twenty questions – or are both equally difficult? 

Figure 1: The 10/20-test problem, for addressing distributions 

With experiments of tests with 10 or 20 questions, a first exploration of the 

phenomenon can be created, and students can utter their considerations as to the 

reasons, which relates to the teacher’s job of noticing. In order to systemize the 

observations (i.e. support students’ reasoning, a job), the teacher can introduce 

an equivalent random experiment, e.g. throwing ten or twenty coins and 

counting how often “tail” appears, as a representation of a correct answer. These 

hands-on experiments may lead to an interpretation which test is easier to pass. 

Students’ reasoning can be supported (a job) by guiding and categorizing their 

arguments.  

To get a more reliable basis for conclusions, it seems natural to gather more 

data, i.e. to simulate the experiment with the help of software. The software 

used should allow easy handling and visualization, and some steps of the 

simulation can be prepared in advance, which can be viewed as a pedagogical 

tool, based on the orientation that digital tools (here, at least) are a means to 

reach a goal, and not a learning goal in itself. 

Spreadsheets or other software can be used to create visualizations (a 

pedagogical tool) in the form of histograms that show the distribution of the 

percentages of correct answers for the test with 10 respectively 20 questions. An 

important feature (pedagogical tool) is Excel’s F9 key (or a similar key): 

pressing it results in a new simulation, which the dependent visualizations 

follow. This feature in particular allows the learner to observe what is a 

characteristic of the distribution, and what is random. It helps to focus the 

attention on the characteristics of the distribution (conceptual content goal) and 

not on particular values (procedural content goal).  

It can be observed in the visualizations displaying the relative frequencies of 

correct answers that the “pass” areas for the test with 10 questions is a bigger 

percentage of the total area of the histogram than the “pass” area for the test 

with 20 questions (certainly students will need help with phrasing a statement 

like this, a job the teacher can fulfil by offering language scaffolding, a 

pedagogical tool), thus yielding the insight that it is easier to pass the test with 

10 questions by merely guessing. How probable it is to pass the tests is not 

relevant at the moment (although the software would easily produce 

approximations for these probabilities), and the teacher identifies this as not 

relevant here, which is another job.  

The general rule that lies behind this phenomenon is that percentages vary less 

when the number of repetitions is increased (n.b. the absolute numbers vary 

more), and therefore are more likely to pass a threshold (in our example, 60%) 
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that is not the expected value (here, 50%). At this stage, this generality cannot 

be phrased, but the example of the 10/20-test problem serves as a milestone task 

that is remembered and can be referred to when analogous phenomena are 

considered. Besides, later, when the binomial distribution has been covered, the 

phenomenon observed in this context can be connected to the values of the 

mean and variances of the numbers and percentages of correct answers in a test 

with 10 respectively 20 questions. 

Facilitator PD Level: A Further Perspective 

Conceptualizing the expertise of facilitators, who present PD courses, is also 

possible with an analogous framework that follows the principle of nesting 

teacher expertise in the categories, similarly to the nesting of the learning map 

in the categories of the framework at classroom level.  It can be used to specify 

facilitators’ jobs (e.g. attending to practices or discussions), pedagogical tools 

(e.g. the move of pointing to elements of the learning map), categories, and 

orientations (e.g. an appreciation for the PD course participants). It becomes 

apparent that, apart from the categories, these specifications are not content-

specific, but describe more general characteristics.  

CONCLUSION 

Our analyses show that the first step, specifying the content goals, as well as 

what activities and linguistic practices students follow and which lexical means 

and resources they employ to do so, helps to structure what is to be taught and 

how these teaching goals can be attained. The specifications of how to employ 

software and simulations and why this can promote the conceptual learning 

goals is a major result unveiled by Prediger’s framework. The next step, 

elaborating on the jobs, pedagogical tools, and orientations, shows that these 

are connected in various ways and influence teachers’ classroom actions that 

aim at reaching the learning goals they have decided upon. The pedagogical 

tools are closely related to the lexical means and resources and support teachers 

in attending to their jobs. The orientations represent guidelines that influence or 

even determine which pedagogical tools are chosen, and which content goals 

are being addressed. They also help to polish the pedagogical tool, in the above 

example in the details to first use hands-on experiments, followed by pre-coded 

simulations that can be repeated, and visualizations showing the distribution and 

not single values. Teachers need not necessarily be aware of their orientations, 

but if they are, this serves to rationalize their choice of tool or move.  

