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PREFACE

The International Group «Psychology of Mathematical Education» (P.M.E.),
was formed in 1976 during the S3rd International Congress for the Teaching of
Mathematics at Karlsruhe, since then, annual conferences have been held at
Utrecht, Osnabriick, Warwick and Berkeley.

The 5th conférence will be held from 13 to 18 july 1981 at the Scientific
and Medical University of Grenoble.

The scientific programme of the 5th conference includes

i

five plenary lectures outlining ~the maifi international _research orientations. The
texts of these lectures will be collected in volume II of. the congress acts
(this will be distributed to participants on arrival at Grenoble).

- approximately 60 papers which will be read in parallel sessior\fis»\ The texts of
these papers are collected in the present volume. They have be\én‘ classified
according to the four following major themes

A. Number construction, addition and substraction, decimals and ge‘omeu'y, in
the primary school.

B. Proportion and product, algebra, function, rational numbers, in secondary
education.

C. Problem solution and memory ; stages and categories of mathematical
thought ; logic and representation ; methodological problems.

D. UﬁiVersity teaching ; attitude and anxiety ; bilingualism ; teacher training.
The order of the papers i the acts will not necessarily be identical with
the order in which they are read at the congress. Complete details will be given

in the full congress programme.

We would like to thank the following national or anisms for their financial
backing which has made it possible to offer simultancﬁus translation in the two

official languages, French and English g Centre Nafional de la Recherche Scicn% g@ oe0
tifique, Maison des Sciences de P'Homitie, Soc@ Mathématique de France, Min@ Z?’ GG’G‘P_:
tére de I'E jon. Thanks are also due to the following local organisations A6oc
whose generosity will enable participants to appreciate certain cultural and tounggz o
aspects of the Grenoble region : Université, de Grenoble I, Université de Greno- 83 b o™
ble II, Labf_t*gt()ire LM.A.G. et Laboratoirf Mathématiques ,P.‘E?s’ UER de Psy-

e LS
chplogie et des Qgienrs de I’Education, (onseil Géfiéral de llIsére.
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PREFACE

Le Groupe International, Psychology of Mathematical Education (P.M.E.), créé
en 1976 lors du III® Congrés International sur I’Enseignement des Mathématiques,
a Kadsruhe, a tenu depuis lors son colloque annuel & Utrecht, Osnabriick,
Warwick et Berkeley. ‘

La 5éme rencontre du groupe se déroulera du 13 au 18 juillet 1981 .dans
les locaux de PUniversité Scientifique et Médicale de Grenoble.

Le programme scientifique du 5éme colloque ‘comporte

- d’une part, six conférences pléniéres présentant les principales orientations de re-
cherche sur le plan international. Les textes de ces conférences seront regrou-
pés dans le volume II des actes du colloque (ce volume sera distribué aux
congressistes 4 leur arrivée 4 Grenoble).

- d’autre part, une soixantaine de communications qui se dérouleront en deux
sessions paralléles. Les textes de ces communications sont réunis dans le pré-
sent volume, ils ont été regroupés selon les quatre grands thémes suivants

A. Construction du nombre, addition et soustraction, décimaux et géométrie,
a Décole primaire. '

B. Proportion et produit, algébre, fonctions, nombres rationnels, dans l’ensei-
gnement secondaire.

C. Solution de problémes et mémoire ; étapes et catégories de la pensée
mathématique ; logique et représentation ; problémes “de méthode.

D. Enseignement supérieur ; attitude et anxiété ; bilinguisme ; formation des
enseignants.

L’ordre dans lequel les communications sont imprimées dans les actes ne
préjuge pas-de celui de leur présentation orale lors du colloque de Grenoble, ce
dernier sera précisé dans le programme détaillé du colloque.

Nous tenons a remercier ici les organismes navionaux (Centre National de la
Recherche Scientifique, Maison des Sciences de I'Homme, Société Mathématique de
France, Ministere de I'Education), grice au soutien financier desquels nous avons
pu organiser pour ce congrés la traduction simultarée de l’ensemble des travaux
dans les deux langues officielles (frangais, anglais) ; nous remercions également les
organismes locaux (Université de Grenoble I et Université de Grenoble II, Labo-
ratoires LM.A.G. et Mathématiques Pures, UER de Psychologic et des Sciences de
PEducation, Conseil Général de I'Isére), dont la générosité nous permettra de fai-
re connaitre aux congressistes la région grenobloise tant sur le plan touristique
que culturel.

Claude COMITI
Gérard VERGNAUD.
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OPERATIONAL COUNTING AND POSITION
Leslie P. Steffe

University of Georgia

Cette communication soutient comme th2se le fait que pour 1l'enfant,
compter est au coeur méme de sa conception du nombre. De percevoir
leurs fagons de compter comme une performance ou méme comme 1'essentiel
des stratégies qu'ils utilisent pour résoudre les probl2mes ne permet
pas d'entrevoir complztement 1'aspect psychologique. Compter est un
comportement mathématique significatif et les items que 1'enfant
consid@re comme pouvant 8tre compté sont une indication principale

de la qualité de cette signification. Les 17 enfants, sujets de
cette Evude, powvaient prendre des unitds abstraites comme articles
dénombrables. Leur conception du nombre se caractérise par une
opération "d'unitisation” (intégration) dont le contenu pouvait

&tre des actes dénombrables.” Quatre concepts distincts de position
permettent de concevoir le dénombrement comme Etant plus que
performance ou stratégie: (1) la position du dénombrement dans
L'ordre eroissant; (8) la position d'un dénombrement bi-directionnel;
(8) la position d'une déclinaison numsrique; (4) la position de la
reversibilté de 1'extension et de la déclinaison numdrique. Ces
deux derniers concepts de position sont basés sur des opérations
tmpliquant le dénombrement avant méme que ce dernier se produise
véritablement. Ce sont ces operations qui lient le dénombrement

a la compréhension numérique.

OPERATIONS INVOLVING COUNTING

Counting is linked to numerical understanding by the unitizing operation of
integration. An integration is the operation of taking any sequence of counting
acts as a whole--as an abstract unit--and is the result of reflective abstraction.
A distinction can be made between counting the chimes as a clock strikes the hour
and uniting those counting acts into one whole after counting. In the absence

of the uniting operation, integration, counting produces at most a sequence. But

an integration of a sequence of counting acts yields a specific numerosity.

In the absence of observable counting acts, a child may act in a way that suggests
that it re-presents to itself counting acts and integrates them, taking them as a

whole. In this case, the child has made a tacit integration. The counting acts

are implicit in the sense that the child knows it could carry them out if required.
The tag;t integration is the act of taking these implicit counting acts as an
abstract unit. Finding the sum of eight and seven by counting "eight--nine is 1,

ten is 2, ..., fifteen is 7--fifteen" indicates that not only were the first eight
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counting acts implicit in solution, but that they were treated as one thing--as an
abstract unit. That uttering "eight" indicates a tacit integration is made all the
more plausible by the double counting behavior. The double counting behavior
indicates that the child fully intended to count beyond "eight' seven times before
it actually counted. This intention would be possible only if the child took the
extension of the eight implicit counting acts as one thing--only if it performed a
tacit integration before it double counted. The tacit integration corresponding to
"eight" was not expressed. The double counting behavior can be understood as an
expression of a tacit integration of the extension of the first eight implicit
counting acts. Counting its own counting acts certainly indicates that the child
knew what it was doing while doing it. But a child may express a tacit integration
without double counting. Moreover, the implicit counting acts may be backward as

well as forward.

POSITION

Counting served in different ways as the basis of the concept of the position of
an item in a row of items for the 17 children. The analysis of their concept of

position was based on their behavior in three tasks.

Task I. The interviewer pointed to the first three of a Tow of 12 tiles while
uttering "1st-2nd-3rd,'" and then to the ninth tile while uttering "9th.' He
then pointed to (a) the 10th and asked "Which one is this?'" and (b) the 7th

and asked "Which one is this?"

Task II. The interviewer covered the first seven tiles in Task I and pointed to
the 10th tile and uttered "10th." He then asked (a) '"How many are covered?" and

(b) "How many are there in all?"

Task III. The interviewer covered the first three of a row of eight discs and then
pointed to the fifth disc and uttered "Sth." He then asked (a) "How many are there

in all?" and (b) "How many are covered?"

POSITION AS COUNTING FORWARD

The most elementary concept of position was based on actual or re-presented forward
counting acts. Re-presented counting acts are thought of as the result of re-
presenting the actual sensory-motor material out of which the child forms particular
counting acts. The physical structure of a counting act--its beginning,. its end, and

possible intermediary states--is what the child represents to itself (a dynamic re-
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presentation). A re-presentation of a succession of counting acts may be implied
by countable items, extending the child's sensory motor counting activity to implied
counting activity.

Two children solved Task I.b by starting at the first tile and counting "1-2-...-7."
In Task I.a, they knew that the indicated tile was'10th without having to count all
of the tiles, so the visible tiles did suggest forward counting acts to them.

These implied counting acts, coupled with dropping-back to 'one" and counting
forward in Task I.b, certainly indicates the two children were capable of stepping

out of their sensory motor stream and re-presenting counting activity.

Both children performed actual counting acts forward over the cover on one occasion
in Tasks II or III. One child counted over the cloth "1-2-3-4-5" gfzgz_counting
the five visible discs in Task II.a and then was able to count "10-11-12" in Task
II.b. The previously performed forward counting acts ''1-2-3-4-5" coupled with the
visible tiles preceding and including the tenth were sufficient for her to re-
present forward counting acts '"1-2-...-9" in Task II.b without actually carrying
them out. The other child counted over the cloth and then counted the first two
visible tiles, "1-2-3-4-5-6" in Task III.a, where "6' corresponded to the 5th disc.
She then made an adjustment in counting and correctly counted ''5-6-7-8," where

"'5" corresponded to the fifth disc. But neither child established a numerosity
corresponding to the indicated tile (10th or 5th). The position of a tile could

be established only through actual or re-presented forward counting acts.

POSITION AS BIDIRECTIONAL COUNTING

Four children solved Task I.b by starting at the 9th tile and counting "9th-8th-7th--
seven," but were limited in the same way as the two children who established position
by counting forward when solving Tasks I1 and III. The four children displayed
bidirectional number word seduences, but that alone would be an insufficient
explanation of how they solved Task I.b because the two children who established
position as counting forward also displayed bidirectional number word sequences.

These four children were also capable of bidirectional counting.

Directionality of successive counting acts is established on the sensory-motor

level by the passage from a counted item to the next countable item. To form an
inverse relation between a particular counting act and its successor, the child
- must step out of the stream of immediate sensory-motor éxperience and re-present

counting acts. In this case, not only could the child imagine itself perform a
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counting act, but it could also imagine itself passing from one counting act to the
next, in both the forward and the backward direction. It would now be possible for
the child, after passing from the counting act "four" to "five," to imagine itself
reversing direction and passing back to the imagined counting act '"four." This
reversibility is similar to Piaget's notion of inversion by reciprocity (Beth &
Piaget, 1966, p. 176). If a child landed on the 9th tile in the row after skipping
some (Task I), it would realize that to get there, it could have performed a counting
act immediately preceding the 9th, i.e. the 8th, etc. In this way, it would know
that starting at the 9th and counting to the 1st would produce the same counting

acts (which include number word utterances) as starting at the 1lst, but in reverse

order.

POSITION AS NUMERICAL DECLENSION

Three children used bidirectional counting in Task I.b and also solved one or more
of the other tasks. Two solved Task II.a by counting backward '"10-9-8-...-1"

and one then knew that seven were covered. Both solved Task II.b, the latter by
counting "7--8-9-10-11-12" and the former by counting "11-12" (it re-presented
the backward counting acts as forward counting acts). All three children solved

Task IIl.a by counting '5-4'" and then "4-5-.,.-8."

The children formed tacit integrations of implicit counting acts backward, which

are called numerical declensions, and then expressed those numerical declensions

by counting backward. The numerical declensions did not constitute numerosities
because the children had to actually count backward over the cloth to find how

many were covered (Task II.a) and even then one did not know how many were covered.
Bidirectional counting explains how the children were able to count backward to the
cover and then turn around and count forward to the end without knowing how many
were covered. This behavior does not refute the claim of an initial tacit
integration of backward counting acts. The remaining child counted "9-8--8-9-...-12"

to solve Task II.a but never knew how many were covered.

POSTTION AS REVERSIBILITY OF NUMERICAL EXTENSION AND DECLENSION

Eight children established the position of an item based on reversibility of

numerical extension (tacit integration of implicit counting acts forward) and

numerical declension. Characteristic solutions of Task III.a and .b were to count

"6th-7th-8th--eight," and to count "S5th-4th-3rd---three," respectively. The implicit
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counting acts of the tacit integration corresponding to the discs preceding and
including the fifth were constituted as either forward or backward depending on
the problem the child thought it was to solve (How many in all? or How many

covered?), which is reversibility of numerical extension and numerical declension.

CONCLUSIONS

Operations involving counting were not used by the two children who based position
on forward counting. Position of an item in a row of items had to be established
by actual counting acts. They did not establish the indicated position of an item
(Tasks II and III) by forming an abstract unit of implicit counting acts forward or
backward. They were capable of numerical extension as indicated by their behavior
in solution to other tasks (double counting), but they never used this basic
capacity to establish position. Their meaning of the position of an item in a row
was based on the sensory-motor sequence of counting acts forward and consisted of
a single counting act of that sequence. These children seemed to never take the
sequence of counting acts as a unit. The only advance the four children who based
position on bidirectional counting acts had made was that there was no requirement
that the sequence of counting acts be actually carried out in toto. But position
was still a particular counting act of a sequence, where part or all of that
sequence was imagined counting acts. These six children used counting as the

substance of a sensory-motor stroategy even though they were capable of more.

The three children who established position as a numerical declension realized

that they could count backward to the first item even though some preceding items
(including the first) were not visible. The implicit counting acts radiated

backward to the first item and.only needed to be carried out. But their concept of
positionﬁyas not fully elaborated because reversibility was lacking. For the eight
children who were reversible, the implidit counting acts not only radiated backward,
but also forward depending on the task the child thought it was solving. They operated
flexibly and with great power in task solution. Position denoted a numerosity. To
characterize their counting activity as substance of a strategy or as a performance
would not take into account that, for them, counting was the expression of a tacit

integration of implicit counting acts and, as such, was an instrument of number.

B

In principle, the content of a tacit integration need not be implicit counting acts.
A child may unite in thought any collection of unit items. If a child were told that
seven robins occupied a nest, not only could the child re-present robins to itself,

but it could take them as abstract units and unite these units into a single entity--
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a unit composed of units--without counting ever being considered. This distinction
is crucial, for counting must be fused with numerical structure to establish

specific numerosity.

This material is based on work supported, in part, by the National Science
Foundation under Grant No. SED 78-17365. Any opinions, findings, and conclusions
or recommendations expressed are those of the author and do not necessarily

reflect the views of the National Science Foundation.
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THINGS, PLURALITIES, AND COUNTING

Ernst von Glasersfeld
Dept. of Psychology
University of Georgia

Aprés une bréve exposition d'un moddle théorique, pro-
posé ailleurs, qui explique 1e formation des concepts
relationels et numériques par un mécanisme pulsateur de
1'attention, on examine la construction des unités, du
singulier, du pluriel, et des collections. Ces structures
abstraites, bien qu'elles constituent le squelette des
concepts numériques, ne sont que 1la matidre premi2re
pour 1l'établissement des numérosités. D'autre part, le
concept de la numérosité, malgré certaines radices pré—
liminaires dans 1l'expérience sensori~moteur, surgit avec
le développement de 1'habilité consciente de compter.

Concepts of number, much s concepts of relation, are not determined by
the properties of things but rather by what we do in order to experience
things in that particular way. To have relations and numbers, however, we
must first have discrete things, objects that can be considered unitary.
Piaget (1937) has documented how object concepts develop from fuzzy con-—
glomerates in eariy sensory-motor experience. The process of isolating
something from the experientisal background has always been taken for
granted without analysis. Both Frege (1884) and Husserl (1887) independ-
ently expressed the idea that the construction of discrete items consti-
tutes the foundation of the conception of unitary wholes and, ultimately,
of countable units; and both Frege and Husserl suggested that it is a con-
ceptual rather than a perceptual act that achieves it.

T have elsewhere presented a model for the comstruction of units (Glasers-
feld, 1981) based on a rhythmic, pulse~like function of attention posited
by some neuropsychologists (Craik, 1948; Harter, 1967; Kohlers, 1972). At~
tention, in that model, does not signify a protracted state but, instead
a regular successiom of brief moments (at least 7 or 8 per second), each
of which can, but need not, register some individual signal. 1f a signal
is registered, the attentional pulse is called tfocused'; if no signal is
registered, it is called runfocused'. In this model, then, it is a spe-

The research on which this paper is based was supported by Grant SED7B-
17365 and Grant SEDB0-16562 of the National Science Foundation.
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cific pattern of focused and unfocused attentional pulses that consti-~
tutes unitary items. That pattern can be characterized as beginning with
one unfocused pulse followed by at least one pulse focused on some signal,
and terminating with one unfocused pulse. i

Husserl says that when we speak of the unity of a '‘thing', we have 1n
mind a collection of properties that have been tazken together to form a
twhole'. Piaget, similarly, insists that when a child forms the concept
of an object, this requires the composition of sensory-motor elements from
more than one source. Every time, for instance, a child appropriately la-
bels an experience "apple", that experience began with an unfocused pulse,
continued with pulses focused on particular visual, tactual, etc., signals
and was cut by at least one unfocused pulse from whatever followed in the

experiential flow.

Another conceptual step leads from the appropriate use of "apple" to the
appropriate use of "apples™. In order correctly to use the plural, the
child must not only be able to keep track of its ‘unitizing' attentional
operations, but it must also be able to keep track of particular sensory-
motor signals that are being focused on: the unitary things that have beer
constructed must resemble one another. Provided there are more than one,
it is irrelevant bow many things there are or whether their number is lim-
ited; but it is indispensable that they all conform to a minimal combina-
tion of specific signals that has been empirically abstracted as tapple
concept! in prior experience. In othef words, the constitution of a plur-
ality involves a process of classification based on a prototype. But a
plurality is as yet unbounded and, therefore, has mpo specific numerosity
and must not be mistaken for a 'set'. The prototypic structure specifies

~ the combination of particular signals and determines what can be recognis-
ed as a new experiential instantiation of the concept (thus serving as a
template for the creation of pluralities).

Let us say, a child recognizes a perceptual situation as satisfying the
concept associated with the word "cup". It may utter that word and thus
close the experiential episode. But it may also continue by exploring an
adjacent part of its visual field and ftfd further similar combinations
of perceptusl signals. If, in that case,,child has kept track of the fact
that its concept of cup was satisfied more than once, it could utter the
plural "cups". Conceptually, that plurality would become a collectlon, if
the child perceived the table on which the cups are arrayed as a uniform
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background that bounds them. At that point, 'the cups on the table' con-
stitute a stable collection that has a certain numerosity -~ but that nu-
merosity has not yet been specified. In order to establish its numerosity,
the collection would have to be counted. To count a collection is more
than to perceive it. It requires the coordination of number words to the
unitary things that are to be counted. Neither'the production of the stand-
ard number-word sequence (cf. Fuson & Richards, 1980) nor the various types
of of unitary items that may be counted (cf. Steffe et al., 1981la) will be
discussed here. Rather, I shell try to explicafe the abstracting activity
that turns a collection of sensory-motor thingé into arithmetic units.

First, sensory-motor things, e.g. cups, must be considered gua unitary
items, that is, insofar as they were constituted by the pattern of atten-
tional pulses that cut them out of the child's experiential field. Steffe
et al. (1981b) provided an elegant experimental confirmation of the assump-
tion that the recognition of perceptual things as acceptable candidates in
the formation of a collection is preliminary to the act of counting them

as units. This second step is an operation of abstraction, in that it re-
views things that have already been constituted and abstracts from them the
one feature that is crucial for the purpose of counting, namely the atten-
tional pattern that shaped the sensory-motor signals into discrete unitary
items. The result of that abstraction, the attentional pattern as such, I
have called a lot, i.e. a compound conceptual structure of unitary items
that can be counted by the simple iterative alternation of focused and un-
focused attentional pulses.

The last step in the construction of z number concepts involves a further
operation of abstraction that takes an iterative attentionsgl pattern (a

lot) and, in reviewing it, superimposes on it the attentional pattern that
constitutes unitary wholes. This operation is of the kind that Piaget cal-
led vreflective abstraction (1970, p.18) and it produces a structure that

is a unit and, at the same time, is itself composed of units.

So far I have briefly outlined the hypothesized conceptual structures which
I believe, satisfy all requirements of the concepis we call "number". I wan
to stress that the attentional model and the structures it produces do not
account for the concept of numerosity or the quantitative aspect of col-
lections, lots, or numbers. In the perspective of the Georgia Project, that
quantitative aspect is the result of a developmental progression in the

counting activities of the child. On the other hand, there are experiential
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roots of the concept of quantity that precede the use of numbers and num-
ber words. In this second part of the paper I shall survey several phenom-
ena that belong to an area that could be called "elementary experiencé of

numerosity".

Recent experiments by Starkey & Cooper (1980), suggesting that infants of
about six months reliably discriminate between linear arrays of two and
three dots, irrespective of the length of the arrays, have startled some
researchers in mathematics education. In our view, that finding is not so
surprising. At least half a dozen studies show that monkeys and apes do as
well, if not better, in discriminating arrays of two or three items (Dooley
& Gill, 1977; Ferster, 1964; Hayes & Nissen, 1971; Thomas et al., 1980). It
seems clear that this ability is not contingent upon any kind of numerical
system, let alonme number words or counting. Discriminations of that kind
could be made by differentially tumed neurons: some that fire when they re-
ceive two successive impulses, others that fire only when they receive thre
Such simple computational devices are a commonplace assumption in neurophys:
iology. In addition there is the well-known human (and animal) ability to
recognize and accurately recall rhythms of one, two, and three beats in mu-
sic, dence and poetry. Hence it seems a reasonable hypothesis to assume tha
the nervous system has the built-in capability of distinguishing between se
quences of one, two, or three signals in any sensdry mode, including the
kinesthetic. If that is the case, however, such discrimination must not be
taken as evidence of numerical concepts, even if theAsubjects have associat
ed number words with the respective events. The reasoﬁ for this is simply
that, given such a built-in computational ability, the correct recognition,
discrimination, and naming of these events does not require the knowledge
that, say, the event called "three" is a unit comprising a plurality of
units. In this respect the recognition of rhythmic configurations is ana-
logous to the phenomenon of ‘'subitizing', which concerns the recognition

of spatial configurations that have been associated with number words.

The assoclation of spatial patterns and number words can arise in many
ways. Dominoes, playing cards, and other games involve the recognition of
conventional configurations of dots and other unitary slements, and in many
instances these configurations have names that are number words. Children,
thus, may lsarn that the name of a particular pattern on playing cards 1s
nfive", and they can learn this in exactly the same way in which they learn
that the name of the written numeral 5 is "five". That is to say, that se-
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mantic link can be acquired without any awareness of the fact that the
pattern on the playing card is a composite of five unitary elements. At
some later point, however, the child will count the elements -~ and when
that happens it will give rise to the kind of discovery that functions as
one of the mainsprings of cognitive development: the discovery that two
hitherto separate schemes -- in this case, naming the card and counting
the elements on it -~ lead to one and the same result, namely the word
"fiye"., The material occasion of the discovery is irrelevant. In whatever
circumstances it occurs, it will provide the first and most immediate re-
velation of the conceptual fact that the number word refers both to a unit-
ary thing (the card) and to a collection of units (hearts, spades, etc.).

In one specigl, limited sense that experience may occur much earlier, on
the sensory-motor level, without number words and therefore without re-
vealing anything about the structure of numbers. George Forman, working
with very young children of eight to twelve months, has minutely document-
ed and anslysed the various things they do with building blocks (Forman,
1973; Forman et al., 1975). Through his observations it has become clear
that there is a moment when children discover that a transposition of two
blocks can be achieved in two different ways: by two sequential movements
of one hand and by the simultaneous movement of both hands. Since certain
simultaneous movements of hands are often experienced as one movement (ow-
ing to the bilateral symmetry of the motor system), there afe situations
where "oneness" and "twoness" fall together in a single experience which,
at a later stage, may give rise to reflection and thus to 1mmediate ex—
perience of that characteristic structure of number. ) )

Such immediate experience of the dual (unitary versus compositional) struc—
ture of a result, could be called"proto-numerical”. It is developmentally
parallel with, but conceptually different from, the distinction that Pia~
get has analysed under the heading of "intensive" and "extensive" quantity
(Piaget & Szeminska, 1941). Under all cirouﬁstances, however, this proto-
numerical knowledge is limited to small numbers, in most cases below four
or five, and its coﬁéeptual realization, or prise de comnscience, is brought

about by an act of counting. Hence it is counting that functions as the
main instrument in the conceptualization of numerositye.

In his theory of counting types, Steffe (e.g. Steffe et al., 1979) has de~
veloped an anatomy of what is being counted by the child. He has posited
a progression from perceptual items to abstract units, and in that progres-
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sion, the concept of number originates at the point when the child becom-
es aware of the fact that any number word implies the possibility of ar-
riving at that same number word by way of a sequence of counting acts de-
termined by the standard number-word sequence that precedes it. Counting
acts, in that theory, involve the coordination of number words and unitary
items of some kind, i.e., items that are unitary because their production,
be it perceptual, kinesthetic, verbal, or through a re-presentation of any
of these, is the result of the application of the attentional pattern that
crestes discrete units. Given this coordination, the child's knowledge
that, for instance, saying "seven", implies the possibility of arriving at
"seven" by uttering the standard number-word sequence up to seven, comes
to be complemented by the knowledge that,with each number word of that se-
quence, -an individual unitary item could be coordinated. The number word
sequence preceding any given number word, therefore, comes to represent a
potential collection of things and, ultimately, a -pumber of abstract
units. Only when the knowledge of these inherent implications has been ful-
1y grasped and is available at any time, can the child be said to possess

‘concepts of number and of numerosity.
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PRE-NUMERICAL COUNTING
John Richards

Massachusetts Institute of Technology

Le dénombrement! la production d‘une se/quence de mots-nombres telle que chaque

mot-nombre s’actompagne de la production d‘un élément-unité (unit item), Le

denombrement se gistingue du comptage (rote-counting), c.a.d. larécitation en

isolement d’une séquence de mots-nombres, Ce travailfoumi't une analyze

conceptuelle de l'acte de dénombremen*;‘ ghez l'enfant pre-numeriqui . Pour compter,

1’9nfant doit produire une catégorie d‘eléments dénombrables. L’elen)erlt , o,

denombrable se co-ordonne avecun mut\-nombre, et se tran;f'orme en element denombre.

Cet accomplissement considerable précede de longtemps, neanmoins, la construction

du nombre, )

Counting is the production of a number word such that each number word is
accompanied by the production of a unit item.

Counting, thus conceived, is a complex activity which can be both more and less than meets the
eye. On the one hand, a child may "rote-count” (cf, Steffe, Richards and von Glasersfeld,
1980), that is, the child may simply recite a number word sequence. From the perspective of the
above definition, while this may appear to be an advanced sort of behavior, it remains in the
realm of language. Reciting a number word sequence is not considered "counting” because the number
words are not accompanied by the production of unit items, On the other hand, a child may engage

in quite complex counting behavior, coordinating the number word sequence with a wide variety of

actions and yet be unable to use counting as an instrument of number,

In this paper I focus on the nature of counting Fori children who are pre-numerical. Counting for
these children is an activity which becomes progressively more complex and sophisticated —- ranging
from rote-counting to counting objects of all sorts, to counting representatives of objects, This

is a tremendous achievement for a child who is, by and large, still unable to describe or explain

what he is doing or how he is counting. This caincides with Gelman’s insight that children know
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‘more than they can tell, and that, as a result, "..the cognitive capacities of preschoolers have
been underestimated” (Gelman and Gallistel, 1978, p. 13), 1 argue here that the use of counting,
for a child who is pre-numerical, is inherently limited by the childs inability to construct

number, per se, Nevertheless, there is a distinct character to the nature and functions

of counting for these children which provide some clues regarding the childs understanding of their

own actions,

ROTE~-COUNTING, Rote-counting consists in the recitation of number words in sequence. The words
in the sequence are not accompanied by, or coordinated with, events or actions in another

sequence. Number word sequences are produced as early as age two, The child, at this point,

does not match this sequence with other activities in order to count anything. Thus, even though

the child may rote-count while hopping, or skipping, or clapping hands, the number words are
nothing more than ordered nonsense syllables, The important distinction between rote-counting and
counting, in our terms, is that there is no production of unit items, The number word sequence

is isolated and is recited as a poem, or as a song.

The construction of the number word sequence is complex, and is, in its own right, a subject of
investigation (cf, Fuson and Richards, 1980; Steffe, von Glasersfeld and Richards, 1981),
However, the point to be made here is that the recitation of the number word sequence by itself is
to be carefully distinguished from counting, For the child who produces isolated number word
sequences, the words in the sequence have a "sequence meaning"s They are not standing for or
referring to numbers, or operations on numbers, or even to a part of counting activity (recent
work reported by H. Sinclair suggests that in the beginning counter the number words are taken as
names of the objects to which they are coordinated), After acquiring an initial segrﬁent of the
number word sequence (being able to repeat it in conventional order), the learned part of the
sequence is elaborated by the child through the construction of relations such as "comes after",
“comes right after”, "comes before”, and “"comes between", Clearly there is a numerical

interpretation of these relations (e.g. "successor"), but it would be a mistake for an observing
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adult to assume that this is the child’s understanding, The sequence relations are precursors of
the numerical relations, and serve as a basis for the child to learn the numerical relations, but

it would be a mistake to ignore the differences.

COUNTING, The earliest form of counting occurs when the child takes perceptual items in its
experience as units to be counted. A child who is only able to count items in their perceptual
field we call a "counter with perceptual unit items". Counting of any sort, though, stillb
requires that the child establish, prior to counting, a category of countable items —- of what it

is that can be counted, Counting, as a result, is conceptual even for thése children.

In order to begin counting, the child must have a concept of what is to be counted. This concept
-- what we have called a “template” —- is the result of an abstraction from experience, In
Piaget’s terms it is an "empirical abstraction”. When a particular item is taken as falling under
the concept then it may be counted, Each countable item must be the same with respect to the
concept, that is, the item must be taken, by the child, as one more instance of the concept.
The child must take the item as a unit, as a single thing, no matter how complex the item might
appear given a different context, Taking an item as a unit is an action of the child, The item
must be considered as a unit to which, in the act of counting, a single number word will be
coordinated, In spite of the conceptual nature of counting, even at this primitive level, there

is an important rote aspect to the behavior,

Counting, for a counter with perceptual unit items, works very much like a script (cf. Schank and
Abelson, 1977), The child is learning a role to play in certain situations, Counting is an
appropriate response to questions like "How mgny‘?", or "Which?", ar "Can you count these?". This
is by no means a simple role, for it involves the coordination of very different motor sequences.,

As the child becomes better at playing the part, other nuances become important! emphasize the
last number word uttered;} remember the last word uttered; do not count something twicé {and in

general be careful about the correspondence between the unit item and the number word); indicating
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(nodding or pointing) is as good a tag as grasping] and so on. Eventually the child comes to be
able to re-present items which are not perceived, and to count the representatives. The child
will also be able to carry the counting script further, e.g. to combine two such scripts,
Initially "How many?" may draw a response of "1,2,3,4,5,6" (while pointing to some objects in
synchrony with the utterances). Later the child learns that the more appropriate response is
©1,2,3/4,5,6 6", or perhaps, better yet, "6", and further, if the objects are hidden, it is
possible to extend fingers sequentially while uttering the number words. Here the fingers function

as representatives of the hidden objects.

In these activities, the child is learning how to use counting, and the child is learning how to
react to (what from the adult’s perspective are) different numerical situations, Itis
inappropriate to use adult concepts like cardinality to describe what the child is doing. The

child no more understands a "cardinal principle" because he says the last word of a counting
sequence loudly, than he understands an "ordinal principle” because he says the number words in
order, While the ability to answer "How many?” ("Which?") type questions is clearly a part of what
will become cardinality (ordinality) for the pre—-numerical child, it is perhaps more accurate to

refer to this as "pre-cardinal” ("pre-ordinal") understanding.

NUMBER, Euclid observed that a number is a unit (a multitude) which itself is composed of units.
This observation is the basis for our own theoretical understanding of the construction of numerical
concepts in the child, A particular number is produced as a double act of ;abstraction (cf, Steffe,
von Glasersfeld and Richards, 1981, ch.1), Number so conceived is a process ~— the process of
taking a multitude of units as a unit, We emphasize the process aspect of this by speaking of
"unitizing", or by speaking of "taking an item as a unit," Both of these expressions bring out

the activity of forming a unit —- this is a conceptual creation an the part of the child. When a

child is able to make this double abstraction there is a marked change in the child’s mathematical

reality, The child has reflfected on his own actions in counting, and abstracted what is commen in
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thém -~ the construction of a unit item. Through this reflection the child is made self-conscious’
_of its actions in counting, and is able to provide better descriptions and explanations of its
actions, This also results in a greater flexibility in chosing which way to count, and in chosing
different strategies for using counting., All of this shows up directly in the problem salving
strategies the child employs (cf. Steffe, Thompson, and Richards, 1981} and Steffe, von

Glasersfeld, and Richards, 1981).

The second level of abstraction, reflective abstraction (in the sense of Piaget), frees the child
from a reliance on specific sensory-motor experience, The child is able to use any sensory-motor
material as a basis for counting, Moreover, the child is able to unite, or integrate, the
sepgrate actions in counting into a whole. Counting to seven, or merely uttering "seven",
produces the same result, viz., aunit which has distinct components (in this case seven of them).
This provides the conceptual basis for counting—on. That is, if the child were to add 7 and 5 it
would not be necessary to count first to 7, and then five more. Uttering "seven” would be
sufficient for the construction of the first addend, The child can then continue counting, and in
the process keep track of the second addend, In this case "seven" replaces the counting actions
which could be carried out if the child felt the need, It is important to stress that counting-on,
as a script, can be taught to children who are not numerital, The child who understands
counting-on, however, must be numerical, While this is clearly difficult to assess in practice,

it ié. possible to alter the context of the problems, so that the child will not see the problems as
the same, (For example, we distinguish between "How much is 7 and 57" and a problem where there
are seven checkers hidden under one cloth, and five under another. The former problem may serve

to key a "rount-on script”, which may be -avoided by the non-standard nature of the other problem.)

FINAL THOUGHTS. Children’s counting behavior is extremely complex, and, certainly, counting is
a major achievement of early childhood, Researchers have anly recently actually looked at the
complexity and variety of counting in children. This is due to several features of children’s

counting which make the child appear to know both more and less than he understands,
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First, observable behaviors in eounting ave remarkably similar, even between a child of
three and an adult, Both appear to be doing the same thing, But there are important subtle
differences in the behavior which reflects what -~ from the counter’s perspective -~ is being
counted. And differences in what is being counted reflect radically different cognitive structures
underlying the behavior, While it may seem obvious that there are fundamental cognitive
differences between an adult and a child, it has not been accepted that these differences are
reflected in counting.

Second, our language to describe counting, and other numerical-like behavior is tied to
adult conceptions, rather than childrens’. As a result there is a tendency to assume that there
is adult type understanding on the p&;’t of the child.

Finally, the child’s understanding of counting appears to precede her ability to describe
this understanding. Description requires that the child be able to reflect on her own actions and
this itself appears as a rather late development in learning the counting process. When the child
is able to reflect on her own counting, she is close to actually constructing number, and has been
successful in counting for quite some time.
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ETUDE DU FONCTIONNEMENT DE CERTAINES PROPRIETES DE IA SUTTE DES NOMBRES
DANS LE DOMATNE NUMERIQUE [1,30] CHEZ DES ELEVES DE FIN DE PREMIERE ANNEE
DE L'BCOLE OBLIGATOIRE EN FRANCE. (COURS PREPARATOIRE)

Annie BESSOT et Claude COMITI
(Université de Grencble I)

Abstract : The aim of this research is the clarification of the
conditions whereby the learmer, in the firvst year compulsory
education (cours préparatoire) constructs and internalizes the
concept of natural number. The research is based on a close and
rigorous analysis of learner's behaviour when confronted with
problem situations designed according to "a priori" established
priorities. This analysis is based on one-to-one interviews,
method, which enables the dynamics of the processes involved
for each learner, and thus the evolution of his cognitive sys-—
tem with respect to the task in hand, to be apprehended.

In this paper, in a problem situation called, "The Race ", we
examine the functioning of ordinal properties of natural num-
bers, the acquisition of which plays an important role, both

at the level of the construction of the concept of number and
at the operational level. We show, in particular, that while
the majority of learmers at the end of the "Cours Préparatoire”
are capable of supplying the preceding and following numbers

in the numerical field [1,307, and that while they can count .
starting form a number other than one within the field, they
nevertheless eaperience numerous difficulties with respect to
the functioning of properties, such as, for example, cardinal-
ordinal relations, or the property of rank invariance.

Furthermore, even when one of the properties under considera—
tion funetions in a given situation, this, in itself, does
not mean that the learmer has acquirved it. The learner may ,

at a later date, no longer be able to use it or, alternati-
vely, when the situation is slightly modified he may overgene—
ralize as the functioning of these properties depends both on
the learner's temporary mathematical competence and on the
tasks which confront him.

«,/

Depuis un certain nombre d'années, notre équipe conduit une recherche dont le
but est fa clarification des conditions dans Lesquelles £'8léve du Couwrs Prépa-
ratoire (premidre annde de 1'enseignement obligatoire en France, C.P.) construit
et s'appropiie Le concept de natwiel. Nos principaux objectifs sont :

- mettre en évidence les différents modéles implicites et incamplets fonction-
nant chez les &léves & un moment donné dans une situation mettant en Jjeu ce
nombre ;

— comprendre cament les différents modéles qui coexistent, & un moment donné,
chez un méme enfant, fonctionnent selon la tiche 3 résoudre.
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Nous appelons ici modéle implicite 1'ensemble des invariants, des propriétés
du concept de narbre, des relations, dont on peut {n{érer le fonctionnement
chez l'enfant & partin des actions de ce dernier dans des situations ofi inter-—
vient ce concept.

La recherche de tels modéles suppose 1'hypothé@se que, quelles que soient les
conditions dans lesquelles sont faits les apprentissages scolaires, il existe,
d un certain niveau, des r@gubarités qui caractérisent 1'appropriation d'une
connaissance donnée chez tous les sujets.

Les différents modéles qui coexistent, 3 un moment donné, chez un méme enfant,
constituent son systeme de connaissance provisoire. Mais ce systéme de con—
naissances ne contient pas en lui-méme toutes les conditions de 1'utilisation
de ces connaissances. C'est pourquoi il est indispensable d'étudier Les digge-
nents fonctionnements de ce Agzzéme selon La Zdche & laquelle 1'8lave est
confronté.

La formulation des modéles implicites du concept de nombre est assujettie a

diverses analyses interdépendantes :

.- une analyse mathématique du concept de naturel dans le but d'en caractériser
les propriétés et les invariants afin de permettre un choix des tiches aux-
quelles on confrontera 1'éléve.

. une analyse des tiches retenues afin de dégager des classes de procédures
possibles relativement & chacune de celles-ci.

. une analyse du syst@me d'interaction "&léve-tache" afin de mettre en &vi-
dence certaines variables de la situation pouvant modifier le rapport du
sujet & la tache.

- une analyse des camportements du sujet dans une tiche donnée, en temmes de
procédures et de types d'erreurs, analyse qui doit permettre de vérifier ou
d'infirmmer les hypothdses faites a priori sur le fonctionnement de systéme
de connaissance de l'enfant face 3 la situation construite précédemment .

L'objet de notre communication sera d'essayer de montrer comment nous avons

mis en ceuvre La problématique biizvement nésumée ci-dessus powr etudien Le

fonctionnement de fa suite des nombres et de ses propriétés chez £'dLeve de

fin de C.P. confronte a une situation-probléme : "La course”. La population

étudide comprend 58 enfants issus de trois classes de C.P. de Grencble et de
sa banlieue.

Avant de placer les enfants face & la situation-probléme en question, il nous
&tait indispensable de connaitre le domaine numérique dans lequel ces derniers
maitrisaient la récitation de la suite des nambres (3 partir du début de
celle-ci). C'est pourquoi 1'entretien débutait par les questions "Tu sais
campter ?" - "Jusqu'ol ?" - "Montre-moi". Ce sont les réponses des enfants 4
ces questions qui nous ont permis de répartir notre population en trois
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catégories, les catégories I, II et III, qui nous serviront de référence pour

suivre le comportement des él&ves lors de 1'épreuve "La course". Se trouvent

donc‘en :

Catégorie I, 28 enfants ne faisant aucune erreur, sinon accidentelle, jusqu'a
soixante

Catégorie II, 12 enfants ne récitant la suite des nombres sans errreur que
jusqu'ad trente, mais soit s'arr&tant 13, soit multipliant des
erreurs entre trente et soixante.

Catégorie III, 18 enfants incapables de réciter la suite des nambres sans
erreur jusqu'a trente.

1 - Analyse mathématicque des propriétés dont nous voulions étudier le fonction-—

nement chez 1'éléve )
Propriété 1 : dans une file (ensenble fini d'éléments matériellement rangés
les uns 3 la suite des autres), le rang du dernier &lément est égal au nombre
d'éléments de la file.
Propriété 2 : dans une file, tout &lément, hormis le dernier, a un suivant ;
le rang du suivant de 1'élément de rang p est pt+l.
Propriété 3 : dans une file, tout &lément, hormis le premier, a un précédent ;
le rang du précédent de 1'élément de rang p est p-l.
Propriété 4 : dans une file, lorsque 1l'on connait le rang de 1'élément X, on
peut déterminer le rang de tout &lément placé dans la file aprés x en camptant
a partir du rang de x.
Propriété 5 ou lien cardinal-ordinal : &tant donné une file F et un ensenble E
de méme cardinal n, quelle que soit la bijection de E sur F, £, si d est le
dernier élément de F, l'ordinal de 1'élément de E qui a pour image par £, d,
i.e. f'l(d) est &gal i n.
Propriété 6 ou propriété d'invariance : étant donnés une file F, un ensenble E
de méme cardinal et deux bijections f et g de E sur F, si x est un &lément de

F, les deux éléments de E flx) et ¢1(x) ont le méme ordinal : c'est le

rang de x dans F. En particulier si x est le dernier &lément de F, 4, £ l(d)
et g 1(d) ont méme ordinal.

2 - Description de la situation probléme "La course”
Dans cette épreuve, l'ensemble E en jeu est un ensemble de trente cartes rec-
tangulaires sur lesquelles sont écrits trente prénoms différents. Chaque carte

représente donc un coureur.

Une bande orientée de gauche 3 droite, sur laquelle sont dessinées trente
cases (chaque case a le méme format rectangulaire que les cartes) sert de file
de référence F ; la 18e case est coloriée en vert. Cette file permettra de
matérialiser 1'ordre d'arrivée des coureurs a chaque étape de la course : il
suffira pour cela de déposer sur les cases les cartes portant les noms des
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courewrs selon leur ordre d'arrivée & 1'étape.

Dans la lére étape, nous étudions la mise en oeuvre des propriétés 1, 2, 3, 4
et 5, lors de la numérotation du "maillot vert" (coureur arrivant sur la case
verte) et du dernier, ainsi que des précédents et suivants de ces deux coureurs.
La 2&me étape correspond & une deuxiéme bijection, différente de la précédente,
de E sur F ; nous allons 13 étudier la mise en oeuvre des propriétés 5 et 6,
lors de la numérotation du maillot vert et du dernier 3 cette &tape.

La 3éme étape n'est courue que par 29 coureurs, 1l'un d'entre eux ayant aban—
donné la course. La difficulté de cette dernidére étape réside donc dans le
fait que 1'é€lave doit structurer le nouvel ensemble de coureurs, non pas par
une bijection entre cet ensemble et la file F, mais entre cet ensemble et une
nouvelle file F' constituge par les 29 premiéres cases de F. Le questionnement
porte 13 encore sur le rang du dernier et celui du maillot vert.

L'analyse détaillée du fonctionnement des propriétés 1, 2, 3, 4, 5et 6 a
donné lieu & un article & paraitre prochainement, nous nous bornerons dans ce
qui sult a £'etude du fonctionnement des proprniétés 5 et 6.

3 - Fonctionnement des propriétés 5 et 6 lors des deux premidres étapes

Ol interviennent ces propriétés ? la propriété 5 peut intervenir dés la lére
étape, puis dans la 2&me étape, lors de la numérotation du dernier, quant 3
la propriété 6, elle ne peut intervenir que dans la 2&me étape, pour la numé-
rotation du maillot vert et du dernier, puisque c'est une propriété d'inva—
riance du rang.

Etude de la numérotation du dernier dans les deux premidres étapes

Pour dbtenir le numéro du dernier dans £a 1ore étape, deux méthodes peuvent

&tre utilisées :

- utiliser le lien cardinal ordinal (propriété 5) puisque les enfants ont
précédemment dénombré le nambre de coureurs ;

~ compter & partir de 1 ou d'un nombre intermédiaire, par exemple 3 partir du
numéro 19 précédemment attribué au maillot vert. Cette méthode &tait décon-—

seillée par 1l'expérimentation qui disait "Tu as vu, Z est dernier, peux-tu
Iui mettre son numéro sans compter ?"

Résultats cbtenus & la lére &tape Il nous parait intéressant de
i tégorie noter ici que les 29 enfants
—_— I et II IIT %
campo ayant mis en oeuvre le lien
propriété. 5 21 8 29 cardinal-ordinal (soit la moi-
B tage 19 6 25 tié de la population) appartien-—

nent en méme proportion a la

rien 0 4 4 catégorie IIT qu'aux catégories

z 40 18 58 I et IT.




.85 .

Dans La 22me &tape, 1'expérimentateur se contente de dire & 1'enfant "A est
dernier, mets lui son numéro”. Pour ce faire, l'enfant peut, soit compter,
soit répcondre spontanément 30 en utilisant soit le lien cardinal-ordinal, soit
1'invariance du rang du dernier, soit eﬁcore la coordination de ces deux

propriétés.
Résultats obtenus 3 la 2&me &tape Contrairement & ce qui se passait
rtement &cé 2 '
0 ! T etII IIT - précédemment, trés peu d'enfants
catégorie-| ;
— comptent alors que cette fois, le
reponse 36 10 46
spontanée canptage n'était pas déconseillé.
comptage 1 2 3 Pour pouvoir mieux interpréter le
rien 3 5 9 camportement des 46 réponses sponta-—
nées, étudions 1l'argumentation fournie
b 40 18 58 - 5 . '
en réponse a la question de 1'obser-

vateur "Pourquoi as-tu mis ce numéro ?".

Ces argumentations, lorsqu'elles ne sont pas ambigiies, ce qui est le cas de

5 d'entre elles, se répartissent camme suit :

- argumentation s'appuyant sur la propriété 5 : "On n'en a pas enlevé, on n'en
a pas ajouté, il y en a toujours trente, alors le dernier, il a trente" ;
30 enfants utilisent ce type d'argumentation.

~ argumentation s'appuyant sur la propriété 6 : "tout & l'heure, l'autre der—
nier, il avait le nmuméro trente" ; 11 enfants utilisent de telles argumenta-

tions.

Nous n'étudierons pas ici la numérotation du maillot vert mais nous pouvons

donner les résultats globaux suivants cbtenus sur 1l'ensemble des deux premié-

res épreuves : sur les 58 enfants :

- 22 ont mis en ceuvre la gropriété 5 et 6 aux moments pertinents

- 20 ont mis en oceuvre la propriété 5 sans jamais mettre en oeuvre la proprié-
té 6

- 8 ont mis en ceuvre la propriété 6 sans jamais faire fonctionner la pro-

priéts 5

8 (tous de catégorie ITI a 1l'exception de 1l'un d'entre eux) n'ont jamais

fait fonctionner aucune des propriétés en question.

4 ~ Etude de la 3éme étape de la course

Description et analyse a priori de la 3éme &tape

Nous expliquions aux enfants que 1'un des coureurs &puisé, Jean, abandonnait
la course d la fin de la 2é&me étape. L'enfant retirait donc du paquet de car-
tons celui de Jean et le déposait bien en vue sur la table. Les autres cartons
étaient réunis en paguet. Puis, nous disions en montrant un carton sur lequel
&tait par exemple &crit Louis : "a la 3&me étape, c'est Louis qui arrive le

dernier, écris son numéro”.
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Notre cbjectif était d'examiner, dans cette nouvelle situation (un coureur de
moins) le fonctionnement de la propriété 5, i.e. du lien cardinal-ordinal.
Pour provoquer ce fonctionnement, nous avons essayé de bloquer toute procédure
de comptage : pour cela, contrairement aux deux &tapes précédentes, 1'éléve
ne déposait plus les cartons des coureurs sur les cases de la bande selon
1l'ordre d'arrivée : cet ordre d'arrivée n'était donc plus matérialisé.

Examinons a priori 1l'ensemble des propositions conduisant & la réponse

correcte :

~ il y a changement de situation par rapport aux deux &tapes précédentes (un
coureur de moins) ce qui entraine une modification du cardinal de 1'ensem—
ble des coureurs ;

- il y a un coureur de moins, donc le cardinal cherché est le précédent de 30;
- le précédent de 30 est 29 (remarquons que ceci exige non seulement le fonc-
tionnement de la propriété 3 mais un fonctionnement cosrect de cette pro-

priété, ce que nous noterons & partir d'ici 3¢).

.~ le rang du dernier est égal au cardinal du nouvel ensemble (propri&té 5)

Les propositions énoncées ci~dessus nous permettent de prévoir que le fonction—
nement des propriétés 3 et 5 va jouer un rdle déterminant 3 cette étape :
nous caractériserons donc le camportement des enfants & partir du fonctionne-—
ment de ces propriétés lors des deux premiéres &tapes ; ceci partage notre
population en deux groupes :
- 27 enfants de camportement que nous noterons "type 1" : (3%, 7)
~ 25 enfants de comportement gue nous noterons "type 2" : (3%, non 7) ou

(non 3%, %7) ou (non 3%, non 7).
Une condition nécessaire au succés est que les enfants aient bien pergu le
changement de sn.tuatlon Lorsque cette condition est remplie, nous faisons

1'hypothése que seuls Tes comportements de type 1 peuvent conduire au succés
spontané (c’est-a-dire a la réponse 29).

Résultats obtenus

% Notons tout d'abord que seulement

= = 12 enfants répondent spontanément
ponse spontanée 29 | 30 |autre : N
" 29, Tous les succés, sauf 1, concer-

type
- nent des enfants de type 1. Quant &
! 116 © 27 1'exception DEL, son étude montre
2 1721 3 25 que sa trés bonne maitrise du comp-
T S12 | 37 3 52 tage 1'a toujours amenée d utiliser

ce dernier (de la maniére la plus
&conomique, c'est-d-dire en utilisant la propriété 4) pour trouver les précé-
dents demandés dans les étapes précédentes. Ici, les possibilités de comptage
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&tant bloquées, elle trouve immédiatement’ le précédent de 30, montrant que
la non mise en oeuvre précédemment de la propriété 3 ne signifiait pas la
non acquisition de cette derniére.

* Il reste que 37 enfants, dont 16 de type 1 répondent 30. Une &tude plus
poussée, que nous nous réservons d'exposer oralement, montre que certains

enfants n'ont pas vraiment réalisé qu'il y a d cette &tape un coureur de
moins alors que pour d'autres, le rang du dernier semble étre définitive-
ment rattaché au rang de la derniére case de la bande et ne pas défendre
du cardinal de 1l'ensemble.

Le questionnement de 1'expérimentateur "Combien y a t-il de coureurs &
cette étape ?" améne un grand nambre d'enfants & fournir finalement la
réponse exacte. Il reste que 7 enfants n'établissent malgré cette question
aucun lien entre le cardinal du nouvel ensenble et le rang du dernier,
puisqu'ils continuent a lui attribuer le numéro 30 ! Ce comportement peut
d'autant plus paraitre surprenant que certains de ces enfants avaient fait
fonctionner le lien cardinal-ordinal dans les étapes précédentes. Cela
prouve que pour ces enfants, il n'y a pas véritable appropriation de la
propriété 5, puisque le fonctionnement de cette derniére dépend des varia—
bles de la situation (bijection matérialisée ou non). -

Il ne faudrait donc pas croire que certaines propriétés de la suite des nonbres
sont définitivement acquises parce que les enfants les ont mis en oceuvre dans
une situation donnée, une simple‘modification de cette situation pouvant suf-

fire & bloquer le fonctionnement de ces propriétés.
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L*ENFANT ET LE COMPTAGE
Jean=Paul Fischer, ENI de la Moselle

Abstract ¢ This paper is extracted from a study (Fischer, to be
published) more extended about the child's counting. We only
give here some informationabout the experimental method and some
results about this study, which concerned 224 children, age 3
years to 6 years 6 months, frequenting "Scole maternslle" (french
infant school).

These results concern on the one hand the development of child's
counting (reciting of the sequsnce of whole numbers, application
of the "how~to-count" principles defined by Gelman and Gallistsl
and on the other hand the function ofths counting in the denomi-
nation of the first numbers,

For the first of these points, we present a table which descri-
bes the application of the "how-to-count principles™ as a func—
tion of the number$size and of the children's age. We also give
a graphical representation of the application rate of the set

of the "how-to-count principles®, for a size liks five, as a
finction of the children's age.

For the second point we present an other table, always as a
function of the children's age and of the numbers size, giving
the children's behaviour (exteriorized counting or not), and 3
tables, which allowed us to prove that a child whe knows how to
name (as an answer to the question : How many counters ?) a
number n (= 3, 5 or 7) also, almost surely, how to count a set
of n counters,

Our conclusion, which is also the result of the complete study,
is that Instruction should more take into account a phenomenon as
important as the child's counting.