Thus, the framework permits explanations and even predictions, and helps to 

shape the PD intervention by suggesting specific uses of digital tools (repeated 

simulations, dynamic software) and avoiding sidetracks (e.g. the coding of 

simulations). These insights prompt what should be addressed in teacher PD and 

how this can be orchestrated. In sum, the framework for conceptualizing 

content-specific teacher expertise has proved useful for stochastics, as it 

suggests various ways to convince teachers to develop their teaching and offers 

concrete tools and resources for support. 
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Studies showed that even before formal instruction, children can solve some 

arithmetic word problems by using informal solving strategies. The current study 

investigates the processes underlying the use of these informal strategies. We propose 

that the efficiency of the mental simulation of the encoded representation influences 

the difficulty of word problems and the use of formal solving strategies that reflect 

principle-based knowledge. Three experiments, two collective classroom experiments 

and a collection of verbal protocols, with 383 2nd grade students, revealed that the 

cost of the mental simulation influenced the performance and solving strategies. 

Principle-based strategies are dominant only on high cost mental simulation 

problems, reflecting a re-representation process. Theoretical and pedagogical 

implications are discussed. 

INTRODUCTION 

Arithmetic word problems are an important part of mathematics instruction all over 

the world (Verschaffel, Schukajlow, Star, & Van Dooren, 2020). Repeated findings 

have shown that problems which belong to different semantic categories but share the 

same underlying arithmetic structure yield different degrees of difficulty and are 

solved using different solving strategies (De Corte & Verschaffel, 1987; Gros, 

Thibaut, & Sander, 2020; Riley, Greeno, & Heller, 1983). Numerous research has 

therefore investigated the processes involved in solving such problems and most 

would agree that an arithmetic word problem leads to the construction of a situation 

model due to its semantic characteristics (Reusser, 1990; Verschaffel, Greer, & De 

Corte, 2000).  

One current approach, the Situation Strategy First framework (Brissiaud & Sander, 

2010), proposes that the situation depicted in the word problem provides the solver 

with situation-based solving strategies, which will be preferentially used when it is 

efficient. This would be the case on the Change 2 problem “Luc is playing with 22 

marbles at recess. During recess, he loses 4 marbles. How many marbles does Luc 

have now?”, since the informal situation-based solving strategy efficiently leads to the 

solution. Yet, the numerical magnitudes within the word problem can influence the 

difficulty of the informal situation-based solving strategy. For example, when the 

problem is turned into “Luc is playing with 22 marbles at recess. During recess, he 

loses 18 marbles. How many marbles does Luc have now?”, the informal situation-

based solving strategy is computationally inefficient. When solvers succeed to find the 

answer, they no longer solve it by relying on the initial representation of the problem 
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which led them to use direct subtraction. They actually find the answer to this 

problem by re-representing the problem and using indirect addition. 

This kind of strategy switch is also described in the literature on non-word problems 

(Peters, De Smedt, Torbeyns, Ghesquière, & Verschaffel, 2013). In fact, both of these 

strategies correspond to the arithmetic operation of subtraction, yet the arithmetic 

format is different (Campbell, 2008). In the current study we propose that solvers 

encode the initial representation of a problem by relying on a conception of arithmetic 

that is activated by the problem statement. Two encodings compete: the wide-spread 

conception of subtraction as taking away (Fischbein, 1987; Lakoff & Núñez, 2000), 

aligned with the use of direct subtraction and the determining the difference 

conception (van den Heuvel-Panhuizen & Treffers, 2009), aligned with the use of 

indirect addition.  Second, we propose that the process leading to the use of informal 

strategies is the mental simulation of the initial encoded representation of the problem. 