Introduction : Dans une étude (Fischer, & paraltre) beaucoup plus vaste, nous
avons

- décrit le développement du comptage chez l'enfant, en particulier les princi-
pes du comptage dégagés par Gelman et Gallistel (Gelman, 1978);

- émis l'hypothése d'un rdle important du comptage dans la dénoménation des pre-
miers nombres et dans la résolution des premiers problémes par l'enfant;

- souligné quelques caractéristigues, fonctions ou conséguences du comptages

- analysé comment la didactique dss mathématiques await tenu et tient compte de
ce phénoméne important qu'est le comptage de 1'enfant.

Dans la présente communication nous nous contenterons de donner quelques préci-
sions expérimentales et quelques résultats (concernant les 2 premiers points

I

mentionnés ci-dessus) relatifs & cette étuds,



I PRINCIPES DU COMPTAGE ET DESCRIPTION DE LYEXPERIENCE

1) Principes du comptage : Nous reprenons ceux dégagés par Gelman et Gallistel

(Gelman, 1978), Précisons simplement nos traductions et notations s

the one~one principle ————> le principe de bijsction (pour n), noté Pbi(d
the stable~order principle ——--> le principe de suite stable, Pss(n)

the cardinal principle ———=> le principe cardinal, Pca(n)

The how-to-count principles ———2 Les principes du "Comment compter®.,

2) Description de 1'sxpérience

a)Le population : Le méme expérimentateur a interrogé individuellement 224 en-—
fants (milieux socio-culturels variés% fréquentant 1'école maternelle, d'une
assez grande ville et de sa banlieue. Ces senfants sont répartis en 7 Groupes
d'Age (G.A), chacun de ces G,A comprenant 32 enfants et couvrant 6 mois. Nous
noterons G.A 633 le G.A comprenant les 32 enfants entre 6 ans et 6 ans 6 mois,
et appellerons (notations analogues pour les autres G.A) grands les 96 enfants
des G.A 633, 539, 533, moyens les 64 enfants des G.A 4;9, 433, et petits les
64 enfants des G.A 339, 3;3.

b)Les épreuves : Chague enfant passe les 4 épreuves (dans l'ordre) suivantes :

Epreuve 1 : Récitation de la suite dss nombres

On demande & l'enfant s'il sait compter, jusqu'd combien, et, le cas échéant,
de le montrer. S'il ne récite pas, ou mal (sans commencer par 1, 2), on amorce
la récitation 3 "1, 2, comme ga", S'il s'arr8te sans s'8tre trompé, on l'incite
& continuer : "Et aprds ?", On arrfte la récitation systématique aprés 30.

Epreuve 2 : Dénomination des nombres

On présente & l'enfant des jetons en bois dans une bofte circulaire et dans
les configurations approximatives suivantes :

® ®
]

® ® (0}
® @
o ® e9® , @¢® , 03.

@
® ¢ 0 , ® ) ° A

J
Les nombres de jetons et l'ordre de présentation sont les suivants : pour les
grands 7, 5, 3, 6 et 4; pour les moyens 5, 3, 4 st 2; pour les petits 3, 1, 4
et 2. On demande & l'enfant combien il y a de jetons dans la bolte sans lui
suggérer de compter., Si l'enfant se trompe, on lui demande s'il est slir et on
1'encourags, si on a l'impression que l'échec est accidentel, & reconsidérer
sa réponse,

Epreuve 3 : Résolution de problémes (non présentée dans cet article)

Epreuve 4 : Comptage-pointage induit

N

L'expérimentateur présente & nouveau & l'enfant la boite avec les jetons et
lui demande : "Tu sals compter comme ga ?" en pointant 2 des jetons avec 1l'in=
dex., Si alors l'enfant ne compte-pointe pas, ou mal, l'expérimentatsur recom=

mence un comptage-pointage accompagné de "1, 2" (sans dépasser 2). En dernier
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recours, il guide méme le deoigi de 1l'enfant pour les 2 premiers jetons, Si

1'enfant a réussi avec beaucoup d'aide, il lui est demandé de recompter-pointer
"tout seul™. Les nombres & compter sont & pour les grandsy 7 et, en cas d'échec

3 pour les moyens, 5 st, en cas de réussite 7, en cas d'échec 33 pour les pe-—
tits, 3 et, en cas de réussite, 5,

Test cardinal : Si l'enfant ne conclut pas spontanément son comptage~pointage,

par exemple en répétant le dernier nombre ou en rajoutant "il y en a x", on le
soumet au test cardinal, ce test consistant & cacher les jetons aussit8t que

l'enfant a terminé de les compter et a lui demander combien il y en a.,

I1 ETUDES GENETIQUES

—

1) Récitation de la suite des nombres

a)Codage ¢ On retient 1e nombre n maximal tel que la suite 1, 2, ..., n "réci-
tée" par 1'enfant, au cours de 1'épreuve 1 ou au cours d'un comptage en cours
d'entretien, est parfaite,

b)Résultats : La plupart (au moins 75%) des enfants "récitanﬁz vers 4;3, la

suite des nombres jusqu'd 4 au moins; vers 439, jusgu'a 5 au moins; vers 533,

jusqu'a 7 au moins; vers 539, jusqu'da 11 au moins, et enfin, vers 633, jusqu'a
14 au moins,

2) Principes du "Comment compter"

a)Critéres d'attribution : Les critéres précis sont donnés dans 1'étude compld-
te (Fischer, a paraitre). Précisons ici simplemsnt que nous avons d'une part

tenu compte des comptages spontands de 1'enfant, d'autre part admis un certain
taux d'erreurs,

b)Jableau des attributions {(en nombres) :

me 3 5 ?
G Pyl f . 2205, v.,zu
Trincipes ! 3/3 39193 (4,9]%314,915.3 15,9 63153 5’3~b/3

Py (W) AF122130129122,25130,32130123 12730

Psg (n) A4 b4 edigal48 2419934130025 ]29] 30

Patw) | 67|37 49 |25 146" 20]29]32]30] 25]34] 30

Les 3 (povrn

-

10 4912 acl4gl28!34]30] 20025030

% 3uv 34 enfants (32 pour les aubves cases)

c)Représantation graphigue du taux d'attribution de l'snsemble des 3 principe§

pour 5, en fonction de 1'4ge {voir page suivante)

d)Commentaires : Les tableau et représentation graphique montrent que les pro-

gres sont réguliers : les seules légéres entorses & cette régularité concernent
des 8ges ol le taux de réussite est proche de 1. C'est vers 531 que le taux de

0,75, pour |'attribution de l'ensemble des 3 principes (pour 5), est atteint,
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R 3
e)Rsmargue : Les tableaux croisés (que nous ne donnons pas) et calculs de ){n

cmontrent que 3
- chez les petits, et pour 3, le pca a été attribué significativement moins

t .
souvent que ;e pbi et le Pss,
- chez les moyens, et pour 5, la seule différence sigmificative qui subsiste
est celle entre les P et P_.j

ca 1

- enfin chez les grands, et pour 7, non ssulement aucune des 2 @ifférences
significatives ne subsiste, mais Pca est m8me plus (non significativement tou-
tefois) réussi que Poi &t Pgge
Pour la difficulté relative entre les Pbi at pss’ pour 3, il faut regrouper
petits et moyens pour voir que le Pbi est significativement plus attribué qus
le Pss, alors que chez les grands, pour 7, la tendance (non significative) est

encore une fois inverse,

111 HYPOTHESES SUR LE ROLE DU COMPTAGE

1) Hypothése géndrale

Notre hypothase générale est que le comptage joue un rdle important dans la
dénomination des premiers nombres par l'enfant. Nous ne donnerons ci-aprés
qu'un argumsnt direct (observation des comptages) et un argument indirect (vé-
rification d'une conséquence) en faveur de cette hypothése.

a)Tableau des taux de réussite par comptage extériorisé (& 1'épreuve de déno-

mination) ¢ Sur le tableau de la page suivante, on voit nettement que le taux
des réussites par comptage extériorisé (= comptage & haute voix, pointage du

doigt ou des yeux, mouvements des lévres,..) augmente avec la taille du nombre
(une ssule petite exception). Par contre la variation en fonction de 1'&ge est
moins nette, Ndanmoins en négligeant les cases & faible effectif et en tenant
compte de certains facteurs expérimentaux, on peut dire gu'avec 1'3ge, a nom=—

bre constant, le taux des réussites par comptage extériorisé diminue,
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b)vérification de la quasi-implicatiun(z) :

(savoir dénemmer n) ::::b(savoir comptsr n), pour n = 3, 5 et 7.

sait din.3 sait dén.5 sait den. ¥
A o N s
P 10:0; nown ovi | non ﬂt- ovi [ non
5| 'é‘ 9| 3| 2940 |34 ?g YAPESES
3
3§,qu3~4 32730 RERAEEI A
R 77 37184 [N TR ETALYS
Patits: Li=-473 Moyens: éi=-271 . Cramdlg : L.i=-3,07

La quasi-implication est donc vérifide dans lss 3 cas.

2) Hypothise précise

Une ds nos hypothdses précises est que 1'appréhension rapide des petiis nombres
{ > 2) peut n'8trs qus 1'étaps ultime d'une intériorisation du comptage. Ce
sont 1l'analogie entre 1'apprentissage du comptage et 1'apprentissage suivant

la théoris de Galperin (Galperin, 1979), et les résultats de ce dernier, qui
nous conduisent 2 uns tells hypothase. En effet, dans l'apprentissage du comp-
tage on retrouve les principales caractéristigues de l'apprentissape selon
Galperin : l'orientation jous un rfle primordial, 1l'action accompagnée du lan—
gage (comptage-pointage & haute voix) s'intériorise peu 3 peu, le nombre de
comptages réalisés par un enfant est souvent impressionnant {2 rapprocher du
nombre important d'exercices au cours de chaque étape de 1l'apprentissage chez
Galperin). De plus, au niveau des résultats, on retrouve aussi les retours 2
des étapes plus primitives en cas ds difficulté : nous avons par exemple recen—
sé un nombre non négligeable d’enfants qui, lors de 1'épreuve de dénomination,
ont manifesté systématiguement des signes extérieurs a partir d'une certaine
taille de nombre, alors gque pour les nombres inférieurs ils ne 1l'ont pas fait.
Or 1'apprentissage, par exemple d'une figure géométrigue, suivant Galperin
conduit finalement & une reconnaissance de cette figure par un simple coup
dioeil, I1 se pourrait donc que l'intériorisation progressive du comptage con-—
duise elle aussi 3 une reconnaissance {dénomination) finale du nombre en un

coup dlosil,
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Qgﬂglusidn ¢ lorsque nous aurons encore précisé que les résultats ci-dessus,
qui mettent & eux seuls en dvidence l'importance du comptage, ont été confir—
més par nos autres observations et analyses, et que, aussi bien la psychologis,
trés influencée par Piaget, que la'didactique, avec la profonde réforme de 1°
enseignement des mathématigues & 1'école élémentaire (1970 en France), ont su
tendance & la nier, nous pourrons conclure qu'il serait souhaitable gue 1'Ecole
tienne davantage compte de ce phénoméne important qu'est le comptage du jeune

enfant.

Notes s
=P 2 . . : .

(1) }LPF931gne le test du ) calculé par la méihode de Mac Nemar., Corrigé, pour
2

effectifs théoriques insuffisants, on le note )%ﬁC

Précision importants : Nous travaillons au seuil, fixé une fois pour toutes,

de 0,805, M

(2) Gn note a=——3b une guasi-implication, Si card [E(a)} £ card [E(b)] , ol

£(a) [rasp, E(b)] désigne l'ensemble des enfants ayant satisfait a (resp. b),

am=3b est admissible (& notre-seuil de travail = 0,05) si l'indice d'implica=

tion, que nous notons i,i, est £ -1,64 ou si E(a)e E(b),[ﬁéférence : Gras, 198@.
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AN INVENTORY OF THE PERFORMANCE OF HOW KINDERGARTENERS ( 5 - 6
YEARS OF AGE) USE THE DIFFERENT ASPECTS OF NATURAL NUMBERS

Siegbert Schmidt
Erziehungswissenschaftliche Fakultét
Universitdt zu Koln (FRG)

Dans les annés 1970, dans la discussion sur 1'en=
seignement de la mathématique élémentaire (en Alle=
magne), les aspects suivants des nombres naturels
ont été étudiés: aspects cardinal et ordinal, as=
pects de la mesure et de l'operateur, aspects de
compter, du code, de la représentation et de 1'é=
chelle. Le but de cette recherche est d'obtenir
une vue générale sur comment des enfants &gés de 5
a4 6 ans, avant aller a4 1'école, arrivent 4 manier
ces aspects (des autres recherches ont en vue).
Ainsi, 24 enfants ont été soumis & des entretiens
individuels =~ au total six fois par enfant.

(Les résultats ne pourront étre donnés qu'un
juillet 1981 a4 Grenoble, car cette recherche n'est
pas encore finie en ce moment (avril 1981).)

ASPECTS OF NATURAL NUMBERS IN ELEMENTARY MATHEMATICS EDUCATION

puring the 1970's different aspects of the concept of natural num=
bers were elaborated within the discussion on mathematics education
in primary schools (grades 1 - 4; 6 - 10 years of age) in Germany ’
(Wittmann, 1972,1975; Steiner,1972; Freudenthal,1973; Miller-Witt=
mann,1977). As a result of this discussion the follwoing aspects

of natural numbers have to be considered:

- ordinal aspect (example: Charles is the fifth child in his family.

(natural numbers as counting numbers (one, two, three, ...) or as ordinal num=
bers to mark a certain position in a well-ordered set of objects
(the first, the second, the third, ...));

- cardinal aspect (example:Margaret has got five dolls.)

(natural numbers as numbers for the numerosity of finite sets (numercsity num=
bers))

- aspect of measure (example: This tree has a length of five metres.

(natural numbers as measuring numbers of magnitudes relative to certain unit
magnitude) ;

- aspect of operator (example: John has five times as much money as
Richard.)
(natural numbers as multipliers (operators) on magnitudes (once,  twice, three
times, ...));

aspect of reckoning number (example: 4 + 1 = 5)

(natural nutbers as elements of an algebraic structure or as sequences of
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digits which can be processed by algorithms}

- aspect of coding (example: The horse with number five won the race.)

(natural nmumbers as signs to make differences among cbijects)

- aspect of representation(examples: 5 (10) = 101(2) .

"Five" is a one digit number (in the decimal system of notation).)

(natural numbers as sequences of digits relative to a certain base (positio=
nal systems of notatiocn))

-~ aspect of scale (example: Today it is five degrees centigrade.)
(natural nurbers as marks on a scale) '

In the textbooks for primary schools in Germany the cardinal aspect
is located - chronologically and systematically - in the first
position: The first natural numbers - 1, 2, 3, ..., 10 - are intro=
duced as cardinal numbers (of finite sets); all the other aspects

appear, too, but later on.

Accordlnq to Piaget the concept of natural numbers is constltuted
by the coordination of the cardinal and the ordinal aspect (Piaget-

" Szeminska, 1941, 1975; Piaget,1950). In particular, the conservas=
tion of number is an essential indicator that a child has reached
the operational level of his cognitive development in the number
concept. Beyond this, conservation is looked at by Piaget as a
"necessary condition for all rational activity." (Piaget,1975,p.15)
(For a refined criticism of the well known interpretation of Piaget's
conserva:zion tests and a new interpretation ("conflict hypothesis")
look at Bryant, 1974.)

Brainerd (1973, 1979) has tried to show that the ordinal aspect is
more important for the development of the number concept and more
attuned to the children's cognitive development than the cardinal
aspect; he does not accept the theory of Piaget either.

Mpiangu-Gentile (1975) carried out an investigation which was
motivateé by the question:"Does training in arithmetic concepts

have a different effect on conservers and non-conservers?" (p.184)
They got this main result: Non-conservers benefited as much from
arithmetic training as did conservers (between 5 and 6 years of age) .
For similar results for kindergarteners and first graders, respec=
tively, look at Baroody(1979) and Pennington (1977). Mpiangu-Gentile
think it more profitable "to consider arithmetic and conservation

of number as conceptualizations that develop simutaneously." (p.194)
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Already in 1962 Gréco gave an interpretation of his research accord=
ing to which the aspect of natural numbers as counting numbers is
more than just a relative unimportant linguistic fact (as Piaget said);
moreover, this aspect seems to be appropriate in also supporting

the other aspects of natural numbers.

Models of number development emphasizing counting skills have been
constructed by Schaeffer-Eggleston-Scott (1974) and, more recently,
by Gelman-Gallistel (1978).

Wheﬁher one accepts the results of Mpiangu-Gentile (1975) or not
the follwoing statement seems to be a good basis for research:"...,
the effort should he directed toward a genuine evaluation of what
arithmetic concepts the child knows and how well he knows them before
he starts formal instruction in arithmetic. This knowledge, rather
than conservation of number, should probably constitute the basis
for teaching arithmetic."(p.191) The papers of Ginsburg (e.g. 1975,
1977) have shown us that pre-schoolers know a lot of informal arith=
metic (see Gelman-Gallistel,1978,to0). Recently Hendrickson (1979)
and Comiti (1980; see 1977, 1978, too) have presented interesting
papers on investigations on arithmetic abilities of incoming first
graders which methodologically have much in common with the research

reported here.

OUTLINE OF A RESEARCH PROJECT CONCERNING THE PERFORMANCE OF HOW
KINDERGARTENERS USE THE DIFFERENT ASPECTS OF NATURAL NUMBERS

Purpose

The purpose of this study was to make a survey of the performances
of how children between 5 and 6 years of age use the different aspects
of natural numbers discussed above. The first reason for this purpose
is in this question: Does the primary school really refer to the
actual arithmetic knowledge and competencies and the individual
peculiarities of the incoming children? A second but not less import=
ant motivation consists in the present research situation mentioned
above: It seems to be reasonable not only to iook at the number con=
servation but to take into account, too, that the development of the
number concept may be effectively influenced by other factors (e.g.
the probably mutual influences of semantic and syntactic factors).

In this respect we hope to continue with further research.
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Sample

12 children were chosen from a kindergarten in an urban district of
Cologne and .another 12 children from a kindergarten in a suburban
district of Wuppertél (FRG): 15 children with at least 6 years of
age on June 30t?, 1981 (school beginners in autumn 1981), 6children
with 6 years of age up until to December 31St, 1981, 3 children
with 6 years of agé only in 1982. Each sub-sample consisted of 6
girls and 6 boys ranging on the whole scale of the cognitive develop=
ment of children between 5 and 6 years of age (according to the
judgéments of the headmistresses of the two kindergartens).

Method

Each child was interﬁiewed individually for six times - but only

once a day. Each child was given.as much time as Was needed to

answer; so the interviews ranged from about 15 to 35 minutes. In nearly
11 -the interviews materials were used, the children being free
to use them as they wished.

According to the purpose of £his study it was the aim of these
interviews

.- not to compare the children under absolutely standardized con=
ditions, -

- but rather to find out how the various children would answer the
questions and tasks cohcerning the different aspects of natural
numbers.

Above all we were interested in making a survey - first - on the

range of the answers children of this age may give and - secondly -

on the peculiarities which may appear among such children.

The interviews were conducted in a room of the familiar kinder=
garten (Maxch 1981 at Cologne, May 1981 at Wuppertal). They were
recorded by a video tape recorder; this did not seem to influence

the children's performance at all.

Procedure

Each interview situation was introduced by presenting some materials
(e.g. chips, Cuisenaire rods, coins etc.) and by a question or an
instruction. We give an example [addition, nn; look at next page]:

You have got a box [open!] with black chips.
g . Both boxes then were
I have got & box open, toot Jwith white chips. { put side by side.]
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Put into the empty [third open] box as many red chips as we both
have got together!

The answer of the child was followed by one of the following
questions if the behaviour of the child did not clearly show his
tactic: How do you know that? - How did you work it out?

Owing to lack of space we can only sketch the content areas of
the interviews in a table:

cardinal cardinal | ordinal aspect of |aspect of |aspect of
aspect, nn | aspect, n{ aspect magnitude |operator |scale

(not using | (using ‘
numerals) | numerals)

essential ess. conc.| ess.conc.| ess.conc.| =-lengths |[-lengths |ess. conc.
-weights |-weights

conceptual || comp., nn | comp., n | comp. B v ~money camp.
ccmponents -spans of |-spans of | (points of
time time time)
—cardinal
numbers
>-rel.,nn | >rel.,n | >-rel. >-rel. >-rel. >-rel.
>-relation (as above)| (money,
(more, spans of
greater, .. time)
dition éddltlon, addition, | addition |aaddition . -

m n (as above)

Counting and knowledge of the use of numbers:

- Please,count out loud for me as far as you cani

-~ writing and reading numerals (written with digits in the decimal system)
- Where do we use numbers 2(incl. a series of key-words)

' @
Results and Discussion

Results and the discussion will be given at the conference at Gre=

nobl%kin July 1981, since at the time of writing this paper (April
B

1981) only the Cologne sub-sample has just been interviewed.
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CONSTRUCTIVISM, THE TEACHING EXPERIMENT, AND MODELING
Paul Cobb
University of Georgia, U.S.A.

Le but principal de cette communication est de décrire la
méthodologie utilisée dans le projet Interdisciplinary Research

on Number (IRON) pour 1'8laboration d'un mod2le de 1'apprentissage
mathématique des enfants. En accord avec Plaget, l'apprentissage
est interprétée comme reconstruction active de la conmanissance
face & l'expérience. L'importance didactique du projet se situe
dans la tentative d'expliquer comment les enfants construisent

le nombre et les influences que des interventions directes peuvent
avoir sur ce processus de construction. La formulation d'emplications
appropriées a extgé une cbservation longue et intensive de la
résolution de problemes par des enfants dans une expsrimentation
didactique. Cette mgthdclogie differe de 1'expérimentation
didactique sovigtique pulsqu'elle est employée dans le but de
construire des mod2les d'apprentiseage plutdt que dans
L'glaboration de programmes. Par "mod2le" nous entendons
L'ensemble de constructions thforiques qui expliquent 1'interpri-
tation de 1'enfant dans sa résolution de probldmes. Puisque

le mod2le essate d'expliquer la tache de llenfant, 1l y a aussi
une tentative d'itnférer la compréhension de celui-ci. Cela,

en combinaison avee l'accent sur 1'étude de la reconstruction
cognitive, aboutit & un mod2le qui a des implications Importantes
en ce qui concerne les premiéres anndes de curricula sur le nombre.
Ce mod2le n'est, pourtant, "wtéressant aqux Educateurs de maths-
matiques que st les programmes qui vont tneluve ces implications
fonetionnent—-s'ils représentent une amélioration dans la

qualité de la pédagogie mathématique.

Steffe, von Glasersfeld, Richards, Cobb, and Thompson1 (1981) have recently
proposed a model which, it is claimed, constitutes an explanation of how a
child might construct number. The primary purpose of this paper is to
describe the methodology used in formulating this model. The underpinning

epistemology and purpose of IRON will be considered to provide a context

1The abbreviation IRON (Interdisciplinary Research on Number) is used
throughout this paper to stress that neither the model nor the methodology can be
attributed to a single individual or discipline.

This analysis is based on work supported by the National Science Foundation
No. SED 80-16562 and by the Department of Mathematics Education, the University
of Georgia, Athens, Georgia.

I wish to thank Sigrid Wagner and Leslie P. Steffe for helpful suggestions
concerning earlier versions of this paper.
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for discussion of the methodology. In the course of this analysis, the
appropriateness of the constructivist teaching experiment for formulating
explanations of children's mathematical learning will be indicated.
Limitations of space preclude a discu$sion of the model itself. However, the
paper by Steffe (1981) exeﬁplifies the type of explanation the constructivist

teaching experiment yields.

CONSTRUCTIVISM

Modeling. The members of IRON believed that one could go beyond observable
behavior and attempt to explain children's thinking. Obviously, a child's
thinking is not accessible to inspection or description. The explanation

will therefore have to be in the form of models. A model, as the term is

used in this paper, is a constellation of theoretical constructs which explains
the child's observed behavior. As a model can never be compared with the '
phenomen it purports to explain, it can never be claimed that it is a replica

of or is isomorphic to the child's cognitive mechanisms.

' Implicit in any transition from observable behavior to a psychological model
is the structuralist assumption that behavioral regularitiés are an observable
manifestation of undeflying psychological regularities. The process of
constructing a theory of the child's acquisition of a concept involves
identifying regularities in behavior and building a model which accounts for

these regularities.

Epistemological assumptions. Following Piaget (1968, 1976), experience was

considered to be essential for the construction of any concept. Piaget (1968,
p. 147-150) transcended behaviorism with its emphasis on genesis (change)
without structure and preformism with its emphasis on structure without genesis.
He reasoned that, on the one hand, genesis emanates from a structure and
culminates in anéther structure. On the other hand, there is no absolute
beginning to the $equence of structures, although the péyChologist normally
stops at birth. In short, structure is not subordinated to genesis or vice
versa. From this perspective, learning is characterized as the restructuring

of existing knowledge in the face of experience.
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PURPOSE

Members of IRON decided to work together for a variety of reasons which
reflected their widely differing disciplinary backgrounds. The mathematics

educators involved in the project had been influenced by Dewey and Brownell

~as well as by Piaget when formulating their position concerning the psychology

of number. For example, Dewey after conducting conceptual analyses of the
concepts ''whiteness' and 'mumber," declared that 'nmumber is a rational process,
not a sense fact" (McLellan and Dewey, 1895/1908, p. 23). Brownell came to

a similar conclusion.

Neither does nature provide the child with tangible evidence

of number which he can apprehend immediately and thus come
easily to know through sense perception. There is no concrete
quantity "five-ness" in five dogs ... Neither is there any
"five-ness' in "', or in "five" oxr in "5". In each case

the "five-ness" °° is the creation of the observer; it is a
concept or an idea which the observer imposes upon the objective
data (Brownell, 1935, p. 20).

Piaget's conceptual analysis of the concept of unit led him to note that

"Elements are stripped of their qualities and become arithmetic unities"

'(1952, . 37). However, neither Dewey, Brownell, nor Piaget explained
s P g Xp

how children construct number. Dewey's analysis was primarily biogenetic,

as one would expect of a pragmatist. Brownell produced a hierarchy of behaviors
but did not attempt to construct a model while Piaget did not explain how

the synthesis of classification and ordering structures results in elements
being stripped of their qualities. The members of IRON wanted to transcend
Dewey's, Brownell's, and Piaget's work and formulate an explanation of both

how children might construct number and how this process may be influenced

by direct intervention.

METHODOLOGY

Identification of behavioral regularities. A methodology which was compatible

with the purpose mentioned above would involve observation of and interaction
with children over an extended period of time. A series of Piagetian clinical
interviews would not constitute a suitable methodology because the researcher

would not intentionally intervene and attempt to precipitate cognitive change
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in the child. The teaching experiment methodology, on the other hand, did

allow direct intervention as well as longitudinal observation. The constructivist
teaching experiment should, however, be distinguished from that used in

the U.S.S.R. The latter involved the construction of a curriculum before the
experiment was conducted. The experiment was then performed to see whether

or not a particular curriculum "worked" (Menchenskaya, 1969; Kantowski, 1978).

In short, the Soviet's objective .is to build a curriculum per se. The reason for
conducting a constructivist teaching experiment, on the other hand, is in

harmony with Vygotsky's original assessment of the methdology--its essential

function should be the production of models.

The constructivist teaching experiment involves a series of teaching episodes
interspersed with occasional clinical interviews. The clinical interviews

give the researcher the opportumity to build detailed models of children's
thinking at particular moments in their development. On the other hand,

"it is the teaching episode which allows us to study the constructive process--
those critical moments when restructuring takes place as evidenced by
“lterations in the child's behavior" (Steffe and Richards, 1981). While
conducting a teaching episode, the\teacher«researcher "intends (1) to test

the limits of a model he has of the child's knowledge with regard to particular
content structures and (2) to investigate how various components of that model
may change under the pressure of direct interference (Steffe and Richards, 1981)".
This involves "(1) interpreting what he or she (the researcher) sees the child
doing in terms of a model and (2) attempting to perform the ultimate act of
decentefing by conceiving of his or her own actions from the child's own

perépective (Steffe and Richards, 1981)."

Procedure for constructing models. It was assumed that any child’s observed

behavior was not produced randomly; the child's behavior was the observable
manifestation of an intentiomal act. This assumption is compatible with

Smedslund's statement that

I gradually came to realize that the only defensible
position is always to presuppose logicality in the other
person and always to treat his understanding of given
situations as a matter of empirical study. From this
point of view, people are always seen as logical (rational)
given their own premises, and hence behavior can, in
principle, always be understood. This also applies to
small children. (Smedslund, 1977, p. 3) -
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The child's intentions or premises were to be captured by inferring his or her
conceptualization of the task. That is, the researcher poses the question,
"Given that the child intended to produce the behavior I have observed, what
was the task the child was attempting to solve?" In essence, the researcher
attempts to work backwards from the observed behavior to the task the child
established. This "woiking backwards" approach is viable because, following
Piaget (1968, 1976), it was assumed that the "building blocks" out of which the
child constructs his or her task are either re-presentations of sensory

motor activity or conceptual operations. The child whose conception of the
task takes the form of re-presentations of sensory-motor activity attempts to
materiélize this activity when solving his or her task. Conceptual operations,
on the other haﬁ&j“are thought of as the results of reflective abstractions
from sensory-motor activity. The sensgry-motor activity is said to be implicit
for the child. In solving a task, the child may have to attempt to materialize
the activity implicit in some of the operations. For example, a child who

has constructed the abstract concept of number ﬁay conceptualize the task

12 + 7 = ____ as requiring the specification of the numerosity which is itself
composed of numerosities denoted by '"12" and "7", but yet count in solution. In
effect, the child may have to drop down a level of abstraction when solving

the task he or she has constructed. The researcher attempts to infer the re-
presented sensory motor activity or conceptual operations which constituted

the child's task from the observed sensory-motor activity.

THE CONSTRUCTIVIST TEACHINGEEXPERIMENT AND MATHEMATICS EDUCATION
A fundamental question for mathematics educators is, "What is the child's
conception of number and what can be done to help the child make the constructive
journey to higher levels of understanding?" It is claimed that the constructivist
teaching experiment allows the researcher to address this question. On the one hand,
the objective is to study cognitive restructuring. On the other hand, by modeling
the task the child constructs, an attempt is made to infer the child's understanding.
Therefore, such models have substantial implications for early number curricula
which attempt to be consistent with the ways children learn. However, "The value
of a knowledge of psychology in general, or of the psychology of a particular
subject, will be best made known by its fruits" (McLellan and Dewey, 1896/1908, p. 1).
In short, IRON's theory will only be ofuvalue to mathematics education if it works--
if employment of instructional techniques derived from the theory represent an

improvement in the quality of mathematics education.
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'QUERIES AROUND THE NUMBER CONCEPT
> Jan van den Brink

OW & OC, utrecht, State University, The Netherlands.

There are atlot of unexplained phenomena around number such as conceived
by young children (kindergarten and lower grades). Their ideas on numbers
strongly diverge from ours. How can we get a hold and understand the
children's ideas and how apply this knowledge in instruction?

How can we get a hold on this ideas?

I will first tell'you something about our method of investigation, which
we called that of"intensiée mutual observation'.

Than I will give a survey on the phenoména that struck us and which are
the subject of our research.

Finally I will enter into details on three of these subjects:

a) acoustic counting;

b) counting movements rather than objects;

¢) the number concept described in psychological

rather than mathematical terms.

Mutual observation

In talks with children (X-2) on certain themes we try to get a hold on
their ideas. If,ﬁfor instance, second graders have figured out []- 9 = 24,
we like to know how each of them found the solution. Many children, how-
ever, give a cliché answer:

'Cause’, )

’I’just)thought it’,

9T didit in my head’,
while cheerfully laughing. But one cannot get a hold on what they actually
did. 'or do the children not understand whatione wants to know? Or isn't

this one way observation of children basically wrong? Let me illustrate this.

puring my talks with the children I note down as much as possible. What
does the pupil tell me? What does it do? But noting down creates long
walting periods for the pupil. I tried to break this silence by reading

aloud what I wrote. It created a relaxed sphere, I thought so.

In fact more was happening:

1 the children notice that what one writes down, regards them.
Most of them had never hit on this ideas before. They are
proud that all they say is noted down;



2 they correct if something is noted down erroneously. It is a
nice thing to provéke this once intentionally;

3 while trying to help you recording, they better realise what
they . did and what they did not;

4 they reflect on their own thoughts so they take their place

as it were beside us as co-observers;
5 in this way they grasp what we want to know about them.

This, indeed, is the big problem: we ask’them ;why' and 'how' but this
does not at all mean that they know what we want to know. But by reading
aloud what one has recorded during the observation, the observed one gets
a good ‘chance to recognise himself in the record and to possibly make
emendations on it. This seems to me the fundamental distinction between
the one-sided observation of machines, animals, systems and the mutual

observation of persons.

Quries around the number concept

Thqugh there is more to the philosophy of this method of investigation, I
leave this suf)ject in orde:; to deal with subjects of content.
The title of this talk was 'Queries around the number concept'. Here they
are: A
1 Acoustic counting.
Is counting always ‘tied to count;_ing sets, or doesn't it play
an independent acoustic part in the children's life?
2 Cdunting movements.
Do children count objects or rather the movements of showing
to the objects? )
3 Psychqlogy and number concept.
Why is the number concept of children m'ostly described in terms
borrowed from mathematics? Is this right? Isn't there a task
for psychology? )
This three suﬁjects will be tackled afterward. Meanwhile we continue our
list:
4 Dynamic notations.
As .soon as situations and ideas are noted down by means of sym-—
bols, they become less manageable for the children, so it seems.
_There are notations that avoid this curtailing influence on the
children's thought. We call them dynamic notations.(Nesher, Katriel,
1979).
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5 Completing, substituting and conserving are typical activities
" of children in mathematics. Completing, for instance, is a

basis for adding and 8ubtracting{ substituting numbers by num-
bers, situations by situations is an important mathematical
activity. ‘

6 Adding and subtracting need not be converses of each other in
many situation.

7 Finally themes of investigation can be found in the use of hand-~
hold computers.

Three of these subjects will be considered more closely:

Acoustic counting:
Many kindergarten teachers think that counting is counting sets of objects
such as it is‘taught in the first grade. However a young child needs no
objects to show it can count. It can cpunt merely acoustically, indeed.
Marlieke (three years old) walks on the trace made by a
tractor and spontaneously starts counting '4, 8,2, ...’
Another example of acoustic counting (Van den Brink, 1980):
Paul (three years) is in the wood with a group of older
children. They arve jumping over a ditch. 'l1, 2, hop.'
Paul too. Ready to jump he counts: '7, 8,9, 10, 11, 12',
rung away, gets the other side, and smiles happily.

Bernt (five years) shows another characteristic of acoustic
counting. He counte from 1 to 29 and than continues with:
'twenty—-ten, twenty-eleven...'

These examples show that counting is not only counting sets. Children can
make you aware of other functions of counting. Acoustic counting is on
the one hand closely tied to rhythm and mo&ement. Numerals support or
accompany movements (as in the case of Marlieke) or instigate movements
(as in the case of Paul). On the other hand while counting children are
directed on sound systematics (Bernts inventing new numerals).

For instruction in kindergarten this means that the teacher can stimulate
counting by all kind of counting sohgs, movement games, counting out

and that she should certainly not use counting only to count sets.

This brings me to the second domain of research: counting movements.

It is an activity where children make a lot of ‘'mistakes' - in guotation
marks: skipping, repeatedly counting, not exhausting and suchlike (Gelman,
Gallistel 1978; Mierkiewicz, Siegler 1980).
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Cindy (five years) cbunts 7 Blacks arranged in a row in front
of her. She does it in this way:

12345678918 &
Ooo oo oo,

1Once more’, I ask her.“%mf she counts

12345678
ooo oooo

PHow is it possible? First there were ten and now eight?’
'Yes, one less', she says, starts anew and eventually indicates
all blocks correctly while counting:

1234567
ooopoooa

'Wow she has learned it’, I think, 'she is ready.' But she con-
tinues and. again skips one:

1 234566
oooooono

And then:

1 2 345 .
ooonoono

"What do you do now?', I asked her surprised. She answers: 'Just
skipping one. ' She continues counting. Not the blocks but her

movements.

Ccindy does not mind skipping, and this is what happens more often: at
hop-scotch, skipping with the rope.
If one givés kindergarten-children tasks of counting back they manage bya ’
‘kind of skipping. They‘again and again use the same counting sequence
1,2,3,4,5,6,7 while stopping one step earlier: 1,2,3,4,5,6; 1,2,3,
4,5, ... Children's .counting connects numerals to movements before it
does so to objects. ‘ .
One more example:
Marije (first grade, seven years) must count a large number of
pencils. She arrives at 20 while showing to a pencil. Yet
while pronouncing 21 (Dutch: &én-em—twintig) she shows to three
pencile corresponding to the sound pattern: &én—en-twintig.

There are strong arguments for the éase that children do not count objects
but numbers of times they indicate objects:
1 firstly the numeral is always pronounced immediately after

‘showing to some object; ’
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2 the movement of indicating is created at a certain moment
whereas the object is constantly present. So there is a
stronger bond between the numerals with the counting act
than there is with the object
Iif %ﬁ’admit that children count movements rather than objects, one can
understand why they:
3 skip (as Cindy did);
4 count repeateily;

5 do not exhaust.
o &

Indeed what matters to them are movements rather than objects.
Acoustic counting aims exclusively at movement and sound systematics, with
no objects concerned. So it seems natural that counting objects is per-—
formed as sort of application of counting acoustically. This means as it
were children are balancing between different kinds of .countinh: acoustic
counting that accompanies movements and counting influenced by the presence
of objects. Mistakes made by children (skipping, repeatedly counting, not
exhausting) can be understood in this way.
For instruction this means that children should be made aware of these
errors by means of conflict or surprise.
Two examples:
a) while the teacher counts, the child shows to beads at a string

After one turn around the string she simply goes on, while the

children continue showing...;

¢ b) each pupil knows that if one count twice the fingers of a hand,

it is 10. Now I count:

03536

NN A, ¢

5

and it is 9. .

'You skipped one.'

'You did not count well.’

'One more.'

By means of such conflict situations we draw their attenticn

to such mistakes as skipping and repeatedly counting.

3 FinalI§/we will discuss the problem whether the number concept should be

investigated and described only in terms borrowed from mathematics:
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cardinal number, ordinal number, registration number, calculating number,
measuring number. An example:

Bob {seven years, nd grade) ie givm*i the problem 34+4 =

I am surprised that first he counts from 1 to 34 and then

continues four steps. Other children start as late as 30.

Each pupil in his own way operationaliaeé the number 34. Essentially the
symbol 34 is the extreme abridgment of individually determined procedures
which children apply in certain situatlions. The number is not associated
with sets but with situations and procedures. Therefore it could be im-
portant in psychology to speak about situation bowid numbers. So we could
for instance distinguish and investigate: the bus number, the number in
juggling-tricks (Van den Brink, 1980) and the age number. .
The age number plays a particularly important part in age mixed kindexr—
garten classes. Little children sometimes as a joke use age numbers as
though it were cardinals:

Kikkie-Nanje (5 years) gets one shoe only, the other is still

lacking. Se says: 'But I am two years.’

While showing them a box of paperclips I asked a group of firstgraders:
"I take a handful and you take a handful from the box. We are going to
count them. And then we look who is ol&e¥, you or I.' None of them found
it a strange proposal. They most often took a' full hand of paperclips,
whereas I always made efforts to take less. After counting each of them
had a feeling of victory (they were older than I am) but at the same time
they understoocd the joke. Clearly young children can eas;ly work with
their ages as though they were simple cardinals. Colloquial language
may favour this. In 'I am six' the number six means 'six years'. Moreover

if pnumbers are interpreted as ages children can do quite a lot with them.

From acoustic counting we know that countiné back is an impracticable
task for young children. ButKikkie-Nanje (5 years) says:

'T am*5 and next 6.' I ask: 'What wc;s you first?' ‘Four', she

says and continues: 'And when I was 4, I was 3. And when I

was 3, I was 8. And then one.’

Counting back succeeds because the real situation of ages is in view.

For that matter teachers reinforce age numbers functioning as simple
cardinals. Connections are being made between age 5 the number of candles
on the cake, the number of birthday songs, the numbers of knots on the

birthday cap.
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There are a great many of such one-to-one connections, though some of them
must be bizarre in the ages of the children. Indeed, what have 5 candles
to do with the fact that somebody becames 5 years old. For the children
these must be magic connections. Freudenthal calls this the magical con-
text (Freudenthal, 1980). The age number is as it were explicitly lifted
out of its situation; the 'abstract' years are symbolised by concrete
objects such as candles, songs and knots.

The case with children use their abstract age number in a joke is des-
troyed by the blunt seriousness of stressing the cardinality in instruction.
Is this not a task for psychological research, rather than by mathematical
terms such as cardinal, to investigate number in contexts, situations and

procedures?
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'SEMANTIC CATEGORIES OF WORD-PROBLEMS, RECONSIDERED

Pearla Nesher James G. Greeno

The University . The University of

of Haifa, Israel Pittsburgh, USA

Cet artlcle propose quatre stades de dé&eloppement chez l'enfant
dans la résolution des problemes de calcul simple posés en

langage courant. Les quatre stades sont décrits en terme de

deux sous~systémes: (1) La croissance de la complex1te séﬁanthue
du langage courant de l'enfant, et (2) la dlSpOnlblllte de
structures loglco—mathemathues supplementalres. Dans chacun

des sous-systemes, le developpement consiste en deux aspects,
comme cela a déga été observé auparavant: relations de classe

et d'ordre. Nous allons décrire le développement de la sémantique
du langage courant e commensant par des schémas pour former

des ensembles, leur ajouter ou leur enlever des &léments, et en
arrivant au stade auquel l'enfant a la capa01te/de manlpuler

des relations entre deux ensembles dans le cadre du schema
partie/partie/tout. parallélement nous décrivons un developpement
dans les structures loglgues et arlthmethues de l'enfant en
- commensant par compter les éléments d'un ensemble pour trouver

sa cardlnallte et en terminant par la coordination d'indgalités

et d’ egalltes ainsi que par las reversibilite de l'addition et

de la soustraction. Nous allons interpreter en terme des quatre
stades de la connalssance les découverts emplrlgues sur la
capac1te des enfants & résoudre les problemes. "combiner",
"changer", et "comparer". dans lesquels on prend en considération
la position de l1'inconnue.

Since the beginning of the century (Frege, 1884, Russell, 1919}, it has been
accepted that the concept of number has two fundamental components: class and
ordinal relation. Piaget (1952) analyzed the development of these concepts in
children's performance in a variety of tasks requiring analysis of set relation-
ships and ordered sequences. In this paper we analyze arithmetic word problems
that are solved by single addition and subtraction operations. MWe propose a
semantic analysis in which meanings of problems are structures that include class
and order relations. The different kinds of problems differ in the complexity
of semantic structures and the operations required to derive the meaning struc-
tures from the problem texts. We postulate representational processes in
children's understanding of problems corresponiing to the derivations in our
semantic analysis, and thereby explain the relative difficulty of different
kinds of word problems. The meaning structures also can be viewed as semantic
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interpretation of formal arithmetic sentences. This provides an analysis of

children's achievement of more sophisticated understanding of arithmetic
concepts and relationships.

Previous analyses of word problems have identified four semantic categories
or problems: Combine, Change, Compare, and Equalize. (These categories have
begn agreed by Carpen;er, et al (1981a, 1981b), Heller et al, 1978, Nesher et
al (1978, 1981), Riley, et al (1981), Vergnaud (1976, 1981), with minor
variations. When empirical data were collected according to the above
semantic categories it was agreed that Change problems are the easiest,
Combine problems are next in difficulty and the Compare problems are most
difficult (Nesher, 1978, Riley, 1981). It was noticed, however, (Carpenter
et al, 1981, Nesher, 1978, Riley et al, 1981, Vergnaud, 1981) that a further
differentiation within the semantic categories according to the position of
the unknown results in a better prediction concerning the children's
performance. Table 1 presents the differentiated categories.

Table 1

“Title General Description
Combine 1 question about the union set (whole).
Combine 2 question about one subset (part).
Change 1 increasing, question about the final state.
Change 2 decreasing, question about the final state.
Change 3 increasing, question about the change.
Change 4 decreasing, question about the change.
Change 5 increasing, question about the initial state.
Change 6 decreasing, question about the initial state.
Equalize T question about change from smaller to larger set.
Equalize 2 question about change from larger to smaller set.
Compare 1 mentioning 'more’ question about the difference set
Compare 2 ) mentioning ‘less’ question about the difference set
Compare 3 mentioning ‘more' question about the 'compared'’
Compare 4 mentioning 'less’ question about the ‘'compared’
Compare 5 mentioning 'more’ question about the referent

Compare 6 mentioning 'less' question about the referent

Qur explanation for young children's performance on the above 16 categories
is based on hypotheses about seméntic schemes that are available at different
developmental levels. We assume that there are two structures of knowledge
that are involved in solving simple arithmetic word problems: (a) the child's
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knowledge of the world, and (b) the child's knowledge of logical-mathematical
structures. As Piaget (1952, 1967, 1970) noted, the sources of these two
knowledge structures are not the same, even though they do not develop in
isolation from each other. We therefore will describe levels of development
in children's semantic schemes regarding two distinct knowledge structures:
Ordinary worid knowledge (empirical knowledge in Plaget's terms) (Lo} and
Arithmetic knowledge (logico-mathematical knowledge) {La).

Developmental Levels The description in what follows will be in terms of
growth of specific semantic schemes in empirical and arithmetic knowledge,
which will be sufficient to explain the children's performance in solving word
problems in arithmetic. Our analysis is consistent with Piaget’s theory, but
articulates hypotheses about the schemata more speéificaliy. Each developmental
Tevel will be described along the following dimensions:

Lo-The development of empirical knowledge and ordinary language,

La-The development of arithmetic knowledge and formal language,

G-The logical representation of Lo and La knowledge.

S-The underlying semantic schemes for Lo and La available to the
child as schemes of action.

(Due to scope Timitation 'g' and 'S’ will be presented at the conference.)
Each Tevel assumes the presence‘of the knowledge described in the previous
tevel. The developmént will be described here informally, but see Nesher,
Greeno and Riley, 1981 for a more formal presentation.

Level 1  Semantic structures include reference to sets and simple operations
such as adding members to a given set, removing members, and forming a new set.
Sets can be identified by a variety of verbal descriptions (generic names,
locations, points in time, possessors) and verbs denoting change in location
or possession, such as 'put,' 'give,' and 'take' are understood. The arith-
metic level consists of the ability to count and find the cardinal number of

a given set. ’ '

Level 2 Semantic structures of Lo include reference to the amount of change
needed to transform a set into a larger or smaller set. This is related to
ability to link events by cause and effect, to anticipate results of actions
described in ordinary language, and to understand sequences of events ordered
in time in a unidirectional and nonreversible manner. In arithmetic at this
level there is understanding of addition and subtraction qperations as proce-
dures to follow. '+*' and '-' are distinct and not related.
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Level 3 A scheme of part-part-whole relations is available and can be used to
represent partial information with a slot for the unknown quantity. The scheme
enables reversible inferences about set relationships, including the amount of
difference between two specified sets. It is related to understanding of class
inclusion and ability to quantify the same extension of objects according to a
shift in the predicates that describe them inten jonally. In arithmetic, at
this level, the additive structure is reversible and includes the equality re-
lation including the necessary inference that ifa+tbs= c, thenc-b=a
orc-a=h,

Level 4 The scheme for non-symmetrical relations (which started at Level 2,
in the description of a change, or comparison) is now available in a reversible
manner. Directional ordered descriptions .(i.e. 'more'/'less') can be handled
in a flexible manner. A set can be induced by means of relative comparison.

In arithmetic this level will include the ability to handle inequality, and

its relationship to equality (equalizing it by addition or subtraction opera-
tion): If A >B, thenA-C=B or B+C=A.

We will show that the above developmental levels can account for the levels of
performance in arithmetic word problems as was found in various empirical
studies: Carpenter et al, 1981; Nesher, 1978; Riley, 1981; Vergnaud, 1981.
(The data will be presented at the conference.} We suggest that the four
levels described above can predict the various levels of success in solving
addition and subtraction word problems as detailed in Table 2. Moreover, we
suggest that Table 2 is also an analysis of the 16 categories of addition and
subtraction word-problem in terms of the semantic and logical structures that
underlie successful performance in each of them.

Table 2

Type of Problem tevel 1  Level 2 Level 3 Level 4

Conbine 1 X
Combine 2 “ X

Change 1 X
Change 2 X

Change 3 X
Change 4 X
Change 5

Change 6

3¢

Equalizing 1
Equalizing 2

Compare 1
Compare 2
Compare 3
Compare 4 o
Compare 5 Ko
Compare 6 X

e 5

>3 3e 3

'In some empirical samples (Wesher, 1978) these problems fall in ap earlier
Tevel, respectively.
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Our semantic anq}ysis shows how simple cognitive structures may be sufficient
for some problems in a category but not for others; for example, that Change 1
and Change 2 problems can be solved using only simple operations on sets, but
that Change 3 and Change 4 problems require understanding of quantitative
change. According to our hypothesis, Change 5 and Change 6 require restruc-
turing; the components are given along a time-axis, and must be represented in
& non-temporal scheme. The part-part-whole scheme is sufficient for some
Compare problems where one of the sets is divided into two parts, one of which
matches the other specified set. A further cause of difficulty for Change 5,
Change 6, Compare 5, and Compare 6, is a contradiction between the direct
semantic interpretations of expressions in the problem texts ('getting more,’
'having more,' and their opposites) and the arithmetic operations (subtracting
or adding) needed to solve the problems. To cope with these contradictions,
children require cognitive structures that enable reversible reasoning based
on underlying semantic relations. '
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THE DEVELOPMENT OF NUMBER- REPRESENTATION IN -CHILDREN

Lauren B, Resnick

University of l’ittsbur‘ﬁ’
Pictsburgh, PA

Nous proposons une théorie du d&eloppement de la rcpa’fscntation
du nombre chez 1'enfant au cours des anndes de 1'dcole maternelle
et les premiéres anndes de scolaritd. Ia thforie se base sur des
programmes d'informatique qui simulent les compor tements décrits
dans de multiples expériences sur la compréhension des mathfmatiques
chez 1'enfant. Avant l'entrée a 1'école, la repr€sentation du
nombre se développe & force de compter, lLe rdsultat est que la
liste des nombres se transforme en une repr‘.éentatian dans lagquelle
.chague position dans la liste a le caractere d'une quant.ité.

Au cours des premiéres annfes a 1'&cole, un schfma Partie/Tout
s'applique aux nombres; c'est 3 dire gue les nombres sont .repré’—
sentés comme composds d'autres nombres. Le schbma Partie/Tout
reste & la base de la capacité de rdsoudre des problémes Posés

en langage courant et permet ¥ 1'enfant de découvrir des
processus de calcul mental trds efficaces. Au cours des annfes
suivantés, lorsque la notation decimale est introduite & ».l'e/cple,
les nombres sont re, résentés, toujours suivant le schéma Partie/
Tout, comme compose€s des dizaines et des unitds. ceci permet
alors & l'enfant d'inventer des processus de calcul assez com-
plexes, Cela lui donne aussi une base pour comprendre 1°addition
et la soustraction avec retenue.

. Work on the psychological processes involved in early school arithmetic has now
. ‘cumulated sufficiently that it is possible to construct a coherent account of the

changing nature of the representation of mumber gwer the preschool and early

school years. This paper outlines a theory of number representation }or thrée
broad periods of development: (1) The preschool period, during which counting
and quantity comparison competencies provide ghe primary basis for inferring

number representation; (2) the early primary period, during which the invention
by children of sophisticated mental computational procedures and the mastery of

certain forms of story problems points to two important expansions of number

representation; and (3) the later primary period, during which the representation
of mumber is modified to reflect kmowledge of the decimal structure of the
counting and notionsl system. ’ : '
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NUMBER REPRESEWTATION AWD ARITHMETIC PERFORMANCE PRIOR TO SCHOOL
Counting. At least two extensive studies of counting in preschool children (Gelman
and Gallistel, 1978; Fuson, in press) now make it clear that preschool children possess
extensive, if still incomplete (Comiti, RNote 1) knowledge of the principles of count-
ing as a means of establishing the quantity of a set. Greeno, Gelman and Rilev (in
press) have developed & computer model that simulates the observed counting per-
formances. At the core of the model is an ordered list of numercns linked by a
successor (next) relationship. The program establishes quantity by uniquely linking
each object in the set with one of the numerons and then designating the last
numeron named as the number in the set. It seems likely that through extensive
practice with counting as a method of establishing quantity the numeron list is
gradually transformed into a representation in which each position in the list comes
to stand for a quantity. Figure 1 displays this early representation of number.
Children's capacity to “subitize"( KRlahr and Wallace, 1976) small quantities is

represented by the links between the smallest numerons and the set displays.

AR R P B s s, ot g,
1 1) 7 8 O el
IR IR

{114
Figure 1 @@@@

Quantity comparison. Experiments on quantity comparison permit further inferences

about preschoolers’ number representation. In these experiments two “target”
numbers are named, and the subject is asked to decide which is larger (Sekuler .and
Mierkewicz, 1977; Robinson, 1981). Five-year-old children, like adults, take
longer to make the comparison the closer together the numbers are. This “split
effect” suggests that the number representation has analog features that allow
direct--essentially “perceptual’-comparison of positions on a "mental measuring
stick” (cf. Potts et al,, 1979). This implies two further features of the child's
number representation: (1) a marking of numbers later in the string as “larper":
and( 2) an ability to directly enter the positional representation for a number
upon hesring its name (i.e., without coumting wp to it).
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Inforr2] arithmetic performances. With the number representation sketched it is
possible to ‘account for most of the informal arithmetic performances of preschoolers.,
Inspection of the various informal arithmetic performances reported by Ginsburg
(1977), for example, reveals that the problems tend to be solved by counting, using
tally marks, fingers, or other counting objects when necessary. This limitation

to forward counting procedﬁres is why certain classes of tasks (e.g., problems in

which the unknown is in one of the subsets), are so difficult for preschoolers.

MORE SOPHISTICATED ARITHMETIC PROCEDURES IN THE EARLY SCHOOL YEARS
The methods that children use for simple mental arithmetic change during the first
years of school. The new methods, together with improved ability to perform certain
classes of story problems, signal an expanded representation of number and number

relationships,

From the age of 7 or 8, children perform single-digit mental subtraction by either
counting down from the larger number or counting up from the smaller number,
whichever will require fewer counts (Woods, Resnick and Groen, 1975; Svenson and
Hedenborg, 1979). Counting down requires a backward next relationship, -nd‘
*perhaps a "less" directional marker on the string of numerons (Figure 2).

Figure 2 Yo B B e B Ba o e

Further, children's willingness to count in either direction must reflect some
knowledge--however informal--of the complementarity of addition and subtraction.
It seems likely that the discovery of complementarity is mediated by a Part/Whole
schema (Figure 3), which specifies that a quantity can be partitioned, as long as
the original amount is preserved. In the triple 2, 7, 9, for example; 9 is always

Figure 3
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the whole, 7 and 2 always the parts. This 1is true whether the problem given is
74+2=2,9_7=172 2+« 9, 2+ 7 =9, etec. The schema, since it specifies
relationships between quantities rather than a procedure for operating on

quantities, permits either the counting down or the counting up method of solution.,

The Part/Whole schema also plays a role in successful performance of story

problems. Recent work by Riley, $reeno, and Heller (in press) provides a family

of formal computational models that account.for the pattern of development of story
problem competence found by a mumber of investigators (e.g., Vergnaud, in press;
Carpenter and Moser, in press; Nesher, in press). The models make it clear that it is
application of Part/Whole that makes it possible to solve difficult classes of story
problems (for example, problems with thé%unknown in the starting set) that children

usually cannot solve until the second or third year of school,

DEVELOPMENT OF DECIMAL NUMBER KNOWLEDGE
The next important change in number representation occurs when the decimal structure
is learned and numbers are reinterpreted in decimal terms, TFigure 4 sketches the
kind of number fﬁresentation that appears to be characteristic of children who would
be judged to "understand” the decimal system. Along the rows a "next-one" relation-

ship links tg;e numbers. This can be extended indefinitely, as shown in the top row,

indicating that a units representation

forger
Evnans wmom senem Eaem
—

TR TR ot mma g g of number co-exists with a decimal
1 2 3 4 5 L3 7 8 ? W 11 g
S B representation. Along the columns a

M 12 13 W B % v W W "next-ten" relationship links the
g( 20 ..21 m 3 M B B ¥ B W numbers, In a fully-developed number
K M M W OB M B 2w W B @ representation this "next-ten" link
K‘o o« ' would hold for the numbers inside the
; - n)“ matrix as well as those along the
K edges, permitting more efficient

o 8 w o addition or subtraction of the quantity
%"0 n 72)~ 10 than of other quantities. The

60 ®1 @2 8 most important feature o this new
(.0 o I o Zstage of understanding is that each

¢

of the mumbers is represented as a
composition of a tens value and a
units value. This means, in effect, that two-digit numbers are interpreted in terms

of the Part/Whole schema, with the special restriction that one of the parts be a
multiple of 10.
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The acquisition of place-value concepts has been much less studied than has the
acquisition of simple number concepts. Recent work in our laboratorv, however,
provides initial evidence for this kind of fundamental restructuring of number
representation as place value knowledge is learned. Evidence from three classes of

tasks is presented here.

Quantity comparison. A relatively early indication of a developing decimal number
representation 1s children's ability to compare two quantities on the basis of the

vtens value only, without reference to the units value. We have observed this
performance in tasks in which written digits are compared, Dienes block displavs

are compared, and written digits are compared with block displays. Virtually all

of the second and third graders we have studied showed this ability.

Mental Arithmetic. In another study we have asked seven-year-olds to mentally

add a single-digit and a double~digit number. Both reaction times for solutions
and children's reports of their solution methods were analyzed. About a quarter
of the children studied used a strategy in which they broke up the two-digit
number into a tens component and a ones componeﬁt, then recombined the tens
component with whichever of the two units quantities was larger. This produced
an optimally efficient "counting>on" solution, For example, for 23 + 9, the
mental "counter" was get at 29 and then incremented 3 time; to a sum of 32.
This procedure depends upon a recognition that the whole 23 is made up of two
parts, 20 and 3. The total sum, then, has three parts: 20, 3, and 9. The
Part/Whole schema allows the calculation to proceed in a manner consonant with
the laws of both commutativity and associativity (23 + 9 = (20 + 3) +9 -ﬁk

(20 + 9) + 3), although there is no hint that the children have any formal

awareness of these laws.

Regrouping in subtraction. 1In a series of studies on the acquisition of

subtraction, we have been able to observe, and build computer programs that

model in detail, several stages in children's understanding of written borrowing
and (its analog) trading of Dienes blocks (Resnick, in press; Resnick, Greeno

and Rowland, note 1). These studies reveal the following stages of understanding:

(1) Two-digit numbers can be partitioned into tens and ones, but there is a unique

partition. That 15,47 can be shown as 4 tens and 7 ones but in no other way.

(2) Multiple partitions of two-digit quantities are possible, but these must be
arrived at empirically by counting. For example, 4 tens and 7 omes (47) can be
shown, upon request 'with more ones' by removing a ten, and then adding in ones

blocks (counting on from 30) until 47 is reached.
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(3) Multiple partitions of quantities can be established by trading 10 wunits for

1 ten, or vice-versa. At this stage, children are confident that quantities are
equivalent if trades have $een ten-for-one, and they do not spontaneously recount.
Our computational models specify this level of understanding as a Trade schema, which

develops as a special case of Part/Whele.

CONCLUSION
The cumulating evidence on children's number representation points to a substantial’
elaboration that takes place during the early school years, at least partly as a -
direct result of learning about the formal notational system. The Part/Whole schema
appears to be central to this development. This schema has been shown to lie at
the base of the ability to perform story problems, open-sentence problems, and
addition and subtraction with regrouping. It also plays a part in performance on
Piagetian tasks--such as class inclusior--that are recognized as important to an
operational concept of number. It seems probable that children's mathematical
development could be aided by explicit imstructional attention to the schema and

its applications.
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THE EMERGENCE OF ALGORITHMIC PROBLEM SOLVING BEHAVIOR

James M. ioser
University of Wisconsin-Madison
iMadison, Wisconsin 53706 USA

Le Mathematics Work Group du Centre de Recherche et Développement:
a 1'Université de Wisconsin (USA) examine le développement des
conceptions et habiletés d'addition et soustraction chez enfants
en école élémentaire. Une étude de trois ans, commencé en sepi-
embre 1978, a été utilise a assembler information sur les strat-
egies employées par ces enfants lorsqu’'ils résolvent problémes
arithmetiques. Cet article décrit processus algorithmiques
qu'éleves employent & résoudre une variété des problémes verbals
d'addition et soustraction. Une moitié des problemes ewige
regrouping (retenir en addition; ? en soustraction) tandi que
L'autre moitié ne l'exige pas.

Quatre entrevues individuelles ont lieu, la premidre en janvier
1980 quand les presque 100 sujets etatent dans la classe seconds
(écoles américaine; age: 7 1/2 ans). Les autres étaient donnée
en mat 1980, septembre 1980 et janvier 198l. Les résultats
indiquent 1'émergence de stratégies algorithmiques est pareil &
L'instruction de la classe en 1'usage d'algorithms de calcul.
L'utilisation d'algorithms est indépendante de type de probléme
et operation de mathématiques sauf le probléme de Joignant avec
un ajoutant (?) absent. (voir Vergnaud, 1978; type ETE, , T posi-
tif)

The primary focus of the research program of the Mathematics Work Group of the
Wisconsin Research and Development Center is the study of the development of
addition and subtraction concepts and skills in young children. The m&jor
vehicle for this investigation is a three-year longitudinal study begun in
September 1978 with first grade children with an average age of 6 1/2 years.
The final data collection point for the study took place in January 1961. A
number of variables are under investigation including problem solving behaviors
on a specific set of verbal problems, selected cognitive skills, performance on
written arithmetic tasks, and the nature of classroom interactions observed in
the classrooms of the subjects in question. Details of the study and come
earlier results are contained in previous papers presented to the PME
(Carpenter, 1980; Carpenter & iloser, 1979; Moser, 1980). In this paper only
children's performance on problem solving tasks will be considered. A further
restriction is the Timitation to problems involving addition and subtraction

of two-digit numbers.

BACKGROUND INFORMAT ION

Subjects. Subjects for the study consist of about 100 children from six
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classroons in two elementary schools that all draw from predominantly white
middle to upper-middle class neighborhoods. A1l received instruction from the
Developing Mathematical Processes (DMP) program, an activity oriented instruc-
tional program developed at the University of Wisconsin. DMP has a strong
emphasis on problem solving and during the time period reported here, subjects
were instructed in the analysis and solution of verbal problems of the type
used in this study.

Data to be reported were taken from four individually administered problem
solving interviews that were given in January 1980, May 1980, September 1980,
and January 1981. At the time of the first interview, all subjects were in
the middle of second grade; thus, by the time of the final interview, all were
in the middle of third grade. At the time of the first interview, no formal
instruction in the use of computational algorithms had been given. Between
the first and second interview, introduction to addition and subtraction with-
out regrouping and addition with regrouping was taught. Summer holidays
occurred between the second and third interview.  Between the third and fourth
interview, the regrouping algorithm for subtraction had been taught.

Problem solving interviews. Each interview includes six problem types, two

with an additive structure and four with a subtractive structure. Represent-
ative problems and the order in which they are given to a child are presented
in Table 1.

Each interview consisted of two parts, the first with the six problems contain-
ing two-digit numbers for which no regrouping (borrowing or carrying) is re-
quired to compute the answer [hereafter described as the "d" problems] and the
second part with six problems containing two-digit numbers for which regrouping
is required [hereafter described as the "e" problems]. Six different number
triples were used for each part. They are listed in Table 2. The assignment
of number triples to problem types involved a six-by-six Latin square design
resulting in six sets of six problem tasks which were uniformly and randomly
distributed across subjects. Problem wording was systematically changed, while
retaining the essential semantic structure. The interviews were conducted in

a quiet room separated from the child's actual classroom. The child was pre-
sented with paper and pencil, and a large set of plastic cubes. Problems were
read to the children by the interviewer and repeated as necessary.
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Table 1
Representative Addition and Subtraction Verbal Problems
1. Joining Jacques had 12 pennies. His father gave him 15 more
(Addition) pennies. How many pennies did Jacques have altogzther?
2. Separating Marie had 29 candies. She gave 18 of them to Collette.
(Subtraction)

How many candies did Marie have left?

3. Part-Partjwhole There are 31 children in the classroom. Nineteen of
(Subtraction) them are girls and the rest are boys. How many boys

are in the classroom?

4. Part-Part-Whole Jean-Paul has 17 red marbles. He also has 19 blu2 mar-

(Addition) bles. How many marbles does Jean-Paul have altogether?
5. Comparison Chantal has 16 tickets. Her friend Michel has 29 tickets.
(Subtraction) How many more tickets does Michel have than Chantal?
6. Joiqing, mis- Diane has 23 strawberries. How many more strawberries
(Saéggagggggg does she have to put with them so she has 37 strawberries
altogether?
fable 2
Number Triples Used in Verbal Problems
"d" Problems "e" Problems
12,15,17 12,16,28 12,19,31  13,18,31
11,18,29 13,16,29 14,18,32 16,17,33
14,21,35 14,23,37 15,19,34  17,19,36
RESULTS

One of the major questions of interest in this particular set of problen solv-
ing tasks was whether subjects would exhibit similar types of solution strate-
gies as they had used with smaller number problems (sums between 5 and 16 and
all addends being one-digit numbers). For those problems, a great deal of
direct modeling and use of a variety of forward and backward counting techniques
had been observed. Or would children resort to algorithmic behavior? A child
was coded as using an algorithm if he/she gave direct written or verbal evidence
that place-value consideration had been made and that computations were made
separately for the ones' and tens' places. We did not record how the actual
computation within a particular place was carried out. If, for example, the
problem involved the sum }g, we did not attempt to determine how the child
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would get the sum of 5 + 9, either by a known or derived fact, or by some
counting method. Table 3 preseﬁts the results for the four interviews for

all six problem types and for both number sizes. Both the percentage of
children who used an algorithmic behavior and the percentage of correct answers
from among the algorithm users are given.

Table 3
Percentage of Children Using Algorithmic Behavior

Interview

1 2 3 4
Problem (Jan. 80) (May 80) (Sept. 80) (Jan. 81)
type d e d e d e d e
, Joining 24 25 61 69 67 60 90 92
(Addition) (20) (21) (58) (53) (56) (45) (88) (86)
o Separating 19 14 65 58 58 40 87 88
(Subtraction) (17) (3) (51) (2) (54) (3) (85) (69)
Part-Part-Whole 18 14 64 52 48 32 89 80
3 (subtraction) (15) (2 (51) (2) (39) (2)  (86) (59)
Part-Part-Whote 32 24 70 72 66 61 92 95
4 (nddition) (31) (19) (65) (60) (62) (44) (87) (85)
Comparison 16 14 50 45 41 27 78 81
5 (Subtraction) - (14) (2) (38) (3) (35) (3)  (73) (65)
Joining, missing addend 18 10 39 35 28 26 59 54
6 (subtraction) (17) (2) (27) (3) (23) (3)  (54) (40)
Actual number of subjects 96 96 93 93

(Numbers in parentheses represent percentage of total subjects who used algo-
rithmic behavior who also solved the problem correctly.)

The immediate impression is that the increase in frequency and correctness of
use of algorithmic behavior mirrors instruction in computational algorithms.
Paper-and-pencil arithmetic skills tests administered independently of the
problem sb]ving interviews give exactly the same results in terms of ability
to use a computational algorithm correctly. The great majority of errors made
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with the regrouping subtraction algorithm in the early stages prior to formal

instruction with that algorithm were of the type well know to teachers, which

is exemplified by _ ?; » where in the ones' place the child follows th: rule of
vy

"subtract the smaller from the Targer" without any regard to the meaning of

the entire number.

Of more interest than simple correctness is the different pattern of use of
algorithmic  thinking for problem 6, the Joining, missing addend task. A
reasonable explanation for the much lower incidence of algorithmic solution

is the semantic structure of the problem. Using the specific example given
earlier, the wording strongly suggests that the best Titeral translation of
that problem is the number sentence 23 + [ ] = 37. However, of those chil-
ren who elected to use symbolic representations almost all chose to use the
vertical computational form rather than horizontal sentences. The vertical
counterpart to the sentence written above is an awkward one, totally unfamiiiar
to children who had only seen the traditional form. It would appear that the
children who realized this fact decided to not proceed in an algoritmmic
fashion, even though their behavior on other subtraction problems indicated
that they could correctly use the subtraction algorithm. The most frequently
used alternative strategy for this sixth task was Counting Up.

Another facet of the study was to investigate the relationship between the use
of written symbolic representations and the use of algorithmic solution pro-
cesses. If a sentence, either horizontal or vertical, was written, it was
almost always the case that the sentence was written before the solution process
was initiated. This is contrary to the results of an earlier pilot study
(Carpenter, Moser, & Hiebert, 1981) where, when smaller numbers were involved,
the children wrote the sentence after solving. In this latter study, however,
the experimenter directed the child to write a sentence. In the present study,
using written symbolism was at the discretion of the child. There was a very
large number of children who did not write sentences, but still solved
algorithmically. This was especially true with the "d" problems. In fact, at
the time of the fourth interview, almost half of the subjects did not write a
sentence for the addition problems without regrouping. The success rate for
algorithmic students who did not write sentences was very high, due to the fact
that these were probably the brighter students who are Tikely to solve correctly
anyway.
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While much of the discussion has dealt with the use of algorithmic solving,
it 1is appropriate to briefly characterize the behavior of those children who
did not use algorithms. The results are essentially similar to those we have
gathered using the same subjects, but with the smaller sized number problems.
Problem structure appears to be the most powerful factor in determining the
choice of strategy. Subtractive strategies seem to predominate for the
Separating problem while additive strategies are most evident for the Joining,
missing addend problem. Again, the only place where Matching appears is with
the Comparison problem. As noted earlier, problem 6, the Joining, missing
addend was the task that had the least number of algorithmic solutions. As

a result, it was also the problem with the greatest frequency of so-called
"Heuristic" (Carpenter, 1980) strategies. I take this as further evidence
that children are capable of inventive behavior (Moser, 1980).
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MATITRISE ET DISPONIBILITE DU NOMBRE
CHEZ L'ENFANT DE 7-8 ANS

AUDIGIER M.N., INRP Paris
CHARTIER AM., EN. de Versailles

Equipe de Recherche Mathématique LN.R.P.

The enquiry and ressarch sn the children's behavisur
in the “eyecls préparateire”{!) began in 1979 and was cene
ductmd by the Mathematiec research unit {(primary level)cef
the Inastitut Natiensl de Resherche Pédagegique (I.N.R.P,).
The results are new being analysed,

The gensrel tepic of this article is te present, on the
one hand, the seepe ef the inquiry, en the ether hand, the
rasulis cennected te “number®,

This inquiriy was carrisd sut in 66 classes cevering a teo-
tal of 1459 pupils. Theses classes were selected in erder
to constituts a representative sawple. 990 children were
chosen Teor an individual testing sessien te ensure a sur-
vey of their selving preblems strategies. The whele sample
wire given written sxercices,

In the exsrcices eencerning the counting ef sets and after-
wards of numbers we ceuld expect a better achievement when
the exereice ceonsists of small numbers and a weaker achipe
vement when it comprises large enes.

The tendancy is glebally cenfirmed but the fluctuatisns

in the results lead te take inte account variables speci-
fic te each situation which characterize the real corplex—
ity of the tesk. Specially, it is necesccory *o cet op. o
the exercices sr items in which children are explicitly
asked te count frem the sthers,

B

(1) "Cycle préparateire™: lst ysar in a primary schosl
{The year they lsarn hew te read, ts ceunt, etc.),
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L'enquéte "Evaluation des comportements des él&ves au Cycle
Préparatoire” mise en place en 1979 par 1'Unité de Recherche ma-—
thénatique Elémentaire de 1'I.N.R.P., est actuellement en cours
d'analyse. L'objet de cette communication est de présenter dans

le cadre de l'enquéte,quelques résultats relatifs au nombre.

PRESENTATION DE L'ENQUETE
Cette enquéte a &té réalisée auprds de 1459 élaves répartis dans
66 classes , choisis de fagon dconstituer un échantillon représen-
tatif.L'objet de 1’ enquéte &tait d'évaluer non seulement quelles
connaissances mathématiques maitrisent les éléves, mais encore
quand et comment elles sont disponibles.Celd nous a conduit &
utiliser deux types d'épreuves:
—-pour tout 1'échantillon, des épreuves collectives proches de
situations scolaires, &valuables en termes de réussite ou d'échec.
- -pour 990 enfants, des passations individuelles permettant une des-
crbtion des actions, une observation des "stratégies", un recueil
retenu des situ@tions &loignées desésituatignsxscoldires, poﬁr voir
comment des savoirs ou des savoir-faire sont m’g;lisés dans des
situations ol l'enseignant n'a pas appris a 1'éléve & les utiliser.

Description des épreuves individuelles:

D'une part, ellesenvisagent le nombre sous ses deux aspects:
-aspect cardinal, étudié dans des situations ol le dénombre~
ment est tantdt demandé explicitement, tantdt une procédure efficace
mais non explicitement demandée.
-aspect ordinal,dans des situations sollicitant des activités
de comparaison de nombres (mise en ordre, recherche du prédécesseur
et du successeur).lx :

D'autre part,dans les deux cas nous avons cherché a évaluer les

problé&mes posés par la numération orale (connaissance et. usage de
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la comptine) et 3 comparerles performances en numération orale et
en numération écrite.

Epreuve 1 : LES JETONS

Un tas de 47 jetons est présenté & l'enfant; on lui demande de
les compter, de dire puis d'é@crire le ré&sultat; mémes consignes
avec un deuxiéme tas de 8 ‘jetons; On demande combien il y a de
jetons en tout.

Epreuve 2 : LE QUADRILLAGE

On présentgun quadrillage 6x6 dont certaines cases (21) sont
remplies par un jeton; d'autres, non. On demande 3 1'enfant d'al-
ler chercher"juste ce qu'il faut de jetons" (15) pour compléter
le guadrillage.

Epreuve 3 : LES ALLUMETTES

On présente deux séries d'allumettes,l'une ol 8 allumettes font
une ligne brisée,l'autre disposée sous la premidre, ol7 allumettes
forment une file plus longue; on demande "Y a-t-il plus d'allumet-
tes 13 gou plus d'allumettes ici, ou autant d'allumettes 13 que

14 ?". On demande 3 l'enfant de justifier sa réponse.

Epreuve 4 : LE LIVRE

Les pages 41, 69, 92 et 125 ont &té Otées d'un livre. On deman-—
de & l'enfant 1° de les ranger en ordre sur la table
2° de les remettre 3 leur place dans le livre
3° de trouver pour chague page quel est le "numéro"

de la page précédente

4° d'écrire ce numéro

PRESENTATION DE QUELQUES RESULTATS

Epreuve 1l: Les jetons

-dénombrement: la procédure employée par presque tous les enfants
(environ 90%) est de déplacer les jetons un & un en récitant la

comptine,
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Résultats Dénombrement tas de 47 tas de 8
correct 43 93
(n=495) )
erreur de 1 16 3
autres cas 41 4

-nombre oral, nombre &crit: pour le tas de 47 jetons, écrivent
correctement le nombre annoncé oralement ;!

-97% de ceux qui ont dénombré correctement

~94% de ceux qui ont fait une erreur d'une unité

-50% de ceux qui ont fait une erreur de plus de 3 unités

—addition:procédure employée et correccion de la réponse

correct al prés|incorrect]
calcul mental explicite . 6 2
continue la comptine 22 8
recompte tous les jetons 20 22
pas de dénombrement apparent 5 12
autres cas - 3
Total (n=495) 53% 47%

Epreuve 2: Le Quadrillage , procédure employée et performance

correct & 1 présj|incorrect]
prend un seul jeton - 12
pas de comptage explicite 13 26
compte explicitement cases ou jeton 16 9
compte explicitement cases et jetonj 20 4
Total (n=495) 49% 51%

Epreuve 3: Les Allumettes,procédure employée et performance

correct ) incorrect
a compté ou dit avoir compté 37 . 9
évogue le dépassement - 29
~autres cas -5 20
Total (n=495) 423 ' 58%
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Epreuve 4: Le Livre

~liaison entre les deux premidres parties de 1l'épreuve

ement des 4pages sur la table correct incorrect
placement correct dans le 1ivre
O page 4 30
1 ou 2 pages 5 10
3 pages 6 10
les 4 pages 24 11
Total ( n=495) 39% 61%

~liaison entre la troisiéme et la guatridme partie de l'épreuve
Nous présentons pour la seule page 69 (bien ou mal placée) ,les
résultats dla consigne:" Dis quel est le nombre gqui vient avant"

" Ecris le nombre qui vient avant”

page bien placée mal placée

oral et écrit corrects 69 33
oral incorrect, é&crit corvect 24 28
oral correct, &crit incorrect - -

Tout incorrect ou rien 7 39

Total 100 (n=263) 100 {n=232)

Quelques femarques suggérées par ces résultats

Dans les épreuves citées ci-dessus,relatives pour les unes au
dénombrement de collections et pour les autres & la suite des
nombres,on pourrait s'attendre 3 ce gue la taille des nombres mis
en jeu soit déterminante pour la réussite.Cette tendance est glo-
balement vérifide mais les fluctuations observées contraingnent
3 formuler d'autres hypothé&ses: en dehors aux variables liées aux
onnaissances mathématiques, des variables spécifiques a chaqgue
sitution interviennent pour déterminer la complexité& de la téache
et modifier les résultats attendus.

Ainsi & l'épreuve qguadrillage, ol il suffisait de compter 7 et 8

{ou 15) pour réussir seulement 34% des enfants réussissent alors
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que 93% d'entre eux savent dénombrer un tas de 8 jetons et 43%

un tas de 47 jetons. Ainsi la disponibilité de la comptine,méme
trés bien maitrisée par les enfants, reste tréds dépendante de la
situation dans laquelle elle est utile; si, outre le dénombrement
1'enfant doit &galement accomplir une autre tédche (manipulation,
déplacement) ceci complique le probléme au point de rendre le comp
comptage incorrect ou indisponible pour une grande partie d'entre
eux; le fait, par ailleurs que le comptage ne soit pas explicite-
ment sollicité&, entraine les enfants & recourir a d'autres pro-
cédures,la plupart du temps inefficaces. Ainsi,l'&chec relatif
des enfants dans des situations simples mais éloignées des situa-
tions familiéres de 1'apprentissage, nous améne & souligner la
distinction qu'il convient de faire entre maitrise et disponibi-
1ité du Nombre et de la numération.

Enfin, il nous parait nécessaire de souligner également les
‘difficultés spécifiques liées & la numération orale;cette diffi-
culté est généralement occultée par les épreuves du type "papier-—
crayon” ou dans des épreuves seulement orales. D'aprés l'enquéte,
(6preave du Livre en particulier) le travail sur la numération
écrite pose aux enfants moins de difficultés que celui sur la

numération orale.




Subtracting fractions with different denominators
Leen Streefland

OW & OC, utrecht, State University, The Netherlands
REsumé

cet article est un résumé de recherche développante telle qu'elle a été
fait dans le c;dre du développement de 1l'enseignement mathématigque de IOWO.
Au cours de cette recherche on a construit un cours partiel ol les €léves
suivaient un chemin d'algorithmisation graduelle qui devait les conduire
sirement mais sans les presser & l'algorithme.de la soustyaction (et éven-
tuellement aussi & celui de l'addition) des fractions & dénominateurs dif-
ferents. Cfest une question centrale si.le principe de la schématisation
graduelle ou progressive s'applique aussi & l'algorithmisation graduelle
(voir Freudenthal, 1981). Cela se montrerait dans le comportement de solu-
tion des éléves participant & cette recherche:

- progression de la schématisation, et

- 1'application de raccourcis,

parmi d'autres au moyen de propriétés des transformations laissant inva-
riantes les raisons des magnitudes.

Preliminany instruction

The research to be reported regards the final step in mathematising the
comparison of distribution situations. It strongly depends on the pre-
liminary instruction on fractions which the students had received. A paper
containing a sketch of this instruction can be obtained from the author's
office (OW & OC, Tiberdreef 4, 3561 GG Utrecht, The Netherlands), or per-
sonally at the meeting.

The developing hesearch - some results

The subjects

The subjects were all pupils of a fourth grade (20 pupils) and a fifth grade
(24 pupils), both of them classes of a so-called stimulation' school, that is
a school getting an extra teacher on the ground ofwnggzzzinggzg;tiOﬂ

(underprivileged pupils). We chose for this kind of schools since it may be

expected that the difficulties into which many primary school pupils tra-
ditionally get with fractions, will show up most clearly with this population.
In the description of the results we will pay the main attention to fifth
graders because the group fourth graders dropped out rather early. The main
reason was insufficient acquaintance with ratio tables when proportion

problems had to be sclved.



2.2 ‘First start
Since one of the objectives of the investigation was retention of insight
in the course of the designed instruction, we started with an accelerated.
run through some of the learning processes of the p;elipingry instruction.
These were:
Distribution situations
Exploring distribution situations and performing distributions with a view
on the twin meaning of fraction, which both aims at the distribution situa-
tion and at its result - contriving new distribution situations of the result
is given and storage of the numerical data in a table. Bkhmple: everybody

3 . : : . .
gets Z'of a pancake. Distribution situations:

Pancakes 316 |9 (12

Children 418 |12 16

It is secretly assumed that the table is 'finisheé' as soon as it contains
about ten situations. Such open tasks which elicit diverging solutions how-
ever, provoke deviating from this convention. The algorithmic activity
invites continuation, even beyond the task set. It is an advantage of this
approach that it does justice to the childrens' inclination to algorith-
mising and their need of building personal algorithms (cp. Carpenter, 1981;
Hart, 1981). It is or can be important disadvantage that the intended
algorithmic rote can gravely be disturbed by noticing of, and yielding to,
neighboring though irrelevent regularities. This happened particularly in

the beginhing of the investigation. Example:

Pancakes 31619 |12]16{20]26
Children ‘4 | 812]16]20|26 32
+ o4 4 N

We do not report the results of this activity because it was only a repetition.

e

Fitting a 'new' situation
Example: 16 pancakes are ordered for 24 children. Does this situation fit
into the previous one? The attention of almost all pupils is directed on

the fitting into the previously constructed table:

Pancakes 316)9 (12j15/18

Children 4 1 8l12116}120124
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The situation that is to be fitted in is immediatly compared with:
\

!

In some cases the table was extended to facilitate the comparison of:
' x2

' T
{Pl |9‘ lxs P 16
- with
lcl I12I "24 c 24 | ‘
~" .

. x2 -

One girl only hit on the idea of reasoning backwards from the new situation

with finally the remark that she had stopped because 1% child was impossible:

.
Pancakes 12141816 }
PR |
Children 1—;— 306 |12]24 "

v 1

Aérthe teacher asked what was éheythe share of one child, she arrived at:
' r
2|
3 .

¢ l 1 ‘ with the conclusion that this was less than %of a pancake.

Contriving 'intermediate values’

For 'each child gets %»of a pancake' the following table was made:

Pancakes 3 6 9

W

1 1
5%

I children id213la slel718|ol10f11]12}
|

The pupils of the fourth grade now lag considerably behind these af the
fifth. Though most of them know to deal with things, there are serious
shortcomings. The most striking is that now 14 fourthgraders among 20 fall
back to drawing diagrammes to recall the distribution situations as a sup-
port in filling out the table. Better than half of the fourthgraders were

satisfied with a few distributions:

. t
34,1].1 1
Pancakes vy 15 27 3 43 6
Children 112i3}415{6}718

Almost alle fifthgraders got the following solution:

(B



X

(K

EEERIR 3011 31l 1 30 1
Pancakes 1312513 133195 |55 o [3]75 185 9 |9 jrojj1ag 12
Children 1121314 ls/6]71800l10i11l1213l14]15]16]

Two pupils made an even more extended table, while three were satisfied

with a more restricted one.

Interim balance

This justified the conclusion that the fourthgraders fell short in carrying
out the tasks set because they lacked experience in working with ratio tables
and in algorithmising ratios. A decisive part is played by ratio conserving
mappings of domains of magnitudes (Kirsch, 1969; Freudenthal, 1978), whose
properties, though partly spontaneously applied by the pupils had insuf-
ficiently been made conscious in previous learning processes. It was then

decided to continue the investigation with te fifth graders only.

Continuation of the investigation with the fifth graders

Situations to be fitted

When distribution situations were compared, the immediately comparable ones
caught the eye. The pupils discovered that comparing (and making up the
difference) was easy in the case of an equal number of children. This fact
was verbalised. Their attention was shifted to the more tedious cases.

When gvana g-were to be compared, the teacher suggested they were equal.
When they attempted to prove this wrong, a few pupils proceeded by trans—
forming the situation into an equivalent one:

3 )2

while everybody grasped that:

i
e lels]s

was absurd as a distribution situation. The task set to compare the situa-
tions, however was now simplified (an equal number of pancakes) which
justifies the conclusion that é—is more than %’.Only the diffe?ence could
not yet be determined. As a matter of fact many pupils easily picked up the
idea of transforming the situation in order to simplify the comparison. Some
of such comparison tasks were processed on paper. The observation team
(three people) noticed that a small number of pupils worked rather syste-
matically towards easily comparable situations. With a view on the sequel
one of them was given the opportunity to explain'his method: 'I simply count

through until the number of children is equal', he laconically commented.

2 4 6 8 10 He did not continue the table but when
%: asked why he did not, he answered: '15
, 3 1' 6 I 9 [ 12 llS ' is also met in the other table':




1

{

4 a | 8 f12 |
5° !
5 {1015 ||

From the written material it afterwards appeared that about 60% of the
pupils had worked in a more or less similar way, either spontaneously or
by imitation. What strikes in this solution is the applied shortcut. There
is no unconcerned production of distribution situations followed by com-
paring. On the contrary. There is a permanent reflexion on the production
of distribution situations, there are intermediate checksland at the first
possible opportunity the production is stopped, the strategy is changed
to work from the new situation toward the desired one. If there were di-
vergences they regarded:
- no determination of the difference (two pupils);
- restriction to qualitative statements on order (three pupils);
- no application of the:shortcut, which means producing more

distribution situations than strictly needed (three pupils);

— errors in determining the difference (two pupils).

Sequel

In the sequel we pay attention mainly to the progression in the process
of algorithmisation by means of the table method. Besides distribution
situations other applications were processed. By a permanent switch to
new applications the systematic approach, the retention of which is aimed
at, is detached from its band with reality and abstracted to become the
final generally applicable algorithm for subtracting fractions with different
‘denominators. We give the results of two examples, which were dealt with
as late as two weeks after the previous experiences.

Example 1: comparing %~and gvon the basis of real distribution situations.
More than half of the 24 pupils has become familiar with the systematics
of the approach. A few pupils are eager to streamline their methods, as

appears from the reports below and is witnessed by the applied shortcuts.

Examples of work

Sylvia's work:

‘Sylvia discovered afterwards that

in the table of %Aone could even
skip three terms. So she made new
tables, starting with that for g—and

applying the shortcut in that of-g— .
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Some other pupils had the same solution with the difference that the

redundant situations are struck out:
i Peter—Jan's work:

Jacqueline's work: : " tafel o B ta(d '

4. - » ' b3 | "9%

0 n\mdex & meer
3 12 'y %;6’
5 ‘o' { .

Tafel

- ' N
/ . X i ‘ ‘ isliplag 2y - -
AR | 3 NTIETE 3 £v = v I

5 s \5yporz |
Y o
The same shortcut, though Jacqueline

cancels an extra term and uses the
same mapping property as Sylvia

This work is illustrative for the
group in general. Most of the

pupils proceed this way, that is
automatically redundant solutions

R

Bert's woik:

3 yé y S | Extending both tables

| beyond the need, followed

. 2 _36 '
S ] 1014 1S ) 2 RERIE Tos o fisfy ek
d /; / 29 /35//47‘?//55/4;/ 2

Example 2: comparing %-and §~in an application (mixtures), (cp. Noelting,
1980, Noelting and Gagné, 1980). Problem: somebody makes coffee with a
machine. One time: three spoons of coffee for four cups. Another time: four
spoons for five cups. which coffee is stronger and what is the difference?
With a view on the shortcut and the progression in schematising the solu-

tions found by the pupils can be characterised as follows.

Observed solutions
1 Making tables for both situations and stoppiﬁg at the first that can

,easily be compared to the other:

Spoons- 3169 ]|12]15 Spoons 4 |8 l12]16

l’_Cups‘ 4181216120 ana | Cups 5 [10]15{20
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Seven pupils did it this way.

The same but by comparing the situations (three pupils) :

First makiné tables of a size that is judged sufficient and then passing
to comparison and determination of the difference. Among the six pupils

who proceeded this way there were two who worked by continued doubling,

which just excludes the appropriate situations: 4
Spoons 13 ]6 12124 148 Spoons 4 {81216
and
“Cups 4| 8lie]32]es Cups . 5 j10{15}20

One pupil filled out the tables up to:

and respectively

a - 2
and arrived at a strength difference of Za~spoon per cup.
4 Constructing tables for both ratios up to the first easily comparable
situations (thus as sub 1) but with shortcuts under way. There were

six pupils who approached it this way. Four of them did so orly one

table, namely:
Spcons 418116
Cups 5 110120
A
while the two remaining pupils did it in both tables:
Spoons 36 f12]15] Spoons 418 |16
and -
‘Cups -~ - 418 116]20 Cups . {5 |10}20
N A

It appears that pupils of this group gradually come to grips with the
systematics that will eventually be fixed in the algorithm of subtracting

(and adding) of fractions with different denominators.

Conclusion

Algorithmisation was interpreted in the sketched developing research as a
process that delays fixing the final algorithm. In the present case, sub-
traéting of fractions with different denominators the process was charac-

terised by:
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- progression in schematising;

- performing shortcu;s.

The progression in schematising expressed itself above all in the way the
tables were simplified by the pupils and adapted to the needs of, the chosén
solving path. The aspect of performing shortcuts is'sufkiclently illustrated
by our examples. The results achieved are always considered in relation to .
the partial céurse ih state of development. It was the objective to inves-
tigate how a learning process of a larger group could take place within a
margin of differentiation. By the last examples we gave, the process of
algorithmisation is not yet completed. The investigationyis open ended. It
should be stressed that the investigation took place in a real instruction
situation. Mathematics is being considered as a human activity. So children's
need to build their own algorithms can be met. Learning algorithms takes

place gradually rather than algorithmically.
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LE CERCLE

Michéle ARTIGUE - IREM Paris-Sud - Université Paris VII

Jacqueline ROBINET ~ IREM Paris-Sud - Université Paris VII

The Circle
We have chosen the concept of the circle for children from 8
to 11 years old. In the course of an experiment we proposed
the widest possible range of problems and situations then we
proceeded to the theoretical study of the concept of the cir—
cle in order to deteriine a number of definition which gave
us the opportunity to study the procedures used by the child-
ren.

We then built up a didactical sequence consisting of six dif-
ferent situations. The purpose of this sequence was designed
to induce the emergence of concept of the circle. Every si-
tuation is analysed "a priori” the analysis is then compared
to the children's procedur:zs.

The results of these comparisons form basis of studies from
whieh we draw certain conclusions. After the sequence, each
child is interviewed ‘ndividually.

We then compare the test results with the expected knowledge
acquired in the course of the didactical experiment. The
didactical sequence was carried in two classes simultaneously.
This enables the comparison between the attitude and proce-
dure of each teacher in similar situations. Finally we stu-
dies with one of the classes the language used by the child-
ven and the teacher and we tried to draw conclusions concer—
ning strategy of the veacher.

ORIGINES DE LA RECHERCHE

La géométrie dans 1'enseignemeat &lémentaire a un domaine assez restreint ;
elle se borne & deux activités :

- 1'étude des formes géométriques simples (carré, rectangle, cercle
etc.. )

-~ 1'8tude de transformations (symétries, rotations, etc....)
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Nous avoﬁs choisi de nous intéresser 3 1'8tude des formes géométriques. Dans
presque tous les manuels d'enseignement, ces &tudes sont des legons de voca-
bulaire, dans lesquelles les objets g@ométriques sont nommés et montr&s. Nous
avons pensé qu'il &tait possible d"aller plus loin qu'une simple monstra-
tion ; nous avons essayé devle faire 3 propos du cercle. Ce n'est pas au ha-
sard que nous-avons choisi le cercle, mais parce que c'est la figure qui don-
ne la plus grande illusion de simplicité

- elle est pérceptivement reconnue trds tot.

- elle est facilement tracée. En effet, le compas est d'un usage trés

aisé.

PRE-EXPERIMENTATION

Avant de nous lancer dans la fabrication d'une séquence-didactique & propos
du cercle, nous avons essayé de recenser les différentes conceptions du cer—
cle que les enfants de 1'&cole &lémentaire sont capables de mettre en oeuvre.
Pour cela, nous avons fourni' & des enfants de 8 & 11 ans des situations pro—
blémes trés variées : reconnaissancé de formes, messages décrivant des formes
géométriques, trajectoires circulaires (coins de porte, pendule), positions
relatives de disques, partages de disques en secteurs isométriques, homothétie
de cercles etc..:.

Nous avons noté et &tudié les différentes procédures utilisées par les en-—
fants. Il nous a paru alors indispensable d'edsayer de recenser théorique-
ment diverses conceptions possibles du cercle. Cela nous a aidé a rattacher
avec une plus grande certitude telle procédure 2 telle ou telle conception du
cercle. Pour cela nous n'avons pas fait une recherche exhaustive, mais nous
avons trouvé des définitioms qui permettent de décrire assez bien les concep—

tions des enfants.

EXPERIMENTATION

Nous avons constitué une séquence didactique formée de six situations. Cha-
cune de ces situations est construite de fagon a favoriser 1'émergence de
telle ou telle des conceptions répertoriées lors de la pré-expérimentation. De
plus, les difficultés technolcgiQues lides a la situation sont un des facteurs
qui nous permettent de privilégier 1'émergence d'une conception donnée. Ces
situations sont présentées aux enfants ; on &tudie leurs procédures et on les
compare & 1'analyse qui en a été faite 3 priori. En particulier, nous décri-

vons en détail ume situation pour laquelle il ne s'est pas passé exactement
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ce qui était prévu par l'analyse & priori, et nous tentons d'en donmer une ex—

plication.

Chaque situation a &t& proposée dans deux classes de CE2 (enfants de 8 - 9
ans) ; elles ont été expliquées de la méme fagon aux deux maltresses qui
avaient les mémes contraintes :

- les situations devaient €tre présentées exactement comme nous les avions
crées.

- chaque séance devait débuter par un rappel des séances précédentes et
devait se terminer par une phase collective de synth&se. Pour le reste, choix
du vocabulaire, déroulement de la classe, prises de décision, choix des no-

tions & renforcer etc...., elles 8taient libres de s'organiser & leur gré.

. Trois situations sont destin&es 3 favoriser plus ou moins 1'utilisation de
la constance de la courbure, cela en concurrence awvec d'autres conceptions
(utilisation de l'invariance du rayon, par exemple). I1 s'agit de :

~ reconstitution de disques découpés le long de rayons — construction
d'un secteur angulaire manquant & 1l'un des disques.

- reconstitution de couronnes découpées le long de rayons — construction
d'un secteur angulaire manquant & 1'une des couronnes.

- reconstitution de cercles & 1'aide de quatorze arcs de cercles prove-
nant de quatre cercles différents.
. Les enfants doivent construire le centre d'un cercle donné.
. Les enfants doivent prévoir la trajectoire du coin d'une porte.
. Les enfants doivent dessiner un cercle et envoyer un message téléphonique

pour qu'un autre puisse dessiner un cercle de méme taille.

L'analyse est faite situation par situation. Nous étudions les conduites et
les procédures des enfants et nous les comparons a nos prévisions. Dans la
situation de la trajectoire du coin de la porte, les réactions des enfants
différent assez sensiblement de ce qui &était prévu. D'une part nous en ana-
lysons les raisons, d'autre part nous étudions les prises de décision de cha-
cune des maitresses placées devant un imprévu. Nous avons essayé de cerner
1'effet d'apprentissage de la séquence didactique. Pour cela nous avons cons-
truit six tests que chaque enfant a passé en entretien individuel. Nous avons
dépouillé ces tests et comparé les résultats avec les performances des enfants
lors de la séquence. Nous avons analysé soigneusement les phases de rappel au

début de chaque séance. En effet, il nous a semblé, qu'il &tait possible de
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trouver dans ce discours, des indices qui nous permettent de cerner les notions
que la maTtresse a l'intention de faire retenir aux enfants. Nous avons essayé
de rapprocher ces notions des notions bien assimilées c'est-3-dire ayant donné
des résultats positifs aux tests. Nous avons aussi le matériel qui nous permet-
trait d'étudier le rdle particulier joué par certains enfants lors du déroule-

ment de la séquence, mais nous n'avons pas encore réalisé cette &tude.
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KNOWLEDGE, ABILITIES, AND PERFORMANCE IN LEARNING
SUBJECT MATTER FROM ARITHMETIC AND GEOMETRY.
Ulrich Grommelt, University of Osnabriick,

Fed. Rep. of Germany

Les processus d'apprendre deux matiéres de
L'arithmétique et de la géométrie g la Se

classe sont analysés par une équipe de récherche
d l'université d'Osnabriick. On peut supposer que
le succés en apprendre une matiére mathématique
est au moins dépendant (1) des connaissances
acquises auparavant, (2) des aptitudes intellec~
tuelles et mathématiques, (3) de l'exécution
actuelle d'un probléme mathématique. Les struc-
tures des deux matidres et les natures des con-
naissances présumées aux éléves de la 5e classe
sont trés différentes (entre les matiéres). Les
dimensions d'aptitude obtenues psychométriquement
décrivent les conditions individuelles des proces-—
sus d'apprendre seulement en gros. C'est pourquot
i1l est proposé d'analyser des processus cognitifs
minutieusement d la base des théories sur le
résoudre des problémes. Cette analyse peut produire
des connaissances sur le développment différentiel
des concepts mathématiques aux éléves. Un plan
d'une récherche empirique est présenté brévement.

hs part of a research program about teaching and learning (sup-
ported by Deutsche Forschungsgemeinschaft) a research group at
the University of Osnabriick investigates learning processes of
5th grade pupils in mathematics' instruction. Two different
topics from arithmetic and geometry (place value systems, axial
symmetry) have been selected. We hope toc get some insight into
children's mathematical thinking and concept formation in these
main fields of 5th grade mathematics. Common aspects and diffe-
rences in learning the mentioned topics are to be investigated

to get some clues improving mathematics' instruction.

Only a brief overview of the present phase of the study can be
given here as its theoretical foundation and empirical design are
still developed.

Pupils' success or failure in mastering mathematical subject
matter can be determined (if you let motivational and classroom

interaction aspects aside) by at least three factors: (1) their

previously acquired knowledge (concerning the matter), (2) their
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general and specific intellectual/mathematical abilities,

(3) their actual performance of a task. These aspects are, of
course, interdependent and they are accessible to empirical re-
search to different extents. Strictly speaking, only the results
of actual performances can be recorded, and it is a matter of
theoretical considerations and empirical design to enable con-
clusions about the three mentioned aspects and their interrela-

tions.

Some questions concerning these aspects are handled by our present
investigation more or less intensively:

(1) How are these different topics represented cognitively (what
do the pupils know about them) before the teaching-learning pro-
cess in our investigation starts?

(2) Are there specific abilities which enable pupils to master one
of the subjects with more success than the other and, if yes, how
can we describe or even explain the abilities?

(3) Which knowledge about possible and necessary steps of success-
ful performance can we get from an intensive investigation of ac-
tual performances?

(4) Which conclusions about the acquisition and change of con-

cepts can be drawn from the whole investigation?

Let us first consider knowledge pupils have acquired about place
value systems and axial symmetry up to fifth grade. Some child-
ren heard about non-decimal systems in primary school (up to
fourth grade in the FRG) and some did not. But this does not seem
to make much difference when they write tests on the topic in the
fifth grade: Most pupils in previous stages of our study did not
know a considerable amount of the matter. - Of course, they are
all drilled in handling one special place value system: the
decimal system - but they don't know its structure. The decimal
system is the single medium of counting and computing for the
pupils. They are no longer aware of the specific features of the
numerals they manipulate. It may be possible to interpret this in
terms of a theory about "the representation of knowledge in
memory" (cf. Rumelhart and Ortony, 1977) which has gained some
importance in the last few years. The fifth-graders might have a
well éstablished schema for counting and computing in which the
decimal system is a caastant. Instruction in non-decimal systems
has the task of generalizing the schema by breaking open this

constant, in detail: by replacing the fixed base and place




- 102 -
values with variables.

Another aspect of this subject matter must be mentioned which
constitutes the most important difference between arithmetic

and geometry: it is the kind of concepts pupils deal with (cf.
Schmidt in this volume). Number is a very abstract concept re-
presenting the power of a set. It is laid down in simple symbols

by convention.

Contrary to the concept "number", the concept "axial symmetry"
can be modeled in a way that you can directly recognize its fea-
tures. You can, at least with help, detect the rules of axi-

symmetric mapping on an axisymmetric figure.

Axial symmetry is introduced in the primary school on a propae-
deutic level but the rules of constructing exactly axisymmetric
maps are not taught until the fifth grade. So the prerequisites
of the learning processes, as far as subject matter is concerned,

could hardly be more different.

The question about specific (mathematical) abilities (2) is a
rather delicate one because it leads to a theoretical and metho-
dological matter in dispute. Assessment of abilities has been a
matter of psychometricians for decades. They constructed intel-
ligence tests and other aptitude or achievement tests for dia-
gnostic and especially prognostic purposes. By factor analyses,
dimensions were found (among others) which could be interpreted
as representatives of mathematical abilities, for instance:
"number", "space" ("visualization", "spatial relations") (cf.

Treumann, 1974).

This means roughly: people differ notably in responding to groups
of tasks which were considered as indicators for the different
dimensions. So statistical attainment of the mentioned dimensions
"number" and "space" seems to indicate that "there are" or "can
be" different aptitudes for learning arithmetic and geometry. But
such a statement is superficial because it does not explain how
these aptitudes come into existence, i. e. which cognitive mecha-

nisms are "responsible" for them.

In the last decade, "cognitive psychologists" (and "cognitive
scientists") have taken initiatives for redefining intelligence
in the light of cognitive theories, especially those of human in-

formation processing respectively problem solving (cf. Resnick, 1976a).
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This new view leads us to the third question. If the psycho-
metrically defined abilities are too superficial to explain dif-
ferential success in mastering mathematical tasks, perhaps
minute registration and analysis of actual performances of such
tasks may reveal some of the cognitive processes responsible for

success and failure.

Theories of problem solving (e. g. Klix 19763, p. 637 ff) may
serve as a frame for such an analysis because performing tasks
at school is problem solving in many cases, especially when new

subject matter is introduced.

Here is a very much condensed description of what is a problem.
There is an initial situation, or better its cognitive represen-
tation, with its specific features and their interrelations.
This initial state of a situation is to be changed into a diffe-
rent, final state, the goal, with its spécific features and
their interrelations. There are operations to transform the
initial state into the goal. If these constituents (initial
state, goal, transformations) are all well defined there is no pro-
blem. If one or two of the constituents are not or ill defined
and if the individual is aware of this and wants to change it,
there is a problem for him or her. You can describe different
types of problems according as which of the constituents are ill
(not) defined. Different strategies of problem solving are re-

quired for different types of problems.

Here is not the place to go into the details but it is obvious,
that the internal representation of mathematical tasks as pro-
blems depends on the student's previously acquired knowledge
about features and relations of the task, about possible trans-
formations and their combination. So, it is necessary to assess
students' relevant knowledge, and, for purposes of research, it
is suitable to approximate the different individual states of
knowledge as far as possible. Thus, when presenting a task to
the students, you. know which type of problem they will have to
solve and that it is the same type for all of them.

As a tool for analysing mathematical tasks as types of problems
and for analysing the process of problem solving, instructional
task analysis may turn out to be fertile. In an every-day defi-
nition you could say, that task analyses "translate 'subject-
matter' descriptions into psychological descriptions of behavior”
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(Resnick, 1976b, p. 51). This translation can be done in advance
to produce the structure of an idealized performance and it
should be compared with the empirically assessed performances.
The results of these analyses may serve to answer questions (3)
and (4). As far as task analysis elucidates "the relations of
activity duriny learning and competence that results from lear-
ning" (Resnick 1976b, p. 53) it may yield some clues for answer-

ing question (2).

Finally, a very short sketch of the design of our investigation
is given to indicate how empirical answers to the questions

might be attained.

At first, the fifth-graders will write pre-tests about the topics
place value systems and axial symmetry. Thus, their previously
acquired knowledge will be assessed.

Then two divisions of pupils will be instructed beginning with
either of the topics alternatively. Groups of ca. 8 pupils will
be arranged in order to get favourable conditions for instruc-
tion. The pupils will be taught for some lessons. Then criterion-
oriented tests will be written which might be an indicator for
the pupils' competence for mastering the subject matter. After-
wards the topics will be exchanged between the two divisions of

pupils and teaching the new topic will start in either division.

The central part of either curricular unit is programmed in a
teaching machine (see Schmidt , 1980). These parts deal with the
basic structure of place value systems and the rules of axi-

symmetric mapping.

After the instruction in groups, single pupils will work at the
programmed teaching machine with a (human) teacher sitting by the
side of the pupil, supervising his performance of tasks, recor-
ding his thinking aloud and giving small hints where necessary.
Thus, we shall gain data which will serve as material for an in-
tensive analysis of problem solving and concept formation pro-

cesses.

Note that we shall be able to assess which types of problems
are concerned when we shall have evaluated the results of the
pre-tests and the criterion-oriented tests. We also hope to

approximate the pupils' states of knowledge by the instruction
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in groups, so that there will not be many inter-individual

differences concerning the types of problems.
A post-test will conclude the whole investigation.

Changes or stébility in knowledge and possible discrepancies with
regard to both topics must be analysed. Thus, we may get some
hints at specific aptitudes. Analyses of both knowledge and pro-
cess data might enable us to develop didactic proposals for im-

proving instrution.
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ABOUT THE DIAGNOSIS OF SUBJECTIVE FORMATION OF
CONCEPTS OF CHILDREN (ESPECIALLY THE CONCEPT
"AXIAL-SYMMETRY")

Veit Georg Schmidt, University of Osnabriick
Federal Republic of Germany

For the development of "analysis-instruments",
recording the learning process, it is fundamental

to understand the investigator's conception of this
Learning process.

The following text describes this conception. The
conditions for the construction of a "diagnosis-
course” will be derived. The structure of such a
"diagnosis~course’ will be shown by the example of

a course "axial symmetry'.

For the presentation of the dynamic learning-process
we use the active character of the concept "schema'.
This concept describes the interaction of human being
with the environment.

1. CONCEPT AND SCHEMA

The human cognitive apparatus is able to store experiences made by connection

with appearances.It processesthese experiences at the moment it has a new con-

tact with the appearances.