According to Barsalou (1999, p. 586), mental simulation consists of the construction 

of “specific images of entities and events that go beyond particular entities and events 

experienced in the past”. The involvement of dynamic and perceptual simulations in 

text comprehension and the processing of abstract concepts also gives great 

importance to the process of mental simulation in contexts where there are no actions 

involved, such as it would be the case on static word problems (Hostetter & Alibali, 

2018; Zwaan, Madden, Yaxley, & Aveyard, 2004). We propose that in order to go 

beyond the mental simulation of the encoded representation and use a solving strategy 

based on arithmetic principles, a solver needs to recode the initial representation by 

relying on a different arithmetic conception.  

In the current study we created arithmetic word problems whose mental simulation of 

the initial encoded representation would have either high or low cost. We predicted 

that different performance rates and different solving strategies will be observed as a 

function of the cost of the mental simulation of the encoded representation. We chose 

static problems, that do not allow straightforward mental simulation because of the 

absence of actions involved in the described situation. Thus, the mental simulation is 

only made possible due to the arithmetic conception evoked, entailing an encoding 

that triggers either a mental direct subtraction (taking away conception) or a mental 

indirect addition (determining the difference conception). On problems where the 

mental simulation of the initial encoding is inefficient and bears a high cost, we first 

expect to find lower performance rates and less formal solving strategies – those that 

do not reflect the initial encoding. Second, we expected that the process of mental 

simulation will remain prevalent throughout the school year and that we will replicate 

the findings six months later. Third, we expected to observe informal solving 

strategies that reflect the mental simulation of the initial encoding of the problem on 

low cost mental simulation problems, and formal strategies reflecting a recoded 

representation mainly on high cost mental simulation problems. 

METHOD 

Participants 

341 second-grade students from 16 classes coming from 11 elementary schools from 

working-class neighbourhoods in France participated in a collective classroom study 

at the beginning of the year. The average age of the children was 7.60 years (SD = 

0.33, 177 girls). At the second time of testing, six months later there were 269 second-
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grade students from the initial cohort who participated (mean age = 8.02 years, SD = 

0.33, 138 girls). Lastly, verbal protocols were conducted with 42 second grade 

students who were not part of the initial cohorts (mean age = 7.93 years, SD = 0.26, 23 

girls).  

Materials 

There were 8 types of subtraction and addition problems belonging to 3 major 

categories corresponding to Compare problems 1, 2, 3, 4, Combine problems 1, 2, and 

Equalizing problems 1 and 2 from Riley et al.’s (1983) classification (Table 1). The 

number triplets involved in the data and the solution are (31, 27, 4), (33, 29, 4), 

(41,38, 3), and (42, 39, 3). The number triplets were combined in order to create high 

and low cost mental simulation versions of each problem category in the same way as 

it was done in previous studies (Brissiaud & Sander, 2010; Gvozdic & Sander, 2020). 

To control for the impact of position, numerical sets and context, 8 different problem 

sets were created. Another 8 problem sets were 'mirror' sets in which the low cost 

version of one problem would be presented in its high cost counterpart, while the high 

cost problem would be presented in its low cost counterpart. 

Problem 

category 
Low cost mental simulation  High cost mental simulation  

Compare 1 

“There are 27 roses and 31 daisies 

in the bouquet. How many daisies 

are there more than roses in the 

bouquet?” 

“There are 4 roses and 31 daisies 

in the bouquet. How many daisies 

are there more than roses in the 

bouquet?” 

Compare 4 

“Anna has 31 euros. Susan has 4 

euros less than Anna. How many 

euros does Susan have?” 

“Anna has 31 euros. Susan has 27 

euros less than Anna. How many 

euros does Susan have?” 

Equalizing 

1 

“There are 27 oranges and 31 

pears in the basket. How many 

oranges should we add to have as 

many oranges as we do pears?”  

“There are 4 oranges and 31 pears 

in the basket. How many oranges 

should we add to have as many 

oranges as we do pears?” 