For a given content it can recall parts, elements, attributes and also the re-

lationships between these.

While interacting with parts of the environment, the human understanding learns

to select specific features. This selection is governed by his experiences.

Thus, the structure of the appearance, which is recognized by the human being,

is the concept, the rule for the activities of selection of human understanding.

And this rule for systematic activities of selection, fixed by the concept, will

be called "schema" (Bussmann 1981, laying out I.Kant).

The human being forms a concept, if he recognizes the essential features of an

appearance.

Using the notion of "active schema" it is argued

- that concepts are formed in mental interactiaon with parts of the environment
and that, therefore, the structure of the environment guides the formation
of cognitive structures;

- that concepts and schemata are connected in a certain way: the development of
concepts and thereby the changes of understanding features characterizing a
coherence cause a change’of the schemata corresponding to these coherences
(Rumelhart and Ortony 1977);

—- that schemata have the function to provide the concept with an image (Buss-
mann 1981). That means for example:
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1) schemata help, by the contact of senses with the environment, to construct
the perception (Neisser 1976),

2) schemata provide plans of behaviour for solving problems (Schnotz 1979),

3) schemata make possible the mediation of a conception, for example by speech

or by drawing activities, and so on (DSmmer 1976).

2. ON MATHEMATICAL CONCEPTS
To get a concept of an appearance one contact with the appearance is sufficient.
The human being separates the essential, the “"general content" (Dawydow 1977).
The discovery of what is "formally cammon" isn't possible in this one contact.
Before invariant appearances in different objects can be represented by campari-
son, respectively by classification, the essential attributes must be separated
fram the unessential attributes of an appearance.
This interpretation is like the ideas of van Hiele who said (translated fram
german into english language): What is the sense of speaking about the ccherence
between the attributes of figures, if the figures themselves don't have a clear
shape for the pupil (van Hiele, van Hiele-Geldorf 1979).
Concept that express what is "formally cammon" of an appearance will also be
called "theoretical concepts" (Dawydow 1972).
There isa representation of the theoretical cancept in the sensual perception,
if one builds a model of it (for example a pyramid) .
Mathematical concepts are theoretical concepts. But there is a difference in the
teaching of mathematical contents between those concepts, that can be thought
as a model fram the perception (number) and those concepts, that are constructed
in the reality as a model (that means as a generalisation, as an cbjective re-
presentation), for example a drawn model, which could be seen. In both cases a
theoretical mathematical concept will be taught. But in the first case the con-
cept must be constructed in the conception. In the second case it exists as a
clear model. It requires only sensual perception and not mental construction.
But in both cases the pupil uses the understanding of the coherence, in which
the concept will be formed. Whilst in the first case the coherence must be con-
structed by the pupil himself who may already be experiencing difficulties with
respect to wrong or incamplete thought-actions (activities of selections on the
appeararce) in turn leading to a perhaps incamplete concept, in the second case
the understanding is easier by direct contemplation.
Therefore in the second case the performance of only one axial-symmetric picture
would suffice, to clarify fundamental relations in axial-symmetric pictures.
A generalisation and a transfer by the pupil to other axial-symmetric pictures
having the same properties is possible very quickly. .
3. CONDITIONS THAT MUST BE TAKEN INTO CONSIDERATION FOR
THE INVESTIGATION OF THE INDIVIDUAL LEARNING PROCESS
For the formation of concepts the active interaction of the subject with the ap-
pearances of the objective reality is important. In our example it's the sym-
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metric model.

If one investigates the learning process, the investigator has his own, sub-
jective representation of it. Therefore we speak of the "representation of the
investigator" and his ability to construct himself an almost "objective reali-
ty". This statement describes the connection between the possibility of percep-
tion and the methods of the investigator to get statements about the object of
investigation. The "objective reality” is just the actual part of the environ-
ment, which a subject can learn. The learning-process has its foundation in the
"contact between the subject and the object", by which the subject constructs
or changes his "subjective reality" of the "objective reality".

Diagramm of the given connections:
parts of investigation of a pupil’s learning

objective subjective contact between |changes of the
reality reality the subject and |subjective
the object reality

represen— |fixation of speech,drawing, [speech,drawing, speech,drawing,
tation of {the environ- |action action action
the in-  |ment
vestiga~ (course,class—
tor room, etc.)

activities,|description interpretation the pupils 're~ [Like the posi-
methods of |of the medium |of the represen- |ports' about the|sition of the
the inves- |and of the oc-|tation by the pu- jcontact with the |investigator
tigator to jcurrences in |pil. Thus the pu- jcontent, while |interpreting

the position for the investigator

construct |the environ- |pil's actions he describes it [the subjective
himself an ment:"objec~ |(speech) will be |(with his speech)ireality, but
almost ob- ftive descrip~ |seen in connec- here new inter-
jective redtion" of the |tion with the task Pretations must
ality icourse be campared
B with previous
interpretations
to assess chan-
ges

4. SOME IDEAS ABOUT THE GIVEN RELATIONS IN THE INVESTI-
GATION OF THE LEARNING PROCESS

In the construction of a course, in which the learning process of a single pupil
shall be investigated, the knowledge of the constructor is included. This know-
ledge is about the

- content and his didactic-methodic formation,

- pupil who will be investigated,

- learning situation and the medium (classroam, teacher, book, etc.),

~ changes of the subjective cognition in contact with the objective reality,

~ methods, that are possible and practicable to notice a change of the cognitive
conditions in the learning sequence. :

By planning the learning situation the investigator has to respect, that

- the pupil gets a positive mental attitude for the "whole situation",

- the pupil can concentrate on the teaching-situation,

- the pupil can be active,

- the pupil isn't nervous,

- different pupils need different lengths of time to camwplete the course.
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If these conditions aren't carried out the investigator can't reckon with a con-
trolled situation for the subjective understanding. Then an investigation of the
learning process isn't possible.

But if these conditions are carried out, then it is necessary to state the me-
thods helping to promote this sequential process. For example the following
methods are possible:

- the pupil will be called upon to react to a given content (contact between
the subject and the object). For example he will be called upon to answer a
question or to work on a task, so one can see, whether he has understood the
task i

- the pupil will be called upon, to declare aloud, what he thought, and respec-
tively, what he is thinking (so it is possible to ascertain the changes of his
subjective reality);

- the pupil will be attended by a teacher ;

- all the actions of the pupil could (for example) be recorded by video.

In spite of all these methods, which could be used in the construction of a
course, all the animations and technical instruments should not trouble the pu-
pil in his learning-process. The investigation for thinking aloud must be seen
by the pupil as a specific sign of the learning-situation. It should not be seen
as a working situation, in which he tries to find out the best answers.To make
the work for the pupil easier, it would be better to have a teacher accompanying
the pupil. This teacher can help the pupil and he can confirm his actions (also
when the actions are false). But the teacher should know his limits in the diag-

nostic-situation, that means, that his help should be encouraging.

5. THE CONSTRUCTION OF A "DIAGNOSIS-COURSE"

By the construction of a diagnosis-course it is necessary to enable a learning-
process in the diagnosis situation. Also for the cbservation of the pupil it is
important to give him enough time for handling.

In this part of the paper the conditions for the construction of each step of
the course will be shown. Thus, every step will be shown generally and clearly
illustrated by example of a course of "axial-symmetry"in the 5th grade.

I. In General: Activation of the pupil's knowledge of content to make possible
the embedding, the internalization,the differentiation, the change of thoughts.
a) The pupil gets direct contact with typical models or symbols of the content.

Diagnosis-course: The pupil has to compare different axial-symmetric pictures
and he must try to see the connections. We want to realize his representation
of axial-symmetric pictures.

b) In General: The pupil shall use his previous knowledge actively in the hand-
ling of new tasks. These tasks will guide the pupil in the understanding of the
next problem. R

D{lagnosis—course: The pupil will confront the problem to draw axial-symmetric
figures. An original-triangle and the axis are given. He will draw "free-hand"
the reflected image.

II. In ngcral: Production of a contradiction, for example between the result
of handling the problem and the knowledge about the coherences of the action.
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He could be given an algorithm for the task and find the solution that he could
not work out for himself. Subsequently he will be asked to solve the task by
his own method. The pupil thus knows the correct solution, but he doesn't know
how to get it.

Diagnosis-course: With"folding" or "reflecting" the pupil will be shown a tech-
nique for the construction of the exact reflected image. When the pupil has pro-
duced the reflected image twice with the learned new technique, and if he re-
cognizes and names the particularities of the axial symmetry, now he will try
to get a reflected image with the "geometric-triangle", without the learned
technique.

III.In General: The pupil will be asked to clarify his contradiction. That
means  he should be motivated so well that he wants to find out the coherences
that are not clear.

Diagnosis-course: In three exactly drawn "axial-symmetric figures" the pupil
now recognizes the regularity of the coherence. For that purpose he gets
hints by steps about the position of the picture-figure in comparison with the
axis and original-figure.

IV.In General: By the previous step one can see, whether the pupil knows ihe
coherence, whether he finds out or does not find out the coherence, in spite
of the given prampts. This will be clear if the pupil has to solve a task of
this special coherence.

Diagnosis-course:The pupil will translate the recognized geametrical coherences
into a technique of construction with the"geometric-triangle”.

V. In General: Like in the school-lesson the pupil will now be told the cohe-
rences loocked for. This will either confirm the student's solution or require
the student to recognize the coherences contained within the solution. These
pupils now must recognize the description of the solution.

Diagnosis-course: The rules of axial symretry will be told to the pupil.

VI. In General: Now it will be shown, whether the pupil has understood the men—
tioned rules. In that, he must solve corresponding tasks. Subsequently he will
be shown the steps to get the solution. Then the pupil makes these steps by him-
self.

Diagnosis-course: It will be shown to him, how to get the image-point to a
given original-point by help of the geametric triangle. Subsequently the pupil
exercises this technique on other geametric figures.

VII. In General: It will be observed, how the pupil can transfer this new kaow—
ledge to other problems of this content. So one can see for example, whether
the pupil changes the learned technique and goes back to an older one.

Diagnosis-course: For example the pupil must construct the axis to a given
original and a given picture (reflected image).

VIII. In General: At the end of the course it will be shown, whether the pupil

has fixed or changed his realisation in comparison with the beginning of the
course.

Diagnosis-course: Given a triangle and an axis, the pupil must construct the
"reflected image".
6. THE INVESTIGATION OF PREVIOUS KNOWLEDGE FOR FINDING OUT

CHANGES IN THE LEARNING-PROCESS

For recording the subjective reality of the pupil,i.e. the cognitive representa-
tion of certain contents, before the course (for example of axial-symmetric fi-
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gures or right angles) it is necessary to gather tasks representing the most
important coherence of the course. With these tasks it will be possible to test
the pupil's previous knowledge about these coherences. The representation of
knowledge must be in the same way like in the later following course (for ex—
ample: thinking aloud or drawing). A camparison of the two states then is easier
Moreover it's necessary to present these tasks of previous knowledge in diffe-
rent contexts. So one can see, whether even this context of the oohérence is

important for the pupil's perception of the coherence.
7. ON SOME DIFFICULTIES IN THE INVESTIGATION

1. The speech is not the direct expression of the actions of thinking. Relative
to the schema concept given before, one can say that

- words describe general parts of schema,

- words describe an appearance in a way like one who speeks the words under-
stands them,

— one needn't use words for every action of thinking.

An interpretation of the words of the pupil can lead to the integration of sub-
jective ideas of the investigator. A possibility for more objective interpreta-
tion of the words would be to see the action in conjunction with the words.

2. If a teacher attends a single pupil, special dependences can arise. For ex-
ample the aid of the teacher produces an indirect gquiding and so it leads to
a turning off fram the pupil's own productivity to a falsification of his
thoughts.

In an investigation recorded by video, the teacher's activities are reviewed
and the following activities of the pupil are interpreted.

3. Very often the situation of the diagnostic-course is still artificial for the
pupil. Therefore the results of such investigations can only be transfered
to normal classroom conditions with reservations. In the classroom distrac-
tions are greater. Changed social conditions would influence the learning
process. One can say that these effects can be investigated better after an
exploration of the single pupil.
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MESURE DU VOLUME :
DIFFICULTES ET ENSEIGNEMENT DANS LES PREMIERES
ANNEES DE L'ENSEIGNEMENT SECONDAIRE

RICCO Graciella : E.H.E.S.S. CNRS PARIS
ROUCHIER André : IREM Université d'Oriéans

Measure of volume :
Difficulites and teaching in the first years of secondary school

This work was done within the general framework of multiplicative
probiems (Vergnaud 1978, Rouchier 1980). From this point of view,
it 45 necessary to distinguich two kinds of problems : problems
about isomorphism of measure (proportionality), problems about
product of measures (areas, volumes, ete...). A First study (Ver—
gnaud 1978) showed that there was « lot of difficulties in
calculating with sinple volume formulas. After focusing cur
attention on propsritionaliiy problems (Rouchier 1380) we
performed three complementary studies about volume. The first
one consisted of a series of clinical interviews with 80 children
of secondary level from 11-12 years of age to 15-16 years. There
were 20 cheldrer (10 boys, 10 girls) from each class level. Tke
main result of this work is the foct that a lavge majority of
children don't know the main properties of jormulas, i.e.
Linearity with respect of one dimension, trilinearity with
respect of the three dimensions. In fact these aspects of volume
are difficult and they are not developped in the school-books.

An analysis of school-books showed that they don't present this
very important property of formulas (from a conceptual point of
view) of reflecting the main charocteristic of volume : ite
homogeneity and dependance with respect of dimensions. It <s

not our purpose to offer here an alternative and belter way of
teaching volume, but in a third part of our work, we developped
and realized in the classroom a set of didactical situations.

Our objective was to determine how it was possible to give somz
meaning, in the classroom eituaiion, to the most tmporlant ucpects
of volume : measure properties, reflecting geometrical properties
for the formulas. We shall give some informations about this part
of our work.

Depuis "toujours" ou du moins depuis la généralisation de 1'enseignement
obligatoire, 1'enseignement des notions d'aires et de volumes, autrement dit
1'enseignement des formules relatives aux objets usuels : triangles, rectan-
gles, parallalépipéde, prisme,... et des systémes d'unités a fait partie des
programmes scolaires. Aires et volumes sont donc partie intégrante du“savoir
compter”qui est un objectif de 1'école. Pendant longtemps, les manuels anciens
en font foi, 1'enseignemeni des volumes s'est limité & apprendre quelques for-
mules simples en méme temps que quelques problémes types d'application de ces

formules : place occupée par un corps, capacité, contenance, eta...
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7T ne semble pas que ces objectifs aient beaucoup changé. Mous avons conduit
une analyse des manuels actuellement utilisés dans 1'enseignement secondaire
frangais, analyse qui fera 1'objet d'une publication, et constaté que, autant
par la place occupée, que par le type de problémes rencontrés, il n'y avait

pas eu, & quelques exceptions prés, de changement dans le projet d'enseignement
relatif au volume.

Notre intérét pour le volume se situe dans la perspective qui nous occupe
depuis plusieurs années, celle de 1'étude des problémes multiplicatifs, essen-
tiellement a travers deux aspects fondamentaux, celui de 1'isomorphisme de
mesures et celui du produit de mesures (Vergnaud 1978, Rouchier 1980). L'étude
physico-mathématique des volumes les constitue en objets pour plusieurs théo-
ries mathématiques : en géométrie on classe Tes invariants de forme et de dis-
position spatiale, en théorie de la mesure (ou plus largement en thécrie des
grandeurs) on s'intéresse & des invariants numériqueé et aux maniéres de les
réaliser. Les deux aspects ne sont pas indépendants, certaines formules de
calcul des volumes font largement appel aux caractéristiques géométriques de
ces dernicrs. Ainsi une formule comme V = Sxh pour le prisme condense et abs-
trait plusieurs aspects fondamentaux relatifs & la forme des prismes et a Teur
dépendance par rapport a leurs éléments constitutifs : que se passe-t-il par
exemp]e.quand on double ou-on triple 1'aire de la base ou de la hauteur, ou
les deux a 1a fois, etc ... ? Construire et proposer une formule est donc bien
le terme d'une mathématisation trés riche aussi bien du point de vue du concept
de volume que du point de vue d'autres concepts "utilisés" pour la circonstan-
ce : variable, linéarité, bilinéarité, trilinéarité, aire, ... Nous avions pu
constater lors d'une enquéte (Vergnaud 1978) que la différenciation Tongueurs,
aires, volumes ne se mettait en place que trés lentement. I1 était donc néces-
saire de mener une recherche complémentaire & plusieurs niveaux pour évaluer
les difficultés relatives des notions qui interviennent dans la constitution
du concept de volume et cela dans sa construction méme. Dans un prémier temps
nous nous sommes limités & un aspect, que nous appelons arithmétisation, celui
de Ta construction des formules et de la dépendance qu'elles expriment.

Nous avons construit une épreuve & la fois sur la base des résultats de 1!
enquéte préliminaire (Vergnaud 1978) et d'une analyse de 1'arithmétisation du
volume. Cette épreuve était composée d'une série de problémes, certains requé-
rant 1'utilisation directe des formules, d'autres leur utilisation indirecte
(par composition de rapports). Cette épreuve a &té soumise a 80 enfants du
‘premier cycle de 1'école secondaire (collége) a raison de 20 enfants (10 gar-
gons - 10 fi]]es) par niveau (le collége comporte en France 4§ années ou ni-
veaux et accueille des enfants de 11-12 ans & 15-16 ans) en passation
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individuelle. La consigne était exprimée oralement par 1'expérimentateur, 1!
ordre de succession des problémes &tant choisi  parmi plusieurs possibles
définis a priori et déterminés au moment de 1}expér1mentation par la réussite
des 8laves. L'épreuve a eu lieu en mai-juin de 1'année scolaire 1979-80, année
de mise en place de nouveaux programmes de mathématiques a 1'école secondaire:
les enfants de la premiére année, classe de 6e, suivaient ces nouveaux pro-
grammes (selon lesquels le volume est enseigné en deuxiéme année, classe de5d),
les autres enfants suivaient les anciens programmes selon lesquels le volume
gtait enseigné en premiére année, classe de 6e. Ainsi un groupe d'enfants n'
avait pas suivi d'enseignement systématique du volume. I1 faut néanmoins noter
que 1a plupart des maitres de 1'école primaire apprennent les formules du cube,
du para]lé]épipéde et parfois du prisme aux enfants.

Les résultats de cette épreuve feront 1'objet d'une publication dans laquel-
le seront détaillés problémes, réussites et procédures utilisées. Nous ne don-
nerons ici que deux exemples.

Les enfants avaient d résoudre 1'un des deux problémes suivants :
Probléme 5 : Monsieur Dupont a un aquarium assez petit dans sa cuisine et
un grand dans son salon. Celui du salon est 2 fois plus long,
3 fois plus large et 2 fois plus profond que celui de Ta cui-
sine. Combien de fois celui du salon est-il plus grand que
celui de la cuisine ?

Probléme 5bis : Combien faut-il que je te donne de cubes pour copnstruire

une boite pleine (comme une boite de sucre) de 3 de large,

de 4 de long et de 2 de haut ?
Le probléme 5 &tait donné aux enfants qui avaient réussi aux deux premiers
problémes (dans lesquels i1 s'agissait de calculer le volume d'une boite paral
1élépipédique et d'estimer le volume de la piéce dans laquelle avait lieu
1'expérimentation). Le probléme 3 était une question qualitative et le probléme
4 consistait a solliciter a nouveau une estimation du volume de la pigce. Le
probleme 5 bis était donné aux enfants ayant &choué lors de la premiére par-
tie : 39 enfants sur 80 ont passé le probléme 5 (1 en le année, 13en 2e année,
11 en 3e année, 14 en de année), 17 ont réussi (1 en le année, 4 en 2e année,
4 en 3e année, 8 en 4e année). Un certain nombre d'enfants ne composent pas
multiplicativement les rapports et doivent donner des valeurs virtuelles aux
dimensions de 1'aquarium le plus petit. Guant aux enfants qui ont échoué, les
deux grands types de réponse sont,soit Ta composition additive des rapports,
soit le recours au rapport “moyen" (2,5) ou au rapport "modal” (2).
41 enfants sur 80 ont passé le probléme 5 bis (19 en le année, 7 en 2e année,
9 en 3e année, 6 en de année). I1 y a assez peu d'enfants des 2e,3e,de années
qui échouent, alors qu'en le année on trouve 13 échecs contre 6 réussites.
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Les enfants qui échouent utilisent des procédures de type périmétre (composi-
tion additive de longueurs) ou de type surface (composition additive de pro—‘
duits de deux longueurs).

Un autre probleme de composition des rapports, le probléme 7 : "Voici un ;
L fabriqué avec des 1&gos (i1 contient 4 cubes) et en voici un autre. J'ai
doublé 1a Tongueur, la largeur et 1'épaisseur (on montre le grand L et on le
cache vite). Combien y a-t-i1 de 1égos dans le second ?" n'a &té réussi que
par 9 des 57 &laéves qui ont eu & le résoudre.
Ainsi on.a pu constater que, d'une part, une fraction non négligeable des en-
fants de 1'école secondaire ne savait pas utiliser les formules permettant de
calculer le volume d'un objet de forme parallélépipédique, d'autre part, qu'
une proportion trés importante d'entre eux ignorait le sens profond des for-
mules de type volume et ne savait pas utiliser la dépendance par rapport aux
mesures de longueur qu'elles expriment.

I1.y a donc des aspects du concept de volume qui ne sont pas maitrisés a
la fin de 1'enseignement secondaire. Cela est certainement dii aux difficultés
méme de ce concept doric au fait que les enfants ne peuvent pas le maitriser
aprés une seule rencontre, mais cela est aussi di au fait que 1'enseignement
et 1'exposition classique du volume sont réduits & 1'exhibition de quelques
formules. L'analyse des manuels montre que les aspects que nous avons souligné
plus haut sont assez généralement ignorés. Or nous avons toutes les raisons
de penser que les manuels reflétent assez correctement la conception que 1'en-
seignement se fait de 1'objet mathématique volume donc de la conception qui
est présentée aux &léves. Le constat que nous avons dressé plus haut n'est
donc pas fortuit, i1 atteste un certain état de 1'enseignement du volume et

de ses difficultés.

Dans la méthodologie traditionnelle de la recherche en éducation, on cher-
cherait & conduire des expériences comparatives avec pré-test et post-test,
expériences dans lesquelles on ne sait en général pas contréler les facteurs
qui déterminent la conception que les &léves développeront du volume comme
objet mathématique. On peut estimer aussi que des tests aussi élaborés soient-
ils ne peuvent permettre de saisir tous les aspects propres a une mathématisa-.
tion : action, formulation, validation. I1 est donc nécessaire de comstruire
des expériences didactiques rigoureuses et qui permettront de comprendre com-
ment se construit le sens du volume & travers une série de situations. Nous
avons élaboré une suite de legons qui ont été réalisées dans plusieurs classes

du niveau de l1a 2e année de 1'école secondaire (classe de 5e), en 1980 et 1981.
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La conception générale des situations faisait une place essentielle & plu-
sieurs aspects du volume. D'abord,il Taut montrer que le concopt de voluse se
construit e répousce & un certain nembre de problemes, por caveple Ta Cupe
raison de corps de nature physique différente (liquides, solides pleins ou
creux), qu'il s'agit d'une grandeur,donc qu'elle peut s'ajouter et se fraction
ner. Ensuite i1 faut 1'analyser dans ses aspects dimensionnels en construisant
les formules qui permettent de calculer les volumes simples. Par exemple. la
formule du parallélépipéde V = a xb x ¢ résume Te remplissage d'une boite
par des cubes unités et représente un invariant de nature géométrique. On dé-
signe ainsi & la fois 1'invariance de la formule par affinité sur chaque varie
ble et par homothétie sur les trois variables : propriété de linéarité et de
trilingarité. De méme la formule du prisme V = S x h représente la dépendance
bilingaire par rapport & deux grandeurs différentes, aire et lengueur. Enfin,
il faut rencontrer des problémes pour lesquels des calculs de périmétres, d'at
res et de volumes permettent de discriminer ces trois grandeurs et analyser
leurs relations mutuelles.

Nous pouvons donner quelques indications sur 1a construction d'une formule
pour exprimer le volume d'un prisme & base rectangulaire. On va demander aux
enfants de prévoir 1'ordre des volumes de quatre prismes de méme hauteur (8 cm)
construits sur des triangles A, B, C, D dont les hauteurs sont respectivement
5, 5,5, 10 et les cBtés correspondants 6, 6, 12, 6 ; puis de construire un
prisme de base rectangulaire de volume double & celui construit sur B et un
prisme de base triangulaire (avec un triangle de hauteur 10) de volume quadru-
ple du prisme construit sur B. Aprés une vérification qualitative, on peut
comparer les modéles utilisés et émettre des hypothéses sur la dépendance du
volume par rapport a 1'aire du triangle de base et par rapport & la hauteur.
Ces hypothéses permettent de constituer un premier tableau:

S 3

15 125

avec lequel on trouvera les volumes en cm3,pour tous les prismes construits,a
partir de celui du prisme B (moitié d'un prisme & base rectangulaire, donc d'
un parallelépipade, volume qu'on sait déja calculer). La manipulation de ce
tableau équivaut sur le plan de 1'action & celle de la propriété : si une
quantité est proportionnelle i deux quantités indépendantes, elle est propor-
tionnelle & Teur produit. Cette propriété fondamentale pour établir des formu-
les a daja été rencontrée & propos de 1'aire du triangle. On va donc proposer
de calculer les aires des différents triangles, d'en envisager de nouveaux et
de construire un tableau a double entrée analogue au precédent. Ce dernier
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sera complEté a son tour et on constatera que des triangles “différents® (hau~
teur et coté différents) se retrouvent,du fait qu'ils ont la méme aire,dans la
méme case du.tableau du volume. Pour le calcul de ce dernier, c'est bien 1'ai-
re qui compte, ce que résume Ta formule V = S x h.

Nous donnerons que]ques &1éments d'analyse des s1tuat1ons didactiques que nous

avons réalisées. Elles ne constituent. pas a proprement parler une proposition -
_alternative mais d‘abord.un moyen d'étude des conditions didactiques de la
“construction du sens du volume. I1 nous apparait néanmoins qu'il est possible
de proposer le volume comme une mathématisation, comme le produit d'une théo-
risation, alors que-dans les conceptions traditionnelles il parait relégué .
comme une application &lémentaire. Une certaine idéologie y trouve son compte,
-une ideologie de la fausse simplicité des formules et de leur utilisation.

La construction correcte du volume et de T'aire passe au moins par un enrichis-
-sement et une diversification des.situations didactiques que les enfants ont ,
-a connaitre. Cet-enrichissement et cette diversification demandent des &tudes
.complémentaires & celle que nous avons menée. En particulier, les travaux de
.J. Rogalski.sur 1a conception de 1'aire montrent des difficultés analogues a
‘celles que nous avons relevées. I1 est nécessaire d'étudier les conditions d'
-une-meilleure.discrimination.surface-volume ainsi que celles d'une reprise et
.d'un approfondissement du concept de volume dans les années ultérieures de 1'
école secondaire, reprise qui n'est pas effectuge dans 1'enseignement actuel,
par construction d'autres formules (pyramide, sphére), approximation, dévelop-
“pement de 1'aspect fonctionnel des formules. Nous pensons que c'est ainsi qu'
on pourra contribuer & une meilleure connaissance des caractéristiques des
situations didactiques propres a favoriser 1'acquisition du concept de volume.
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ACQUISITION DE LA NOTION DE DIMENSION DES MESURELS
SPATIALES DE LONGUEUR ET SURFACE

Janine ROGALSKI, Centre National de la Recherche Scientifique

The properties and notions concerning the spatial
measures: length, area, volume are multiple,
complex, with strong internal relationships. So
the spatial measurement constitutesin itself a

? leonceptual field". The acquisition by children

* and adolescents of the fundamental notions in
this field is a complex and long-time process.
Studies with students from 4th to 7th grade
(10 to 15 years old) show that the appropria-
tion of the central concept of "dimension'
which differenciates and organizes the three
spatial measures is not achieved at the end of
the so-called "cycle d'observation”
Students, having to use additive properttes of‘
area to soZve a task involving its multipli- .
cative dimensional invariant, attested many o
difficulties - even for familiar figures such
as squares, parallelograms and triangles. They
frequently use a "linear model”, appropriate
to length measure, specially in the case wher
the area-unit is linked to length-unit, as cm
8.
The results ask questions about the actual
limitation in time and content of the teaching
of these notions, and the inadequacy with
the conceptual difficulty of thenotions involved
in this field
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Le champ conceptuel des mesures spatiales est complexe & la fois
dans son organisation et dans son appropriation cognitive par
1'enfant et 1'&léve. Les recherches ont ainsi montré que les pre-
miéres conservations sur la longueur et la surface sont assurées
vers 7-8 ans (Piaget et al., . 1948a, 1948b) mais que Tla différen-
ciation périmétre-surface n'était pas acquise avant 12 ans (Vinh
Bang, 1965), et que les propriétés du volume &taient d'une comple-
xité encore plus grande (Piaget et al., 1948b; Vergnaud et al.,
1979).

En particulier les notions relevant de la "dimensionalité" rela-
tive des mesures spatiales (longueur: dimension 1, surface: dimen-
sion 2, volume: dimension 3) font 1'objet d'un processus d'acqui-
sition de trés longue durée, dans lequel 1'enseignement joue un
role important mais encore mal contrglé. Les bilans effectués a
Ta fin de 1'enseignement &lémentaire (I.N.R.P., 1977; N.A.E.P.,
1980), 1'étude des conceptions erronées des éléves sur la surface
(Hirstein et al., 1978), 1'analyse de procédure de calcul de
volume (Vergnaud et al., 1978, 1979) témoignent de la confusion
entre Tes propriétés dimensionnelles des Tongueurs (périmétres)
et des surfaces des figures d'une part, entre celles des surfaces
et des volumes des objets d'autre part.

L'analyse des relations entre les quantités spatiales - &léments
de connaissance du monde, et les opérations de calcul - résultat
d'une mathématisation‘opératoire, montre la complexité des opéra-
tions cognitives & mettre en oeuvre et la complexité des relations
entre les différentes notions "physico-spatiales” & coordonner
(Rogalski, 1979). On doit donc s'attendre a ce que la differen-
ciation des propriétés des différentes mesures spatiales soit
longue et difficile, a ce qu'il y ait des interactions importantes
avec les caractéristiques propres des figures ou objets considéres,
a ce que le "mode" avec lequel on opére sur les mesures interviemne
également: une surface comme "étendue & peindre“, (ou un volume
comme "capacité) est exprimée comme quantité simple avec une unité
unidimensionnelle (le nombre de pots de peinture par exemple);

une surface exprimée avec des unités rapportées aux longueurs

(le cm? par exemple) est implicitement considérée dans son carac-

tére bidimensionnel.
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Une étude sur la “"dimensionalité" des longueurs et surfaces a été
conduite avec des éléves de CMy & 4eme pour vérifier ces hypo-
théses et analyser plus précisément les opérations cognitives en
jeu. Le paradigme expérimental est proche de celui des conser-
vations: des figures familiéres (carrés, parallélogrammes,triangles,
cercle) sont transformées par des similitudes de rapport simple.
Les questions sont posées sur la mesure de la figure transformée
pour mettre en oeuvre la propriété suivante: le rapport mesure
transformée/mesure initiale est indépendant de la figure, c'est
uninvariant dimensionnel qui vaut /2 pour la longueur, 2 pour la

surface 23 pour le volume.

"UNIDIMENSIONALITE" DE LA MESURE LINEAIRE

La disponibilité d'un calcul additif, possible pour des figures

d bordrectiligne (carrés, ...) est présente pour la plus grande
majorité des éléves. Globalement un éléve sur deux, au CMp, trois
surquatre en fin de 5&me font des réponses respectant 1'unidimen-
sional ité des longueurs, et le décalage entre "linéarité recti-
ligne" et 1inéarité curviligne" est faible (de 20% en CM; a 10%
en5éme). Cependant la fiabilité opératoire de cette notion connaft

une évolution importante; trés faible en CMy, on peut la consi-
dérée comme assurée pour les trois-quarts des éléves en fin de
cycle d'observation, pour les données numériques simples choisies
pour ces épreuves. On peut dire que la structuration de cette

notion fondamentale d'unidimensionalité de la longueur s'étand sur
lesquatre années du cycle moyen et du cycle d'observation.

Une comparaison des résultats d'ensemble confirme que les guestions
dedimensionalité de la surface sont plus complexes que celles
surla longueur, et celles-ci moins difficiles que pour le volume,
lesdécalages des réussites moyennes étant notables.

BIDIMENSIONALITE DE LA MESURE-SURFACE

La bidimensionalité de 1'aire est une notion dont 1'acquisition
est trés difficile et reste largement inachevée pour beaucoup
d'adolescents. Le domaine de validité des opérations que 1'éléve

peut engager avec Succés pour résoudre des problémes 1iés a& cette
dimensionalité est limité, 1'interaction avec le mode d'expression
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de la mesure est forte et la izructuratigﬂ elle-méme des situa-
tions-problémes intervient de maniére compiexe. Ainsi des figures
comme les rectangles et parallélogrammes définies par le croise-
ment de deux directions indépendantes, et pavables par la méme
opération, "supportent" des opérations de caractére bidimension-
nel, alors que des figures comme 1les triangles, dont la descrip-
tion comme le pavage utilise trois directions non indépendantes,
sont traitées spécifiquement, avec une utilisation notable du
nombre de cO0tés comme critére pertinent pour les réponses sur la
surface.

Enfin une figure comme le cercle, pour laquelle i1 n'existe pas
de passage direct du pavage par des figures semblables au calcul
de la surface transformée, est 1'objet d'un transfert massif du
"modéle linéaire".

Les graphiques suivants montrent 1'évolution complexe de 1'utili-
sation du "modéle Tinéaire" (Fig.1) et de 1'utilisation de 1'%nva-
riant dimensionnel" (Fig.2) selon les figures, le mode opératoire
et Ta structuration des situations-problémes. ("N" est davantage
structurée que "A" et les résultats n'y changent pas avec le mode
opératoire). Les signes [:] et 2 représentent les résyltats
respectivement des carrés et parallélogrammes et des triangles
(équilatéral et obtus).
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CONCLUSION

I1 est possible de mobiliser les opérations cognitives fondamen-
tales pour le passage de 1'additif au multiplicatif, pour les
différents modes opératoires et les figures dans un domaine assez
large pour permettre ultérieurement - par combinaison et conti-
nuité - de construire 1'invariant dimensionnel de la surface,
différencié de celui de 1la Tongueur. Mais les représentations
spatiales nécessaires, et les notions constitutives de la bidimen-
sionalité de la surface ne sont pas appropriées par les adoles-
cents: les opérations sont peu fiables et peu généralisables.
Ainsi, une rationalité certaine est présente t6t dans les réponses
des éléves, des acquisitions notionnelles importantes ont lieu,
en particulier lors du premier enseignement systématique (CMZ)’
mais le travail sur la différenciation et la coordination des
mesures de 1ongyeur et de surface n'est pas suffisant, ni assez
prolongé eu égard a 1la complexité conceptuelle des mesuyres
spatiales.
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PrOPOITLCN BT BQUILIBRE bis LA BALANCI:
UNE EXPERIENCE D'APPRENTISSAGE DE LA PROPORTION INVERSE

Anne~Marie REINISCH,
Laboratoire de Psychologie Expérimentale, NICE

We have tried to enable children of the 6 grade (11-12 years old) to
acquire the notion of provortion through a specific learning method.
The children of that grade and of that age know how to operate pro-
portion calculation within a situation similar to those encountered in
the educational environment, but it is not the case when the problem
is given out of the scholastic activities frame. The problem we have
thus kept as an extra-scholastic one is the equilibrium of the balance
scale ; the rule follows the relation of the inverse proportion which
links the weights W and W', and the distances D and D' in between. We
have the equilibrium if W / W' =D' /D .

The training method is based on the hypothesis that there does exist
an identity of related structures between the qualitative answer of
inverse correspondance between weight and distance (the farther away
it is, the less weignt it has) and the answer which quantifies by
means of operators (it is 3 times less weight, then I need to put it
% times farther away). We employ a technique where the child must
discover the rule of the game (rule of the inversion of the operator).
And it is only at the last step that the four terms of the proportion
are introduced.

This method prooves to be truly efficient when transfered to the scale
problem, one month later after the training sequences. We get answers
of proportion given to the scale problem by all the children of the
experimental group, versus one child of the check sample.

L'enseignement de la proportion est introduit dans les programmes scolaires frangais
au niveau du CM2 (enfants de 10-11 ans). Au-deld de la classe de 3éme (14-15 ans),

cette notion est considérée coumme acquise.

Or, de nombreux travaux s'inspirant des observations de Piaget et ses collaborateurs
montrent que l'acquisition de la notion de proportion ne va pas sans soulever quelques
difficultés. Les expériences auxquelles nous faisons allusion ont utilisé les épreuves
qu'avaient employées Inhelder et Piaget (1955). On constate que seulement la moitié des
sujets de 15 ans (Jackson, 1965), ou de 17 ans (Martorano, 1974) donnent des réponses
de proportion dans ce type d'épreuve. Les sujets de 13 ans (Lee, 1971) ainsi que la
majorité des sujets adultes (Lovell, 1961) fonctionnent, toujours dans ce type d'épreu-

ve, au niveau opératoire concret (n'établissent pas de quantification).
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I1 faut remarquer cependant que lorsque le probléme de proportion intervient dans une
épreuve familiére aux enfants, A savoir présentant une certaine similitude avec les
exercices scolaires, les résultats obtenus sont tres différents de ceux rdportés par
les auteurs cités plus haut. Sur 74 éldves de 11-12 ans des classes de 6&me, nous avons
en effet trouvé 67 enfants qui réussissent au moins un item au moyen de calculs propor-
tionnels dans un probléme proche de ceux rencontrés en classe, alors que parmi ces mémes
enfants, 36 sont incapables, une semaine aprés, d'établir une quantification proportion-§
nelle & un probléme physique utilisé par 1'équipe de Piaget (Inhelder et Piaget, 1955,

Vinh Bang, 1968, Piaget, 1974), et assez différent des problémes scolaires.

Notre propos ici n'est ni de nous interroger sur la compatibilité de tels résultats
avec la théorie de Piaget, ni non plus dc soulever la question de la portée de 1'en-
seignement de la proportion ; mais nous voulons essayer de comprendre comment se cons-
truit chez 1'enfant la notion de proportion. Pour cela nous avons effectué certaines
expériences (Reinisch, 1980), mais les résultats obtenus nous ont conduite & envisager
l'emploi d'une autre méthode que la méthode transversale, utilisée par nous jusqu'alors
et qui paraitrait plus adaptée & résoudre notre probléme. Nous avons mis au point une
procédure 4'apprentissage, susceptible de faire acquérir la notion de proportion &
l'enfant, et ainsi de nous renseigner sur les étapes possibles de 1'évolution de cette
notion. Pour élaborer cette procédure, nous avons défini d'une part des étapes théo-
riques, & partir d'une analyse de la tlche, et d'autre part inscrit ces étapes dans
une perspective évolutive : la succession de ces étapes, construite & partir du niveau

réel des enfants, devait les conduire & la proportion.

CONSTRUCTION DE LA PROCEDURE D'aPPRENTISSAGE

L'épreuve que nous avons choisi¢ pour examiner l'acquisition de la notion de proportion
est un probléme physique ol intervient une loi de proportion inverse. Cette épreuve
est celle de 1'équilibre de la balance; la balance est composée d un fléau en équilibre
en son point médian. Si P et P' sont les p.ids d'un cdté et de 1l'autre du fléau, et
D et D' les distances auxquélles ils sont respectivement placés, on a 1l'équilibre si

p/ P =D /D.

Dans une premidre expérience effectuée (Reinisch, 1980), nous proposions & 1'enfant

de créer un déséquilibre , puis de rétab'ir 1'équilibre, & olusieurs reprises, et de
différentes maniéres. Nous avons pu analyser les résultats selon un modéle proche de
celui utilisé par Siegler (1976); on peut décrire les étapes hiérarchiséES suivantes:
découverte d'une dimension (le poids) puis d'une autre (la distance) et enfin coordi-

nation des deux (correspondance inverse entre poids et distance). Les enfants se con-
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formant & ce dernier type de régle verbalisent ainsi: "J'ai moins de poids, alors je
dois le mettre plus loin". Notre hypothése est que la quantification proportionnelle se
construit & partir de cette notion de correspondance inverse, mais cette construction
présente pour l'enfant quelques difficultés: "La distance est plus petite, je le vois,
mais de combien plus petite, c'est bien autre chose". Cette remarque d'une enfant exa-
miné par Vinh Bang (1968) rend ccmpte de la frontidre qui sépare, pour la proportion,

la notion qualitative, de sa quantification.

Le probléme paralt donc &tre le passage de la notion de correspondance inverse (qualita-
tive) & celle de proportion inverse (quantitative). La procédure d'apprentissage que

nous avons mise au puint tente de réaliser ce passage.

Nous avons, dans un premier téﬁps, effectué une analyse de la proportion, du moins tel-
le qu'elle apparait dans les répcnses que donnent les enfants au probléme de 1'équilibre
de la balance. Les enfants donnent en géné;al des réponses de tyve: "Il y a 3 fois moins
de poids, alors je dois le mettre 3 fois ﬂlus loin". A partir des valeurs du poids, on
doit abstraire 1l'opérateur, que l'on doit transférer (avec une inversion) sur la distan-
ce. On a donc un premier niveau, celui des données numériques. A un deuxieme niveau, on
a déjh un traitement sur les états, c'est un premier niveau relationnel. Le deuxiéme
niveau relationnel est celui du traitement de 1'epérateur, l'opération qui consiste &
inverser l'opérateur obtenu sur les poids. On a donc 3 niveaux, le premier, celui des
états, le deuxidme, celui des transformations (abstraction des opérateurs), et le 32me,

celui des transformations de transformations (inversion de l'opérateur).

Or, il semble que cette structnre relationnelle, bien que complexe, soit trés proche de
la structure de correspondance inverse qualitative dont témoigne 1'enfant quand il donne
des réponses du type: "Plus c'est loin, moins il faut mettre de poids". On a mis 1l'ac~
cent sur le passage de cette structure & la structure de proportion proprement dite.
1'hypothése est qu'il s'agit d'une structure relationnelle voisine, le manque résidant
dans la quantification (les enfants ayant d'une part la structure de correspondance in-
verse, et d'autre part les données numériques dont ils ne savent que faire). L'effort
de 1l'apprentissage consiste & introduire la quantification, & travers la méme structure,
compatible & la fois avec ce que savent les enfants dans 1'épreuve de 1l'équilibre de la
balance (correspondance inverse), et la structure relationnelle finale, compléte, de la

proportion inverse.

La technique d'apprentissage est basde sur le principe que l'on va jouer & un jeu, dont
1l'enfant devra trouver la régle. Dans la premiére séance, le jeu ect d'inverser 1l'opéra-
teur, celui-ci étant fourni & 1'eafant. Dans la 2eme, l'enfant doit inverser 1'opérateur
mais aprés l'avoir découvert. A la 3&éme séance, enfin, le jeu est toujours d'inverser

l'opérateur, mais aprés l'avoir abstrait au moyen d'un calcud & partir des données numé-
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riques disponibles.

1ére séance: On utilise des bandelettes de bristol; on propose & 1'enfant, & partir d'une
bande de 16 cm./1 cm., de la couper en 2, et on lui demande, au moyen de ces deux mor-
ceaux obtenus, de former un autre rectangle qui n'ait pas la mdme forme que le ler.
L'enfant obtient un rectangle de 8 cm. / 2 cm. On lui demande alors comment est devenue
la longueur, et comment est devenue la hauteur. On continue ensuite le méme jeu, en re-
coupant chaque fois la figure obtenue en 2 parties et en effectuant la comparaison 2 & 2.
On récapitule enfin (aprés obtention d'un rectangle de 1 cm. / 16 cm.) en demandant com-
ment la longueur et la hauteur ont changé, depuis le ler jusqu'au dernier rectangle obte-
nu. On recommence ensuite une séquence identique en coupant en 3 parties égales un rec-
tangle de 27 cm. / 1 cm. (opérateur /3) et en 4 parties égales un rectangle de 32 cm. /
0.5 cm. (opérateur /4). On termine la séance en demandant & 1'enfant quelle était la

régle du jeu.

2eéme séance: Aprds avoir averti 1'enfant qu'il s'agissait du méme jeu, mais un peu dif-
férent, on lui propose une feuille de papier non quadrillé sur laguelle sont tracés un
rectangle et la longueur d'un autre rectangle, dont la hauteur est & trouver. On lui de-
mande comment est devenue la longueur, et on l'invite & la "mesurer" par rapport & l'au-
tre longueur au moyen d'um étalon (on donne & 1'enfant de fines tiges métalliques, choi-
sies aux dimensions de s longueurs et hauteurs des différents items). On demande ensuite
comment doit augmenter (ou diminuer) la hauteur, et l'enfant doit la tracer , aprés avoir
effectué les "mesures" au moyen des étalons. La séance comprend 7 items, ol kes opéra-
teurs choisis sont entiers, et compris de 2 & §. On demande en fin de séance quelle é-

tait la régle du jeu.

3eme séance: Aprés avoir averti 1'enfant que 1l'on jouerait au méme jeu, on lui fournit
un matériel préoche de celui de la 2&me séance, mais le papier est cette fois quadrillé.
La mesure se fait domc non plus au moyen d'étalons,meis elle utilise les petits carreaux
de la feuille. Il s'agit d'une mesure absolue, et non relative (comme elle 1'était dans
la 2&me séance). La séance se déroule suivant les mémes modalités que la 22me: on pose.
a4 1l'enfant des questions sur le changement de la longueur, et le changement que devra ..

subir la hauteur, "toujours pour jouer & la méme régle du jeu".

EXPERIENCE ET RESULTATS

La procédure d'apprentissage est construite & partir de la structure de correspondance in
verse, et introduit la quantification proportionnelle progressivement. I1 paraissait

essentiel que les enfants témoignent, dans 1'épreuve de 1'équilibre de la balance, de
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réponses de correspondance inverse. D'autre part, la proportion est enseignée & 1l'école,
et les enfants n'ont souvent pas de difficultés & donner des réponses de proportion dans
des problémes géométriques, sans pour cela &tre capables d'établir des relations propor—

tionnelles quand on leur propose un probléme extra-scolaire.

Choix des sujets: Nous avons choisi les enfants en fonction d'un niveau maximal de cor-
respondance inverse & 1'épreuve de la balance, et d'un niveau minimal de proportion &
une épreuve d'agrandissement de rectangles, proche des problémes scolaires (épreuve pro-
posée par Longeot, 1972). Ces enfants étaient issus des classes de 6eme d'un méme &éta-
blissement scolaire, et avaient entre 11 ans et 11ans 9 mois. 36 sujets ont été retenus,
répartir en 18 pour le groupe expérimental, et 18 pour le groupe témoin. Ces groupes
sont appariés sur la base des résultats au pré-test (balance, et agrandissement des rec—
tangles). L'expérience comprend 3 phases pour le groupe expérimental: pré-test, appren-
tissage 2 semaines aprés le pré-test, post-test (épreuve de la balance) 3 semaines apres

1'apprentissage. Le groupe témoin ne participe pas aux séances d'apprantissage.

Classement des réponses: On peut regrouper les réponses obtenues en 7 catégories: .

(1) Enoncé de la loi sous forme oualitative (correspond&nce inverse)
(2) Essai de quantification additive

(3) Découverte d'opérateur sur une seule dimension (poids ou distance)
(4) Réponse de produit des deux dimensions incompléte (P1 x D1 =)
(5) Réponse de produit compldte (P? x D, =P, x )

(6) Abstraction et inversion d'opérateur sur exemple précis

(7) Abstraction et inversion d'opérateur avec généralisation

Résultats: On posait & l'enfant une question d'anticipation, on lui demandait ensuite

de réaliser 1'équilibre, en trouvant & quelle distance il fallait placer un poids donné,
le poids et la distance étant déterminés de l'autre c86té du fléau. On lui demandait alors

de justifier le résultat obtenu, ¢t & la fin de 1'épreuve, on posait la question: "Quel-

le est la régle, la loi du systéme ?". Les résultats obtenus sont les suivants:

TABLEAU I : RESULTATS OBTENUS EN ANTICIPATION

(1) (2) (3) (4) (5) (6) (7) N
Gk 0 0 0 0 0 16 2 18
GT 5 2 9 0 1 1 0 18
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TABLEAU II : RESULTATS OBTENUS EN JUSTIFICATION

(1 (@ (3 ) ) (6 (1 N

GE 0 0 0 0 0o 15 3 18
GT 3 0 5 5 2 3 0 18

TABLEAU III : RESULTATS OBTENUS EN REGLE FINALE

(1) (2 (3 @) ()Y (6) (M) N

GE 0 0 0 1 o 13 4 18
GT 1 7 3 4 2 1 0 18

Les résultats indiquent clairement 1l'efficacité de cette procédure d'apprentissage po
son transfert & 1'épreuve de 1'équilibre de la balance. Mais la question reste posée
la portée et des limites de cette procédure. Il manque & ce travail 1'étude de la pos
bilité d'effets & long terme. D'autre part nous ne savons pas dans quelle mesure cett
procédure, construite & partir d'une analyse de la tlche de la balance (inversion d'o
rateurs) est transfér:ble & une téche voisine, mais différente (comparaison de deux r

ports par exemple). Nos recherches s'orientent dans cette direction.
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\Qvé% PROCESSES NEEDED BY AVERAGE ABILITY MIDDLE SCHOOL CHILDREN
IN THE SOLUTION OF 'REAL WORLD'" MATHEMATICS PROBLEMS )

Richard Lesh

Northwestern University, Evanston, Illinois, USA 0

Cet article résume sommairement les objectifs principaux et

les hypotheses qui sont & la base d'un praget de recherche
financé par NSF et concernant les procédés de solution requis
par des éleves d'habzlzte moyenne de 1'enseignement secondaare
pour résoudre des problemes de mathemataqze du monde réel.

On y décrit des examples sur 1) des problémes utilises dans

le projet APS, 2) des charaatermstiques importantes qui
1nfluence la fagon de résoudre un probléme, et 3) des procédés
qui sont nécessaires a la solution de problemes mathemattques
de chaque Jour. D'interet particulier sont les procedes
necessazres durant les &tapes de la solution ou une réeponse
n'est pas & donner, comme par example, le developement du
modéle (y compris 1'introduction de systemes representat%fs
appropriés), le reZevement de 1'information et Z’evaluataon

de la solution (ou du modéle). D'autres procédés d'intéret
comprennent ceuxr qui sont considérés importants dans d'autres
domaines de recherche (par example, des problemes de mots et
des problemes de prise de décision dans une situation médicale,
ete.) mais qui ont besoin d'étre reinterprétés pour s'appliquer
a des solutions de problemes pratiques.

This paper briefly summarizes some of the major goals and assumptions under-—
lying an NSF-funded research project concerning applied mathematical problem
solving for middle school youngsters. The Applied Problem Solving project
focuses on ideas and processes that are accessible to average ability middle
school children when they try to solve real problems involving substantial
mathematical ideas in realistic situations. A rationale for these four foci

is given in Lesh (1981).

Goals of the project include:

A. Producing a set of mathematically rich and psychologically interest-
ing problems which involve easy-to-identify, substantive mathematical content,
real (or at least realistic) data or problem situations, and realistic prob-
lem solving resources--including technological tools (e.g., calculators) or
other people (e.g., peers and consultants). Some of the problems require

approximately one hour to complete and can be used in small group problem
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solving sessions as well as with individual students. For these latter types
of complex problem solving episodes, videotape protocol analyses will be
accompanied by follow-up interviews and by instruments for measuring relevant
background information (e.g., prerequisite concept acquisition).

"

B. Conducting "task analyses' and "idea analyses" for the problems

developed in the project, identifying: (1) important problem characteristics

e )
which influence problem solving behavior, and (2) processes which are needed )

— —

in the solution of everyday mathematical problems. Processes of particular =l

interest are those needed at non-answer giving stages of problem solving,
e.g., model development (including the introduction of appropriate representa-
tional systems), information retrieval, and solution (or model) evaluation.
Other processes which are of interest include those which research in other
problem solving contexts (e.g., word problems, medical decision making, etc.)
have claimed are important, but which appear to require reinterpretation in
order to fit applied problem solving situations.

C. Producing evaluation instruments to measure selected: (1) processes
(e.g., modeling processes), (2) abilities (e.g., modified versions of several
"abilities" identified by Krutetskii (1976) or "disabilities" identified by
Lesh (1980); (3) skills (e.g., manipulating equations which involve both
number and unit labels--30 miles/hour x 30 minutes = [::l), and (4) under-
standings (e.g., metacognitive understandings). The project will investigate
the predictive value of attitude or ability measures (e.g., self-directedness,
creativity, field dependence) which appear to be influenced by content under-
standing in a particular domain or by metacognitive understandings associated
with that area.

D. Refining Saari's (1977) mathematical model of problem solving to
account for data resulting from the project's task analyses and underlying
idea analyses, or from its analyses of problem solver characteristics.

E. Refining Bell and Usiskin's (Note 1) taxonomy of mathematical uses.
Bell and Usiskin's NSF-funded project has produced a classification scheme
derived from a logical analysis of ways elementary mathematical ideas are
used in everyday situations. The scheme gives a way of organizing mathematical
content, together with example problems in each content category--accompanied
by references to other sources of applied problems related to the category.
The present project will refine Bell and Usiskin's taxonomy by superimposing
on their logical analysis a psychological characterization of categories--
together with important processes which students must use when they work on

problems in each category. These refinements involve redefining some



- 135 -

categories, creating new categories, and collapsing or deleting other cate-
gories.

PAST RESEARCH WHICH INFLUENCED THE APS PROJECT
Many of the theoretical perspectives for the applied problem solving project
evolved during earlier research investigating: (a) the development of
spatial/geometric concepts in children and adults (Lesh & Mierkiewicz, 1978);
(b) mathematical abilities that are deficient in "learning disabilities" subjects
(Lesh, 1980); and (c) the role that various representational systems play in

the acquisition and use of rational number concepts (Behr, Lesh, & Post, Note 2).

Because modern psychology attributes a multiplicity of different meanings to
the term "information processing” and because many of these interpretations

do not fit the theoretical perspectives underlying the APS project, we do not
characterize ours as an information processing approach. However, like most
information processing perspectives, we do trea: the learner as an adaptive
system whose interpretation of problems is influenced by internal models as
well as by external stimuli. On the other hand, we do not treat mathematics
as information to be processed, nor do we treat mathematicians as processors.
For us, the mathematician or mathematics student is considered to be a "situa-

tion interpreter and transformer," and mathematics furnishes the "conceptual

models'" (see definition below) for making interpretations and transformations.

"

Our explanations of cognitive growth tend to be more "organismic" than "mecha-

" with our theoretical constructs bearing closer resemblances to many

nistic,’
of Piaget's ideas than to artificial intelligence models (Lesh, 1980; Saari,
Note 3).We tend to focus on '"tracing the development of ideas' rather than

' and on "idea analyses' rather than

"tracing the development of children,'
“task analyses' (Lesh & Landau, 1981). We prefer to use modified versions of
"related" mathematical systems to model children's primitive conceptualiza-
tions of mathematical ideas, rather than using quasi-linguistic models (Lesh,
1980; Saari, Note 3). And, unlike many information processing theories, the
APS project is not based on the assumption that chains of productions (i.e.,
condition-action pairs) are at the heart of most thinking. For example, one

might contrast our point of view with that adopted by Newell and Simon in

their book, Human Problem Solving (1972):

The theory to be presented in this book has much more to say about
methods and executive organizations than about creating new repre-

sentations of shifting from one representation to another....
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However, some problems do exist in which the whole difficulty of
solution resides in finding the right representation. Once that
representation has been discovered, solving the problem becomes a

trivial matter. (p. 90)

The APS project is concerned precisely with problems in which the development
of an appropriate model is important, and a number of examples will be given
during my presentation in Grenoble. We believe these types of problems are
typical of realistic situations in which mathematics 1s used to solve problems.
ng_ufi_githggatlcs is the study of structure, the content of mathematics

consists of structures, and to do mathematlcs 1s to create and manlpulate

structures. These structures, whether they are embedded in pictures, manipu-

lative materlals, spoken language, or written symbols, are the models that
mathematicians and mathematics students use to solve problems.

Definition: A problem is a meaningful situation which a student is

willing to address, but for which a stable conceptual model is not available.

Definition: A conceptual model is an integrated system which includes:

(a) an idea which presupposes systematic relationships with other ideas and
a system of relations and operations that comprise the formal definition of
the concept), (b) a representational system, and (c) a system of processes

which contribute to the meaningfulness and usability of the idea.

<QANSLATE SANSEo,
)
e
- "
ReaL
SITUATIONS
TRAWSLATE
Figure 1

Processes Needed to Use Mathematical Ideas in Real Situations

Figure 1 represents a useful but naive conceptualization of the problem solving
process. It is naive because a given model may be associated with several
distinct representational systems (i.e., pictures, spoken language, written
symbols, etc.), each of which may be 'good" for representing some aspects of
the problem but "not so good" for representing others. Different aspects of
the problem may be represented using different systems, and the solution

processes may involve "mapping' back and forth among several systems--perhaps



using pictures as an intermediary between the real situation and written
symbols, or perhaps using language as an intermediary between pictures and
written symbols. In fact, many real world problems occur in a multi-modal
form and one of the students’ initial problems is to express the data using
a single representational system, Examples of these phenomena will be given

in my presentation at Grenoble.

Not only do problem solvers translate back and forth among various repre-
sentational systems during the solution of a particular problem, they also

map back and forth between internal and external versions of these systems.

For example, in early stages of the solution of a given problem, a child may
draw a photograph-~like depictive picture of the problem situation. This
depictive drawing may simplify the real situation by leaving out some infor-
mation, clarifying other relationships by organizing and weighting the infor-
mation, and reducing memory load. This may allow the child to clarify or
reorganize his internal models, and this may in turn allow the child to produce

a more refined and realistic 'descriptive' diagram.

Unlike most definitions of the term "problem," we do not characterize problem
solving as an inability to get from A to B. For example, from our perspective,
a mountain climber's "problem” is not so much "to get from the bottom of a
cliff to the top" as it is to "understand the terrain." Once the terrain is
understood, the activity of getting to the top of the cliff is an exercise,
not a problem.

"

In most puzzles or problems used to study "problem solving,'" the starting
situation and the desired end point are both given. More realistic problems
of ten occur as '"ouches" rather than as well defined questions with clearly
specified goals (in which the "problem" is to find a set of legal moves to get
from the "givens" to the "answer'). Problem formulation is an important stage
in real problem solving. In many cases, there is an overwhelming émount of
information, all of which is relevant to the problem, and the main difficulty
may be to select and organize the information that is "most useful" in order
to find an answer that is ''good enough.'" 1In other cases, not enough informa-
tion is available, but a usable answer must be found anyway. Or, additional
information may need to be identified or generated as part of a solution
attempt-—the information may not all be given at the start. All of these

characteristics of real problems are related to the use of conceptual models
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as "filters" to select, organize, and interpret information from real situa-
tions. This filter always distorts or deemphasizes some aspects of real
situations in order to clarify or emphasize others. Consequently, investigating
the usefulness of trial "models" is related to a variety of important applied
problem solving processes. These include problem formulation processes,
modeling processes, representational processes, and solution evaluation pro-
cesses to investigate the '"goodness" or 'usefulness" of various trial solutions
to a given problem. Again, examples of these and other problem characteristics

will be given in my presentation at Grenoble.

Problem solving often requires generating a sequence of progressively more
refined problems. Our problems come in two types, or combinations of these

two types (Lesh, 1981): (a) problems in which a well organized model is
available but the amount of information needed to deal with the situation ana-
lytically exceeds the processing capabilities of the individual. In these
cases, the problem solving process consists of interpreting (i.e., simplifying/
clarifying/mapping) the real situation in a way that fits the model; (b) prob-
lems in which a well organized model must be created to fit the situation, or

existing models must be modified to fit the situation.

How do our conceptual models differ from more traditional information
processing models? Primarily, the differences result from our emphasis on the
structure of mathematical ideas, and on the interdependent roles of idea struc—
tures, processes which contribute to the meaning and usability of the idea,
and the representational systems in which these structures and processes are
embedded. Theories which deemphasize the role of conceptual structures tend
to hypothesize relatively powerful processes (see Figure 2a), whereas theories
which hypothesize the existence of powerful structures need only relatively
weak content specific processes (see Figure 2b). Our perspective goes one
step further, assuming not only the existence of powerful structures but also
that the processes contribute to the meaning of the underlying ideas (see

Figure 2c¢).
e ;t

(a) () (c)
Weak Structures Strong Structures Conceptual
Powerful Processes Weak Processes Models

Figure 2
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The APS project emphasizes the "structured wholeness" of conceptual models,
rather than assuming that these systems are built up by linking together

relatively discrete condition-action pairs.
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STRATEGIES AND ERRORS IN GENERALISED ARITHMETIC
Lesley R. Booth, Chelsea College

ABSTRACT: L'examen des strategles et erreurs des enfants en algebre
é1lémentaire a commencé par 1'analyse des données du test
d' algebre des Concepts in Secondary Mathematics and Science
(CSMS), afin d'identifier les erreurs les plus courantes et
d'en proposer les origines vraisemblables. A la suite de
cette analyse on a choisi dix questions dont les fausses
reponses, selon l'analyse des CSMS, paralssalent Stre le
résultat de la manlpulatlon des 1ettres en algdbre elemen—
taire, auxquelles les éldves ont donné une valeur, ou qu'ils
ont tout a fait meconnues, ou qu'ils ont considérées comme
obJets. On a deveLOpe un programme d'interviews individu-
elles 4 la base de formes paralldles de ces questions pour
permettre l examen des erreurs, On a donc choisi 55 enfants
dgés de 13 3 16 ans au niveau moyen en mathématiques dans
c1nq écoles de la banlieue de Londres. L'analyse des
reponses a 1 1nterv1ew indique deux autres domaines dlfflc1les
en algebre elementalre au deld de celu1 de 1‘1nterpretat10n
des lettres. Il s'agit de la maniére dont 1'enfant essaie de
résoudre le probleme, et sa fagon d'en codifier la réponse.
Ces resultats sont presentes sous forme de données en ‘entrée-
traitment-sortiel

The Strategies and Errors in Secondary Mathematics (SESM) project is a project
funded by the Social Science Research Council and based at Chelsea College.
This project follows on from the work of the Mathematics section of the
Concepts in Secondary Mathematics and Science (CSMS) project, which was also
based at Chelsea College, and aims to investigate particular widespread

errors in mathematics which were identified by the latter project.

In the case of generalised arithmetic, these errors were suggested to arise
largely as the result of the child's interpretation of letters (Kllchemann,
1978, 198la, b). The 'strategies and errors' investigation thus began with
an analysis of the CSMS Algebra test items and data in order to identify
those items to which particular wrong amswers were occurring with high fre-
quency (approximately thirty per cent or more), As a result of this, ten
CSMS test items were selected for study (see Figure 1 for examples), the
erroneous answers to which could be interpreted as being due to the child's
handling algebra not as generalised arithmetic, but rather by ignoring the
letters, by substituting alphabetic or other values for the letters, or by
treating the letters as objects (Kllchemann, op.cit.). At the same time,
the viewpoint that many children may not be operating in terms of the system
of 'school mathematics', but may rather be relying upon their own intuitive
‘child-methods® (Booth, 1981; Erlwanger, 1975; Ginsburg, 1977; Hart, 1981),
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suggested that the methods used by children, as well as the meaning ascribed
to letters in generalised arithmetic, may be contributing to the observed

@XTOrS. Consequently it was thought desirable to investigate these various
possibilities,

CSMS Item 'Exrror’ Percentage Giving
zabridged) Answer . Answer (13 yr.olds)
» 1. Area of: 5! x 5e2, el0, 1l0e,e+10 41.7
e L 10, 7 9.5
hoh
2. Perimeter h[__ \h hhhht, 4ht, 5ht 26.8
u
3. Ferimeter S(fj; 2u556, 2ulé6 46.3
3
4. Perimeter: 2 n2 14,5
(n sides of 32 to 42 25.4
length 2)
5. Add 4 onto 3n 3n4, 7n 44,7
7, 12 17.3
6. Multiply by 4: n+5 4n5, n45 11.5
n+20, ot9 38.9
20, 9 16.4
. . N 45,3
7. Simplify if 2a+5b 7a?, 8ab >3
you can: .
Figure 1.

When a child is presented with a particular problem or item and responds to
it, any error observed in his or her final answer may have entered the child-
item system at one of several points. The child may have misinterpreted
either the elements of the item or what is required by the item, or he may
have’used an incorrect method or approach in solving the problem, or he may
have encoded the result incorrectly. (There is also, of course, the possi-
bility of any combination or interaction of such errors). For example, con-
sider the child who gives an answer of the type 5e2 or el0 or 10e to
question 1 in Figure 1. This error may have arisen because the child:

a) effectively interpreted the letter as a ‘thing' which could be

merely collected ub with the numbers (input error);

b) realised that 'e' represented a number expressing part of the length

of the base, but thought that area meant multiplying everything together

(process error);

c) did not know how to interpret the letter or did not know how to
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operate with it and so performed the numerical calculation and 'put down'
the letter afterwards (input/process error);
or d) interpreted the letter correctly, applied the correct method, knew
to add the ‘e' and ‘2" before multiplying by 5, but recorded the
tanswer' to e added to 2 as 'e2' (or '2e')  (output error).
(0f course, there may be other possibilities as well). The consideration of
an input-process-output model of this type permits a clearer picture to be
obtained concerning the point(s) at which the child's understanding of the
problem breaks down. . An interview schedule designed to separate out these
components of the child's problem-solving process, and based on the error-
analysis approach elucidated by Newman (Casey, 1978; Clements, 1980; Newman,

1977) was thus developed for use in individual interviews.

In order to select children for interview, the CSMS Algebra test was given to
a total of 201 children aged 13 to 16 years in the ‘middle ability' mathe-
matics groups of five schools in the outer London area. The tests were
administered by the class teachers in normal mathematics periods, and were
given four to six weeks prior to the commencement of the interview programme.
A total of forty-eight children from this sample was selected for individual
interview on the basis of their performance on the CSMS Algebra test and the
criteria concerning level of letter-inmterpretation, previously outlined
(letter ignored, evaluated or treated as object), and a set of questions of
tparallel form' to the ten items under study was drawn up to form the basis
of the interviews. As a check on the representativeness of the test-sample
from which the interviewees were chosen, CSMS Algebra levels (CSMS Mathematics
Team, 1981) were allocated to all the children tested, and the distribution
of levels obtained was compared with that derived from the CSMS large-sample
(N=2820) data, The closeness of fit observed between the two distributions
was consistent with both SESM and CSMS samples being regarded as representing
the same population. During each interview, which lasted approximately
thirty minutes, the child was asked to explain how he or she would interpret,
solve, and record the answer to each question presented. The interviews
were tape-recorded and subsequently transcribed by the interviewer. Seven-
teen of the 48 children interviewed were subsequently re-interviewed on a
second interview schedule (including some repeated items to check for con-
sistency of error and approach) six months after the first round of inter-
views, and a further seven children new to the project were also interviewed
at this second stage. The purpose of the second-stage interviews was to
investigate specific hypbtheses concerning areas of misunderstanding which

had been formed as the result of the round-one interviews.
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From the analysis of the first set of interviews it became apparent that
while children do show some confusion over the meening of letters, this was
not the only source of error. In terms of the input-process-output model,
such ‘interpretation' errors may be regarded as ‘input errors®, since they
relate to the way in which the child 'receives®’ the original data. By means
of the interview schedule referred to above, however, it was also possible to
identify two other sources of error, one relating to the processing of the
problem once interpreted, and the second to the way in which the child

encodes the. answer obtained, During interviews on the ‘perimeter® items
(items 2 to & im Figure 1), for example, it became apparent that part of the
difficulty which children experienced with item &4 was due to the need to
change from an additive to a multiplicative method for that item. Children
who solved the earlier perimeter items by adding the sides and who attempted
to extend this method to item &4 were faced with the problem of adding *n' lots
of 2, a problem which was resolved by 24 of the 55 children interviewed (44%)
by assuming a particular number of sides, while a further 11 children (20%)
stated that they would need to know how many sides to add before they could
proceed. In addition, it became apparent that an ability to verbally des-
cribe a method does not necessarily emtail a recognition of the fact that

that method can be symbolised mathematically (or perhaps that such symbolisa~
tion may be an appropriate thing to do), It seems that children may have
ways of doing ‘things which they do not formalise (see also Brown, 1981; Brown
and Klichemann, 1976, 1977); if such methods are not formally stated, the
chances of the child®s producing an algebraic representation of those methods
are &nderstandably slight, Certainly, where childremn were observed to give
an appropriate formal statement of the method (e.g. ‘multiply the number of
sides by the length of each side'), there appeared to be mo difficulty in
giving the correct algebraic statement, ‘
These notions were explored in the second round of interviews, in which a

series of items of the kind shown in Figure 2 was presented.

1. A spaceship travels in 2. What could you write for
!stages® which are all the perimeter of this
the same distance long: shape: 5.~3

7~ U
ot -
/ B
7
If each 'stage' is 4 light- All the sides are of
years long, what could you length 7.
write for how far the space- There are 19 sides
ship goes in 97 ‘stages’? altogether.

Figure 2
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Relatively large numerical values were used in these items in order to focus
the child's attention on the operation to be used rather than the answer,
and in order to encourage the use of multiplication, so that no change in
operation would be necessary when the algebraic test item was introduced.
Under these circumstances, 20 of the 23 children (87%) interviewed on these
items gave the correct algebraic statement, as compared with 11% (6 out of

55) on the first round of interviews, .

The possibility of a further contributing factor to this change in perform-
ance was, however, also suggested by these second-round interviews. This
factor relates to the possibility of a communication problem between child
and teacher which may partly underlie the observed difficulty in generalised
arithmetic. For many children an algebraic expression is not regarded as a
legitimate ‘answer'; consequently these children are either reluctant to
give such an answer, assuming-that something else must have been intended, or
they will derive a correct algebraic statement but then use various substi-
tution devices in order to obtain from it a numerical answer. In this case,
the problem lies not so much in attempting to record an inappropriate method,
nor in not having a formal model of a method which can be mathematically éym-
bolised, but rather in the legitimacy of recording any statement at all in its
(to the child) ‘incomplete’' form. The notion of the child's inability to
accept lack of closure has been discussed-in general terms by Collis (1972)
and Lunzer (1976), and in the specific context of algebra by Matz (1979) and
Davis, Jockush and McKnight (1978). It appeared from the SESM interviews,
however, to be more the case that the children considered that a ‘closed’
answer was required, rather than that they could not conceive of any other
possibility, By ‘allowing® the children to leave their 'answers' to the
items in Figure 2 in the unclosed form 97 x 4 and 19 x 7, the way was left
clear for them to feel free to do the same thing in the case of the algebraic
test items. This factor may well contribute to the apparent ease with which

the children handled the latter items.

This apparent desire to give a 'final answer®' may also account in part for
one of the ‘output' errors observed. Thus 9 out of 20 children (45%) inter-
viewed on item 1(Figure /I) in the second round 6f interviews correctly stated
that the area of the rectamgle could be found by adding "2' and ‘e’ and then
multiplying the answer by '5', but then went on to state that 'e plus 2°'
could be recorded as 'e2', This encoding error was observed consistently
across several items to which it was applicable. 1In addition, the responses
given by children to this item (and also to item 6 in Figure 1) confirmed

previous observations (e.g. Kieran,1979) concerning children's reluctance to
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use brackets.

While the data so far gathered are not extensive, being based on a sample of
55 children in total, the consistency (across items) and stability (across
time) of the observed errors and the underlying sources for them . which
children reveal, would seem to indicate that the *problems’ in generalised
arithmetic which the study has outlined may be fairly firmly established in
the secondary-school population at large. If this is so, Ehen the implica-
tions of such misconceptions for further stﬁdy in algebra perhaps need no
elaboration, Further iﬁvestigation to diScover ways in which the child may
be guided to adjust his way of viewing generalised arithmetic problems is

now being undertaken.
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EARLY ADOLESCENTS' REASONING WITH UNKNOWNS
Robert Karplus, Steven Pulos, and Elizabeth K. Stage

University of California, Berkeley, California, USA

La résolution de nombreux probleémes mathématiques nécessite de
chercher une grandeur "incunnue” pour lagquelle 1'énoncé ne donne
aucunne information directe. Pour étudier le processus par lequel
se fait la prise de conscience d'une telle inconnue, nous avons
posé une série de huit problémes arithmétiques & 130 éléves &gés
de douze et quatorze ans. Les résultats montrent que la plupart
des éléves a réussi a trouver quelles étaient les inconnues,
certains & partir de la réponse qui était donnée (résultat le

" plus fréquent), d'autres par essais et erreurs (second résultat
en frégquence), d'autres quelquefois en devinant la reponse, ou
d'autres, rarement, en utilisant une équation. La presence de
schémas illustrant les énoncés a peu d'influence. Il n'y a guére
de différence entre gargons et filles, et entre éléves de douze
ou quatorze ans.

Arithmetic and algebra word problems have a reputation of presenting great
difficulties to many students. A substantial effort in mathematics education
research has been devoted to studies of word problem solving (see, for
instance, Goldin and McClintock, 1979; Lesh, Mierkiewicz, and Kantowsky,
1979). The key feature of the word problems with which we are concerned is
that they require the solver to (1) conceptualize one or more unknowns and
(2) interpret the problem conditions as operations on the unknown(s) yielding

a specified result.

Our research has been carried out in the theoretical framework of reasoning
patterns (Karplus, 1977; Karplus, 1981; Karplus, Pulos, and Stage, 1981),
which are identifiable, reproducible thought processes directed at a partic-
ular type of task. The use of a reasoning pattern, such as reasoning with
unknowns, is postulated to show continuous development from successful appli-
cation at a concrete level (familiar actions and objects, observable proper-
ties, simple correspondences) to later success at a formal level (complex
relationships, intangible properties, hypotheses contrary to fact, transfor-
mations). Development need not be unidimensional and need not pass through
levels that can be characterized in a well-defined way applicable to all

reasoning patterns.

Past research on problem solving has concentrated on the effect of certain

task variables on subjects' success rates in solving problems (Goldin and
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McClintock, 1979) rather than on a description of the procedures that students

actually use to succeed or fail in solving the problem. We have therefore

pursued the latter goal, with early adolescent students who had studied algebra

only very slightly if at all. The tasks were designed to answer the following

questions:

1. What forms of reasoning with or without unknowns do early adolescents
actu§lly apply on selected word problems?

2. What are the frequency distributions of the various patterns of reasoning
with unknowns?

3. How is reasoning affected by the complexity of the problem?

. How is reasoning affected by the presence of a diagrammatic representation
of the problem, by the subjects' sex, and by their grade level?

5. How consistently does a subject employ a particular reasoning pattern?

THE NUMBER PUZZLES
The word problems we used were of the form,''l am thinking of a number. | add
12 to my number and then multiply by 6. 1| get 90. What is my number?' These
abstract problems avoided misunderstandings that might be generated by a con-
crete context and by key words (more than, twice as much as..., altogether)

that merely imply mathematical operations.

Each Number Puzzle was administered in an interview by means of a card that
was placed before the student and was also read aloud. Each student was asked
for the solution and then for the solution procedure. The Number Puzzle Task
consisted of eight puzzles, all of the same form, with whole number unknowns.
The specific data we used are listed in Table 1 in the order of presentation.
The eight puzzles formed three groups: one step puzzles 1, 2, and 3; two step
puzzles &, 5, and 6; and "'loop' puzzles 7 and 8 in which the unknown appeared
In two places. For about half of the subjects the verbal presentation on the

card was accompanied by a flowchart diagram like the one below for Puzzle 4.
+12
@ > s s

Table 1. Number Puzzles in Equation Form

Puzzle Equation Puzzle Equation Puzzle Equation
1 Nx5=65 4 (N+12) x6=90 7 (Nxb)-21=N
2 N-12=9 5 (Nxh)-12=32 8 (N-16) x3=N

3 N+ 8=2 6 (N:8)+11=16
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THE SUBJECTS
Our 130 subjects consisted of approximately equal numbers of sixth and eighth
grade boys and girls from a middle class suburban school with an ethnically
mixed population performing near the average of standardized mathematics
tests. They were selected randomly from an enrollment of about 150 in each

grade.

RESPONSE CATEGORIES
For the pﬁrposes of this preliminary report, we classified the students' pro-
cedures on each puzzle into the following seven categories:
Category N -- item omitted or subject made no progress;
Category € ~- computing inappropriately (e.g. 12-9=3 on Puzzle 2);
Category G -- guessing the answer after one or several unrelated trials;
Category T -- trial-and-error cycles progressing systematically;
Category B1-- working one step backwards from the stated result;
Category B2--fWorking two steps backwards from the stated result;

Category E -- forming an equation and solving it.

We interpreted the use of procedures that fell into Categories G, T, B1, B2,
or E as evidence that the subject was reasoning with an unknown, though not .
necessarily correctly. We judge that the procedures increase in merit in the

order listed.

RESULTS AND DISCUSSION
We shall now proceed to answer the five research questions in order. The
forms of reasoning used by our subjects are reflected in the response cate-

gories, which were derived from the data.

Frequency distributions. Our principal results, the frequency distributions

among the response cafegories, are presented in Table 2. The percentages of
correct answers are included on the last line. It can be seen that most of
the subjects did reason with an unknown on most of the puzzles, but that there

was considerable variation in the reasoning patterns employed.
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Table 2. Frequency Distributions of Response Categories (percent)

Puzzle Number

Category 1 2 3 L 5 6 7 8
N 0.0 0.8 0.0 1.5 2.3 2.3 3.8 9.2

c 1.5 15.4 19.2 6.2 2.3 7.7 3.8 6.9

G 11.5 5.4 12.3 10.0 12.3 14.6 33.8 24,6

T. 42.3 3.1 0.0 16.2 29.2 20.0 48.5 50.0

B1 42.3 71.5 67.7 3.1 0.8 3.8 0.0 0.0

B2 0.0 0.0 0.0 60.8 49,2 48.5 0.0 0.0

E 2.3 3.8 0.8 2.3 3.8 3.1 10.0 9.2

% correct 96.9 83.1 80.0 66.9 88.5 80.8 72.3 61.5

As might be expected, the frequencies of working one or two steps backwards
were high for the first and second groups of three puzzles respectively, and
such reasoning did not occur at all on Puzzles 7 and 8. These were solved

most frequently by trial-and-error approaches or guessing. From a surprisingly
'high'level of trial-and-error tactics on Puzzle 1 we concluded that many
students may actually have been working backwards but used trial-and-error

to carry out the required division operation.

The two apparently very simple Puzzles 2 aﬁd 3 showed a surprisingly high
freqdencyof inappropriate computation (Category C). Most of the computations
took the form 12-9=3 for Puzzle 2 and 8-2=h for Puzzle 3, arithmetic applied

to the given numbers and operations to obtain a natural number answer without
regard to the structure of the prﬁblem. When students checked these answers,
they again used their inappropriate procedures rather than rereading the puzzle

statement, and therefore did not recognize their mistakes.

Guessing -- usually successful -- occurred with a frequency of about 10% on the
first six puzzles, and a frequency of about 30% on the last two. This category
may include responses from some individuals who actually worked backwards or
used a systematic trial-and-error approach but did not articulate this procedure

in the interview.

In spite of the high frequency of working backward strategies on Puzzle 4, the
percentage correct was lower than for Puzzles 5 and 6. Inspection of the
students' calculations showed that many worked backwards incorrectly in that

they did not make use of the distributive principle implied in the puzzle
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statement. That is, they solved the puzzles represented by the equations
6N+12 = 90 or N+(6x12) = 90 rather than (N+12)x6 = 90.

Puzzle difficulty. None of the information we have provided so far gives a

clear indication of the relative difficulty of the puzzles since students were
encouraged to work until they were satisfied with the answer. We believe that
a measure of the time required, such as the time for two-thirds of the subjects
to complete a puzzle, is a good indicator of difficulty. For Puzzles 1, 2,
and 3 this time was one minute or less, for Puzzles 5 and 6 it was two minutes,
for Puzzles 4 and 7 it was three minutes, and for Puzzle 8 it was four minutes.
The progressive increase in working time did follow the puzzles' complexity as
we have described it previously. The additional time required for Puzzle 4
compared to the other two-step Puzzles 5 and 6, and by Puzzle 8 compared to

the other loop Puzzle 7, reflect the need for using the distributive principle.

Format, sex, and grade. We were surprised to find that the reasoning patterns

were applied with very similar frequency distributions, regardless of the
presence of a diagram, whether the subject was a boy or girl, or whether sixth
graders were compared with eighth graders. The only statistically significant
difference occurred in the use of equations by 14 eighth graders compared to

one sixth grader.

Consistency of reasoning. Since the subjects' goal was to find the answer to
Y g

the puzzles by any method, there was little external incentive for their using
the same reasoning pattern consistently. To describe our findings, we have
defined consistency as the use qf a particular approach five or more times on
the eight puzzles. With this criterion, 4% of the subjects consistently

failed to reason with an unknown, 15% consistently guessed or used trial-and-
error, and 43% consistently worked backwards or stated equations. The remaining

38% of the students used the various approaches with less consistently.

CONCLUSIONS
The students participating in the Number Puzzle interviews reasoned with
unknowns to a very great extent and usually found the correct answer. The
most frequent reasoning pattern was to work backwards from the given result,
with trial-and-error the second most frequent strategy. Errors arose from
incorrect manipulations, most commonly in two-step puzzles where the distrib-

utive principle had to be applied.
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The Number Puzzles were constructed as a particularly simple type of word
problem that required reasoning with one unknown but little translation from
words to relationships. Our results suggest that the difficulty many students
have in solving more general word problems with one unknown is due more to
their incorrect translation of the verbal clues into mathematical relation-

ships than to their inability to conceptualize one unknown .

interpreted developmentally, our results suggest that guessing or trial-and-
error strategies applied to our puzzles with small whole-number unknowns are
concrete level applications of the reasoning pattern, as is working backwards
one step. These approaches require only a step-by-step procedure or a single
negation. Working backwards two steps and using an equation successfully are
formal level applications that require proper sequencingor representation of
two operations. While our data on the use of the latter strategies showed
some advance between grades six and eight, a more effective test of develop-
ment of reasoning with unknowns would require a task with an explicit need
for reasoning backwards. Number puzzles with non-integer solutions could be

used for this purpose.
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UTILISATION DES DECIMAUX DANS DES PROBLEMES D'APPROXIMATION

par R. DOUADY et M.J. PERRIN

Our work assumes the following hypothesis : a mathematical
concept has its meaning in the way one uses it, in the
problems which can be solved with it.

Our problem : to construct didactical sesquences on decimal
numbers — with an arbitrary precision - plays an essential
role.

To study the implications of this viewpoint on the behaviour
of the pupils, on their choice of a strategy in problems
having no decimal solution but a real one.

The construction of such didactical sequences involves the
choice of a semantical frame in which the existence of non
rational numbers - numbers which do not appear as result
of operations +, —,x,: = takes signification.

In this purpose, we have chosen to work in geometry and ask
problems of existence of figures or points. Such problems
admit a numerical or algebric expression, and traduction
into this setting is needed by the children for their solu-—
“ton.

These problems and the rule <mposed to the children will

be different in learning sequences, in written knowledge
tests, in individual interviews.

We shall analyse the procedures of the children in clinical
interview according.to three aspects
- meaning of the existence of a solution
- searching of variation law, role of the unknown quantities
- role and working of decimal numbers.

The interaction of these aspects will be considered. We shall
try to compare these procedures with those used in learning
sequences.
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Notre travail prend son origine dans 1'hypoth&se suivante : une notion ma-
thématique prend son sens dans l'usage qui en est fait, dans les problémes

qu'elle permet de résoudre.

NOTRE PROBLEME

Construire des séquences didactiques sur les nombres décimaux dans lesquel-
les leur propriété d'approcher les nombres réels avec une précision arbi-

trairement grande joue un rdle essentiel.
Etudier 1'incidence de la prise en compte de ce point de vue sur les con-
duites des &laves, sur leurs choix de stratégie pour résoudre des problé-

mes n'ayant pas de solution décimale mais ayant une solution réelle.

STITUATIONS~PROBLEMES POUR LES ELEVES

La construction de ces séquences didactiques pose le probléme du choix du
cadre sémantique propre i conférer de la signification & 1'existence des
nombres réels non rationnels, c'est-&-dire des nombres qui n'apparaissent

pas comme résultat, & partir des entiers, d'opérations (+,-,%,:).

Nous avons choisi, pour ce faire, de nous placer en géométrie et de poser
des problémes d'existence de figures ou de points répondant i certaines

contraintes.

Exemples : 1) Parmi les rectangles d'aire fixée, existe-t-il un carré ?

2) Parmi les rectangles de périmdtre donné, en existe-t-il un

d'aire maximum ?

3) Existe-t-il un rectangle dont le périmétre et l'aire soient

donnés a 1'avance ?

4) Etant donnés 2 points A et B sur une cercle T, peut-on choi-
sir un troisiéme point C sur T
- de manigre que 1'aire du triangle ABC soit maximum
- de maniére que 1'aire du triangle ABC soit donnée 3 1'a-

vance.

la situation didactique relative au probléme 1 proposie a des &ldves
de 8-9 ans a été décrite (R.Douady 1980). Elle a donné lieu & 1'explici-

tation des nombres décimaux et de leur écriture sous forme standard.
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Les problémes 2 et 3 ont fait 1'objet avec ces mémes &l&ves 2 ans plus
tard de séquences en classe sous diverses formes (prob.2 en Nov. Déc.79 ;
prob.3 en janv.80). Au préalable, nous avions fait, pour le probléme 3,
une analyse mathématique et un recensement des méthodes que les éléves
étaient susceptibles de mettre en oeuvre pour le résoudre. Nous pensions
que le choix de la méthode dépendrait du sens accordé a 1l'existence d'une
solution, mais aussi que ce sens pouvait évoluer en fonction des informa-
tions obtenues, suivant qu'il &tait possible d'exhiber ou non la solution.
Si on pose le probléme plus général de reconnaitre parmi tous les couples
(x,y) ceux pour lesquels il existe un rectangle de demi-périmétre X et

d'aire Y et de prouver la nmon existence dans certains cas, on est conduit

3 se poser le probléme 2.

Les consignes données aux él&ves ont &té choisies, aprés cette analyse, de
maniére qu'ils aient i expliquer et justifier leurs choix et leurs déci-

sions auprds d'un contradicteur.

Le probléme 3 a &té posé 6 mois aprés les séquences d'apprentissage en
juin 80 & certains des &léves dans un cas ol il y avait une solution ir-—

rationnelle, dans un cas ol il n'y avait pas de solution.
Le probléme 4 a &té posé en entretien individuel en juin 80.

PROCEDURES

Nous analyserons les procédures des enfants pour résoudre les problémes

3 et 4 lors des entretiens selon trois points de vue :

- signification de 1'existence d'une solution
~ recherche de lois de variation, r8le des inconnues

- réle et fonctionmement des décimaux

et les interactions entre ces trois aspects.
Les procédures se classent en trois catégories.

1) PROCEDURES EMPIRIQUES

Pb 3 : On choisit a,b tels que a+b = 4] et axb proche de 402. Puis on modi-

fie de fagon 3 se rapprocher de 402 sans trop s'éloigner de 41.

Pb 4 : On choisit quelques points & 1'oeil sur le cercle et on calcule 1'ai-
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re correspondante. "On voit" que le point le plus haut donne 1'aire la plus

grande

Pb 3

Pb 4

2) PROCEDURES EXPERIMENTALES SOUTENUES PAR UN ARGUMENT THEORIQUE

: a) On garde a+b fixe &gal a 41, on fait varier (a,b) de maniére que
axb se rapproche de 402. Le sens de variation de l'aire est uti-

1isé pour orienter les choix de a et b.

b) On garde a x b fixe Egal & 402 et on fait varier (a,b) par une

procédure analogue 3 la précédente.

¢c) On alterne entre les procédures a) et b).

. On recherche le sens de wvariation de l'aire en fonction de la posi-
tion de C sur T : & 2 points symétriques par rapport au diamétre
vertical correspondent des aires égales. L'aire croit puis décroit
quand C se déplace de gauche & droite et prend la valeur maximum quand

C est sur l'axe de symétrie.

3) PROCEDURE RESULTANT D'UNE PREVISTION THEORIQUE

- on répond 3 1l'existence par ré&férence 2 1'aire du carré
(a+b=41 ou a+b=239
- dans le cas oli il y a une solution on en cherche une valeur nu-

mérique approchée en gardant a + b = 41.

a) On recherche la plus grande hauteur possible. Ce choix est jus—
tifié soit par 1'argument suivant : la base AB est fixe, la plus
grande aire correspond 4 la plus grande hauteur.

soit par des calculs d'aires correspondant & des points voi-

sins.

b) On recherche un triangle isoc&le pour rendre les 2 autres cdtés

du triangle "le plus grand possible en méme temps".

¢) On choisit de prendre un diamétre comme c8té& parce que c'est le

plus long qu'on peut tracer.

d) On choisit une hauteur de méme longueur que la base.

Toutes ne ménent pas au succés, d) traduit une volonté d'utiliser le pro-

bldme 2 traité en classe.
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Nous ne pouvons pas détailler ici les procédures du probléme 4 sous sa
deuxiéme forme. Nous pouvons dire que les &l&ves concluent ou non 3 1'exis-
tence de solution selon le sens accordé & ce mot, a4 peu prés indépendemment
de la procédure employée, sauf ceux qui se ré&fdrent & l'aire du carré& pour
le probléme 3 (a+b =139 axb =402) dans le cas ot il n'y a pas de so-
lution. Tous utilisent les décimaux pour chercher une solution approchée

en cherchant a réduire 1'intervalle d'incertitude. Cette réduction se fait
souvent en recherchant le sens de variation de l'aire (Pb 3, en fonction

de a,b et en premant pour régle que l'aire croft quand |a - b] décroft,

Pb 4 en fonction de la hauteur de C). Cette régle peut résulter d'un cons-—
tat aprds calculs ou d'une représentation graphique des couples (a,b) pour

le Pb 3 en indiquant a c8té de chaque point la valeur de a x b.

On constate 3 cette occasion que, dans 1'ensemble, les &l&ves ont une bon—

ne maitrise des opérations et de l'ordre sur les décimaux.

. Nous avons aussi fait passer un test 8crit de comnaissance sur 1l'ordre

des décimaux dans 3 CM2. Nous les présenterons et les commenterons.

. Nous avons proposé en séquence de classe les problémes 1,2,3 3 des &lé-
ves de 68 (11 ans) ayant déja une certaine conception des décimaux, laquel-
le cependant ne leur permettait pas de donner une solution approché&e a un
probléme. Nous avons &tudié 1'évolution de leurs conceptions et de leurs
procédures au cours de ces problémes. Nous envisageons de les interroger

en entretien individuel sur les problémes 3 et 4. Nous comparerons leurs
procédures et leurs convictions & celles des éléves de CM2. En particulier,
nous nous intéresserons, dans la recherche d'um triangle d'aire donnée (Pb 4)

au rdle joué par l'utilisation &ventuelle d'une &quation algébrique.

Référence : R. DOUADY Revue Recherche en Didactique des mathématiques

Vol. 1.1

/

/

IREM Paris Sud
2 Place Jussieur 75005 Paris
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PRE-ALGEBRALC NOTIONS AMONG 12- AND 13-YEAR OLDS

Carolyn Kieran

McGill University, Concordia University

Cette communication décrit une &tude examinant la conception

_qu'ont déja les &léves, avant tout enseignement formel de
1'algdbre, au sujet de 1'égalité, la notion de variable et la
résolution d'équations. Dix &étudiants montréalais en premiére
année du secondaire ont &té choisis comme sujets (agés de 123
3 133 ans). L'entrevue clinique (sans aucun enseignement) a
6té la méthodologie utilisde dans cette recherche; les entre-
vues individuelles ont &té enregistré sur cassettes. Les
résultats indiquent que les &l&ves au seuil du secondaire
semblent connaltre et semble savoir faire un peu d'algébre 2
un niveau intuitif et non-formel. En se basant sur leur
familiarité avec des équations trés simples et les opérations
inverses, dont ils avaient fait 1'experience au primaire, ils
peuvent &tendre ces connaissances a la résolution d'équations
plus élaborées. Deux types de questions ont été employé pour
sonder la conception que pouvait avoir les &l&ves de la notion
de variable: des formes indéterminées telles que 3a, a + 3,
3a + 5a; ainsi que différentes équations du premier degré.

This paper describes the results of a study which investigated some notions
which children, who have not yet been taught any formal algebra, bring with
them when they begin their high school algebra course. The study was designed
to research not only what the students knew about equality, variable, ard the
solving of equations, and what kinds of understanding they had, but alsc those
areas where they would try (or mot try) to extend their existing knowledge and

how they would do so.

METHOD

The research reported herein is the first part of a larger tcaching experiment
on the learning of algebra. This preliminary phase was conducted in November
and December, 1980. The subjects were 10 Montreal students of average mathe-
matical ability in their first year of secondary school (a school fed by six
different elementary schools). They ranged in age from 125 to 133 vears. The
mathematics course which these students were following in school consisted
primarily in a review of their arithmetic skills; algebra is not taught until
the second year of secondary school. The rescarch methodology used was the
clinical method (no teaching involved); the individual interviews were audio-

taped.
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The main topics probed in this study, along with the rationale for each, are

summarized in TABLE 1.

Questions dealing with each of these areas were de-

signed in advance; however, interesting, unusual, or ambiguous answers by

subjects were pursued further for purposes of clarification.

Subjects were

asked to think aloud; they could also use paper and pencil whenever they

wished.

of the subjects.

Thus, data consisted of the verbal protocols and the written work

TABLE 1

Topics Probed

RATIONALE

TOPIC
A. In domain of arithmetic
1. Notions of equality and uses of

equal sign.

Computational skill.

Knowledge of inverses, identity
elements, operations with negative
integers, conventional order of
operations, use of brackets.

In domain of algebra

Notions of algebraic equations.

a) their own examples

b) their reactions to examples
prcposed by researcher (vari-
ous combinations of occurrences
of unknown and coefficients)

Interpretation of letters,

Notions of indeterminate express-
ions (eg, a + 3, 3a, etc.)
Processes used in solving simple
equations of the forms: ax b,
XxX+aab, ax~bazc, ax +b = c,
X/a +b = c.

Do students see equal sign as an
operatolr symbol or as a symbol for
equivalence (Kieran, 1980)?

Hyp.: Student's view of equality may
influence solving strategies
used.

Do large numbers affect their

computational skill?

Hyp.: Algebraic equations with
large coefficients may seem
more difficult than those
with small coefficients.

What awarenesses do they have of
the relationship between addition
and subtraction, multiplication and
division? What are their intuitive
ideas on operating with strings of
arithmetic operations?

What is their previous exposure to
equations? How will they react to

types they have never seen before?
What will they try to do with them?

Do they conserve equation (Wagner,

1977)7 Does their interpretation

vary with the location of the

letter in equation?

What kinds of meaniugs do students

give to such expressions?

Will the same examples with large

coefficients be more difficult?

Hyp.: Subjects may use an undoing
strategy for equations with
large coefficients and a plug-
ging-in strategy for cquations
with small coefficients.
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RESULTS*

The equal sign. Subjects confirmed findings of previous studies (Herscovics &
Kieran, 1980; Kieran, 1980): 8 of the 10 subjects explained the meaning of the
equal sign in terms of an operation on the left side and the answer on the
right, and gave examples, such as, 6 + 2 = 8 and 20 x 5 = 100. The other Z
subjects stated that the equal sign meant "equal amounts on each side" and
"both things on each side of it are the same -- the total of it is the same"

and provided as examples, 6/5 = 1 1/5 and 3 x 6 = 2 x 9 respectively.

Wﬁen subjects were then asked what they thought of the use of the equal sign

in the examples, 5 = 3 + 2, 8 +2 =5 x 2, 7 = 7, they readily accepted the
first two uses. However, 5 of the 10 subjects thought that the written form

of 7 = 7 made no sense: '"You don't need to work it out; you got it already.
Everybody knows that'"; "Why write that; we might see 5 + 2 = 7"; "7 is equal to
7, I don't know why you have to put the equal sign'"; "It's the same, although

it doesn't mean anything to me'.

Notion of an algebraic equation. Though none of the subjects knew what the

term "equation" meant, they had all previously seen some examples of them, such
as, n + &4 = 20, 6 x b = 72. 1In fact, when asked what they did with "things"
like these, they solved them by undoing, that is, 20 - 4 and 72 + 6. When
asked .if they had ever seen anything like 3x + 4 = 10, they all said that they
never had and that they did not know what the 3x meant. They were then asked
what they thought of 3 x n + 5 = 1/. Though 5 subjects said they had scen this
type before, only 4 of the 5 had a correct idea of what to do with it: "17 - 5
and divide by 3"; or "3 times what plus 5 equals 17 -- 3 times 4 is 12 plus 5
is 17". The remaining subject suggested,"Add 3 and 5, then divide 17 by 8".
The other five subjects had never seen two operations on the same side of the
equals. They nevertheless attempted to handle it by either adding 3 and 5,
then subtracting 8 from 17; or multiplying 3 and 5, indicating then that n

would be 2, because 15 and 2 are 17.

None of the subjects had ever seen x + 5 + 7 = 4 - 3 ¢ 15 before, yet they all
spontaneously solved it by combining the numerical terms (9 of the 10) in a
left-to-right order (thus confirming the findings of a previous study (Kieran,

1979)); the tenth subject used a right-to-left procedure. It is obvious that

Due to space constraints, both the results and their discussion have had to
be summarized considerably.
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none.of them would have solved it correctly if the first operation had been a
muytiplication, i.e., n x5+ 7=4-3+ 15, for none of these subjects had
yet been taught the conventional order of operations. However, the point to
be made is that, as long as there 1s only one occurrence of the unknown, and
as long as all of the operations are symbolized explicitly, even novice stud-
ents will probably try to solve such equations, usually by combining the

numerical terms on each side and then undoing as a last step.

When subjects were presented with equations containing two occurrences of the
unknown, which 8 of them stated they had never seen before, many of them seemed
unable to extend their existing knowledge to cover such situations. With the
equation x + 2 = 2 + x, which required no combining or undoing, only 4 of the
10 subjects seemed able to use their notions of arithmetic equality to cover
this example: "You could put any old number, as long as it gives you the same
answer"; "they're both 2 and they're both equal, so they should both be the
same'; "x can be zero or any number, because the two of them are the same num-
ber, 2 and 2"; and so on. When asked about 3 4 a + 2 = 10 + a, the same &4
subjects stated that the two g's would have to be different; the other subjects

could make no sense of an equation containing two occurrences of the unknown.

Interpretation of letters. When Wagner (1977) presented the two equations,

7 xw+ 22 = 109, and 7 x n + 22 = 109, to 14 twelve-year-olds who had not had
any formal algebra, and asked, "If you were to figure out what w and n would be
to make these statements true, which would be larger, w or n?", her results
indicated that only 5 of the 14 subjects said that w and n would have to be

the same. This task was repeated with the 10 subjects in this study; however,
the wording of the question was changed to, "Are the solutions to these two
equations the same or different?" All 10 subjects replied that both n and w
were the same and, in order to justify their response, provided reasons in terms

of the other identical features of the equations.

When subjects were asked the meaning of the letter in 54+ a=12andnx 3 =15,
they responded in terms of its value. However, all but one (who guvssed) did
not know the meaning of the letter in 2c + 15 = 29. They had never seen 2 x ¢
written as 2c. Four of these 9 subjects were then told of the convention in
order to see if they could solve equations which were written in concatenated
form. As will be seen later, though concatenation may have been a factor in

the solving of two-operation equationms, it obviously had no cffect on any of




the .subjects in their dealing with single-operation equations (eg, 6a == 18)

Indeterminate expressions. In order to probe further into their concepts of

variable and unknown, subjects were asked the meaning of 3a, a + 3, 3a + 5a.
For the expression, a + 3, which did not carry the concatenation problem witn
it, 7 subjects could not assign any meaning, because they could not find the

"

value of a. "Meaning" for them was only defined in terms of finding some

answer, some value for a: "I can't tell what a is until I know what this

equals'; "I don't understand"; "if rhere was an equal sign -- "

; "a has no
value". The other two examples, 3a and 3a + 5a, proved meaningless not only
to 5 of the 6 who did not know about concatenation, but also to 2 of those who

did, "If we had the answer, like 3a = 30, we could do it, but we don't know'.

Novices' inability to assign any general meaning to indeterminate expressions
would seem to indicate that early instruction in the gathering of like terms,
for example, "simplify 3a + 5a'", ought perhaps to be postponed until students
see such expressions within the context of equations, that is, 3a + 5a = 16.
The presence of the equal sign would seem to be a necessary ingredient in the
early stages of a high school algebra course, and perhaps should also be con-
sidered in the introduction of polynomials which traditionally have been
treated as indeterminate expressions and have thereby caused students a fair

amount of difficulty.

The solving of equations. The last section of this study dealt with the

strategies used in the solving of the nine equations shown in TABLE 2. Tor
equations of the forms ax = b and x + a = b, the most common solving procedure
used was ''undoing', that is, performing the inverse operation, such as, b + a
and b - a. The only exception was the equation 6a = 18 which 7 subjccts
solved by "number facts', that is, immediately replacing the unknown by the
correct value and reading it in the order in which it was written, "6 times 3
is 18". Familiarity with the multiplication facts up to and including 10 is
considered to be the reason for employing this particular strategy with this

equation.

For equations of the forms ax + b = ¢ and ax - b = ¢ which were solved correctly,
subjects tended to use either a 'number facts" strategy or a "plugging-in'

(i.e., trying a succession of different values until a suitable one is found)
strategy for equations with small coefficients; and for cquations with large

coefficients either an "undoing twice" (i.e., performing the inverses of the
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TABLE 2

Strategies Used in the Solving of Equations
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two given operations) strategy or a combination of both undoing and plugging~in.
Though the large coefficients proved to be no hindrance at all for equations of
the forms ax = b and x + a = b, they tended to increase slightly the complexity
of the two-operation equations. A more obvious source of difficulty was the
presence of a subtraction sign in an equation. Equations of the form ax - b = ¢

resulted in significantly more errors than equations of the form ax + b = c.

The most common error was 'undoing with the same operation', for example, sub-
tracting 124 from 199 in the equation 17x - 124 = 199 rather fhan adding. This
occurred four times in 17x - 124 = 199, but only once in 12x + 216 = 468. The
reason why this error should occur more often in equations involving subtraction
is still not clear. A prevalent error in the last equation, x/3 + 26 = 432, was
"undoing only once", that is, subtracting 26 from 432, and assigning that

difference to x.

Conclusions. What is surprising from this preliminary investigation is that
there were so few errors in all, considering the fact that these subjects have
not yet been taught any formal algebra. Many of the miscellancous errors which
did occur are being attributed, for the time being, to the confusion caused by
the symbolic convention used in these equations. Though strangely, this did not
seem to be a factor in 6a = 18 or 27b = 1053. Even the six subjects who had not
been told that "2c¢" means "2 x c¢" seemed to have made this assumption in the

ax = b type of equations. However, despite the notational problems, jusc as
children beginning elementary school already possess an informal arithmeric
(Ginsburg, 1977), children beginning secondary school scem to know and ave able

to do some algebra at an intuitive and informal level.
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AN ANALYTICAL FRAMEWORK FOR MATHEMATICAL VARIABLES

Sigrid Wagner

University of Georgia

L'emploi de lettres comme représentation symbolique de la
notion de variable est utilisé de multiple fagons en mathé-
matique. Dépendant du contexte ainsi que des &léments
représentés, le rdble d'une variable peut &tre celui de nom,
de valeur positionnelle, d'indice, d'inconnue, de nombre
généralisé, d'indéterminée, de variable dépendante ou
indépendante, de constante, ou de paramgtre. Du point de
vue mathématique, le rdle d'une variable est déterminé par
le contexte ainst que les reférents et est essentiellement
indépendant de la lettre employée pour représenter la vari-
able. Cependant, du point de vue psychologique, 1'inter-
pretation d'une variable peut dépendre du choix du symbole,
tel que 1'ont montré des recherches sur la capacité des
étudiants & "conserver' 1'equation ou la fonction soumises
a des transformations de variable. Un cadre d'analyse
ineorporant chacun des éléments -- symbole, contexte,
référent ~-- peut &tre utilisé afin de générer différentes
tdches permettant d'étudier la capacité des élaves &
identifier les divers rdles d'une variable. Ces taches,
administrées dans des entrevues cliniques semi-standard-
isées, permettent d'évaluer la clarté et la difficulté
associées aux rdles joué par les variables. Les résultats
ont une portée importante sur le programme de mathématique,
surtout en algebre.

Literal variable symbols are used in a multitude of ways in mathematics.
Depending upon the context in which they occur and the element(s) to which
they refer, the role of a variable may be described as that of a name, a
placeholder, an index, an unknown, a generalized number, an indeterminate,

an independent or dependent variable, a constant, or a parameter. Adding

to this complexity is the fact that, generally speaking, different literal
symbols can be used to represent the same thing, and the same literal symbol
can be used to represent different things. At the same time, certain letters
have acquired fixed connotations relative to particular contexts. It is no

wonder that students have so much difficulty working with literal variables.

Several recent studies have investigated certain aspects of students' under-
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standing of variables. Kiichemann (1978, 1981) has followed up the work of
Collis (1975) by identifying six ways that students interpret and use literal
symbols. Wagner (1981) has used conservation of equation and function tasks
to show that many students harhor two misconceptions about variables:

(1) that changing a literal symbol implies changing the referent and (2) that
the linear order of the alphabet corresponds to the linear order of numbers.
Tonnessen (1980) has investigated college students' understanding of variables;
Clement, Lochhead, and Soloway (1979) have studied the difficulties students
have in translating verbal statements into symbolic form; and Sachar, Baker,
~and Miller (1979) have compared students' facility in solving equations with

numerical versus literal coefflicients.

The purpose of the present paper is to outline a tentative analytical frame-
work for investigating students' understanding of variables. This framework
can be used to generate tasks that provide measures of the clarity and diffi-
culty of the different roles of variables. Data from semi-standardized clini-
cal interviews with students may have important implications for the mathe-

matics curriculum, particularly in algebra.

SYMBOL, REFERENT, AND CONTEXT

Like the words of verbal language, the symbols for mathematical variables
acquire meaning only as they appear in some context and represent some
referent (see Figure 1). As in verbal language, the symbol and its referent
determine the semantic role of the variable, while the symbol and its

context determine the syntactic role of the variable. Unlike the words of
verbal language, the symbols for mathematical variables are quite freely
interchangeable, except in certain contexts, most notably formulas, in which
particular combinations of letters have acquired a traditional connotation.
Because the symbols for variables are so arbitrarily interchangeable, the
context and the referent together, apart from any particular symbol, determine
an aspect of variables that is uniquely mathematical. That is, the context
and referent determine the mathematical role of the variable. All three
components -- symbol, referent, and context -- as well as all three aspects --
the semantic role, the syntactic role, and the mathematical role -- combine

to contribute to the student's interpretation of variables.