Combine 1 

“There are 27 blue marbles and 4 

red marbles in Marc's bag. How 

many marbles are there in Marc's 

bag?” 

“There are 4 blue marbles and 27 

red marbles in Marc's bag. How 

many marbles are there in Marc's 

bag?” 

Table 1: Examples of arithmetic word problems in their low and high cost mental 

simulation version for the number triplet (31, 27, 4) 
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Table 2: Classification of solving strategies for different problem categories from 

Riley, Greeno and Heller’s (1983) classification  

Problem 

category 

Cost of 

mental 

simulation 

Informal strategies Formal strategies 

Combine 1 

Low 27 + 4 = □ 4 + 27 = □ 

High 4 + 27 = □ 27 + 4 = □ 

Combine 2  

Low 27 + □ = 31 31 – □ = 27 31 – 27 = □ □ + 27 = 31 

High 4 + □ = 31 31 – □ = 4 31 – 4 = □ □ + 4 = 31 

Compare 1  

Low 27 + □ = 31 31 – □ = 27 31 – 27 = □ □ + 27 = 31 

High 4 + □ = 31 31 – □ = 4 31 – 4 = □ □ + 4 = 31 

Compare 2 

Low 31 – □ = 27 27 + □ = 31 31 – 27 = □ □ + 27 = 31 

High 31 – □ = 4 4 + □ = 31 31 – 4 = □ □ + 4 = 31 

Compare 3 

Low 27 + 4 = □ 4 + 27 = □ 

High 4 + 27 = □ 27 + 4 = □ 

Compare 4 

Low 31 – 4 = □ 4 + □ = 31 31 – □ = 4 

High 31 – 27 = □ 
27 + □ = 

31 
31 – □ = 27 

Equalizing 1 

Low 27 + □ = 31 31 – □ = 27 31 – 27 = □ □ + 27 = 31 

High 4 + □ = 31 31 – 4 = □ □ + 4 = 31 

Equalizing 2 

Low 31 – □ = 27 27 + □ = 31 31 – 27 = □ □ + 27 = 31 

High 31 – □ = 4 4 + □ = 31 31 – 4 = □ □ + 4 = 31 

 

Procedure 

Each student solved 4 low cost mental simulation problems and 4 high cost ones. In 

the collective classroom part of the study, each student received an 8 page booklet. 

Each problem was read aloud twice, and students then had one minute to write the 
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number that was the solution. Regarding the collection of verbal protocols, students 

were asked to give an oral explanation of how they found the solution after writing 

down the answers. Their responses were recorded and transcribed.  

Scoring 

The solutions noted by the children were scored with 1 point when the numerical 

answer was exact or, in order to allow for mistakes in counting procedures, within the 

range of plus or minus one of the exact values. Any other answers received 0 points. 

On the verbal protocols, the strategy students described were also assessed. Two 

coders evaluated the solving strategies of 10 students by writing down the number 

sentence they considered corresponds to the descriptions children gave. The initially 

obtained inter-rater reliability was 98.75% with the Cohen's kappa score of 0.982, 

providing an almost perfect level of agreement. The informal strategies corresponded 

to the mental simulation of the initial encoding, and the formal strategies 

corresponded to strategies that did not correspond to the initial encoding (Table 2). 

Two separate codings were done, one for the informal strategy and one for the formal 

strategy. When the student provided an informal strategy, this was scored as 1 point 

for the informal strategy. When a student described a formal solving strategy, this was 

scored as 1 for the formal strategy.  