Figure 1 indicates some of the range of variation that occurs in the symbol,
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SYMBOL REFERENT
Type of Symbol Type of Referent
verbal numerical
geometric geometric
literal Semantic other

o v e

Role of Variable

Choice Within Type Number of Referents

particular phrase N=0
particular shape N=1
=k

particular letter N
. N is infinite

! T
! |
i |
| 1
[ )

Mathematical

Syrtactic

Role of Variable

Role of Variable

. CONTEXT ,

Form
term

expression
statement

Choice Within Form

particular relation
number of variables

Figure 1. Variation in the components that affect students' interpretations
of the roles of variables.
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referent, and context components of variables. A change in any one of these
components may or may not, depending upon the nature of the change, cause a
corresponding change in each related aspect of the variable. That is, a
change in either the context or referent may or may not affect the mathemati-
cal role of the variable. On the other hand, a change in symbol generally
does not affect the mathematical role of the variable, except where conven-
tional usage intervenes. The naxt three paragraphs provide examples of vari-
ation in symbol, referent, and context and show how these variations may

affect the mathematical role of variables.

Symbol. Verbal words and phrases, such as "some number" or "an even integer,"
and geometric figures, such as [] or Zl can each be used as symbols for vari-
ables in certain roles, but only literal symbols can satisfactorily represent
variables across their entire range of roles (Wagner, 1977, 1979). Most
choices of literal symbol are guite arbitrary and neither determine nor
depend upon the role of the variable. TFor example, any letter at all can be
used to represent the unknown in an equation, a generalized number in an
identity, or an indeterminate in a polynomial. In the case of functionms,
different conventions have prevailed at different times throughout histery to
facilitate identification of constants and variables. One modern convention
is to use letters at the beginning of the alphabet as constants and letters
at the end of the alphabet as variables, but even within the constraints of
convention, many choices of symbol are available. For example, the sentences
y = ax?, z = bw?, and r = ks? can all be used to describe the same parasolic
relationship between two variable quantities. On the other hand, there are
some changes in literal symbol that can affect the psychological interpreta-
tion of the role of a variable. For instance, changing y = ax? to E = me?
will, in most readers' minds, change the constant to an independent variable,
the independent variable to a constant, and the parabolic relationship to a

linear one.

Referent. A variable symbol may represent virtually any object, person,
place, or idea. It may represent one thing, many things, or even nothing at
all. Mathematically, it is useful in the case of open sentences to distin-
guish between the replacement set and the truth set for a variable. Psycho-
logically, the referent set is undoubtedly the truth set. That is, in the
equation 3x + 5 = 11, the referent for the unknown would be the single ele-

ment of the truth set, the number 2, whereas the replacement set for the
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unknown would typically be at least the entire set of rational numbers. A
chénge in the specific value(s) of the referent generally does not change the
rolé of a variable, but a change in the number of referents often does change
the role of a variable. For example, in the context of equations, x is an
unknown in the sentence x + 2 = 2 + 3x, but x is a generalized number in the
sentence £ + 2 = 2 + x. On the other hand, x would probably be called an
unknown in each of these statements: z2 + 6 =5, x2 +5 =25, z2 + 4 =5,

~and x2 + 1 = 5, where the replacement set for z is the set of real numbers.

Context. Like ordinary words in verbal contexts, mathematical variables can
occur by themselves, in phrases (terms and expressions), or in sentences
(open sentences or statements). Within each of these forms, there are many
finer gradations in context. At the level of open sentences, for instance,
inequalities differ in context from equations; at the level of equations, a
quadratic equation differs from a linear equation; at the level of linear
equations, an equation in one variable differs from an equation in two vari-
ables. Depending upon the situation, it may be suitable to consider only
certain levels of change in context. For many purposes, the finest grada-
tions in context that may be of interest are those involving a change in
relation, a change in degree, or a change in the number of variables.
Changes in the specific values of numerical terms or factors would not gener-
ally be considered a change in context. That is, x+ 2=5andx + 3 =7
would usually be considered the same context, whereas x + 2 = 6, X + 2 < &,
22 + 2 =5, and & + y = 5 would usually be considered different contexts.

A change in context may or may not change the role of a variable. For exam-~
ple, the sentences x + 2 = & and z2 + 2 = 5 may represent different contexts,
but x is an unknown in each. Many of the changes in context that do change
the role of a variable are accompanied by changes in the referent for the
variable, as in 3x + 2 = 5§ versus 3x + 2 < 6. However, a change in context
can change the role of a variable without changing the referent, as shown by
the expression a(b + ¢) and the identity a(b + ¢) = ab + ac; here the vari-
ables in the expression would probably be called indeterminates, whereas the

variables in the identity would probably be called generalized numbers.

IMPLICATIONS FOR RESEARCH AND TEACHING

The above framework can be used to generate a wide assortment of mathematical

expressions and statements that vary systematically in the symbol, referent,
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and context for their variables. These items can be used to create sorting
tasks and triplet comparison tasks to investigate students' ability to iden-
tify the different roles of variables. Results could have important implica-
tions for the mathematics curriculum. For example, if the notions of place-
holder, unknown, and generalized number should be found to be of relatively
increasing difficulty for students, then perhaps unknowns should be intro-
duced using the innovative approach developed by Herscovics and Kieran (1380)
rather than the more traditional approach of beginning with the idea of gen-

eralized number (e.g., Dolciani, Wooton, & Beckenbach, 1980).
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PSYCHOLOGICAL CHANGES ATTENDING A TRANSITION
FROM ARITHMETICAL TO ALGEBRAIC THOUGHT
Eon W. Harper

University of Bath, England

L'auteur met en discussion les dispositions psychologiques
associées vraisemblablement & la maniére de penser arith-
métigquement et algébriquement. Les réponses de 144 éléves de
lycée - dont 24 en chaque année scolaire I-V et 24 éléves
préparant 1'examen Advanced Level (Baccalaurdat) - & deux
épreuves mathématiques sont analysées et comparées. La premiére
épreuve demande qu'on produise une solution mathématigquement
générale & un probléme originalement posé et résolu par
Diophante. Trois différents types de solution générale sont
présentés et disposés selon une hiérarchie de 'sophistication’
(c'est-da~dire subtilité) algébrique. La deuxiéme épreuve
fournit des informations sur la perception de figures
géométriques dans lesquelles les distances sont représentées
par des symboles algébriques. Les réponses & celle-ci sont
divisées en deux catégories - dites concrétes et abstraites -
et l'auteur les examine en établissant les correspondances avec
les réponses relevées pendant la premiére épreuve. Cette
comparaison soutient la thése que le niveau de 'sophistication’
de la solution présentée par un éléve a rapport, étant donné le
systéme symbolique préféré par 1'éléve, & la maniére de
percevoir des figures géométriques. Il est probable que la
pensée arithmétique ait rapport & une interprétation 'statique’
des figures géométriques, tandis que la pensée algébrique se
rapporte & une interprétation 'dynamique'.

INTRODUCTION

This paper concerns itself with an initial attempt to distinguish the psycho-
logical traits which separate arithmetical and algebraic thought. A theoretical
stance was originally taken for task construction which involved an arbitrary
but informed decision to consider algebra to begin when the letter is first
used as a 'given' to represent a known quantity. Historically this takes place
with the introduction of the language of symbolic formalism by Vieta (circa
1606 AD) . Reflection upon this innovation in relation to classroom activity
suggests the need for a radical change of habitual modes of interpretation
developed through prior experience with the language of 'arithmetic with letter
appendages’, in which the letter is used exclusively as a classical 'unknown'.
This language coincides with the period of sycopated algebra which begins with

Diophantus (circa 250 AD).

To illustrate key points the responses of 144 eleven to eighteen year old

grammar school pupils (24 in each Year 1-5 chosen to represent the range of
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abilities across each Year-group, and 24 'A' level mathematicians) to two
algebraic tasks are presented and analysed. The first task illustrats the
different ways in which letters can be used to present a general result, and
the second indicates how the pupil interprets geometrical data when distances

are given in algebraic terms (a cm, ...).

The first task, the 'Zetetic Task' (2T), is a reformulation of a problem first
posed and solved by Diophantus, and later by Vieta using his more sophisti-
cated language system:

'If you are given the sum and the difference of any two numbers

show that you can always find out what the numbers are. Make

your answer as general as you can.'

It was presented to each pupil in an interview situation.

The second task, the 'Parallel Lines Task' (PLT), developed from the notion
that the same sentential form, word series or term (surface-structure) often
serves to convey more than one (deep-structure) meaning (Harper, 1978; Skemp,
1979). It asks the following (intentionally ambiguous) gquestions about Figure
1:

1. Is the red line longer than the green
line, the green line longer than the

red line, are they equal in length,

b cm a cm

or could any of these be pcssible?
2. Why?
3. When is the green line longer than

th d line?

e re ine Red Green

4. When is the red line longer than

the green line? Fig. 1
5. When are the lines equal in length?

The task was presented during the same interview situation, and pupil responses

were recorded and transcribed.

The first section below presents, compares and cross-classifies solution-types
to the two tasks, and the final section uses the data to illustrate a
discussion of the likely differences between an arithmetical and an algebraic
disposition of mind. Particular areas of attention for future research are

indicated.
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SOLUTION TYPES TO TWO TASKS

TASK 1 (2T) 38 Pre-'A' level, and all 24 'A' lzvel pupils produced one of

three types of 'general' solution:

(i) Rhetorical: The pupil typically writes down little except perhaps two
numbers to represent a sum and a difference, and the ‘solution':

'vou add the sum and the difference together and divide by two.

That gives you one number. Take the difference from the sum and

divide by two and that gives you the other number.'

(ii) Diophantine: The pupil chooses a particular numerical sum and
difference, writes down two equations containing two unknowns, and solves them.
He (she) then often suggests, verbally or in writing, that the same method can

be used whatever the numbers chosen for the sum and difference.

(iii) Vietan: The pupil writes down two simultaneous equations involving two
unknowns and a letter for each of the sum and the difference. These are solved

to produce, for example: x = a + b, y = a - b.
2

Table 1 shows the distribution of solution-types.

Number of solutions in each Year group
Solution Year 1 Year 2 Year 3 Year 4 Year 5 'A' level
type 11:9 12:11 13:9 15:0 15:9 17:3
R 4 4 4 1 2 [¢]
D ] 1 3 5 5 4
v [¢) 1 [¢] 1 7 20

Table 1: Distribution of solution-types to the ZT

Observations

(a) Some younger pupils are algebraically more sophisticated than their older
peers.

(b) The figures indicate an age-related transition Rhetorical — Diophantine

—» Vietan.

TASK 2 (PLT) Responses were divided into two classes:
(1) Concrete: Pupils suggest the red line is longer because 'It looks
longer', 'It measures more', etc. Arithmetico-concrete operations are suggested

in response to the remaining questions. For example, ‘Double the green line',

'Chop some off the red line', 'Bring the green line nearer'.
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'‘When b » a',

Abstract: Relationships between letters are introduced:

'When a = b'.
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Table 2 shows the distribution of response-types.

'When a > b',

Number of responses in each Year group
Response Year 1 Year 2 Year 3 Year 4 Year 5 'AY level
type 11:9 12:11 13:9 15:0 15:9 17:3
Concrete 22 19 18 18 16 4
Abstract 2 5 6 6 8 20
Table 2: Distribution of response-types to the PLT
Observations

(a) The geometrical data is pirceived in two, and perhaps three, distinct

ways: (i) the lines are singular objects with measurable lengths; (ii) the

lines have 'unknown' lengths yet to be found; (iii) the lines are attempts

to represent 'givens' and so do not have a length in the measurable sense.
(Future research needs to discover a way of deciding which of (ii) and
(iii) is intended by the 'Abstract' response).

(b) The algebraic data is perceived in two, and perhaps three, distinct ways:
(i) the letters are given content and ordering by the geometrical data;
(ii) the content and ordering of the letters remains 'unknown' despite the
geometrical data; from the

(iii) the letters are conceived of as 'givens'

outset and so a (iii) abovs applies.

Cross-classification of results

A cross-classification of the results of Tasks 1 and 2 produces Table 3 (upper

triangle: Years 1-5; lower triangle: 'A' level figures added):

T
Non-general Rhetorical Diophantine Vietan
75 11 6
Concrete
LT 75 11 7 4
7 4 8
Abstract
7 4 11 25
Table 3: Cross-classification of PLT and ZT responses
Observations

(a) The greater is the sophistication of the 2T solution the more likely is an
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'Abstract' response to the PLT.
(b) An 'Abstract' response to the PLT does not preclude a non-Vietan, nor a

non-general response to the ZT and vice-versa.

DISCUSSION

Assuming arithmetic to comprise 'numerical calculations' there are changes
along at least two dimensions to take into account with respect to the
development of algebraic thought :

(i) the presence or absence of an ‘analytic' ability (Krutetskii, 1976) which
here underpins the production of general solutions to the 2T; and (ii) the

variety of usages made of the letter (Collis, 1975; Kuchemann, 1978).

Each type of general solution demonstrates the presence of the 'analytic'
ability, in the sense that significant aspects of a problem are isolated,
'knowns' and 'unknowns' identified and related, and at some stage what is known

perceived as an exemplar of the general.

Table 1 indicates that a symbolism is eventually accepted to support this
ability. In this small scale survey the most common early usage of the letter
is as an 'unknown' in the ZT. Later the letter is also used as a 'given' to
represent known quantities, although the extent to which the sequence ‘'unknown'

followed by 'given' can be changed by teaching is yet to be resolved.

It is thus only at the final 'Vietan' stage that the ability to perceive the
general in the particular is formalised in symbolic terms through the intro-
duction of the letter as a 'givén‘. In this sense cognition and symbolism are,

until this time, out of phase one with the other.

Table 3 indicates that the incidence of 'Abstract’ responses to the PLT is
related to the symbolism available. There are sound theoretical reasons for
this correspondence - in particular the fact that the pupil who responds to the
letter by interpreting it as an 'unknown' will be psychologically predisposed
towards 'finding' values, and thus more likely to be influenced by attendant
geometrical data than will the pupil who uses the letter especially as a
'given'. What the Table shows is that when the stage is reached at which the
'given' is used spontaneously in the ZT (which almost certainly involves a
different form of ALC to that identified by Collis (1975a)) pupils almost
invariably ignore geometrical orderings in the PLT. In turn it is thus possible
that through the synthesis of the ‘analytic' ability and the relevant symbolism

the pupil 'perceives the general in the particular' also in respect of
g

o~ on
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geometrical data, i.e. either perceives a drawing such as Figure 2 as an
exemplar of an infinite class of possibilities, or as a 'snapshot' of a

dynamic system (Harper, 1980).

2 cm 20 cm2 6 cm

Fig. 2
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THE EFFECT OF VARYING THE PERCENTAGE OF CLASS TIME
SPENT ON DEVELOPMENTAL AND PRACTICE ACTIVITIES
IN FIRST YEAR ALGEBRA

John B. Dubriel
Fort Valley State College
Fort Valley, Georgia 31030

Abstrait

L'effect de la variation du temps passé
aux activitids du dévdloppement et du pratique
des rudiments d’algébre

L'effet de la variation du temps passé aux activitids du developpement et du
practique des rudiments d'algébre a été examinés (imvestiguds) avec quinze classes
d'etudiants au troisiéme dégrée dans cing écoles. IL'analyse des résultats des
moyennes ajustées des classes sur un instrument de trois parties (la comnaissance,
les habilités et la solution des problémes orauz) a été faite sur les examens de
retention immédiat et différe.

Des differences significatives ont été trouvds en faveur du groupe qui a dévoué la
plupart du temps en classe en faisant des activitids basd selon le sous-examen de
la retention de la solution des problems oraux.
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THE EFFECT OF VARYING THE PERCENTAGE OF CLASS TIME
SPENT ON DEVELOPMENTAL AND PRACTICE ACTIVITIES
IN FIRST YEAR ALGEBRA

John B. Dubriel
Fort Valley State College
Fort Valley, Georgia 31030

INTRODUCTION

This study examined the effects on students' achievement and retention of varying the
percentage of class time spent on developmental activities and on practice activities
in first year algebra classes studying topics such as factoring polynomials, multi-
plying polynomials, and related topics. By developmental activities in this study

we shall mean those activities which are designed to induce meaning and understanding
as specified by the objectives. The role of the teacher in this type of teaching is
to select instructional strategies and arrange for activities which involve the
students in an active fashion whereby conclusions are made by means of thinking pro-
cesses. By practice activities in this study we shall mean those activities which
are designed to maintain and imnrove basic skills and understanding of concepts with
emphasis being placed upon increasing proficiency and recall. A1l these activities
assume that the Tearner has an understanding of the material and the purpose of the
practice is to embed or permanently fix the skill or idea in the student's cognitive
structure.

The significance of this study was in its production of evidence upon which decisions
concerning time utilization might be made in such a way as to determine a most
effective balance between developmental and practice activities in mathematics in-
struction. In order to produce a maximum of both understanding and mastering of
basic skills, such decisions should be based on experimentation. If a large amount
of time is devoted to either catesgory of activities, then, only a small amount of
time is available for the other category. Consequences of imbalance in time utili-
zation for these two categories are easily formulated. For example, a student might
know a method (be able to carry out an algorithm) and yet neither be able to
identify the nature of the problem, nor be able to translate the problem into a
mathematical model, thus finding it impossible to apply the known method. This
situation may be referred to as problem solution ability without comprehension of
mathematical principles ability when a student will say "I could solve the problem,
if only I could set it up." On the other hand, if the instructor devotes too much
time to meaning the development of skills suffers and the student may also have
problems. For example, a student may be able to identify the nature of a problem,
translate the problem details into a mathematical model, but not be able to finish
the problem because of inability, i.e., lack of skills, to carry out the necessary
algorithms. The data from this study is significant in that it provides some
empirical data bearing upon the delicate balance between practice and development.
Moreover, this study is also significant because it aids in the void relative to
similar research at the secondary school level. Previous research by Shipp and Deer
(1960), Shuster and Pigge (1965). Hopkins (1965) and Zahn (1966) focused on the
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elementary school level and results tended to show that more time should be spent
on developmental activities than on practice activities. Though Zahn's subjects
were eighth graders, who in many cases take first-year algebra, the results tended
to indicate that studies of this nature should be considered at the secondary Tevel.
And as first-year algebra tends to be the course in which practice and/or develop-
mental activities appear to be crucial for more advance work in mathematics that
course seemed to be a logical place to begin.

SUBJECTS AND TREATMENTS

The study was a controlled experiment involving three experimental groups of ninth
grade students (N = 324) enrolled in 15 sections of first-year algebra. There were
about the same number of girls as boys enrolled in each of the 15 sections of first-
year algebra. Students enrolling in any section of first-year algebra were required
to have a grade point average of at least B or favorable teacher's recommendations.

The 70/30 group consisted of five distinct sections of first-year algebra students
who were taught by five distinct teachers in a fashion where 70% of the instructional
time within each 50 minute class period was devoted to developmental activities and
the remaining 30% was devoted to practice activities. The 30/70 group consisted of
five distinct sections of first-year algebra students who were taught by the same
five teachers who taught the 70/30 group in a fashion where 30% of the instructional
time within each 50 minute class period was devoted to developmental activities and
the remaining 70% was devoted to practice activities. The control group consisted
of five distinct sections of first-year algebra students who were taught by five
distinct teachers in a fashion that did not consider a specified amount of instruc-
tional time to developmental and practice activities.

DATA COLLECTING INSTRUMENTS AND RESEARCH PROCEDURE

The tests used to measure achievement and retention in this study were composed of
subtests measuring knowledge (definitions, properties, symbols, formulas and
specific facts); basic skills (performing algebraic operations, demonstrating the
meaning of terms, and in general "doing" types of things); and problem solving
(verbal problems typically found in first-year algebra textbooks). The tests were
researcher constructed in two parallel forms by subtests; Kuder-Richardson-20
reliability coefficient estimates for the subtests ranged from .74 to .86. Correla-
tions between the scores on two administrations of the test one day apart showed the
stability of each of the subtests to be .80 or greater. Moreover, the subtests were
considered to be parallel in nature by using the "t-test" in determining that no
significant difference existed between the means of the subtests (p<.05). Also the
variances were shown to be equal by subtests using the Fp,, test (p<.05).

Further, to insure face validity of the tests the following National Assessment of
Education Progress (1970) philosophy was used in this study:

An exercise has content validity if it is a direct measure of some
important bit of knowledge, skill or attitude that reflects one or
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more objectives of a subject area. It must not be trivial, incon-
sequential or peripheral to the objective. In particular, then,
an exercise has content validity if it makes sense to an informed
reader who sees it together with an objective and says, "Yes, this
is a good measure of the knowledge or skill called for by this
objective." (p. 15)

Using the content outline and the textbook for the first year algebra course,
behavioral objectives were written for the content to be taught during the study.

A pool of items was then constructed to assess these objectives. For each objective
four potential items were placed in the item pool. Content validity was established
by having two mathematics educators and one mathematician at a major mid-western
university (U.S.A.) review the content outline and judge whether the potential items
fitted the stated objective. Further, each potential item was required to receive
approval of at least two of the panel members, otherwise it was rejected. After
receiving the items from the panel four items were picked for each objective. They
were constructed in pairs such that one pair could be answered correctly by 50% or
more of the students and the other pair could be answered correctly by less than 50%
of the students. A toss of a coin determined which pair would be used to assess

the given objective and another toss determined which item would go on a particular
form. Choosing items in this fashion for the two forms resulted in tests that
measured achievement quite well over a fairly wide range or levels. Twenty-five
items were placed on each form. Items 1, 3, 6, 8, 11, 13, 16, 18, 21, and 23 were
knowledge items; items 2, 4, 7, 9, 12, 14, 17, 19, 22, and 24 were skill items; and
items 5, 10, 15, 20, and 25 were problem solving items. The knowledge items were
used to compose the knowledge subtests, the skill items were used to compose the
skill subtests, and the problem solving items were used to form the prob’em solving
subtests.

The item discrimination index used was the non-spurious point biserial correlation
coefficient. This is a measure of correlation between a discrete variable and a
continuous variable, in this case, the test item and the test score. The average
point biserial across items for the knowledge and skills subtest was .4 and was .5
for the problem solving subtest for both Forms A and B.

To maintain control of this study the 70/30 and 30/70 treatments were randomly
assigned and regulated through lesson plans prepared by the investigator, which
allowed the five teachers to use their regular textbooks and the course content
schedule. The plans were constructed in pairs with the same set of objectives
appearing on each plan insuring the same content was covered under both treatments.
Further, the teacher maintained a daily log on the amount of time spent on each
activity; regular classroom observations were conducted by the investigator to
insure the treatments were being followed.

The research procedure followed was to acquaint teachers with the study, pretest the
groups of students, instruct using the assignment treatments, then posttest the
groups of students to determine the effects of the treatments on achievement. To
ascertain retention the students were retested 7 weeks after the posttesting. The
instructional period consisted of 32 school days.
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Analyses of covariance were used with adjusted class means as the unit of analysis.
Total mathematics scores on the Iowa Test of Basic Skills and subtest scores from
the various pretests were used as covariates. The Newman-Keuls Multiple Comparison
Test was used fog post hoc analyses.

FINDING AND CONCLUSION

1) A statistically significant amount of learning took place in each of the three
experimental groups (70/30, 30/70 and control) in the three areas measured
(knowledge, basic skills and problem solving) p .05. 2) From classroom observa-
tion it was determined that the control group devoted 25% of their class time on
development and 75% to practice. 3) There was no significant posttest or retention
test differences between groups on the knowledge and basic skills subtests. 4) Both
the 70/30 group and the 30/70 group scored significantly higher than the control
group on the problem solving posttest. On the problem solving retention subtest,
the 70/30 group scored significantly higher than the 30/70 group and the 30/70 group
scored significantly higher than the control group (p <.05).

On the basis of the current research and previous research on instructional time, it
appears that increased attention should be given to developmental work at the secon-
dary level. More research is needed before precise conclusions can be drawn. For
example, it may be that the Tevel of intellectual development of students is a factor
which influences where cognitive gains (knowledge, skills, problem solving) may
accrue from increased time on developmental work.
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FUNCTION CONCEPTS: INTUITIVE BASELINE *

‘Tommy Dreyfus Theodore Eisenberg
Center for Technological Education Ben Gurion University
Holon, ISRAEL Beer-Sheva, ISRAEL

Selon Fischbein, des intuitions sont des représentations men-
tales de faits évidents. En enseignant, le maltre doit etre
conscient des intuitions présentes chez ses éleves au début
du procés d'apprentissage. Ce travail présente une étude,
dont le but était d'établir quelle est la base intuitive chez
des éleves de la sixieme 2 la neuviéme annee scolaire, pour
un nombre de concepts reliés a la notion mathématique d'une

fonction.

Afin de tenir compte de la complexité de la notion de fonction,
le modele suivant a été développé: Les concepts associés avec
la notion de fonction (image, zéro, croissance, etc.) apparais-
sent souvent dans des regrésentations particuliéres (graph,

table de valeurs, etc.) et a de différents niveaux d'abstrac-

tion. En arrangeant ces représentations, concepts et niveaux
dans une structure trois-~dimensionelle, on obtient un cadre
théorique propice a la formulation systématique de questions
et hypothéses sur les bases de 1'apprentissage, son cadre, son

transfer, etc.

Un projet de recherche a été élaboré en suivant ce cadre théo-
rique. Est relatée ici, la premiére phase, dans laquelle les
intuitions d'éléves sur les concepts d'image, de préimage, de
croissance et de points extrémaux ont été examinés dans trois
représentations (graphs, tables de valeurs et diagrammes de
fléches) et a deux niveaux d'abstraction (concréet et abstralit) .
A ce but, trois versions d'un méme questionnaire ont été cons-
truites, chacune contenant les mémes questions dans une des

. i . oo R
trois représentatlons. Les gquestionnaires ont ete distribues

* This research has been administered through the Department of Science
Teaching, The Weizmann Institute of Science, Rehovot, Israel.
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parmi 443 éléves d'aptitude mathématique variée et provenant

de différents niveaux sociaux. Les principaux résultats

étaient
(i) les intuitions sont indépendantes de la représentatfon.

(ii) les infuitions progressent avec 1'dge (sauf de la 7eme
a la §cme année scolaire); ce progréb est plus fort
chez les filles que chez les garcons.

(iii) Les différences entre les niveaux (sociaux et aptitudes)
sont beaucoup plus prononcées chez les gargons que chez
les filles.

(iv) Les résultats pour les deux niveaux d'abstraction sont
semblables.

L'extension a d'autres concepts fonctionels et 1'examination

du transfer entre différentes représentations sont prévues

pour des phases ultérieures du projet de recherche.

INTUITIONS

For the purpose of this study, Fischbein (1973) will be followed in so far as
the term "intuitions" is taken to refer to mental representations of facts that
appear self-evident. For example, to most junior high school students, it
appears self-evident that:
i) the whole is equal to the sum of its parts and greater than any one of
them.
ii) for real numbers a, b, ¢c: if a>band b > c, then a > c.
On the other hand, the following statements do not appear as self-evident, even
to most college students:
iv) there are as many points in a Tine of length £ as there are in a line
of length 22.
v) the graphs of two quadratic equations can intersect in more than four
points.
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THE FUNCTION CONCEPT

The difficulties associated with the teaching and learning of the function
concept have been studied by Thomas (1975) and Dorfeev (1978). The concept is
a complex one. Several reasons for this are:

1. The function concept is not a single concept by itself, but has a consider-
able number of subconcepts associated with it (e.g. domain, image).

2. The function concept is being used to tie together seemingly unrelated
subjects. In going through the associated abstraction process, different
tevels of abstraction are encountered (e.g. number of variables, type of

domain and range).
3. The same function may be represented in a number of different settings (e.g.
a table, arrow diagram, graph, formula, verbal description).

Because of the intrinsic structure associated with the nature of function, the
subject "functions" can be thought of as being arranged in a three-dimensional
block type structure, in which the x-dimension carries the various settings,
the y-dimension the function concepts and the z-dimension carries a taxonomic
scale of levels of abstraction and generalization.

Within this framework, horizontal transfer of learning (transfer of a concept
learned in one setting to another setting) now appears as movement parallel to
the x-axis of the function block, whereas vertical transfer of learning
(transfer to levels of greater generality) appears as movement parallel to the
z-axis. Progress parallel to the y-axis of the block corresponds to the
Tearning of new concepts and therefore cannot in general be expected to occur
without an external stimulus.

The function block thus provides a framework within which to systematically
ask questions concerning the ordering, arrangement and presentation of function

curricula.

Fishbein (1973, 1979) has shown the necessity of developping curricula which
build upon intuitive support. This study examined the intuitive support which
can be exploited by the teacher, when approaching the concept of function.
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EXPERIMENTAL DESIGN

Three questionnaire booklets were constructed in which questions were asked on
the concepts of image, preimage, growth, extrema and slope. The three booklets
contained the same functional relationships and were identical except for the
settings in which the functional relationships were presented: either a graph
or a diagram or a table setting. Two functions were presented in each booklet;
one concrete, giving a pedestrian meaning to the relationship; the other
abstract, removed this pedestrian meaning.

The booklets consisted of 42 muitiple choice questions. A1l questions included
in the booklets passed an external validity test. The questionnaire had an
internal reliability (KR20) of 0.97.

The booklets were given to 443 pupils in grades 6 - 9 who were classified as

being of a high or Tow level. (The level is a construct variable taking into
account ability and social factors. This variable will henceforth be called

ABSOC.)

FINDINGS
One sees in Figure 1, that the AV
intuitions of pupils progress [%6]
considerably from grade 6 to 80
grade 9 with a stagnation from
grade 7 to grade 8. 70
80
850
40

B

[ T 8 9 GRADE

Fig.|: AVERAGE BY GRADE FOR i
HIGH () AND LOW (o) ABSOC i
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Moreover, 9th graders with low ABSOC were essentially two and a half years
behind those with high ABSOC. This is important to note. Lewy & Chen (1977)
claim that with respect to general cognitive performance, socially disadvant-
aged pupils can learn the material, it simply takes them longer to do so.
Although the variable ABSOC is not identical with the percentage of socially
disadvantaged, Fig. 1 appears to support the conjecture that Lewy and Chen's
observation holds not only for general cognitive performance but also for
intuitions.

The overall mean scores of the males vs. females were, for all practical
purposes, equal (58% (male) vs. 59%). However, in grades 6 and 7 the boys
exhibited more intuitions on the functional concepts whereas in grades 8 and

9 this was reversed and the girls did better. Recalling the lack of progress
in performance from grade 7 to grade 8, one Sees that quite a bit is happening
under the surface. It turns out, that a similar "switching" occurs in the
interaction between ABSOC and Sex (see Fig. 2). The boys perform more extreme-
1y than the girls, Tow level boys performing worse than Tow level girls and
high level boys performing better than high level girls.

AV
(%)
80
70
60

50

40

]

]

"
e

Lo Hi  ABSOC

Fig. 2. AVERAGE BY ABSOC FOR
FEMALE (o) AND MALE (&) SEX
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The above results carried over to both the abstract and concrete sections of
the test. Comparing the mean scores achieved for the various functional
concepts in the questionnaire, it was observed that questions on the concept

of image were answered best and questions on the concept of slope were answered
worst. It is, however, more interesting to compare differences between the
three versions of the booklet for each concept. Pupils with High ABSGC
preferred the graphical setting throughout for all concepts, whereas low ABSOC
pupils preferred the table setting. Didactically this suggests that the sub-
concepts should be introduced in a graphical setting for high level students
and in a table setting for low level students.
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DIFFICULTIES RELATED TO THE CONCEPT
OF VARIABLE PRESENTED GRAPHICALLY
Claude Janvier

Université du Québec & Montréal

Lorsqu'elle est présentée & l'aide d'un graphique cartésien,
la notion de variable entraine des difficultés qui sont tan-
tot d'ordre sémantique tantdt d'ordre symbolique (ou des
deux). Nous allons présenter les données recueillies auprds
de plus de 300 éléves du niveau secondaire. Des interviews
préalables ont permis une catégorisation poussée des répon-
ses. Deuxr questions seront surtout étudiées: les problé-
mes reliés a 1'idée de croissance et le comportement de
diserétisation.

L'idée de croissance rapide est confondue tantdt avec "étre
grand" (attraction vers les grandes valeurs), tantdt avec
"eommencer & croitre (attraction vers le bas). Ces attrac-
tions peuvent étre faibles ou fortes. En des circonstances
diverses, les €ldves montrent une tendance A percevoir le
continu comme un ensemble discret d'éléments. On examinera,
entre autres, la cohérence des réponses (corrélation) et
leur évolution & travers les niveaux.

Note: La présentation sera faite en anglais avec documen-
tatton disponible en frangais car le sujet aura été traité
plus en détail au séminaire de didactique des mathématiques
a Paris en mat 1981.

INTRODUCTION

When presented graphically the concept of variable gives rise to various

difficulties which are either at the semantic or the symbolic level (or both).
We shall present data obtained from over 300 pupils, more than 100 from three
age groups: 12, 14 and 16 years old. Previous interviews have allowed a rich
and complex classification of responses. A computer compilation will be used

for data analysis and correlations.
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A GENERAL PRESENTATION OF THE TASKS

The increase of a variable (dependent) over an
internal is represented graphically by a cartesian
graph having roughly the shape shown in figure 1.
The pupils were asked to find when the increase

is the greatest (in the terms related to the
situation) in three different contexts. ‘They

were also asked in one context when the variable

starts to increase.

Figure 1

Two variables can be represented on the same graph
by two intersecting curves as the ones shown in
figure 2. Pupils were then asked when one variable

is bigger than the other (with situational expres-

sions).

Figure 2
RESPONSES

A) GROWTH

Let us characterise four important responses (incorrect):

- Attraction by high values.
We have decided to give such a name to a recurrent mistake which consists
of answering by a value or an interval corresponding to the upper part of

the curve.

The attraction can be strong. The pupils then Z

confuse "be big" and grow rapidly. We observed
such a difficulty with problems in which are

involved more than graphical distractors.

Figure 3



- 191

The attraction can be weak. Pupils then answer
with intervals which tend to include high values
or with values near the maximum. In that case
interviews suggest that even though pupils may
"look for the steepest' the shape of the graph
plays a deceiving role on the perceptual eval-
uation of the gradient (deception certainly due
also to the insidious and conflictual schema

of "being high').
Figure 4

- Attraction by low values.
This attraction is characterised by values or
interval located at the lower part of the curve
curve. The attraction can be strong. The
pupils then confuse "start to rise" with
"rising most rapidly" and give value very near

the minimum.

Figure 5

The attraction can be weak. The mistake seems
to be more subtle. We incline to believe that
pupils refer to "start to grow quickly" or
"start to grow for real". The shape is

certainly, with what it suggests, determinant.

AN\

Figure 6

B) DISCRETISATION
This term refers to many mistakes by which pupils show an inclination to break
down lines or curves into discrete parts (not dense or continuous) or to jump

or switch to any kind of "whole values".
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- Description of an interval.

When determining 'when" a variable is greater
than another one, they describe the interval
point-wise using one or more points inside

the interval.

Figure 7

Switching to whole numbers.
In reading processes, pupils in various ways often use only the graduation

numbers as if nothing else exists on the axis or on the curve.

When does it start rising?

An interesting case we discovered is related
to this question. In fact, many pupils refuse
to answer the value corresponding to the
minimum (which is sensible) but refer to the

next whole value.

Figure 8

CONCLUSIONS

At the conference, we shall present the graphs which we used in the question-

naire and examine the data obtained in order to

examine the evolution of those responses with the ages;

establish the coherence of those responses by examining correlations
between answers provided in various contexts;

establish tentative ranking and evolution of the responses by examining
the patterns of displacement of the pupils between the categories*: for
example, the category 'attraction by low values' appears to be very stable.
put forward a few hypotheses on difficulties inherent the concept of
variable presented by means other graphical.

In fact, we have for the pupils aged 12, pretest and post-test results
providing us with interesting cross-tabulations.
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THE QUADRATIC FUNCTION AS A VEHICLE FOR DISCOVERY BY DEDUCTION

Rina Hershkowitz and Maxim Bruckheimer
Weizmann Institute, Rehovot, Israel

Skemp attire 1'attention sur la confusion entre 1'approche
logique et 1'approche psychologlque de 1'stude des mathema—
thues. A son avis, la premiére approche enseigne la pensée
imathématique, tandls que la seconde met 1'accent sur le
raisonnement mathemathue. Il declare aussi qu'un des désa-
vantages de 1'approche logique est qu'elle ne donne que le
produit fini de la découverte mathématique, et ne réussit
pas a faire faire a 1'éléve les processus de la pensée, par
lesquels se font les découvertes mathématiques.

En général ce point de vue est probablemunt juste, mais en
pratique, il est peu probable que la sepazatlon soit si
claire, et nous désirons montrer par un exemple que des
aspects de 1'approche logique et de 1'approche psychologi-
que peuvent s'accorder avec succeés, et ne sont pas nécessai-
rement en contradiction les uns avec les autres. Nous four-
nissons une infra-structure dans laquelle 1'éléve fait ses
propres découvertes dans le cadre d'une structure déductive
qu'il aide a créer.

L’exemgle: Un bon éléve de 9éme année scolaire a une bonne
base en ce qui concerne des concepts tels que les fonctions
en general, les graphes et les fonctions linéaires en parti-
culier. Le "chapitre suivant" est la fonction du second
degré qui est, en général, présentée a l'éléve, ni tres lo-
giquement, ni treés psychologiquement. Par contraste, nous
décrivons une approche des fonctions du second degré qui

1)

2)
3)

se fonde naturellement et essentiellement sur les
3 P
connaissances de base K de 1'eleve;

est déductive et a une forte structure logique; et

dirige 1'éléve a "prouver et & decouvrir" les résultats
. =~ - . .
et ensuite a les enoncer explicitement.

Cette approche prend en considération la maturité du raison-
nement mathématique de 1'éléve et la développe. Un aspect
inhabituel a cet age est que le développement procéde du
général au particulier; cela veut dire que la structure dé-
ductive se rapporte a la fonction du second degré en général
et laisse la discussion de fonctions particuliéres du second
degré a 1'acquisition des techniques & un stade ultérieur
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Skemp draws attention to the confusion between the logical and the psychalogical
approaches to mathematics learning, and suggests that the former teaches mathema-
tical thought, whereas the latter emphasises mathematical thinking. He also
states that one of the faults of the logical approach is that "
end-product of mathematical discovery an& fails to bring about in the learner

it gives anly the
those processes by which mathematical discoveries are made" (Skemp, 1971).

In general, this view is probably a &orrect one, but, in practice, the division
is unlikely to be quite sovsharp, and we would Tike to show by an example, that
aspects of the logical and psychological approach can be successfully havmonised
and are not necessarily in contradiction. We provide a framework in which the
student makes his own discoveries within a deductive structure which he helps to
create.

In the example, which is concerned with an approach to the teaching of quadratic

functions, we wish to stress three points:

(i) The approach is built naturally and essentially on the students' background
which, briefly, consists of a familiarity with linear functions, including
the relevant technical skills, the function concept in general and the
various representations of functions. The student has met the concept of
symmetry and knows how to find the equation of the line of symmetry between
two points on a line parallel to the x or y axes.

The next topic, entirely new to the student, is the quadratic functiun, its
graphic representation, and the solution of quadratic equations and ‘nequal-
ities. )

(i1) The approach described below was developed for the more able students
(the upper third of the population). It has a strong logical, deduct-

ive structure which unifies the whole topic.

% (i11) The must significant aspect of the approach is that it does not "give only
the end-product”, as in traditional deductive mathematics (theoren, proof;
theorem, proof; and so on ...). The logical deductive structure provides
the mathematical skeleton, around which the student adds the flesh by a
chain of mathematical discoveries prompted by leading questions.
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STAGE I - DISCOVERING THE GRAPH OF THE QUADRATIC FUNCTION

LEADING QUESTIONS THE MAIN MATHEMATICAL DISCOVERIES
i AND_CONCLUSTONS

2

24 bx + c represent a 1) y = ax“ + b + c represents a function.

1) Does y = ax
function (from the real numbers to
the real numbers)? What can you - The graph cannot "turn back" on itself;
conclude about its graph? or, a line parallel the y-axis meets
the graph in not more than one point.

2) Given any point A (xA, yA) on the 2) There is another point B with
graph of y = ax” + bx + ¢, are x-coordinate —xA—%— é
there any other points B(xB, yA)
on the graph with the same U
y-coordinate? - The graph has two branches
y

A(Xa,Ya)  B(2,Ya) :
b et i, oy A E A T

: A B

1 i i e T s

| Xa X '
What can you conclude about the ) X
graph?
U b
3) For any point A (xp, yp) on the 3) M has coardinates 77 » yA)
graph, find the midpoint M(xM, yM) U
of AB. What can you say about M M always lies on x =—-g—a—
for different AB? ‘U
What can you conclude about the The graph of y = axz +b+chas a
graph? symmetry with respect to the line
i.51)tD)
A== oy y X --g—a

V)
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U

There is just one point K common to
the graph and its axis of symmetry.
The branches gg,the graph must
steadily increase or decrease

from K (the function is monotonic

on either side of the axis of symmetrﬂ.

y 'T’EE
I
!
|
|
!K
4) Find the coordinate yg of the point i X
K on the graph for which ) J}
XK”?%' b2
S Y
5) A (xA, yA) and B (xB, yB) are 5) i}
symmetrical points on the graph of
y = ax2 + bx + ¢ Xg = Xy - a.
We can write x, = X *a (a # 0) ‘U
Xg = ... (after a little algebra)
Find Yp = Vg in terms of Yo @ and Yo =Yg Tyt aa2
the coefficients of the function.
What you can conclude about the iL
graph?

a >0, Kis a minimum

a <0, Kis maximum

The relative shape of the curve
is determined by |a].

y

[t . i

e e e
=
[73 DUy
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STAGE IT - FINDING THE ZEROS OF y = ax? + bx + ¢

LEADING QUESTIONS THE MAIN MATHEMATICAL DISCOVERIES
& AND_CONCLUSIONS

# 2
6) What conditions must a, b and ¢ .  6) The position of K (- gE" c - %5 )
satisfy for the graph teo intersect, determines the answer:
(touch, not intersect) the x-axis? {}
algebraically
intersect d4ac - b2 <0
touch 4ac - b2 =0
not intersect 4ac - b2 >0
7) Find a formula for the zeros of 7) If A and B are the zero points,

the quadratic equation Yp =Yg =yt aaz =0

2 £
ax = +ibxi¥ic =0 Yy

{} =y
a=+ [ K x =x, + [ K
15 A, B Kitofes

It is important to notice that the algebraic technicalities are much simpler
than in the classical methods of developing this topic. No "completing of
the square" or "factorisation" of quadratic trinomials is required.

In the above we have described an example of a learning situation which is both
abstraci and very general. Th=z example illustrates the concept of "deductive
discovery"; that is, discovery within a deductive structure. The student works
with general representatives of classes of mathematical objects; y = ax2 + bx + ¢
as a representative of the class of quadratic functions, and A(xA, yA) as a
representative point of the class of points on the graph of the quadratic function
He is led to discover the properties of these mathematical objects and is expected
to become aware of the fact that these properties belong to all "elements" in the

class represented. Only later does he go through the process of concretization -
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“the reverse process of abstraction" (Djenes, 1963) - from the class to concrete
elements, in order to achieve mastery in the relevant mathematical skills. The
first enthusiastic teachers who wished to adopt this approach were nevertheless
afraid to teach it at this level of generaTization, and fought with us to try it
the opposite way round - i.e. by “inductive discovery - from concrete to abstract
representative objects. As a compromise, we developed an approach which was still
deductive, but in which the student first works with a concrete example of a
quadratjc function. We retgined the use of a general representative point A (xA,
yA) on its graph. Subsequently, he develops the full deductive structure using
the general representative quadratic function. In the class trials, both students
and teachers expressed intellectual satisfaction. Observation further convinced
us that the original, completely general and abstract "deductive discovery"
approach had considerable chance of success.

Learning by discovery has been discussed and researched a great deal (Ausubel
et al, 1978; Bruner, 1964; Egan and Greeno, 1973; Karplus, 1973, and many
others). Most of what has been published relates to "inductive discovery".
The example above relates to "deductive discovery", winich would seem to us to
have a considerably different rationale. It is obvious that this sort of
"guided deductive discovery" is suitable only for those individuals that have
the ability and maturity to deal with the requisite logical and abstract
arguments. And in this perhaps, 1ies the reason for the lack of literature
and research - we are dealing with a learning situation which is more complex
than that to which the "inductive discovery" method is usually applied - more
complex both in its psychological as well as its mathematical nature.
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STRATEGIES AND ERRORS IN SECONDARY MATHEMATICS - THE ADDITION
' STRATEGY IN RATIO ’

K. Hart, Chelsea College, London University

P .
ABSTRACT: Les Strategies et Erreurs en Mathéhatiques Secondaires - Proportion

Les recherches des Concepts in Secondary Mathematics and Sc1ence
(3 Chelsea _College) au sujet de la proportlon ont révéle qu'un
tiers des éleves des classes secondaires qu'on a examin€s
(n=3, 000) a donné a quatre des questlons les plus d1ff1c1les
des reponses qui correspondaient 2 1'emploi de la ‘' 'stratégie
d'addition" identifiée par Piaget (1967) et par Karplus (1975).
Le nouveau projet de recherche financé par le Social Science
Research Council, qu'on a appelé Strategies and Errors in
Secondary Mathematics, a choisi comme un des sujets d'&tude
L'utilisation de cette fausse strategle par laquelle 1'enfant
emploie une différence ‘a-b' plutot que la proportion a/b, et
additionne la différence pour obtenlr un_ agrandissement. On

a 1nterroge quarante enfants agés de 12 3 16 ans qui avaient
donné a 1' ecr1t des reponses qui paralssalent demontrer

12 emp101 de la “stratégie d'addition" afin de decouvrlr les
procédés Jau 'ils ont employés quand ils one réussi resoudre
un probléme de proportion et si au fait ils ont calculé 'a-b'
et non a/b dans les questions les lus d1ff1c11es. Quelques
individus de ce groupe (n=21) ont été interrogés de nouveau en
posant les memes questlons sous des formes differentes, Une
grande déformation s'est produite par 1l'utilisation de la
strategle d'addition dans ces autres questions, et on y a
attird 1'attention de 1l'enfant. On a pris note Jdes reactions
des enfants interroges, et egalement du procede de solutlon
adopte face au conflit. Ensuite on a poursuivi une &tude
pilote a la base de 1' enseignement de quatre aspects import-
ants a la solution des problemes d'agrandissement chez quatre
groupes d'enfants identifics par l'emploi de la fausse
stratégie d'addition.

Part of the CSMS research on secondary school children's understanding of
mathematics was concerned with the topic of Ratio and Proportion (Hart, 1978).
From the results of interviewing thirty children and testing 3,000 children
aged 12+ to 15+ years with a written test it was possible to formulate
certain hypotheses on why certain questions were easy and on what incorrect
method a number of children were using on four hard questions, Karplus et
al (1975) and Inhelder and Piaget (1958) have identified a common incorrect
strategy employed by children when faced with a proportion problem. This
strategy (referred to as "the incorrect addition strategy") stemmed from the
belief that enlargement could be produced by the addition of an amount rather
than by the employment of a multiplicative method. The child would, in this
example, reason that since the base line had been increased by two units so

must the upright be so increased,

Enlarge with a base of 5
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The type of answer that would result from using an incorrect addition strategy
was very prevalent on four of the hardest questions on the written test paper
(about 40 per cent of each age group). A third of the total sample (n=3000)
consistently produced this type of answer on three of the four questions.
Three of the four questions concerned enlargement of figures, the fourth was

a version of Karplus' "My, Short and Mr. Tall".

The new project "Strategies and Errors in Secondary Mathematics" funded by
the SSRC proposes to look in depth at this incorrect addition strategy.
Phase one of the investigation was designed to select for interview children
who produced addition type answers on the four CSMS questions. Consequently
five London schools were asked to give an average class of each age group
(13, 14, 15 years) the CSMS Ratio test. Forty children so identified were
then interviewed on two questions for which they tended‘to have the correct
answer, and on the four 'addition' questioms. kVThey completed items requir-
ing 2:1 by halving or doubling, 3:2 by saying 'take it once and take a half
and add' and 5:2 similarly. They found it much more difficult to find a
smaller amount given the larger in the ratio 5:2 unless a pronounced number
pattern was present. The easy questions were therefore successfully com-
pleted by using some form of addition. The four hard questions were

incorrectly dome by the addition of the difference.

The second phase of the research again involved interviewing a subset of
these same children and another five 'adders' on alternative forms of the
four questions, forms involving the same basic ideas but different numbers,

for example:

D 8 v S

These 2 letters are the same shape,
one is larger than the other.
AC is 4 units, RT is 6 units.

v T

AB is 7 units., How long is RS?
.UV is 15 units, How long is DE?



A crucial difference in this second set of interviews was that whatever answer
the child produced, for example for RS (usually 7+2=9), he was given a strip
of card of that length and asked to check whether it was correct. Two boys
questioned whether the given enlargement was correct and a further three

tried to adapt the figures in some way, e.g. "if you pull this line down it

will be about the same length as that, so ....".

Two changed their method to a form of addition which was correct (7+%(7))
and two changed their method completely and multiplied by 3/2. Generally
there was an acceptance that the addition strategy gave an incorrect answer

but there was nothing worthwhile to replace it.

The final aim of SESM is to produce classroom teaching modules, these would
in some way prevent or remediate the identified errors. For a pilot study
designed to eradicate the incorrect addition strategy in the solution of
geometric enlargement problems a number of variables were identified. The
interviewed children had all been taught ratio at some time but when faced
with the four questions they had
a) not multiplied to obtain an enlargement (or indeed to deal with any
ratio question)
b) refused to multiply fractions in any form
c) omitted to find a mulviplying factor (scale factor) relatiomship
from the data
d) reacted to the knowledge that their method produced incorrect

answers,

It seemed likely that any remedial programme would have to involve a stress
on multiplying or 'times' (T), multiplication of fractions (F), scale factor
(S) and conflict in the realisation that addition was incorrect (C).V It was
not certain that all these would be needed but small group teaching would

produce evidence of the insufficiency of certain combinations of T,F,S,C.

The next research phase was therefore the teaching of four small groups of
children who had been identified as 'adders' and had already received some
teaching in their normal lessons on the topic of ratio and proportion. The
underlying educational theory of these lessons was that

a) discussion would be encouraged,

b) child-suggestions would be followed up,

c) there would be continuous assessment and immediate feedback,

d) ‘child-methods' would be accepted but multiplication of fractionms

would be the preferred method and children encouraged to move towards
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this,
e) the teacher would try at all times to say 'times bigger' and at no

time to recommend adding.

This form of teaching is based on the implications of the CSMS results,

a) children tend to use naive or 'concrete' methods for solving problems long
after more formal methods of solution have been taught and the only way to
discover these methods is to talk to the children b) there is a wide range of
attainment in any age group and it is important to discover the level at
which the child is working., Since the 'child-methods' are limited it is
important that at some stage the children committed to them be persuaded to
turn to a more genmeralisable method which can be used to solve all problems
of a particular type. The correct addition or building-up method used on
easy ratio questionms (n:2) is abandoned by the child when the computation
involved is difficult or a fraction other than one half is involved. There-
fore for the solution of other ratio or proportion questions a general

method is needed. The transition from one to the other would seem to need

specific teaching, it does not come about automatically.
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CONSTRUCT ANALYSIS, MANIPULATIVE AIDS, REPRESENTATIONAL SYSTEMS
AND LEARNING RATIONAL NUMBER CONCEPTS*

[An Update on Activities of the Rational Number Project]}

Meryln J. Behr ) ) Richard Lesh ) . Thomas R. Post

Northern Illinois University Northwestern University University of Minnesota
DeKalb, Illinois 60115 Evanston, -Illinois ' 60201 Minneapolis, Minnesota 55455
USA . . - USA usa

Sommaire :

Une &tude de recherche &ducative financée par The National Science Foundation
of the USA est en cours sous la direction dé M. Lesh (Northwestern University)
M. Behr (Northern Illinois University) et M. Post (University of Minnesota)
dans le cadre de l'’enseignement fondé sur la théorie. La base théorique de
cette &tude comprend a) les agpects de 1'analyse de Kieren du nombre rationnel
en 5 subconstructions. ‘ : ‘ )
’ b) les principes de Z.P. Dienes sur 1'intégration multiple

et la variabilité mathématique A

c) une extension des 3 modes de Bruner de la pensde
représentationnelle .

d) la psychologie du traitement de 1'information em ce
qui concerne le développement des divers genres des structures de la mémoire.

L'Etude du Nombre Rationnel contient également une partie sur 1'&valuation.
‘Une méthode d'ensemble portant sur les concepts, rapports et opérations du
nomkre rationnel est en cours de développement et d'utilisation chez 1600
€léves et plus des grades 2 a $ (de 7 & 13 ans) dans' 5 endroits différents.
Des entrevues -3 fins d'évaluation et des tests Educatifs sont &galement
expérimentés avec des enfants. '

Le maté@riel &ducatif dévéioppé dans le cadre de cette théorie intégrée est
offert 3 de petits groupes (6 membres) d'enfants dgés de 9 et 10 ans (grade

4 et 5) dans des classes quotidiennes sur une période de 16 i 18 semaines.
Une observation régulidre et systématique de la pensée et performance des
enfants est faite pendant le cours ; ces observations ajoutées aux fréquentes
entrevues individuelles avec les enfants, fournissent la majorité des données.

‘L'analyse de ces données fournira un apergu des &tapes de développement du
concept du nombre rationnel 3 partir du tout début en passant par les phases
préliminalres de raisonnement proportionnel.

*Paper Presented at the Fifth Conference of the Internmational Group for
the Psychology of Mathematical Education. Grenable France, July 1981.

This paper is based in part on research supported by the National Science
Foundation under grant number SEd 79-20591. Any opinions, findings, and
conclusions expressed are those of the authors and do not necessarily re-
flect the views of the National Science Foundation.
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INTRODUCTION

The Rational Number Project (RNP) is a cohesive program for research on rational num-
ber learning. This program consists of well-defined theory based instructional and
evaluation components as well as an overall plan for validating project generated
hypotheses. This effort differs along a npmber of substantive dimensions from pre-

vious research efforts in the area of rational number learning.

Previous researchers have focused attention on "state of the art" type research, that
is data collection without formal instruction. Kieren (1976), Novillis (1976),
Noelting (1978, 1980), Hart (1978, 1981), and Karplus (1980) have utilized paper and
pencil tests and interview results to formulate hierarchies of rational number and
proportional reasoning concepts. These studies have provided important insights into
the hierarchical nature of the acquisition of these concepts. The Michigan Studies
(Payne 1976) examined various approaches to fraction algorithm and various manipula-
tive materials over an eight year period of time. The initial comparative studies
have evolved into studies more concerned with assessing the quality and durability
of evolving cognitive structures. This latter concern is more closely related to
our work. In an-attempt to extend and reformulate previous efforts, (RNP) has devel-
oped and implemented a complete instructional and evaluation program. Our intent is
to describe rational number development from its genesis to its formal operational
Ievél in well defined instructiomal settings. The major concern is the identifica-
tion of psychological and mathematical variables which impede and/or promote the
learning of rational number concepts.

THEORETICAL FOUNDATIONS OF THE PROJECT
Of particular concern to the project are three components of learning and knowing
concepts of rational number. The first involves a logical mathematical analysis of
rational number (Kieren, 1976) and the integration of this mathematical analysis
with categories of manipulative aids in the context of theory developed by Z.P. Dienes.
The second involves an interactive model for describing modes of representation, and
the third involves delineation of various memory structures which are developed by the

learner as a result of exposure to a theory-based instructional sequence.

I. Kieren (1976) provided a logical analysis of the rational number concept into

fiye subconstructs —- part-whole relationships, measure relationships, ratio, quo-
tient, and operator. Post (1974) and Post and Reys (1979) have integrated Kieren's
work with a logical analysis of concrete models for representing rational number con-
cepts. This model, presented in Figure 1, incorporates the mathematical and percep-
tual variability principles of Dienes (1967). This analysis provides an organization-

al scheme for the development and selection of appropriate instructional materials.
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“ Consideration of both rows and ecolumns provides for both the abstraction and general-

ization of these concepts.

MATHEMATICAL VARIABILITY -

PART

WHOLE MEASURE | RATIO | QUOTIENT } OPERATOR

COUNTERS:
SET-SUBSET
INTERPRETATION
PAPER FOLDING:
AREA
INTERPRETATION
SYNBOLIC
ALGORITHH(S)

PERCEPTUAL VARIABILITY

FIGURE 1

OPERATIONAL DEFINITION OF THE CONCEPT OF RATIONAL
b NUMBER FROM WHICH INSTRUCTIONAL ROUTINES ARE DEVELOPED

Based on this matrix we have conceptualized instruction for ratiomal numbers as

suggested in Figure 2. TONING AND PART-WHOLE
LIONING AND PART i
\
\
RATIO ( OPERATORl \( ouonam) HEASURE
7 Te—T
"-& t
{ UIVALENCEj:)(: HULTIPLICATION_:)Z PROBLEH-SOLVING ){ ADDITION )
FIGURE 2 -

CONCEPTUAL SCHEME FOR INSTRUCTION ON RATIONAL NUMBERS

The arrows and dashed arrows in Figure 2 are to suggest hypothesized reiationships
between rational number concepts, relations, and operations. The diagram suggests
that (1) partitioning and the part-whole comnstruct of rational numbers are basic to
learning other constructs of rational number; (2) the ratio construct is most 'matur-
al" to maturate the concept of equivalence and nonequivalence; (3) operator and
meéasure constructs lend themselves to the understanding of operations of multiplica-

tion and addition.

II. The Modes of Representation and translations emphasized in the project materials
are depicted below. The reader will note that Figure 3 represents an extention of

Bruner's early work on representational modes. Lesh (1979) reconceptualized Bruner's
(1966) enactive mode, partitioned Bruner's iconic mode into manipulative materials and
static ‘figural models (i.e., pictures), and partitioned Brumer's symbolic mode into
spoken language and written symbols. Furthermore, these systems of representation

were interpreted as interactive rather than linear. The revised model follows:




SPOKEN
SYMBOLS

WRITTEN

FIGURE 3

- .. hno)Interactive Model‘for<Using.Representational Systems

ULATIVE
1§

[ S - -

A major hypothesis of thé project is that it is the ability to make translations
among and between these several modes of representation that make. ideas meaningful

to learners.

This interactive instructional model for modes of representation is one that needs
refinement thréugh empirical verification to determine which of the many transla-
tions are crucial in mathematics learning. Two triads in the model are of particu-
lar interest in our research. One involves the translations between manipulative
aids and mathematical symbols, with the oral mode serving as a mediating facilitator
in this translation process. The other involves real world situations, manipulative
aids, and written symbols; of concern is the question of how to use manipulative

aids to facilitate the mathematical modeling required in problem solving.

III. Various writers discuss categorizations of memory. Gagne and White (1978) con-
sider the relationship between memory structures and learner performance. Of inter-—
est to this project are memory structures called episodic, imaginal, semantic, and
intellectual skills.

COMPATIBILITY OF THE THEORIES
Figure 1 suggests that learning will be enhanced when overt attention is paid to the
nature and scope of both the manipulative materials and the mathematical dimensions
of the concept to be learned. Figure 3 predicts that mathematical learning, reten-
tion, and transfer will be enhanced when instructional routines provide for inter-
action among and within the various modes of representation. The memory related
literature suggests that learning, retention, and transfer will be greater when in-
terrelationships among memory structures are made. The interactive model sug-

gests instructional variables for investigation in order to determine their effects
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on a learner's thinking processes, and the memory literature directs a researcher's
attention to the observation of behaviors that suggest the existence of specific
thinking processes. Thus, the three theories are not only compatible but also pro-
vide a powerful framework for investigating the phenomena involved in learning from
manipulative materials. ’

THE RATIONAL NUMBER PROJECT
The RNP has three distinct yet complementary components: Instructional, Evaluation,
and Diagnostic and Intervention. All adhere to the same theoretical and philosophical
foundations. Twenty weeks of student instructional materials have been developed.
The instructional materials reflect the project's underlying theoretical foundations
and embhasize part-whole, quotient, measure, and ratio interpretations of rational
number, and involve translations within and between five representational modes.
(see Figure 3).

INSTRUCTION

Instructional activities with children began in mid-October, 1980 and continued thru
March, 1981. Three groups of 6 children (4th grade in DeKalb, 4th and 5th grade
students in Minneapolis), were instructed daily using theory based project generated
materials. These materials addressed many of the standard rational number concepts,
but in addition paid particular attention to the use of manipulative aids and trans-—
lations within and between various modes of representation. Extensive observational
data were taken during and immediately after instruction, much of which was recorded
on video tape for subsequent analysis. A minimum of three persons were present at
each of these instructional sessions. (One teacher and 2 observers)

DATA COLLECTION AND ANALYSIS
Obéervational data, frequent interviews, and audio or video taping of many lessons
resulted in a large amount of anecdotal data. In addition, four major types of in-
struments have been employed by the instructional component.

1. The Rational Number Test — identified levels of student achievement in three

areas: rational number concepts, relations and operations. These tests which were
developed by the projects evaluation component were used with project instructed
children and with classroom sized groups in grades 2 thru 8 (ages 7-12) across give
geographic locations (N > 1600).

2. Class observation guides were designed to provide insights into the cognitive

processes employed by students when dealing with rational number concepts in the

structured instructional setting.
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3. Interview Protocols. The individual interview, conducted with each student after -

each lesson, is considered a crucial source of project data. These interviews, last-
ing from 15 to 50 minutes, provide extensive information as to the mental processes;
memory structures (inferred), thought patterns, and understandings gained and util-
ized. Interview data is examined on a lesson-by-lesson basis to assess the impact

of specific instructional "moves" on conceptual development. Either audio or video
tapes were always used to provide a record of these interviews.

4. Translation Coding System. This instrument was designed to provide specific in-

formation as to the types of translations which students used, the relative frequency

of each type, and the identification of those which proved particularly troublesome.

In addition to these instruction related instruments, the evaluation component has

also developed a series of clinical interviews and instruction mediated tests. To—
gether the data gathered with these instruments will provide a raiher comprehensive
view of rational number development in children and should add substantially to the

body of knowledge already in existence.

Our work has led to the following observations about the use of manipulative aids.
Each is supported by extensive observation, anecdotal records and audio or video
‘tapes:

1. Use of multiple aids to represent a concept is more helpful in children's learn-
ing than use of a single aid. ®
2. After a concept is initially introduced with a chosen manipulative aid, subse-
quent representations with manipulative aids which differ in perceptual features
cause the child to rethink the cencept and learning is facilitated.

3. A method for introducing a '"new" manipulative to the discussion of a given con-
cept has been devised, tested, and proven successful.

4. In order for a manipulative aid to facilitate learning, it appears necessary

that it initially cause cognitive disequilibrium. We believe this to be in striking

contrast to what one gleans from current mathematics education literature.

Space constraints here preclude consideration of project results in any detail. The
presentation at Grenoble will focus specifically upon our findings related to 1) trans-—
lations within and between modes of representation and 2) the impact of perceptual
distractors on the quality of childrens rational number thinking. A second paper,

providing more details, will be distributed at that time. .
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COMPUTATIONAL ERROR OF
SEVENTH AND EIGHTH
GRADE STUDENTS

Carolyn L. Pinchback
Austin Community College
Austin, Texas
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ABSTRACT

Cette étude avait pour but de reproduire et d'étendre les efforts
de Roberts et les interviews cliniques d'Engelhardt visant a la
classification et a l'analyse, respectivement, des erreurs de
calcul des enfants. Chaque jour pendant cing jours consécutifs,
cing groupes différents d'éléves en 6 et en 5 ont Al passer une
interrogation écrite de cing minutes comportant cing problémes de
calcul fractionnaire. Aprés la notation de chacune de ces inter-
rogations -- notation qui tenait compte de résponses exactes, de
résponses inexactes, et de non-réponses —-- on a interviewé ceux

des éléves qui avaient mis des réponses inexactes ou des non-
réponses, afin d'arriver 3 des conclusions sur les approches ou

les idées erronées qui auraient conduit les éléves 3d ces erreurs.
Cette méthode a abouti & la création de neuf catégories pour les
réponses inexactes ou les non-réponses, dont deux correspondaient 3
des types d'erreur décrits par Roberts et trois a des types d'erreur
décrits par Engelhardt. Ces catégories étaient les suivantes:
algorithme défectueus, fractions équivalentes, conversion incorrecte
d'un nombre fractionnaire en expression fractionnaire ou d'une ex-
pression fractionnaire en nombre fractionnaire, simplification,
opération erronée, principe de base, réponse incompléte, non-
réponse, et probléme mal copié. Aprés l'examen de ces neuf caté-
gories, on a procédé a des généralisations provisoires.

INTRODUCTION

The goal of this research was to replicate and extend Roberts' (1968) efforts of
classification and Engelhardt's (1977) analysis of computational errors exhibited
by students. Replication was sought in the sense of analyzing and classifying
students' computational errors. Several extensions were made. One was to use
fractions instead of whole numbers as Roberts' and Engelhardt's had done. Ano-
ther extension was to consider not only the incorrect responses but also those
which were left blank. A third extension was to interview those students who

had the incorrect response or no response. Interviewing the students would
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allow the classification to be based on how the student derived the answer as
opposed to how the investigator thought the student derived the answer. The

last extension was to time each of the five tests.

It was hoped that a list could be developed which specified the errors that stu—
dents made with fractions as well as whether any generalizations could be derived

about their attack skills which led to an incorrect response Or no response.

METHOD

Sample
The subjects for this study were seventh and eighth grade students from a small

city in Texas. There were 105 students in the five classes. Due to absenteeism,
28 subjects were not interviewed for each of the five tests, Of the five clas-

ses, only one was homogeneously grouped for mathematics instruction. The sample
was divided into gquartiles which were defined using each student's percentile on

the Towa Test of Basic Skills.

Procedure

Each student was administered a five item test on fractions for five consecutive
days at the beginning of the class period by the investigator. After each five
minute test, the papers were conllected and graded by the investigator. E£ach
student who had either incorrectly responded or no response was interviewed by
the investigator. The investigator wrote the student's comments adjacent to

the problem(s) that the student had not answered correctly or not answered.
These interviews ranged from one minute to five minutes, depending on the num-

ber of errors, per student for each of the five days.

After the students had been interviewed, the incorrect items and no response
items were identified and analyzed to determine classes of errors on the basis
of the interviews. In several of the incorrect responses, the students had
made several error types which were classified accordingly to error type. The
distribution of error by class types among the sample was examined for possible

generalizations.
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Instruments
The tests used in this study were constructed by the investigator. The five
tests—~-1 Addition, 2 Subtraction, 3 Multiplication, 4 Division, and 5 Working
With Fractions---were each hierarchically designed (Uprichard and Phillips,

1977) so that there was an increase of difficulty from one problem to the next.

RESULTS

Types of Errors

It was possible to establish nine major classes of incorrect responses or no
response on the basis of the interviews and the analysis. These were:

(1) Defective Algorithm: The student attempts to apply the appropriate

operation but makes errors in carrying through the necessary steps.

Examples were:

(a) 1/2 +‘1/3 = 2/5 (b) 1/7 x 2/7 = 2/7

(c) 3-4/5 x 2-7/9 = 6-28/45 (d) 1/6 + 5/7 = 6/1 x 5/7 = 30/7 = 4-2/7

(2) Equivalent fractions: The student attempts to rename a given fraction

It

but fails to complete the necessary steps. This error type included
renaming for borrowing or carrying. Examples were:

(a) 6-3/4 + 1-7/8 = 6~2/8 + 1-7/8 = 7-9/8 = 8-1/8

(b) 3/4 - 1/3 = 6/12 - 4/12 = 1/6

(3) Mixed numeral to improper fraction or improper fraction to mixed numeral:

The pupil attempts to rename a mixed numeral as an improper fraction or
an improper fraction as a mixed numeral and makes a computational error in
completing the task. One example was
4-1/6 + 9-3/5 = 25/6 + 48/5 =125/30 +288/30 =413/30 = 13-19/25

(4) simplifying: The student attempts to reduce a fraction to its lowest
terms or rename the mixed numeral. Examples were:
7/8 x 1/7 = 7/56 4-4/7 + 3-5/7 = 7-9/7

(5) Wrong Operation: The student attempts to respond by performing the incorrect
operation than the one required to solve the problem. An example was
1/7 x 2/7 = 3/7

(6) Basic Fact: The pupil responds with a computation involving an error in
recalling basic number facts. Examples were:
(a) 12-3/4 - 2-5/8 = 12-6/8 - 2-5/8 = 10-3/8
(b) 7/8 x 1/7 = 7/53
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(7) Incomplete or Guess : The student attempts to solve the problem but either

he/she does not complete it or guesses. Examples were:
(a) 1/2 + 1/3 = 3/6 x 2/6 = 2/5
(b) 7/8 x 1/7 = 343/40 = 7
(c) 3-4/5 x 2-7/9 = 15-5/9
(d) 4-1/6 /30
9-3/5 = /30

(8) Did Not Attempt: The student did not start any computation on the problem.
(9) Miscopied: The student incorrectly rewrites the problem. Some examples were:
(a) 4-1/6 + 9-3/5 (b) 1-1/6 =+ 7 =7/1x1/7T=7/7=1
4~-1/2 = 5/10
+ 9-3/5 = 6/10
13-11/10 = 14-1/10
(c) 6-3/4 + 1-7/8 = 63/4 + 17/8 = 126/8 + 34/8

]

160/8 = 20
It should be noted that the defective algorithm and the wrong operation correspond
to Roberts', and Engelhardt's 'inappropriate inversion', 'defective algorithm,'

and 'incomplete algorithm' correspond to this study's defective algorithm.

Distribution of Errors

The 77 students in the sample committed 736 errors with an average of 23.7
problems attempted of the possikle 25 and with a correct response to 16.4, thus
committing 8.3 incorrect responses and 1.3 no response, From quartile high to
low shows the number of attemptcd problems to decrease in most instances,

and the number of correct responses to decrease. Although students in the

lower quartile attempted fewer problems, they committed more errors.

TABLE 1

Computation Performance by Quartile

High Medium High Medium Low Low Total

N =19 N = 120 N =17 N = 17

No. Mean No. Mean No. Mean No. Mean
Items 469 (24.,7) 571 (24.8) 404 (23.8) 382 (22,5) 1826 (23.7)
Attempted
Items 395 (20.8) 421 (17.5) 256 (15.1) 189 (11.1) 1261 (16.4)
Correct
Incorrect 77 ( 4.1) 162 { 6.8) 167 ( 9.8) 232 (13.6) 638 ( 8.3)
Responses
No 5 ( .3) 29 ( 1.2) 21 (1.2) 43 ( 2.5) 98 ( 1.3)

Response
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The number of errors for each error type and the percentage of each error type is

‘presented in Table 2.

Table 2
Distribution of Errors by Type

Quartile
Exrror Type High Medium High Medium Low Low Total
Defective 27 50 73 112 262 36%
Algorithm
Equivalent 5 20 9 18 52 7%
Fractions
Mixed Numeral 9 15 17 11 52 7%
to Improper
Fraction or
Improper Frac-
tion to Mixed
Numeral
Simplifying 4 8 11 14 37 5%
Wrong Operation 4 10 11 20 45 6%
Basic Fact 7 15 10 11 43 6%
Incomplete or 12 30 29 42 113 15%
Guess
Non—-attempt 5 29 21 43 98 13%
Miscopied 9 14 7 4 34 5%

As is evident from the totals, defective algorithm, incomplete, and no response
were the most common types of errors. About one-seventh (100) of the total
number of errors were the result of classifying errcrs as two or more errors

type.

DISCUSSION

It is apparent from Table 2 that over 50% of the errors were due to defective
algorithm, incomplete or guess, and non-attempt. This suggests that in teach-
ing the various algorithms one should stress how one algorithm differs from
another so that transfer will not take place incorrectly nor incompletely. One
example was the student who did 1/7 x 2/7 = 2/7; ancther was 6/7 * 7 =7/6 %
7/1 = 49/6 = 8-1/6.
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The incomplete responses or guesses and the non-attempts were equally caused by the

time element or the students not knowing what to do.

Additional studies need to be conducted in which responses are based upon clinical
interviews as this one with different numbers as well as subdividing the defective
algorithm to include incomplete altorithm and inappropriate inversions as Engelhardt's
study had. Future studies should not include the time element. It can be a factor

in the number of errors, and possibly the type of error, students exhibit.

A replication and extension of this study is needed in that the results of past
studies, this study, and future studies will be an aid for teachers in identifying

computational difficulties of students for different types of numbers.
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DOCUMENTATION OF TEACHER MOVEMENT TOWARD PROgESS—ENRICHED
TEACHING OF FRACTIONS AND RATIOS
Bruce Harrison, Selwyn Brindley and Marshall P. Bye
University of Calgary  Mt.Royal College (Calgary Board of Education

Le Calgary Junior High School Mathematics Project a été concu
pour combler 1'deart dxistant entre les niveaux de developpémenty
cognitif des etudiants de 12 & 14 ans et les exigences cogni-
tives de leurs cours sur les fractions et rapports. Sept pro-
fesseurs qui auraient accepté de participer a 1'expérience ont
¢té familiarisés pendant cing jours avee une variété de ma-
tériel didactique centré sur le processus(enrichi et inspiré
du matériel didactique du South Nottinghamshire Project). On
leur aussi demandé de participer & la production du materiel
centre sur le processus concernant des fractions et des rap-
ports. L'effet que les cing jours d'orientation et de pré-
paration ont eu sur la didactique des professeurs a ¢td &tabli
par des observations de classes normales et de classes experi-
mentales et par des questionnaires (professeur et dtudiant).
Nous mentionnons brigvement les progres significativement
plus importants réalisés dans les classes expérimentales en
ce qui concerne l'attitude, les rdsultats obtenus et les
"stratégies mathématiques génédrales." Cet article met 1'ac-
cent sur les descriptions qualitatives et quantitatives de
L'habilite des etudiants, des exigences du programme, de 1'em-
ploi du matériel didactique centré sur le processus, et des
contrastes entre les méthodes d’'enseignement observees dane
les classes empérimentales et les classes régulidres. (Tra-
dutt par J. Paquet.)

In the contexts of 'ratio and proportion” and "rational numbers" at the
grade seven and eight levels, the purpose of the Calgary Junior High School
Mathematics Project (CJHMP) was to assess: student cognitive abilities,
curriculum guide cognitive demands, classroom cognitive demands, and the
effects of using a process—enriched instructional method which allows for
differing student cognitive abilities. The cognitive ability and demand
levels used in the study were defined as follows:

Concrete, refers either to the ability to handle fraction situa-
tions involving: taking one-half or one-third of a set of objects,
a drawing, or a number; doubling or tripling to produce equivalent
fractions; or adding or subtracting with physical models; or to the

*Extracts from the Final Report of the Calgary Junior High School Mathematics
Project, December 1980, jointly funded by Planning and Research, Alberta
Education, and the Calgary Board of Education.
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ability to handle ratio and proportion situations involving: 1 to
2, 1 to 3, or their reciprocals; only doubling or tripling or the
reverse; or action with countable real objects.

Transitional refers to the ability to handle fraction or ratio
and proportion situations involving: pictorial support containing
countable parts, or abilities beyond the concrete but not formal.

Formal refers either to the ability to handle fraction situa-
tions involving: at least one element greater than 4; comparisons
made in terms of different sized units; second order thinking;
symbolic representations of fractional relationships and opera-
tions; or expectation of a correct explanation of procedures; or
to the ability to handle ratio and proportion situations involv-
ing: at least one component greater than 4; second order propor-
tional thinking; symbolic representations of proportional rela-
tionships; or explanation using proportional reasoning.

PROCEDURES AND FINDINGS
Cognitive Abilities versus Demands

In one phase of the CJHMP, assessments were made of student cognitive levels
in grade seven and eight fraction and ratfg contexts and of the corresponding
cognitive demands made by curriculum guide objectives, authorized textbooks,
teacher presentations and teacher-made tests. Of the 435 grade seven stu-
dents tested in the context of fractions, 55.0 percent were at the concrete
level, 38.2 percent were transitional, and only 6.0 percent were formal. For
grade eight (312 students), the figures were 44.5 percent concrete, 43.3 per-
cent transitional, and 12.2 percent formal. In the treatment of fractions by
regular textbooks, teachers and tests in the two grades, the cognitive de-
mands were found to conform to the concrete level less than 4 percent of the
time and to the formal level more than 68 percent of the time. Similar pat-
terns were found for ratios. These findings indicated a considerable gap
between student cognitive level and curricular demand in the contexts of
grade seven and eight fractions and ratios.

Concrete Process-Oriented versus Regular Teaching

Another phase of the CJHMP analyzed the effects of a concrete process-orient-
ed (CPO) approach to the teaching of fractions and ratios in seventh and
eighth grades as compared with the regular (REG) approach typical of North
American schools. The effects measured included achievement in fractions and
ratios as well as attitude and ability to apply general mathematical strat-
egies. §ix teachers taught 246 grade seven students in ten experimental
classes while 234 grade seven students in nine classes were taught by four
teachers using regular classroom teaching methods. At the grade eight level,

120 students in four experimental classes were taught by two teachers while
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213 students in eight regular classes were taught by four teachers. The
students had been matched on standardized school-administered tests. All 813
students were pre-tested on achievement in fractions and ratios, attitude
toward fractions and ratiés, and -general mathematical strategies. Both groups
of grade seven students were taught fractions and ratios for approximately
twelve weeks. For the grade eight groups, the length of treatment was approx-
imately eight weeks. At the completion of each unit all of the treatment
groups were retested using the same achievement and attitude instruments as

those administered initially.

The experimental teaching methods used in the project were modelled on the
pioneering work of the South Nottinghamshire Project (SNP). The SNP teaching
approaches characteristically use a variety of simple concrete materials to
pose "well-motivated" problems in which the concrete "props" facilitate under-
standing of the mathematical ideas involved (Bell, 1976, p. 5.4). A pupil
carries out a mathematical investigation beginning with concrete materials,
experimenting, recording what happens, formulating questions, and writing-up
accounts of experimental results as well as applying the results to practical
situations. Such strategies are not generally embodied in North American
school mathematics textbook materials nor do they occur with any frequency in
the most common secondary school mathematics mode of instruction: "example-

rule-exercises."”

Towards the end of August, 1979, the experimental teachers were presented

with process—enriched material from various sources which covered the topics
in fractions and ratios as outlined by the Alberta Education Curriculum Guide
for grades seven and eight. Several investigations were tried out with the
experimental teachers, teaching strategies were discussed and teacher deci-
sions were made regarding adapting the materials to their classrooms. From
October through December, when the classroom treatments were in progress,
periodic classroom observations were made to determine whether or not the
experimental teachers actually did use teaching methods that were demonstrably
different from those used by the regular teachers. An observer or, on occa-
sion, two observers, would sit quietly at the back of the class being obser-
ved and would record codes and/or comments in relation to one-minute inter-
vals of elapsed class time. The codes indicated what kind of grouping,
teaching method, materials, teacher questions, and cognitive demands were
observed, and the positioning of the codes on the sheet indicated how long they

lasted. Highlights from the overall patterns observed are given in Table I.
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Another kind of record was also kept. Subsequent to an observed lesson, a
short written summary of the lesson content was made along with Likert-scale
ratings of the f;equency with which twenty-one different classroom behaviours
were observed. For example, the use of real objects when learning new ideas
and while investigating fraction and ratio problems occurred with moderately
high frequency in the experimental classes but was not observed in the regu-
lar classes (4.4 to 0.0 on a Likert frequency of observation scale with 0.0
for low and 5.0 high.) Similarly, student writing of reports resulting from
small group investigations of fraction and ratio problems was observed with
moderately high frequency in the experimental classes but was not observed
in the regular classes (3.8 vs 0.0). The experimental teachers demonstrated
a moderately high frequency of relating independent activities and investi-
gations to concepts being learned as well as providing for a gradual trans-
ition from concrete to more abstract activities; the frequency of such acti-
vities in the regular classrooms was low (3.8 vs 1.5). In the regular class-
rooms there was a moderately high frequency of students being given rules
and/or examples before problems were attempted or new work started, while
such observations had a low frequency in experimental classes (3.9 vs 1.5).
Both regular and experimental teachers displayed similar frequency patterns
in using systems for spot-checking student assignments and in providing evi-
dence of caring, accepting, and valuing student responses (range: 3.2 to
4.0). ’

TABLE 1

SUMMARY OF CJHMP CLASSROOM OBSERVATION FINDINGS
AVERAGE PERCENTAGE OF CLASS TIME SPENT IN EACH MODE

GROUPING Individuals Pairs ‘Small Groups Whole Class
Experimental 35% 187 8% 39%
Regular 48% 0% 0% 52%

METHOD Dialog Expos Invest Real Ob ,Discus  Text Ex Cor Work Other
Experiment 197 8% 47 31% 2% 7% 21% 7%
Regular 8% 26% 0% 0% 7% 49% 6% 47

MATERIALS Concrete Pictorial Demo Text Worksheets Chalkbd Unclassif
Experimental 31% 7%(man.) 7% 18% 15% 3% 18%
Regular 0% 18%(demo) 137 487 217% 0% 0%
COGNITIVE DEMAND® CON TRA FOR *Percentage expressed in

CON: concrete terms of total time teacher
Experimental 15% 68% 17% TRA: transitional made cognitive demands;
Regular 0% 51% 497 FOR: formal averaged across fractions

and ratios.

Dialog: Dialogue; Expos: Exposition; Invest: Investigation
Real Ob: Real Objects; Discus: Discussion; Text Ex: Text Exercises;
Cor Work: Correcting Work; Chalkbd: Chalkboard; Unclassif: Unclassified.
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Analyses of the student questionnaires that were administered indicated a sig-
nificant difference between the experimental and regular class teaching meth-
ods as perceived by the students. One question, for example, which referred
to being told a rule before attempting a problem, showed a significant differ-
ence between experimental and regular classes, with this happening much less
frequently in the experimental classes. The analyses also showed that stu-
dents in the experimental classes more frequently used manipulatives for in-
vestigating ideas in fractions and ratios. They were also more frequently
encouraged to invent their own solutions to problems, to notice number pat-
terns, to work in pairs or groups, and to write reports of what they had found
out while investigating fraction and ratio problems.

Statistical Findings

Two-factor repeated measures analyses of variance were used to compare treat-
ment groups on attitude towards fractions and ratios (anxiety and enjoyment)
as well as the ability to apply general mathematical strategies. Significant
differences were found at the 0.05 level favouring the grade seven experimen-—
tal (CPO) group on all of these measures. However, at the grade eight level,
no significant differences were found between the attitude scores or overall

general mathematical strategy scores of the two treatment groups.

The CSMS (see Hart, 1981) fraction and ratio achievement test scores were
analyzed using three-factor repeated measures analyses of variance, with
treatment group, cognitive level, and test occasion (repeated) as factors.
The results of these analyses favoured the CPO group with a level of signifi-
cance of 0.05. There were no significant differences between the treatment
groups in "computation with fractions" scores at either grade level. A
priori comparisons using t-tests at each of the grade seven cognitive levels
indicated that there was a significant difference, favouring the CPO group,
between the mean increases in fraction scores attained by the CPO and REG
transitional level students, but no significant differences were found at the

concrete or formal levels. The grade eight t-tests indicated a significant

fraction score difference at the formal level favouring the CPO group. The
t-test analysis of the grade seven ratio test score increases showed signifi-
cant differences at the 0.05 level favouring the CPO group at both the trans-

itional and formal levels, but no significant differences were found at the

grade eight level.

That the CPO groups generally achieved higher scores than their REG counter-
parts on measures of achievement and attitude might well be attributable to

the attention paid in the CPO method to the subconstructs of rational number
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(Kieren, 1976), to the use of concrete materials and investigations (Bell,
1976), and to the conscious provision for student reflection and discussion

to promote relational learning (Skemp, 1979).

CONCLUSIONS
A substantial gap between student cognitive levels and curricular demands has
been documented in the contexts of fractions and ratios with typical grade
seven and eight Calgary students.

Overall, but particularly at the grade seven level, the project findings have
demonstrated that a concrete, process-oriented approach can result in gignifi-
cantly improved achievement in, and attitude towards, fractions and ratios
while enhancing the development of general mathematical strategies and main-
taining computational facility.
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THE PERCEPTIGN OF RANDOMNESS

Ruma Pllk(l)

The Hebrew Umiversity of Jerusalem

Le concept de hasard jouwe un role important dams de nosbreux
domaines de la connaisgamce et ds la pensdp. Realiser gu'um
phenoméne n'est pas fertruit indigus souvemt gue 1’08 doive eam
expliquer la cause ou établir ume theorie. Ceci est particuliér-
ment frappant en sciemcs, ofl un "resultat significstif” suscite
generalememt une interpretation adtre que le hasard.

Le caractdre apparcmment fertruit de suites binaires de stimmii
a $td étudid comme une fomctionm de la structure statistique des
suites. On a demandd & des sujets do juger du degnd de hasard |
de certaines suites binaires ot tables bi-dimensuelles, limitamt,
cotte dtude ¥ des freguences dgales des doux sysboles. Le pringipal
variable|independant dtait le degad de dependance de premier
ordre enk:: les symboles. Les suites ainsi que les tables variajent
des altepnations parfaites 3 un groupement extiimecOn a également
demandé pux sujets de crder des tables ot des suites binaires
arhitraires.

Les r¢sultats denotent une deformation de 1'image du hasard
chez les|sujets. Les guites et les tables, presentant une augmemt-
ation deliberde d'alternations, furent generalemsnt jugdes camme
étant dhes au hasard, tandis que les continuitds d'une et de deux
dimensiops furent pergues comme non-hasard. "L'erreur du joueur®
c'est & dire, la tendance ¥ identifier le hasard & trop
d'alternttions, dominent 8 la fols la perception et la creatlon.

En copclusion, on tend & rejeter trop promptemsnt 1'hypothZse
du hasard et donc a imterpweter I 1'exces le mounde gul hous
entoure. De méme,notre “niveau subjective de sigmification" est
incoherent vu que les excés d'alternations et de groupement de
probabilitd symétrique furemt jugds differemment.

The concept of chance plays an important role in many flelde of échollrnhip
and thought. The outset for the intellectual operations of emplaining end
constructing theories seems to be the realization that the phenomenon in
question is nonchance. Every emplanation suggests some kimd of lawfulneas,

causality, organization or pattern. Each of the underlined words in the last

sentence is an opposite of randomness.. This distinction between chance and
lawfulness is especially salient in science, where inductiom may be presented
as the process of distinguishing pattern from noise, order from disorder
(Lopes, 1980). Typically, a "significant result" calls for some interpretation
other than chance. The same coursa of thought is often pursued in daily life

1) Parts of this paper present experiments from the suthor's Ph.D. thesie
(Falk,1975), that was supervised by A. Tversky. The study was partly
supported by The Human Development Center, the Hebrew UHiversity of
Jerusalem. :
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and social affairs, as well as in literature.

A nonchance perception is a cognition that may well affect our behavior.
Perceiving a situation as lawful encourages a skill rather than a chance
orientation. A system&tic phenomenon calls for systematic behavior. One may
try to control the situation by replicating or changing it, and eventually
by avoiding it. On the other hand, there seems to be no point in patterning
our behavior in a totally random environment.

The perception of a situation as more or less random thus seems to be the
key to important cognitions and behaviors. A host of studies, starting from
the early fifties, were touching the topic of tﬁe perception of randomnese.

It was generally claimed that subjects cannot perceive random sets of stimuli

as such. Cohén (1960) summarizes a series of experiments conducted with child-
ren and adults with the following contention: "Nothing is 8o ‘alien to the

human mind as the idea of randomness." Cohen's experimenti presented mainly
probability-learning tasks (i.e., sequential prediction of binary random

events) and so were many other studies from which the conclusions about the
inability of subjects to perceive randomness were derived. Most of the sequen-
ces produced by subjects, as their predictions or guesses, deviated seriously
from randomness. The dominant kind of violation of randomness was producing

too many alternations between symbols, better known as "The Gambler's Fallacy".
This was true for tasks of generation of randomness as well (Wagenaar, 1970a,
1972). The claim that subjects' deviations result from their diatérged image

of randomness may be true; however, there is an inferential leap in drawing

that conclusion. Failure to perceive randomness is but one possible explanation.
The sequences produced in probability-learning experiments may be influenced
also by the subjects' own previous responses and by their sequence of reinforce-~
ments. The response sequences may reflect the hypotheses, concerning the nature
of the experiment, entertained by the subjects (Peterson, 1980) and the strateg-
ies they developed to cope with the problem solving situation as they interpret-
ed it. Even sequences generated under direct instructions of randomness are not
necessarily a mirror reflection of the subject's perception of randomness
(Wagenaar, 1972). It is conceivable that a person would be able to perceive
randomness accurately and wouldn't be able to replicate it. A direct task of
perception of randomness would be necessary in order to establish deviations
from randomness such as the gambler's fallacy as perceptual distortions
(Wagenaar, 1970b).

The prevalent claim, described above, about subjects' nonacceptance of
randomness appears to be an overgeneraliztion. Rather than ask whether subjects

do or do not reject randomness, we should better study the factors that determine
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how random a siuation is perceived. It seems essential to establish the
conditions under which randomness is too readily rejected, and, conversly, to
try to delineate eventual nonrandom sets of circumstances that might induce
a perception of chance.

The aim of the present atudyiil to investigate the apparent randomness of
stimuli as a function of their statistical structure. I propose to manipulate
the probabilistic characteristics of sets of stimuli and to study the effect of
these manipulations on the dependent variable of perception of randomness. Most
of the studies in this area were limited to stimuli presented in a sequential
format. It would be. desirable to extend the orgeanization of the stimuli into
more complex patterns so as to get closer to "real-life" situations. Two
dimensional tables of stimuli will thus be studied along with one dimensional
sequences. The subjects' task will be to give an immediate judgment as to how

random the stimuli appear, so that perception would not have to be inferred.

THE EXPERIMENTS

General deaign: Sequences (in one dimension) and tables (in two dimensions)
of binary symbols were designed to be presented for perceptual judgment of
their degree of randomness. Likewise, comparable tasks of generation of random-
ness in one and two dimensions were designed. Parallel stimuli in perception
and generation tasks may help to determine whether patterns that appear in the
gencrated sets are due to response tendencies or to perception.

The design was limited to binary sets with equal frequencies of the two
symbols. The major independent variable in the perception tasks was the degree
of first order statistical dependency characterizing each set. The same vari-
able should serve as a dependent variable in the analysis of the productions
obtained under instructions to generate random sets. First order dependency
refers to the conditional probability of a symbol given the value of its preced-
ing one. Our binary "symbols" assumed the form of two different colors. This
way it was the probability of change (or alternation) of color between success-
i~e units that was controlled. The sets included sequences and tables with
independence between successive symbols as well as with increased and decreased
tendency to alternate, relative to randomness.

Four kinds of experiments resulted from combining perception and generation
tasks with the dimensionality of the stimuli-set.

The Perception Experiments: One dimension. Two alternative sets, each consis-

ting of 10 sequences, were prepared for judgment of randomness. Each sequence
was composed of 21 cards, 10 green and 11 yellow, or vice versa. The €onditional

probability of a green (yellow) color given the previous one was yellow (green),
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i.e., the sequence's probability of alternation, denoted P(AL), assumed the
values 0.1, 0.2,...,1.0 in the ten sequences. Except for the constraints
concerning the total frequencies, and the required P(AL), all the other feat-
ures of the sequence were determined by random numbers.

The following are examples of two of the sequences that were presented,

Y denotes a yellow card, and G - a green one.

P(AL)=0.3:Y YY GGYYGGYYYGGGGGGYYY x=7 P(AL)S_{E%_

P(AL)=0.8:G Y GYGYGYYGYGYYGYGGYGG r=17
where r is the number of runs in a sequence. Considering r is equivalent to
characterizing the gequence by its probability of alternation, since these two
statistics are linearly related. The general formula is: P(AL)= %—E—% , where
N denotes the total number of elements in the sequence and r-1 is the number
of times color changed.

Two_dimensions. 46 tables of 10x10, each comprising 50 green cells and 50
red ones, were constructed. These were divided into 4 equivalent sets of tables,
12 in each of two sets and 11 in the two others.

The concept of run in a sequence (and consequently the statistic r) is not
easily extended to a two dimensional table. However, r-l, the number of changes
of color in a sequence, can easily be extended to a statistic, denoted k, that
counts the number of changes of color upon moving to a neighboring cell either
vertically or horizontally. The total number of internal sides of cells in a
table of 10x10 is 180. This is alsn the number of opportunities for color change.
llence, P(AL)=T%U is a statistic measuring the probability of ?hange of color for
a randomly chosen transition in the table. The tables, in each set, varied over
a wide range of probabilities of alternation, from a near perfect chessboard
pattern to very exaggerated clustering. The exact method of the tables'
construction is described elsewhere (Falk, 1975).

‘The task. In both kinds of the perception experiments, the subjects were asked
to rate their immediate impression as to how random (well shuffled) such a sequ~
cnce or table was, on a scale from 1 to 20 (20 - most random).

The Generation Experiments: One dimension. The experiment was run with each

subject individually. Subjects were given two decks, one consisting of 20 green
cards and the other of 20 yellow ones. They were instructed to arrange the 40
cards in one row the way they would be arranged were they well shuffled.
Tw. dimensions. Each subject got a table of 10x10, i.e., of 100 empty cclls.
The subject was instructed to fill 50 of the cells with x-s in a random way.
The Subjects: Most of the subjects were students and graduates of the Hebrew
University. Some school children (mostly sec ndary scho¢!) were alsc included.

The totai number ¢! subjects amounted to scveral nundreds.
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RESULTS
Perception: For each value of probability of alternation,subjects' ratings
were averaged. Figure 1 presents these mean ratings as a function of P(AL),

both for one and for two dimensional etimuli.,
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Figure 1. Perception: Mean rating of randomness as a function of probabili-

ty of alternation. n denotes number of subjects. In two dimensions, differ-

ent numbers of subjects were exposed to different P(AL)s. f is their mean.

The maximum rating of randommess was obtained for P(AL)=0.6. wére the ratings
perfectly correlated with the probabilities of the random varieble P(AL) (or
alternatively with those of r in one dimension, and k in two dimensions) the
maximum should correspond to 0.5. (The sampling distributiom of r is given in
Siegel, 1956, and that of k is developed in Falk, 1975). Furthermore, the norma-
tive judgment function should descend from a point above 0.5 in & nearly symmet-
rical way to both sides. Thus, the gambler's fallacy in perception is exhibited
not only by the fact that the peak of apparent randomness is over 0.6, but also
by the negative skewness of both judgment functions (Figure 1), Exact probabil-
ities for the number of runs in ghort sequences can be computed. It follows,
for example, that for a binary random sequence of 10 and 11 symbols of the two
kinds, P(AL) of 0.4 is more probable than that of 0.7 and naturally also of
any higher value. Note that according to the judgment function for one dimens-
ion, not only does P(AL) of 0.7 appear more random than 0.4, but so do also the
values 0.8 and 0.9.

The judgment function in two dimensione can be compared to the distribution
of 150 random tables that were constructed by using random numbers to fill
("without replacement™) 50 cells out of 100 so that each selection was indepen-
dent of the other ones. The distribution of these tables according to their
P(AL) is presented in Figure 2. The value of P(AL) that was perceived more
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random than any other value, i.e., 0.6 (Figure 1), is equal to the 99-th
percentile in the mathematical sampling distribution of ramdom binary tables
of 10x10 with 50 cells of each kind. One could thus conclude that a strong
effect of identifying exaggerated alternations with randomness, was operating
in perception.

Generation: The productions of subjects were analysed as follows: The number
of runs, r, for each sequence, was determined and the sequence's probability
of alternationm, P(AL)-—-;;)—x was computed. leawi-e, for each table, k, the
number of color changes was counted and P(AL)-I§U computed. Figure 2 presents
the distributions of all the generated sequences and tables as a function of

P(AL), along with the distribution of the 150 tables generated by a "nonhuman"

random mechanism.

109,

subject-generated BeqUENCESs wwm

n= 53

subject-generated tables - -~~~
= 253

150 random tables e ea

pereehr <

Figure 2. Generation: Distribution of sequences and tables according

to their probability of alternation.

Note the similarity between the perception and generation functions. The
disparity between the distribution of the random-numbers-generated tables and
the human-generated ones is again in the same direction: Humans are over-
alternating relative to chance, and the modal value is again P(AL)=0.6.

Random binary sequences of 20 symbols of each category should be distribu-
ted approximately normally as a function of P(AL). The parameters of this
sampling distribution are: E[P(AL)]=0.51, CT[P(AL2]=0.080. The mean probabil-
ity of alternation gencrated by our 53 subjects was 5?XE3=0.61. This is
significantly de.iating from chance (for 0.0000001).

Random binary tables of 10x10 with 50 elements of each kind should also
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be distributed normally as a function of P(AL), with parameters: E[f(AL)}-

0.51, U’I?(AL)}=0.037. The mean table generated by our 253 subjects, P(AL)=
0.63, is statistically significant for virtually any level.

DISCUSSION AND CONCLUSIONS

Quite often, when situations are completely random, and especially when
alternations are only slightly below chance, people reject .the chance hypoth-
esis. Consequently,we look for alternative explanations of the occurrences,
and hence, we often overinterpret the world around us and sometimes construct
idle theories. This,way we commit "type I error", namely, we see pattern were
it does not exist, and we impose too much order and lawfulnese on the occurr=
ences around us. Psychologically, that kind of error seems matural. One enter-
tains the illusion of coping better with an eaviromment that seems organized.

However, this study indicated that type I error, although quite prevalent,
is not the only fallacy characterizing the perception of randomness. The
gambler's fallacy is & manifestation of a "type II error" in intuitive Judg~
ment. Sequences and tables with a nonchance increase of alternations were
generally agreed on as being random. The perceptual fallacy lies in overloo-
king a significant deviation from randomness. The roots of this fallacy are
not hard to understand. One thinks of the law of large numbers, but expects
to find the appropriate relative frequencies also in small samples (Tversky

- and Kahneman, 1971).

The similarity of the performence functions for one and two dimensional
stimuli and for perception and generation responses,suggests a general stable
image of randomness. The judgment of randomness was insensitive to sample
size. The modal value of P(AL) that recurred constantly as an expression of
randomness was 0.6. The independence of that judgment on sample size violates
the normative statistical prescription, since a probability of alternation of
0.6 is more probable in a random ordered set of small size than in one of a
large size. A similar finding of insensitivity to sample size in a somewhat
different judgment task is reported by Tversky and Kahneman (1974).

One may regard the perceptual judgment required in this study ag a problem
of intuitive hypothesis testing. One is confronted with a sample and should
draw conclusions about the generating process (the hypothetical infinite
population). Subjects! 'subjective level of significance" turned out to be
inconsistent because of the insensitivity to sample size. Furthermore, symm-

ctrically probable overalternations and overclusterings were judged differente

® L g
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ly. Acceptance or rejection of a set of stimuli as random, thus depended on
the direction of the deviation from randomness rather than on the probability
of getting such a sample by chance. This finding has important implications
for the teaching of statistics: One should emphssize the need to adhere to
an apriori objectively determined level of significance as a standard
procedure in scientific research.

Another lesson to be learned from the generation experiments is:
whenever you have to produce randomness, use a mechanistic procedure. Never
let a human agent, even the most conscientious and well meaning, generate

randomness according to their subjective image.
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LES CONTRAINTES DE FONCTIONNEMENT DES SYSTEMES
MNESIQUES DANS LA RESOLUTION DE PROBLEMES

J.F. Richard, Laboratoire de Psychologie, ERA 235,
Université de Paris 8.

Problem solving is considered as a task in which three types of
activities are competing : conservation in working memory of infor-
mations useful to the problem (data, intermediate results), retrie-
val from long term memory of notions, rules considered as relevant
to the problem, complex cognitive processing such as understanding
the problem, planning, inferring, computing... All these activities
involving attention, attention has to be divided between them and
especially the last one may have detrimental effects on the first
ones. In a mental calculus task where at each step preceeding re-
sults have to be used in computing the next result, we have shown
that pretty many errors appear when retrieving preceeding results
beyond the last one computed. Retrieval of notions from long term
memory is discussed in terms of distance between the cues available
for retrieval in the context of the problem and the cues present

in the context in which notions were learned and used previously.
The distinction is stressed between availability of a notion and
accessibility of a notion, a distinction which as been made in the
study of episodic memory.

La résolution de problémes est considérée de plus en plus en didactique des ma-
thématiques comme une activité ayant sa finalité propre et non plus seulement
comme un moyen d'évaluation des connaissances ou une préparation & la construc-
tion des notions. Cette orientation améne a s'intéresser plus spécifiquement
aux procédures de résolution, orientation a laguelle les travaux de Newell et

" Simon (19872) ont donné une impulsion déterminante. Il ne suffit pas de décrire
celles qui sont élaborées par les éléves, il faut simultanément s'interroger

sur leurs déterminants, sur les processus qui les engendrent.

Une premiére classe de déterminants concerne les notions mathématiques connues
de 1'élaeve, plus précisément le niveau ol il se trouve dans 1'acquisition de
ces notions. Ce point de vue est essentiel st se trouve au premier plan dans les

préoccupations des chercheurs.

Il ne faut cependant pas négliger une autre classe de déterminants, ceux qui
tiennent aux contraintes du fonctionnement cognitif, notamment celles qui tou-
chent aux systémes mnésiques. La résolution de problemes en effet met en jeu
simultanément des activités de traitement (élaboration de représentations, de
plans d'action, production d'inférences, decalculs etc.) et des activités de

récupératicn d’informations en mémoire : récupération en mémoire de travail
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d’informations concernant le probléme, de résultats déja calculés, recherche en
mémoire permanente de connaissances, d'algorithmes ou plus généralement de pro-

cédures utilisables.

Nous proposons d'analyser la résolution de problémes comme une activité d’atten-
tion partagée éntre taches et de s'inspirer des résultats des recherches sur
1'attention pour formulerfdéé hypethéses susceptibles de rendre compte des dif-
férences importantes de performance qu’on observe entre des taches mettant en
Jeu apparemment les mémes compétences, et d'expliquer pourquoi des connaissances
sont utilisées dans certains problémes et pas dans d'autres ol elles sont pour-

tant également pertinentes.

Nous nous limitons ici aux. effets que peuvent avoir, dans la résolution de pro-

blémes, les contraintes de fonctionnement des systemes mnésiques.

LA RESOLUTION DE PROBLEMES COMME ACTIVITE D'ATTENTION
PARTAGEE ENTRE TACHES.

Dans la recherche de la solution d’un probléme trois types d'activités inter-
viennent concurremment :

1. Stockage en mémoire de trave:l d'informations nécessaires & la résolution du
probléme, qui sont conservées momentanément, le temps nécessaire & accomplir la
tache, mais seront oubliées ensuite. Ce sont en particulier les données du pro-
blémé, des résultafg déja obtenus dont on aura encore besoin par la suite. Ce
stockage fait appel & la mémoire immédiate mais dans la mesure ol les exigences
du stockage dépassent les limites de celle-ci, il met en jeu des activités visant,

comme la répétition mentale, & conserver cette information.

2. Récupération en mémoire & long terme de connaissances, d'algorithmes, de ré-
P L.
gles d'action ou de souvenirs concernant des solutions antérieures de problémes

analogues.

3. Des activités congitives complexes spécifiques au probléme & résoudre : cons-
truction d'une représentation du probléme permettant d’élaborer un plan pour la
recherche de«la solution, élaboration de plans, déductions ou calculs (et plus

généralement opérations de transformations des données), contrdle de 1'exécution

du plan d'action, etc.

Ces trois types d'activités sont présents simultanément : m@me si la charge en

mémoire peut Btre diminuée par une représentation externe de certaines informations
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(par exemple en les notant sur une feuille) il reste qu’une part trés importante
de 1'activité mnésique se fait séns rapport externe. Les recherches sur 1'atten-
tion (Richard, 1980) ont montré que dans le fonctionnement cognitif il y avait
compétition entre ces trois types d'activités, en ce sens que l'exercice simul-
tané de plusieurs de ces activités se traduit en général par une diminution de
1l'efficacité de chacune d'elles par rapport & la situation ol elle s'exerce iso-
lément. Ainsi une information stockée en mémoire de travail a plus de chance de
disparaitre lorsqu'intervient un traitement cognitif complexe qui empéche sa

révision mentale.

On est encore loin de savoir exactement quelles sont les activités cognitives
qui ne peuvent s'exercer qu'au détriment 1l'une de 1'autre mais on dispose ac-
tuellement de suffisamment de données pour en faire une hypothase de travail

raisonnable.

LES LIMITATIONS DE LA MEMOIRE IMMEDIATE

Le nombre d’éléments que 1’on peut maintenir en mémoire a la suite d'une seule
présentation est de l’ordre de sept chez 1'adulte (Miller, 1856). Ce résultat
est connu depuis longtemps, il vaut dans le cas d'éléments sans relation les uns
avec les autres (des lettres, les chiffres d'un numéro de téléphone etc.) pour
lesquelsg on demande une restitution immédiate sans intervention d’une activité
interférente. Il suffit toutefcis’d'une activité eimple et relativement bréve
(rechercher une lettre dans une suite) qui détourne le sujet de la révision men-
tale de la liste & rappeler pour perturber de fagon trés importante la restitu-

tion de celle-ci (Wimbey et Leiblum, 1867).

Par ailleurs Baddeley et Hitch (1974) ont montré que lorsque le sujet doit main-
tenir en mémoire immédiate un nombre d'éléments supérieur & trois, le temps né-
cessaire pour effectuer une téche de. jugement se trouvait augmenté et cela d'au-

tant plus que la tache de jugement était plus complexe.

Les limitations de la mémoire immédiate peuvent se traduire de diverses maniéres :
- dans la compréhensiqn de 1'énoncé : la lecture de celui-ci met en jeu une dou-
ble activité : une activité de déchiffrage du texte et une activité de stockage
en mémoire de travail des éléments pertinents. La premiére est loin d'8tre auto-
matisée chez 1l'enfant et comme toute activite cognitive non automatisée elle

peut entrer en compétition avec 1l'activité de stockage en mémoire.



- 235 -

- dans les traitements effectués : oubli de certaines données non parce que
1'éléve n'aurait pas été assez attentif dans sa lecture mais parce qu’'il n'a

pas été assez sélectif dans sa mémorisation des informations, oubli de résultats
antérieurs, omission de 1’'examen d’éventualités alors qu’'il a toutes les connais-

sances requises pour les envisager.

Nous avons choisi une situation de calcul mental pour étudier quel effet a sur

1'information stockée en mémoire de travail 1’exercice d'une activiteé cogniti-
ve non automatisée.

Le sujet doit faire une suite de calculs additifs figurés chacun par une équa-
tion & une inconnue. Dans la premi2re équation la valeur de 1'inconnue est cal-
culée a partir de données présentes dans 1'énoncé. Dans les suivantes figurent
en plus de 1'inconnue & calculer d'autres inconnues dont les valeurs ont déja
&té calculées : pour effectuer le calcul le sujet doit rechercher ces valeurs

en mémoire de travail. On a fait varier systématiguement le nombre d'informa-
tions & réc&pérer en mémoire en vue du calcul ainsi que le nombre d'informations
stockées en mémoire mais déja utilisées : ces derniéres, étant devenues inutiles,

peuvent &tre oubliées sans dommage.