RESULTS 

Performance 

We compared students’ success rates on low and high cost mental simulation 

problems. Since the data points for the responses were binary and recorded in a 

repeated design (with low and high cost mental simulation problems), we conducted 

random-effects logistic regressions. We constructed a generalized linear mixed model 

(GLMM) with a binary distribution with the cost of mental simulation (low vs. high) 

as the fixed factors, while participants and problem categories were included as the 

random effects. In accordance with our hypotheses, at the first time of testing, the 

analyses showed a highly significant main effect of the cost of mental simulation on 

performance (β = 1.05, z = 11.12, p < .001). The low cost mental simulation problems 

had a 1.69 times higher success rate than high cost mental simulation problems 

(Figure 1A). At the second time of testing in the collective classroom study, the effect 

was replicated the analyses revealed a highly significant main effect of the cost of 

mental simulation on performance (β = 1.33, z = 12.22, p < .001). The low cost mental 

simulation problems had a 1.59 times higher success rate than high cost ones (Figure 

1B). Lastly, the gap in performance on low and high cost mental simulation problems 

was also replicated in the verbal protocols, confirming that low cost mental simulation 

problems are significantly easier (β = 1.4, z = 789.6, p < .001) (Figure 1C). 

Solving Strategies 

Further on, we analysed the strategies used by the students. We aimed to show that re-

representation leading to the use of arithmetic principles was predominant only when 

mental simulation was inefficient. We conducted two GLMMs, one with the informal 

strategies and one with the formal strategies. Both were GLMMs with a binary 

distribution and the cost of mental simulation as the fixed factor and participants and 

the problem categories as the random effects. As predicted, both differences were 

significant. Informal strategies were used significantly more on low cost mental 
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simulation problems than on high cost mental simulation problems (β = 3.12, z = 8.04, 

p < .001). Formal strategies were used significantly more on high cost mental 

simulation problems than on low cost ones (β = -3.95, z = -4.99, p < .001) (Table 3).  

 

 Figure 1: Success rates at the three different times 

 

 Problem types 

Low cost mental simulation High cost mental simulation 

Informal strategy 97% 23% 

Formal strategy 3% 77% 

Table 3: Rate of use of informal and formal solving strategies 

 

DISCUSSION 

In the current study we proposed that the cost of the mental simulation of the encoded 

representation would constrain the difficulty of different word problems as well as the 

solving strategies. Problems that do not depict actions in their wording were chosen in 

order to show that mental simulation operates on the encoded representation rather 

than the depicted situation. By looking at the performance rates, we demonstrated that 

the problems hypothesized to involve a low cost for the mental simulation of the 

encoded representation are and remain easier for students throughout the school year. 

We also provided evidence that formal solving strategies that do not reflect the initial 

encoding are dominant only among high cost mental simulation problems, whereas 

informal solving strategies are almost systematic on low cost mental simulation 

problems. Overall, our study provides evidence that behind student’s use of informal 

solving strategies is a non-mathematical mental simulation of the encoded 

representation, while the use of formal arithmetic strategies is dependent on the 

recoding of the initial representation. The processes we propose take place in 

arithmetic problem are illustrated in Figure 2. As this figure displays, the mental 

simulation does not operate directly on the situation described by the problem, but on 

the encoding of this situation, constrained by the arithmetic conception evoked by the 

problem statement. 
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Figure 2: Modelling the encoding and recoding processes in word problem solving 

An essential objective in mathematics education is to provide students with the 

necessary knowledge to select the most appropriate strategy for finding the solution to 

a problem (Verschaffel, Luwel, Torbeyns, & Van Dooren, 2009). Our findings 

provide insights for evaluating the acquisition of such knowledge. Indeed, if problems 

which can be easily simulated mentally are used in school evaluations, we are not 

actually evaluating an adaptive strategy choice but merely informal knowledge with 

which students already come to class. Our findings provide insight into what kind of 

content is better suited for evaluating actual learning objectives: it is only when the 

initial encoding of the content makes informal solving strategies difficult to use, that 

students are actually given the opportunity to put their arithmetic knowledge to the 

test. Furthermore, it has been demonstrated that when teachers are faced with 

problems that are intuition-consistent, they overlook the difficulties that such content 

poses for students (Gvozdic & Sander, 2018). Our current findings therefore also bear 

high pedagogical relevance not only evaluating adaptive expertise, but for teaching it, 

since it could be useful to work on comparing different kinds of low and high cost 

mental simulation problems in order to overcome intuitive conceptions and favour the 

acquisition and use of formal solving strategies. 
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