L'étude a été faite avec des erfants de 10-11 ans. Si le dernier résultat cal-
culé est retrouvé sans erreur 1'avant dernier résultat, et a fortiori les pré-
cédents, sont oubliés dans une proportion notable de cas, d'autant plus impor-
tante gue le sujet a fait plus de calculs entre le moment ol le résultat a été

calculé et celui ol il doit &tre retrouvé.

Par ailleurs les résultats devenus inutiles perturbent la conservation en mémoire
des résultats qui devront &tre utilisés ultérieurement. A 1'3ge étudié il ne sem-

ble pas y avoir d'oubli sélectif des résultats devenus inutiles.

LA RECUPERATION EN MEMOIRE A LONG TERME

Pour aborder 1'utilisation des connaissances dans la résolution de problémes on
peut l'analyser comme un processus de récupération en mémoire 3 long terme et
s’inspirer des recherches faites sur ce sujet dans le domaine de la mémoire, méme
si elles portent & peu prés exclusivement sur la mémorisation d’éléments isolés
et non organisés, lesquels sont en cela trés différents des connaissances. Dans
la psychologie de la mémoire on fait une distinction entre la présence d'une
information en mémoire et la possibilité d'avoir accds a cette information dans
une situation donnée : une information présente en mémoire, donc non oublige,

peut n’étre pas accessible dans des circonstances données et donc &tre inopérante.
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La possibilité de récupérer une information en mémoire 2 long terme dépend dans
une tres large mesure de la présence d'indices qui lui sont associés. Cela est
encore plus vrai pour des enfants que pour des adultes (Bushke, 1874). L'effica-
cité de la récupération dépend pour 1'essentiel de la parenté entre le contexte
dans lequel 1'information était présentée au moment du stockage en mémoire et du
contexte présent au-moment de la récupération (Tulving et Thomson, 1973). Dans
cette perspective les connaissances adéquates & la solution du probléme peuvent
n'étre pas évoquées méme si le sujet les possdde ; par contre peut Btre évoquée
une connaissance ou une régle inadéquates, dont le contexte d'apprentissage est
plus proche du contexte constitus par le probléme. Le contenu de celui-ci, la
forme sous laquelle il est posé, engendrent des indices plus ou moins aptes &
susciter les connaissances ou régles d'action pertinentes. Cela explique les

grandes différences constatées dans la réussite de problémes formellement trés

voisins.
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SPATIAL VISUALIZATION AND PROPORT IONAL REASONING OF EARLY ADOLESCENTS
Steven Pulos, Elizabeth K. Stage, Elizabeth F. Karplus, and Robert Karplus
University of California, Berkeley, USA

Cette étude examine la relation existant entre la visualization
spatiale, déterminée & l1'aide d'une tAche utilisant du papier
plié, et la raissonement mathematique implique dans 1'utilisation
de proportions. Les résultats & ces deux tAches sont obtenus
& partir d’échelles de Guttman, gqui reflétent la structure du

. raisonnement demandé dans chaque cas. ILa visualisation spatiale
a de fortes corrélations avec le raisonnement proportionnel.
Parmi les corrélats possibles d'origine cognitive et affective
que nous avons étudiés, seules la capacité de traitemement et la
restructuration cognitive ont une grande puissance predictive.
Une fois 6té 1'effet de ces deux corrélats, il reste un effet
modéré de la visualisation spatiale sur le raisonnement propor-
tionnel.

A relationship between spatial visualization and complex mathematical reasoning
has been recognized for some time (Smith, 1964). However, the nature of this
relationship is still not well understood. It could be a direct one or it
could be due to elements they have in common, such as general problem solving
ability (fluid intelligence, Gf) or processing capacity. The purpose of the
present paper is to examine the relationship between spatial reasoning and

proportional reasoning, an example of complex mathematical reasoning.

METHOD
The proportional reasoning task employed in the current study was the lemonade
task (Karplus, Pulos, & Stage, 1980). The proportional reasoning score derived
from the eight lemonade puzzles (Karplus, Pulos, & Stage, in preparation) was
based on the complexity of a subject's reasoning and formed an acceptable
Guttman scale, with coefficient of reproducibility 0.97 and coefficient of
scalability 0.89. It ranged from 0 to 3 (Table 1).

Table 1. Proportional Reasoning Score

Criterion Score
Proportional reasoning never used 0
Only equal integral ratios compared successfully 1
Integral ratios compared successfully with non-integral ratios 2

Non-integral ratios compared successfully 3
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The measure of spatial visualization was an individual version of a paper
folding task suggested by Thurstone (1951), commonly used in a multiple choice
format (Educational Testing Service, 1962). In our specially-developed ver-
sior, subjects were shown a square-piece of paper that was folded once or
twice while they were watching. For the next step, a dot was placed on the
folded paper and subjects were asked to imagine a hole punched through all
paper layers at that point. -While still viewing the folded paper with the
dot, the subjects were asked to make a drawing that would show the hole
locations in the unfolded paper. More details of the task administration

and all fourteen items will be published elsewhere.

This report makes use of the eight items for which a correct response required
the proper location of three or four holes. The nature of the folds is briefly
characterized in Table 2. Each fold was horizontal (H) or diagonal (D) rela-
tive to the edges of the square paper, the second fold was parallel (||} or
perpendicu!ar(_i_) to the first, the folded section covered the lower section
completely or partially, and a partial first fold may have been hidden by a
complete second fold. Students' answers were scored correct if all holes were
recorded in approximately correct locations and no additional holes were indi-

cated.

Table 2. Paper Folding ltem Features

item Number .Complete Folds Partial Folds Hole Location Layers

5a HH(]) -- center 4
5b - HH(D) - edge 4
6 . D (| ] center L
7b H D(hidden) center 3
D o(}]) center 3

9 o{|]) D{hidden) center 3
10 D,D(_L} - center 4
11 - H,H(]) center 5

To examine the possible common correlates of proportional reasoning and spatial
visualization, seven cognitive tasks were administered to groups: 1) the
Figural Intersection Task, FIT (Pascual-Leone & Burtis, 1974) -- process
capacity; 2) the FASP embedded figures test (Pulos & Linm, 1979) -- cognitive
restructuring; 3) series completion-- fluid intelligence; 4) the Water Level
Task, WLT (Pascual-lLeone, 1974) -- field dependency; 5) conservation of volume

-- formal reasoning; 6) a vocabulary test -- crystallized intelligence;
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7) alternative uses test (Wallach & Kogan, 1965) -- divergent thinking. Tests

2 and 4 measure static aspects of spatial ability different from spatial
visualization (Thurstone, 1951; Richmond, 1980), which refers to a cognitive
process that deals with relative movements of parts of a figure. A mathematics

attitude survey (MAS) was also administered (Stage, Karplus, & Pulos, 1980).

The subjects in the study were sixth and eighth graders in a suburban school
in northern California. A total of 125 students was given the paper folding
and lemonade tasks, and 78 of these participated in all the group tests.

Approximately equal numbers of subjects of each grade and gender were included.

RESULTS AND DISCUSSION
The percentages of correct answers on the paper folding items are presented in
Table 3. No significant relationship between sex or grade and these results

was observed, so separate data for the various subject groups are not reported.

Table 3. Percentages of Correct Answers on Paper Folding ltems (N=125)

Item 5a 5b 6 7b 8 9 10 11
% correct 76 91 51 26 L9 37 30 25

it is clear that certain pairs oi items had very similar success rates.

Easiest were Iltems 5a and 5b, both of which had two complete perpendicular
folds aligned with the square paper's edges. About half the subjects solved
the more difficult Items 6 and 8, both of which had a complete diagonail fold
and a partial diagonal fold parallel to it. Still more difficult, with success
by about one-third of the subjects, were ltem 9, with a hidden fold parallel

to a complete diagonal fold, and ltem 10, with perpendicular diagonal folds.
Most difficult of all, solved successfully by only one-fourth of the subjects,
were item ltem 7b, with a hidden fold oblique to a complete fold, and Item 11,

with two mutually perpendicular partial folds.

For a total score of spatial visﬁalization on the eight paper folding items,
each student was given one point for success on one or both items in each of
the four pairs. These scores could range from 0 to 4, but actually ranged from
1 to 4, since no subject failed all eight items. The four-level scoring

system formed an acceptable Guttman scale with coefficient of reproducibility

= 0.93, coefficient of scalability = 0.78.
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Spatial visualization and proportional reasoning performances, both measured
by scores that form Guttman scales, are compared in Table 4, 1t can be seen
that each score is distributed fairly uniformly over its range, with propor-
tional reasoning somewhat more in the lower part of its range and spatial

visualization somewhat more in the upper part of its range.

Table 4. Contingency Table Between Spatial Visualization
and Proportional Reasoning (percent, N=125)

Spatial Proportional Reasoning

Visualization 0 1 2 3 Total
1 1h.4 3.2 1.6 1.6 20.8
2 11.2 7.2 8.0 1.6 28.0
3 5.6 5.6 6.4 4.8 22.4
4 1.6 7.2 7.2 12.8 28.8

Tctal 32.8 23.2 23.2 20.8 100.0

The chi-square (39.80 f?r this table) and the contingency coefficient

fchi / [chi square + NT°= 0.49) show a highly significant relationship--
,béyond the 0.001 level -- between the two forms of reasoning. At the same time,
the relationship appears to be symmétrica] in that the asymmetrical lambdas
are approximately the same whether proportional reasoning is predicted from
spatial visualization (lambda = 0.18) or spatial visualization is predicted
from proportional reasoning (lambda = 0.19). This lack of asymmetry suggests

that neither of the two variables mediated the other.

To investigate the relationship further, a stepwise multiple regression analysis
was carried out for the proportional reasoning score, using the eight correlates
(entered in a group) and spatial visualization (entered last) as independent
variables. To give an overview of the interdependence of these variables, we
first present in Table 5 the bivariate correlation coefficients after elimin-
ating Uses, Vocabulary, and Mathematics Attitude Survey, whose correlation
coefficients with proportional reasoning or spatial visualization did not

exceed 0.25. It can be seen that proportional reasoning and spatial visuali-
zation correlated with one another, but that proportional reasoning had
generally higher correlations with the other variables than did spatial visu-
alization. Though the FIT, WLT, and FASP all involve reasoning with shapes,
only the FASP score correlated more highly with spatial visualization than did

series completion or volume conservation.
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Table 5. Bivariate Correlation Coefficients for Seven Variables (N=78)

Spatial Vis. .50

FIT .56 .36

FASP k9 4 .31

Series by .29 47 4L

WLT L .27 .52 .29 .27

Volume .25 .36 .29 b5 .39 .20
Proportional Spatial FIT FASP Series WLT
Reasoning Vis.

The stepwise regression (Table 6) showed that only processing capacity (FiT)

and cognitive restructuring (FASP). increased the prediction of proportional
reasoning significantly. Yet spatial visualization, entered last in the regres-
sion, also increased the prediction to a substantial and statistically sigifi-

cant extent.

Table 6. Stepwise Regression for Proportional Reasoning (N=78)

Variablel R2 RZ change F to enter P
FIT .31 .31 25.25 <.001
FASP 42 11 10.62 .002
Series b3 .01 1.06 ns
WLT R .01 .82 ns
Volume R .00 .32 ns
Vocabulary .45 .00 .21 ns
Uses .45 .00 .2k ns
MAS b5 .00 .02 ns
Spatial Vis. .53 .08 8.54 .005

1
listed in order of entry

The correlation coefficients in Table 5 already suggested an outcome in which
the proportional reasoning, spatial visualization, FIT, and FASP scores were
strongly interdependent. The last three together account for about half the
variance in proportional reasoning. |f FIT, spatial visualization, and FASP
are entered in the multiple regressions in that order, their contributions to

the variance of proportional reasoning become .31, .14, and .0k, respectively.
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CONCLUSI10ONS
The results of this study imply that there is a relationship between spatial
visualization and proportional reasoning not attributable to a common relation-
ship to other variables in the quite comprehensive set that was taken into
account. Furthermore, neither of these two variables appears to mediate the
other. Thus, the two forms of reasoning appear to facilitate one another by

a mechanism, if any, that remains to be clarified.
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WHAT KIND OF ORGANIZATION MAKES STRUCTURAL KNOWLEDGE
EASILY PROCESSIBLE?

Ipke Wachsmuth, Universitdt Osnabriick (R.F.A.)

La construction des structures cognitives demande 1'actionm,
c'est le point commun des diverses théories sur 1'acquisi-
tion des connaissances. Ce principe — autant que les méthodes
de 1'enseignement des mathématiques qui en dérivent — n'in-
clut pas a priori, que les connaissances qui 8 'apprennent
de cette maniére, scient utiles pour produire des processus
cognitifs; cette & dire qu'elles seront capables de créer
des activités pour appliquer les comnaissances et d con—
tribuer pour apprendre le savoir ultérieur. Un point essen—
tiel de cela est, qu'on a besoin d'une suite d'événements
bien dirigés, qui se mettent en scéne par des actions con-
sécutives d'un "agent". Nous allons discuter la question,
quels principes d'organisation des conmaissances pourraient
favoriser la construction des structures cognitives orien-
tées vers L'action.

1. STPUCTURE AND PROCESS

All human perception depends on certain grounds of shape, space and time,
which are the very first formal principles of all phenomena, as was pointed
out by Kant (Kant, 1975). Space and time are the schemata and conditions of
cognition, not originating from but presupposed by our senses. Nevertheless,
they are subject to the logical inferences of the intellect which takes ac-
count of space when considering objects and of time when considering states.
We use space to express (statically) the interrelations between things, thus
yielding structure, and we use time to express (dynamically) states and al-
teration, by this yielding process; and all kinds of mathematical considera-
tions can be expressed in terms of structure and process. (What is called a
category, for instance, is given by a set of objects together with a set of
morphisms.)

Again, we find these principles of structure and process in various models of
knowledge representation: To express interdependancies between contents of
knowledge which in some respect refer to the same certain issue, we use the
notion of schema which can be considered as to arrange certain sets of con-
cepts within the "mental space' of all concepts already formed. So, when
speaking of "knowledge'" in the following, we shall always refer to conceptual
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structures, as schemata in the sense of (Skemp, 1979) and, in a respect some-
what different (see below), as memory schemata in the sense of (Bobrow/Norman,
1975), and to what is called the information processing level or likewise sym-
bol processing level, where meanings become attached to the mental entities
we progcess: It is the symbolic representation which enables man to deal with
a manifold of phenomena without having to reiterate them in their totality,
and it is the schema which is assumed, by many authors, to be the primary or-
ganizing unit of meaning and processing of information.

But, according to our view of structural and process-like aspects herein, we
find two different types of "schemata" to be distinguished: a "relational"
and an "operational type; the first one, by use of descriptions, stating re-
lations between the concepts involved, and thus giving rise to understanding .
The second "active" type evolves orientation from descriptions ("structural
knowledge') to process; e.g. in assimilating realities or conceptual inter-
dependancies to bring about understanding, or in reorganizing structural
§nowledge to integrate new situations and experiences (accommodation), or to
produce cetion by directory of the disposable knowledge: It needs process to
" make structural knowledge effective.

This second type of a schema would, for example, be called "schéme' by Piaget
(vs. "schéma" in case of type-1) or "operative schema" (vs. "figurative sche-
ma') by Inhelder; Bartlett would rather speak of "active, developing pattern'
or "organized settings", Furth would speak ofy”operative plans", Lindsay,
Norman, and Rumelhart of "action schema', and Neisser (who refers to the
first type as "stored plans of actions" in the sense of Miller, Galanter, and
Pribram) speaks of "stored plans for action which direct their execution'.
(A1l references see Kluwe, 1979, pp.20-23; see also Skemp, 1979, p.219.)
Bobrow and Norman conceive schemata to be "active processing elements" which
can become active if requested (Bobrow/Norman 1975, p.132); and what in
(Skemp, 1979) is called a "director system'' seems to be related to this se-
cond type of a schema.

All schema models of the first type commonly serve as structural representa-
tion units which organize knowledge and are subject to accommodation (or re-
structuring), while schemata of the second type are involved in process: they
are models for "instances" which e.g. accommodate representéd knowledge, and

which direct action.
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2. PROCESS vs. ACTION

A most important.difference between considering mathematical processes, as
far as mathematics itself is concerned on the one hand, and from the mathe-
matician's or student's viewpoint on the other, lies in the fact that what is
process in the first case appears as action of a person (an "agent") evolving
" the process, by a sequence of acts. And while,in difference to structure, pro-
cess is coupled with a direction (of proceeding), is action coupled with
intention (whatfor to proceed); while mathematical process relates to logical
rules, does action submit to psycho-logical influences: The agent has to make
decisions what intermediate goals are to run up to, and what could be "means'
to reach "ends'". And as a basis, and motive, for his decisions he uses what
we have been calling type-1 resp. type-2 schemata.

But what is the origin of such knowledge structures, and how do they develop?
Some of the theories dealing with the acquisition of knowledge agree in the
point that to build up cognitive structures action is required (''to compre-
hend is to operate'), including mental action by symbolic operation, and bas-
ing on the mechanisms of what Piaget has called empirical and reflective ab-
straction (e.g. Piaget, 1975, pp.87-89). However, this principle, as well as
‘derived methods for mathematics education, would it include the fact that the
structural knowledge acquired from this is process-oriented, i.e. is able to
produce actions which yield application and contribute to further acquisition
of knowledge? Does comprehension already provide adequate action schemata?

Resulting from reflective abstraction, a conceptual schema is not of a spe-
cial style as a sensori-motor schema normally is (e.g. typewriting schemata
would hardly serve as, or be extendable to, practicable schemata for playing
piano). But instead, one of its most important features is it to be general,
and, in fact, very often it is the degree of generality of a conceptual sche-
ma that becomes extended in the process of learning mathematics. Action sche-
mata must be general to apply to a broad range of situations, which is a re-
quirement of eeonomy, and they must be general to be applicable to situations
not having appeared during the process of their abstraction, which is a basis
for transfer. So, what can be done to pursue these principles of genmerality

in comprehension during processes of learning mathematics?

The following two examples are chosen to elucidate the role of general action
schemata not being focussed to special context, as well as of psychological
concerns influencing decisions when knowledge is put into process (as an
agent proceeds).
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3. TWO EXAMPLES

1) Having learnt some relation between the side lengths of a right triangle,
say, a® + b® = ¢®, certainly a student will soon be able to determine b, if
for exahple a and c¢ are given, in generating process by use of an action

schema like

first: isolate the umknown

then: <insert known informaiion
which, in such a general shape, usually was acquired earlier and perhaps has
to be extended to the new context of quadratic equations.

2) But what about someone having recently learnt how to integrate certain
classes of real functions, including the rule for partial integrating, and is
given the task

feos®xdx = ?

Analyzing this task, which soon turns out to be a problem, could give us some
ingight, so let us see. We'd try "to integrate' (wouldn't you?) in the first
fapproach: fild
feos?xdx feosx cosx dx

i

g
[s4nx cosx] + [sinx sinx dx

n

= [sdnx cosx] + [-cosx sinx] + [eos3xdx

which carries back solution of the task to the solution of the task. Problem!
Remembering (from some part of structural knowledge) that sin?x = 1 - cos3x,

we would probably come to the second approach:

= [sdnx cosx]l + [{1 - cos®x)dx

[sinx cosx] + [ldx -  [eos®xdx

which again seems to yield a problem of self-reference. So, if we still fol-
low the command (INTEGRATE!) of the symbol "[" we are getting into a deep-
end. What to do? - Now let us see how general our action schemata are! Do we
remember that for example VE could signalize: TRY TO RADICATE! or could in-
dicate: TAKE IT AS AN OBJECT!; i.e. that the symbol "V is of a twofold
psychological nature, showing command for proceeding, as well as declaring

an object (a number)? Then we would possibly be able to transfer this knowl-
edge (which is processible in more than one respect) to the recently intro-
duced symbol "['", and switch from transformation of terms to equivalent-trans-

formation in the third approach:
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Jeos®xdx = [sinx cogx + x] - Jeos2xdx
® 2fcos®xdx = [sinx cosx + x]
® Jeos®xdx = 3lsinx cosx + x]

. and there we are!

4. ACTION-FAVORING ORGANIZATION OF KNOWLEDGE

What does it mean to induce process from structural knowledge? At first, it
could mean that, determined from a giveﬁ task, a certain "goal state" is given
to be reached, starting from some "present state", in a sequence of inter-
mediate states, a "path" (Skemp, 1979, p.168). We could likewise say that a
sequentialized, directed grouping of events, carrying on from state to state,
is needed; in this making up the process which an agent has to evolve (see
above), in a certain sequence of acts.

Not in every case, however, is a goal state actually known from the task for-
mation: If the task is, say, to prove a certain assertion (and supposed it is
valid), one has to find a sequence of inferences, the application of which be-
ing the events figuring the process. But, for (counter-)example, in the task
above of integrating cos?x, the goal state has to be found during the process
(which is not merely a straight-forward computation determined by an algorithm
as e.g. for x*). So in this case, one has to use "means", not knowing to what
actual ends! To evolve process, here, does not mean to an agent: to compare a
goal state with some present state, make a plan, and figure out action, but
"merely'': to do something to perform the task. Hence, to progress to an un-
known goal state, it needs various knowledge how to put knowledge into process
at all, how to move from a position (present state) rather than how to Teach
a final order (goal state).

So what kind of organization of an agent's knowledge could make it easily pro-
cessible? As a first organizational principle, we suggest to establish #win
representations of mathematical concepts in a schema, using descriptions show-
ing process as well as structure {e.g. "VZ stands for a process: to seak for
a non-negative number which, being multiplied by itself, gives 2" and "VZ de-
clares an object: ¢t s the non-negative number which, being multiplied by it-
self, gives 2" etc.). In paragraph 3. we saw that within the same task, ‘''fv
calls process where cos2x is the operand, as well as, a few steps later, it
declares an object to be operated on as a whole, and which could be envis-ioned
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ro be the result of the above process. Very similar situations would in fact
" appear 1pon V-, n, Log, Lim, u (from u-recursion), etc., and lead to similar
decis? ns, though occuring in quite different mathematical contexts.

\s a e~ d organtzational pfinciple we thus suggest to arrange laterally such
spec . !-context schemata, which are consecutively acquired in the course of ma-
thems  ca: instruction; i.e. to evolve links between relational descriptions
berng of .imilar shape, independent of context. (In the cases above, it is the
cor« ., rot the functional aspects of symbols, which really differs.) Such
links ...« be revealed by comparing discussion, and by reflective mental acti-
vity, yielding insight into general action structures and thus give rise to
oeneral descriptions for action schemata as postulated in the second paragraph.
And this principle can immideately be used in further acquisition of knowledge.
(When teaching mathematics at school, in following this line, I once used as a
key sentence for the formation of some lessons: '"In what respect is log for
exp the same as is V~ for the power?')

\
In the whole proceeding, keeping aware of structure and of process should
yield links to a higher-order view of the potentials involved, leading to a
schema as sketched below,; and allowing economical representation of knowledge,
and transfer, by identifying analogies and similarities, which is a process of
abstraction (from special-context schemata), and of re-concretization (in a

1 process

particular special-context schema).

structure

References:

Bobrow, D.G. and Norman, D.A.: Some Principles of Memory Schemata, in:
Representation and Understanding, ed. by D.G. Bobrow and A. Collins,
New York/London Academic Press, 1975, pp.131-149

Kant, I.: De mundi sensibilis atque intelligibilis forma et principiis,
Schriften zur Metaphysik und Logik Band IT1, ed. hy W. Weischedel,
Darmstadt 1975

Kluwe, R.: Wissen und Denken, Stuttgart Kohlhammer, 1979

Piaget, J.: Biologische Anpassung und Psychologic der Intelligenz,
Stuttgart Klett, 1975

Skemp, R.R.: Intelligence, Learning, and Action, Chichester Wiley, 1979




- 249 -

PROCESSES INVOLVED IN THE SOLUTION OF NON-ROUTINE PROBLEMS
: J. HILLEL

Concordia University

The talk will focus on.the main findings of a three year research
project into the problem-solving behaviour of schoolchildren (age
13 - 16) attempting to solve non-routine mathematical problems.

We will characterize some general features of the observed or infered
problem-solving behaviour using a particular framework for analyzing
thinking out loud’protocols. These will be compared with results from
other research works using different modes of protocol analysis.

Finally, methodological problems encountered using the interviewing
technique will be discussed, as well as, some of the attempts at
overcoming these difficulties.
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" EVALUATING PROCESS ASPECTS OF A MATHEMATICAL CURRICULUM
Alan Bell and Christine Shiu
Shell Centre for Mathematical Education
University of Nottingham

Cet article présente un travail sur 1l'evaluation d'un nouveau
cours, qui appuyé sur les processus mathematiques de
generallsatlon, déduction et representatlon. Sous ces titres,
on a catégorisé les devoirs d’ éléves contenus dans notre
cours. D'une méme fagon, on a décrit dans cet article le
contenu du test, qui demande l'utilisation des mémes processus
dans de nouveaux contextes.

Des groupes d'éléves de la fin de la premiére et de la
deuxiéme année du cours, dans les écoles du Projet et dans
d'autres écoles, ont passe les tests, et on a analysé les
resultats a 1'aide d'une méthode 'differentielle', pour
permettre la comparaison des groupes ncn-pareils.

Les premiers resultats montrent une supériorité pour les
groupes du Pro]et dans les processus les plus importants du

' cours, ceux de generallser et d'expliquer, et aussi dans
1'exactitude de raisonnement, qui etait moins appuyé dans le
cours. Les questions concernant l'utilisation des nouvelles
répresentations ne montrent pas un effet gu'on puisse attribuer
au nouveau cours. On va confirmer c¢es resultats provisoires.

The first author's paper to the 1979 Osnabruck conference of this group
reviewed research and development relating to process aspects of mathematics,
that is, activities of mathematical investigation, problem solving, proof,
representation, ‘generalisation and abstraction (Bell, 1979). The present
paper reports work at Nottingham on the development and use of test material
designed to measure progress, in this dimension,of pupils aged 11-13 follow-
ing a course with a particular emphasis on process aspects of mathematics,
the South Nottinghamshire Project (SNP) (Bell, Wigley and Rooke 1978-9).

There have been some previous attempts at similar evaluations. Williams and
Fogelman (1972) carried out three comparisons between groups, aged 7-8, taught
sets and logic with Dienes' ngic Blocks, and corresponding control groups,
using certain intelligence tests as the criterion measures. The results were
inconclusive; in the longer but Tess well designed experiment, gains were
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observed on some of the measures, but in a shorter but more rigorous compari-
§on there were no Eignificant differences. A substantial curriculum experi-
ment in“Calgary, in which 20 teachers were trained at a summer school in the
use of Sghth Nottinghamshire Project and other materials for certain curricu-
lum topics, the experimental classes showed significantly better progress than
the controls both on normal ‘content' tests and also on the SNP test of
general mathematical strategies (Brindley 1980).

During 1978-9 further test material was piloted at Nottingham (Galbraith 1979,
Ho}ton,1979). Galbraith's work aimed mainly at gafining further insights into
pupils' understanding and use of proof, and he has subsequently continued this

. work in Australia (Galbraith 1981); Horton produced four 50 minute written

tests for use in“curriculum evaluation. It is the results of the trial admini-
stration of these tests to pupils in a few Project and non-project schools
which are to be reported here. We shall, however, analyse more fully than
hitherto the nature of the experimental course and attempt to relate the test
outcomes to the curriculum emphases. This was done %escriptive]y for the
first year of the SNP course in a previous study (Bell 1976). Here we shall
deal with the second year, since a main point of interest in the test results
are the gains during the second year. .
PROCESS ASPECTS OF TASKZ IN THE SNP SECOND YEAR COURSE

A rough classification of the 120 pupil tasks in the main part of the SNP
second year course, excluding those in the individual Number Skills booklet,
shows the following distribution:

- about 1/3 are Generalisation tasks

- about 1/3 are Representation tasks (also involving generalisation)

- the remainder are divided among Classification, Choice of Measure,

Optimisation, and Cbncébt and Algorithm learning tasks.

The typical Generalisation task involves the proposing of some rule governed
situation for investigation, in which pupils generate examples conforming to
the stated rules, seek patterns of ;éiationship among them, formulate and test
a generalisation, then seek to explain or deduce it from the given rules, i.e.
from the initial description of the situation. An example from the second
year course, Calculating the Mean, aims to establish the validity of using a
so-called 'fictitious mean'. The theorem is Actual mean = Fictitious mean +
(mean of the deviations). ‘The task begins by asking for the calculation of
the mean of a set of five single digit numbers, 4,1, 3 ..., then the mean of
14, 11, 13 ..., then 34, 31, 33 ... and so on; the theorem is induced from a
set of given examples and thespupil is asked to test it further with examples
of his own choice. Then he is asked to explain why it works. In this case,
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i

though not always, he is then asked to practise its use in a short set of
“examples. Another generalisation task, Making Up Symmetry, gives a set of
relationships to investigate twt with less direction towards a particular

generalisation. It asks for a Tisting of the types of symmetry (number of
planes of symmetry) possessed by objects made from face-linked cubes. The
invitation is to identify what numbers of planes are not possible, and to
explain why. :

Representation tasks are those in which the relation between a situation and
its corresponding symbolism or diagram are established or exploited. The main
types are (1) those in which an algebra is established to describe aspects of

a geometrical situation, (2) those which relate numerical data, the shape of
the Cartesian graph, and the corresponding algebraic formula, and (3) those

in which the algebra of line segments and their ﬁumber~pairs (vectors) is
related to the geometry of quadrilaterals. An example of the first type is
Triangle Algebra, in which the spaces of a triangular tessellation are labelled
according to the sequence of movements needed to transfer a triangle from the
s%arting position to that space, and the identity properties of the resulting

“'words' (such as ABCCAB) are related to the geometry of the figure (see below).
i "

You need some 2 cm isometric paper and some tracing paper. Here are some suggestions for using your rules:

Shortening labels

CABC = C{ABC) =C(CBA) = (CC)BA =1BA = BA

ABACBH = AB(ACB) = AB(BCA) = A(BB)CA = AICA = ACA
Can a/l 4-letter and 5-letter labels be shortened?

A ABA . Shortening journeys
BAI AB A Choose two labels and find those triangles.
! How can you get from one to the other?
_(Try geing to | first)
Can you shorten this journey ?
Try some more examples. Can you always shorten the journey?

Wirite about anything you notice.

1 is the starting triangle.
@, b, ¢ remain fixed on the paper.
AB means give | a half-turn round @ and then a hali-turn round b.

1. Find triangle ABC and label it.
Find triangle CBA.
‘What do you notice?

Can you find any more rules fike this?
Wite them ali down,

»

Find triangle AA

Do you agree AA =1?

Can you find any more rules like this?
Write them all down.

w

Find ABBA, CABBAC, ACBCCBCA.
‘What do you natice?

Can you find a general rule?
Write about it.

Classification tasks generally request the collection of a complete set of
objects of some type; the process requires the establishment of subcategories
and some implicit generalisations about what subtypes are poésib1e‘ Choice of
Measure occurs, for example, in the Statistics section, where pupils, in pairs,
are asked to estimate, then measure, a set of lines, and to consider who has
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the 'best set' of estimates; the mean and spread are considered as possible
measures for determining the 'best set'. An Optimisation task features in the
Circles and Area section; a problem requires the determining, by trial and
improvement, of the largest grazing area for a tethered donkey in a triangular
field, the choice being of where to fix the central peg. Concept and algo-
rithm learning tasks probably do not need illustration.

EVALUATING STRATEGY LEARNING
We now turn to consider the administration of the process tests, and the

results obtained. The aim of the test was to evaluate the strategies of
Generalisation, Explanation, Proof, Representation and Classification. (In
addition to these, two items were included to test aspects of the interpreta-
tion of 'real life' data displayed in a table or graph. These had only a
relatively small part in the course, but we wished to increase the emphasis on
realistic applications and wanted the test to be usable for future evaluation
of this aspect.)

Design of the evaluation

Two of the tests (SA,SB) contained six questions each, and two (LA,LB) comprised
three longer questions; each question contained several markable items. (The
problem in designing process test items is that the strategies to be evaluated
only come into play when a sufficiently complex situation has been generated,
so that items of the usual short tength are not possible. Comment will be
made below about this.) The pairs of tests are eventually intended for use in
a crossover design, so that the same year group can be tested annually for at
least three years without meeting the same test each year. The present stage
is that at school X, one half of the 1978 entry has taken test SA in June 1979
and test SB in June 1980, while the other half has taken SB in 1979 and SA in
1980. School Y has used the longer question tests LA, LB in a similar way.

In addition, each test has been taken by groups of roughly comparable first
and second year pupils at neighbouring schools. The aim of the present analysis
of results could not he - and is not - to establish precise comparisons, but
rather to see whether the relation between the process-oriented curriculum and
the tests is sufficiently robust to show through the comparison of unmatched
groups; and to investigate what methods of test desian and analysis might help
in the future if, as is likely, imperfect matching of groups is inescapable.
Content of the tests

Tests LA and LB are fully described, with illustrations of responses at dif-
ferent levels, in Horton (1979), and similar information about test SB is
contained in Qumry (1980). We shall therefore use test SA for discussion
here. The six questions of test SA will be described. Stamps is shown:
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Su?pose you have a lot of stamps of value 5p and 7p but no others.
You can make up various amounts of postage from these. For example,
you can make up l7p as 7p + S5p + 5p.

Jane says 'You can't make up an amount of 13p'.

Explain fully why Jane is right.

It aims to test an aspect of explanation, in particular the ability to present

a _complete argument. The marking levels distinguished are (a) a complete,
explicit argument, exhausting all possibilities, (b) partial attempts to explain
or to illustrate by relevant examples, and (c) no relevant or correct comment.
Most pupils who took the test showed signs of understanding the impossibility
of obtaining 13p, but this is not possible to assess reliably from the scripts;
what can be assessed is the degree of explicitness of the argument, and thus

its quality as a communication.

Add and Take tests the ability to recognise a generé] and sxplanatory argument
as compared with one based on two cases. The question begins, Choose a number;
add it to ten; take the original number from ten; add the two results. Two
cases are to be produced; then the pupil has to choose the better of these two
arguments and explain the reason for his choice:

JANE says, : ' BRENDA says,
'Begin with 1, answer is 20. 'If n is the number you choose,
Begin with 9, answer is 20. you have 10+n, and you add 10-n.
So begin with any number between You add and take the same number
1 and 9, answer will be 20. 80 you will always be left with
The answer is always 20'. 2 tens. The answer is always 20'.

Move Along is aimed at testing the ability to recognise and state the move-
patterns or rules emerging from a simple counter game. A row of seven counters
is given, and the move allowed is to move the middle counter to the right hand
end. This is illustrated:

Start position @ @ @ ‘ @ @ @V
After 1 move (E) (2) (E) <:) (E) (:) (:)

Some rows of blank counters are given for the pupil to experiment with, then
he is shown four positions (John's, Mary's ...) and asked to identify errors
in them. This is to provide sufficient experience to make possible the focal
question: "Can you see any rules which tell you whether a positiqn is possible
or not? ... If so, state them as clearly as you can". 'Generalisation' marks
are given for the recognition and statement of rules equivalent to 'Numbers
less than 4 can't move' and 'Numbers 4 to 7 move cyclically'.

Add 3 is a Representation item. It attempts to test the ability to accept and
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work with a novel diagrammatic way of representing some number processes. The
pupil has to use the given diagram, and also adapt. it to represent a new rule.
adg

N multiply N 15—7
s 2 Ll
aubtract
b ‘ - .

s

Adding & Nought asks_;or an explanation of the familiar principle that a number
may be multiplied by ten by 'adding a nought'. Countries presents tabulated
data of population, area, income and cost of living for six countries and asks
several questions requiring reading, comparing and, finally, choice and use of
a measure of being 'better off' from the data available.

Space does not permit description of the remaining tests, but a further item
will be shown to illustrate Representation. Roofs offered a coding for roof-
shapes drawn on an isometric dot grid, as shown:

Some possible and impossible roofs were then to be drawn from their given
codings (2242, 3251 ...), then there was space for chosen trials, and the
request to find and explain rules for deciding whether or not a given code will
produce a roof.

PREDICTIONS AND RESULTS
It is clear that the strategies being tested in these questions do not all
figure equally strongly in the curriculum described above, though they are all
aspects of the mathematical process. The completeness of argument tested by
Stamps is a strategy which features in several Open Investigations units, but
the novel symbolism of Add 3 is not very much like anything in the course; the
use of tabulated data, as in Countries, occurs a little, but probably not much
more than in a normal curriculum. On the other hand, the making of generali-
sations and of exaplanations by processes such as those of Move Along and Add
and Take do figure strongly in the special curriculum; and Adding a Nought is
close to the explanations of decimal place value which are given.

Thus one may predict differential differences between the scores of project and
non project groups, according to whether the strategy tested by the particular
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item is featured in the special curriculum or not. We shall refer to ‘featured’
and ‘non-featured' strategies. There is also a further source of such differen-
tials: within the questions which test a curriculum-featured strategy there are
in several cases early parts which require only the correct following of given
rules, to generate the examples from which generalisations will be made. These
will be called non-strategic items, and they also are predicted not to be
affected by the special curriculum. The testing of these predictions is not
prevented by the non-matching of the groups to be compared.

The analysis of the data so far complé¢ted for test SA, the general pattern of
group differences, for non-strategic and non-featured items, is school X, year
2 > school X, year 1 > other schools (X2 > X1 > 0S), the differences beinb
non-significant. But the featured, strategic items appear to show a different
pattern, in which the X2 group is superior to the others at a high level of
significance. In particular, on all the tests the Generalisation and Expla-
nation items, and the Representation items of the same type as Roofs, stand
out from the general pattern of results as those on which the project groups
show differentially superior performance. Superior performance was &1so0 shown
on an item which asks for identification of which of three given statements was
needed for the drawing of a conclusion (a strategy not featured in the curricu-
Tum). On the other hand, Add 3 and a similar item requiring adoption of a new
symbolism (e.g. = Px(y) for y - x) did not show superiority for the project
group. ’

The results of the full analysis of these tests will be presented at the
‘Conference, and the tests and analyses themselves will be published later thi%
year from the Shell Centre.
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ON STAGES IN MATHEMATICAL THINKING
E. COHORS-FRESENBORG

Universitit Osnabriick, Fachbereich Mathematik

Several authors have presented ideas upon the nature and stages of
mathematical thinking.

One question is, whether there is a correspondence between the sta-
ges in mathematics (we know for example the concept of thypes)
and the stages in mathematical thinking. A second question is, whet-
her there is a comrespondence between these stages and stages of
learning mathematics. That means, is a theory of stages in mathema-
tical thinking a theory of learning (mathematics).

The presentation will make some remarks upon these questions.
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ON MATHEMATICAL THINKING AND UNDERSTANDING
Klaus Hasemann
Universitdt Osnabriick, Germany

Plusieuns autfeurs (comme Davis et McKnight, 1979; Skemp.
1979; Veamandel et Cohons-Fresenbonrg, 1978) ont deve-
Loppe, ces deranilres annbes, des analyses tnés inten-
essantes sun Les difféaentes sontes de comprihensdion
et La nature de La pensée en mathématiques. Nous
chenchons d déterminen dans quelfle mesure ces concep-
tions sont utifisable poun inteaprdten Les processus
de penste des dléves dans Leur fravall habituel sun
des objets mathématiques. Apads avoin pris pour domaine
d'expéiimentation dans nos necherches prcedentes
celui des fractions et de La propontionnalditl, nous
observons maintenant des sLéves dans des activités de
preuve de théorémes de géoméinie.

Recently several authors (e.g.: Davis &McKnight,1979; Skemp, 197923
Vermandel & Cohors~Fresenborg, 1978) have presented very interesting
ideas upon the kinds of understanding and the nature of mathemati-
cal thinking. It seems reasonable not only to explain more preci-
sely these (and other) concepts by means of isolated examples
taken from several topics of (school)mathematics. But we also try
to verify whether the concepts are ugeful to the elucidation of
those thinking processes which we can observe in schoolchildren
when they are working with mathematical objects. For this purpose
in former experiments we ordered problems'taken from the topics of
fractions and ratio in series which were related to the idea of
tinstrumental - relational - formal understanding', and we looked
at whether this concept works (Hasemann, 1980, 1981). In a new ex-
periment we observed students who were proving geometrical theo-
rems, and we used the concepts mentioned above to explain our re-
sults. Some aspects will be given in this papers.

One central point in these theories is the concept ‘'schema’;, or
'frzme', respectively; in our experiment we focussed on the schema
‘proving geometrical theorems'. The data were taken from a written
test and in interviews. Before taking the written test from a
group of students of middle abilities (grade 9) we tried to con-
struct the schema in the students' minds by treatment. In the les-
sons we followed partly the ideas of Gal'perin (cf. Butkin, 1972),
i.e., we paid particular attention to a long period of orientation,
and we ingtructed the students to unfold the premiss completely.
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As a starting point we chose a rectangle with its diagonals. Among
others, the students formulated the following propositions:

(i) The diagonals in a rectangle divide each other in half,

(ii) The diagonals in a rectangle are equal in their longitudes.
The students recognized the necessity of a proof for these state-
. ments, but they didn't know how to do it. Therefore formal proofs
‘were worked out for (i) and (ii). The students learnt that proving
is a sequence of actionss )

0. Given are a geometrical situation (the premiss), and a pro-
position.

1. Use symbols.

2. Draw all conclusions from the premiss.

3. Draw further conclusions by using theorems you know.

4. Tegt whether the proposition follows from these conclusions.

5. If yes, write down the proof in a chain of logical arguments,
otherwise look for more conclusions to fill up the gap.

Although this schems looks like a plan of action, it is quite
vague. Most of the points are (under)schemas which call for fur-
ther action, as for example: %o remember mathematical facts or
theorems; to check whether their premisses are satisfied; to apply
these theorems and to formulate the results with the symbols cho-

sen; etc.

In the written test as well as in the interviews the students were

asked to do two items:

(1) Given are a parallelogram and its diagonals. Prove that the
diagonals divide each other in half.

(2) Given is a square. Prove that the diagonals are at right angle
to each other.

The proof of (1) can be given directly by using the plan of action

used in proposition (i), while for (2) a re-construction or a ge=

neralisation of this plan is required. The results of the written

test were as expected: the students were quite good with item (1),

but nearly all of them failed with (2). Most of them remembered

the plan of action from the lessons and used it for item (1), but

they copied this plan for working out (2). Some believed to have

solved (2) by this procedure, others searched in vain for additio-

nal arguments, or they just gave up.

We shall first interpret these results with the definition of
'mathematical thinking' which was presented by Vermandel & Cohors-
Presenborg (1978). Accordingly, "y mathematical action is every
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action carried out on an extrapolating schema™. This means that
such actions should not be called "mathematical’ which are carried
out on the base of a plan represented in a schema (as, e.g., the
applying of an algorithm,'a formila, or a theorem), but by mathe-
matical actions these plans are extended, changed, or generalised.
By this definition, in our example mathematical actions are not
needed to solve item (1), but for item (2). To develop the schema
"proving geometrical theorems® in the students means to stimulate
them to do mathematical actions. In this direction the instructions
were evidently not very successful: rather the students just co-
pied their old plan of action. But this result was not surprising
to us because the students are not used to carrying out mathemati-
cal actions in the sense mentioned above; such asctions are deman-
ded very seldom in normal classroom instruction.

According to Skemp's 'Model of Intelligence’ (Skemp, 1979a) the
roving of theorems is located in the director systenm A2 (Skemp,
1979b, p. 200). But Skemp is not only interested in mathematical
" actions; his model encloses all kinds of intelligent goal-directed
activity. The distinction between two director systems (A1 and
132) ig related to the comsiruction of schemas (132) and the deve-
loping of special plans for action with physical objects from
these schemas (Zl B Accepting Skemp's model, this means that the
students in our experlment failed 1n4ﬁ -activ1ty (but of course it
would be absurd to conclude that our students are unable to do ZX -
activity at all).

Although Skemp describes in principle the ways to build up and to
test the schemas (Skemp, 1980, p. 6), it seems to me impossible to
derive from his model concrete methods of doing this. 4 teacher
may possibly find out how far a student has understood a special
content — whereby to understand a concept is to connect i% with an
appropriate schema. But this presumes that the teacher has an
exact mental image of the schema, not only with regard to the con-
tent (the conceptual structure), but above all with regard to the
present state of the schema in the student's mind.

Another aspect was explained by Herscovics in his critical com-
‘ments on Skemp's model (Herscovies, 1980): In fact, when concer-
ned with mathematical problems most students have no sensor to
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compare their own present state and the goal state; the student
“does not as yet possess the means to judge whether or not he has
achieved the desired goal state and is dependent on the teacher ...
Here we find that the sensor and the comparator are external to
the learner" (Herscovics, 1980, p. 3). In our experiment this
-leffeot can be shown especially in the interviews: exepting isola-
ted students, most of them were not able to decide autonomously
whether their proof was finished or not, although they could write
down all relevant mathematical arguments in the correct order. An
. analysis of the interviews shows that at the end in most cases the
interviewer himself summarizes the proof, or asks the student to
do this (by which for the student the hint is indirectly given
that the proof now is finished).

Pheoretical models are useful for explaining the student's beha-
vior. But for practical work it seems more essential to describe
the mechanisms which manage the functioning of mathematical thin-
king. For this purpose Davis & McKnight (1979, p. 95 foll.) list
12 "hypothetical mechanisms that appear to be useful in discussing
various aspects of mathematical thinking”. Some of these mechanisms
are also useful for us. Davis & McKnight differentiate "sequential
processes’® and 'Gestalt-processes’, whereby the 'frames' belong to
the latter. If in a problem-solving-process an appropriate frame A
is retrieved early, it can guide the problem-solver in looking for
that imput data which are most essential; "all such seeking ... is
often called 'top down processing’s: the schema ig itself guiding
the data collection" (Davis &McKnight, 1979, P 100) .

The 12 "hypothetical mechanisms® are based on error analysis, and
another source of basic metaphors is the "sophisticated computer
programming”. Following Davis &McKnight, the frame 'proving geome-
trical theorems® might be constructed in the student's»hinds in
this way: First, '‘proving' is presented by the teacher as a ‘visu-
ally-moderated sequence® (VMS); this means that the students learn
that to prove is %o find by help of their mathematical knowledge
and some logical rules a route from a given situation (e.get a
rectangle with its diagonals) to a proposition (e.ge: prope (i)
This procedure is a 1YMS® because one need not be able to describe
the entire route merely from memory, without the prompts given by
key visual inputs along the route; as for instance: unfolding the
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premiss; taking well-known theorems and checking whether they are
applicable; drawing conclusions from these theorems; etc. However,
the frame 'proving geometrical theorems' is not necessarily con-
structed in this manner, Therefore Davis &McKnight hypothize the
existence of another mechanism by which a VMS will become a frame.
Unfortunately there is no evidence yet how this mechanism works.
Possibly this process occurs after the student has solved a novel
problem: strong problem-solvers are often lost in thought for long
periods after they have solved a new problem (the 'Nowell pheno—
menon’). Maybe, in this time of past-task contemplation the truly
creative process takes place: It "is the ideal time for (the stu-
dent) to name and describe some of the key parts of his experience
woo this is the time for (him) to extend his meta-language vocabu-—
lary" (Davis & McKnight, 1979, p. 101).

The ‘'hypothized mechanisms' are useful for praetical work as far
as their existence and running may be verified in real thinking
_ﬁrocesses. In fact, in our experiment we got certain error-catego-
ries in the students® proofs (dchema-errors, errors in procedures)
which might be related to such mechanisms., In addition, the list
of mechanisms gives & field to search for possible (error-)strate-
gies. This eases the location and the classification of errors.

In my opinion, the theories mentioned here all allow the deserip-
tion of mathematical thinking processes in more detail. But there
remain two general problems which are closely related. One was
mentioned also by Skemp (19792, p. 165): “Though a coherent expla-
nation of diverse post events is satisfying, the survival value of
any model lies in its ability to help us direct our actions aright
on future occasions. This requires that it can be used to make
predictions.” In fact, Davis et al. (1979), for example, made very
precise predictions based upon their own theory. In our experiment
we could of course give general predictions on the students’ re-
sults, as e.ge.: "item (2) is harder than item (1)". But we found
it rather difficult to make real and concrete predictions in detail,
e.g.: "a student who reproduces in item (1) very precisely the
plan of action which was presented in the lessons (ie.e0, Who uses
the same symbols, notations, and, above all, the same roundabout
ways), is very likely to copy this plan of action also in ifem
(2)". This prediction can be made because 'proving' first was pre-
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sented as a 'VMS', i.e., some students who did not achieve the ge-
neral schema (or frame) might believe that to prove means to work
out step by step a special plan of action. But this is just one
prediction (which can be verified easily); how should we make more
which really fit the mechanisms described, and what does 'verify' or
?alsify'mean? That is a methodological problem which should be
strongly emphasised.
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TEIE PROBLEM OF REPRESENTATION OF MATHEMATICAL KNOWLEDGE
H]J. STRUBER and E. COHORS-FRESENBORG

Universitit Osnabriick

Stimulated by some work- with deaf children’s learning algorithmic
concepts the more general theoretical problem of the role of lan-
guage in representing mathematical knowledge is posed. There has
to be distinguished between social language (the natural languages)
as carrier of interpersonal information and possibly very different
kind of «metalanguages» as means of internal representations of

knowledge. Especially the problems of representation of action-

structures and algorithmic concepts is inquired.

¥
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1OGIC, AUXILIARY FORMALISM AND GEOMETRY BY TELEPHONE CALL.

F. Iowenthal and J. Marcq.
Université de 1'Etat & Mons & Instruction Publique & Ia Iouvieére.

Dans une dtude antériewre (1980), nous avons monthe que Le
§ormalisme auxiliaire décnit par Cohons-Fresenbong (1978)
peut favoriser Le développement de communications structu-
nBes chez des enfants agés de 7 a § ans. L'un de nous a
Extendu cette observation & £'emploi d'autres gormalismes
auxiliaines (F.L., 1980). Nous déenivons ied un authe
systdme de neprésentation. Nous £'avons employe avec des
enfants de Tene primaine (6 & 7 ans) powr représentes “es
points du plan et des figwies geométiriques & L'aide &
coondonnées. Des notions telles La translation et La syme-
ie ont aussi &té abondées.

1. INTRODUCTICN.

In a previous paper (Lowenthal & Marcg, 1980), we have shown that the use of
the formalism described by Cohors-Fresenborg (1978) can favour the develop—
ment of structured cammmication among 7 to 8 year olds. One of us had al-
. ready descriked the importance of another formalism and he generalized these
observations to the use of several kinds of auxiliary formalisms (Iowenthal,
1977; 1980). We descrike here another representation system. It is non
ambiquous, simple and easy to use. It is also non-verbal but it involves
the three Brunerian levels of representation : enactive, iconic and symbolic
(Bruner, 1966). We used it with 6 to 7 year olds (Ist graders) to represent
points and plane figures (polygons) by means of a coordinate system. We
show here how the children used this representation system to approach con-
cepts such as translation and symmetry.

II. MATERIAL AND TECHNIQUE.

a) The children : we worked in a 1st grade class. There were 20 children,
working by groups of 2. We did not let the same children work continucusly
together : we changed the "grouping" to enable smart pupils to explain their
results to less gifted children. There were 10 sessions (one every week)
and each lasted about 90 minutes. The first lesson took place on January 14

and the last one on April 1, 1981. Every lesson was video-taped.

b) The concrete support : we used an overhead projector. We had drawn on a

transparency 121 dots, defining a squaring, as shown in figure 1. There were
also "red numbers" for the y-axis and "yellow numbers" for the x-axis.
We put other transparencies en top of the first one to draw polygons and
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figure 1.

show them, using as points, only the dots of our grid. We were thus in fact
working in the N x N plane. Each group of children had a small geoboard
with 121 nails. This was a reproduction of our grid. They could also adapt
a long red plastic strip, with the mumbers O to 10 written on it, to materia-
lize their y-axis. They also had a similar yellow strip for their x-axis.

We gave them elastics to "join the nails" and represent the segments we would
draw on transparencies. The children also got swall pieces of multicoloured
straws which could be fixed on a nail. These pieces were called "posts" and
served to distinguish the points the children were talking about.

the children to associate coordinates to points and to mark with posts, on
their geoboards, the points for which they had a name; (2°) we also taught
them to use these coordinates to form messages describing polygons and to
represent these polygons on their geoboards by posts marking the vertices
and by elastics joining the two posts defining a segment or side of the poly-
gon. later we asked them (3°) to code and decode messages created by scme of
them and corresponding to polygons which were represented by elastics and
posts on the geoboards. We tried (4°) to use these coordinates to approach
the concept of translation and (5°) later that of symmetry : we asked the
children to put on their geoboards a polygon with vertices marked by posts

in one colour, and then to apply a transformation to the corresponding mes-—
sage, They had then to put on the geoboard the polygon corresponding to

the new message, with vertices marked by posts of another colour, next to
the original polygon. Finally we asked them to compare the polygon with
posts in the "old" colour and the polygon with posts in the "new" colour.
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ITI. RESULTS.

In a first step, we taught the children to “name" each point : they had to as-
sociate to each point its coordinates presented as an ordered pair of numbers.
By mistake, with respect to usual mathematical conventions, we told them to
use red first and yellow second (i.e. the y—coordinate first). All the chil-
dren were immediately able to find the name of a point that was shown to them,
kut many needed 2 more sessions before being able to show a point for which
they bad only a name (ordered pair of numbers).

In a second step, we asked the children to reproduce (with elastics and straws),
on their geoboard, a polygon they could see on the screen. We then associated
to each polygon a "message", or "name of the figure", by giving the sequence of
vertices of our polygon, in a given order. The polygon shown in figure 2 recei-

3 . . .. 3. .
N
1 . . 1 .
(O . e . B o . ..
o 1 2 3 4 0O 1 2 3 4
figure 2. figure 3.

ved the following name : (3,2)=—(2,3)m=(1,3)p=(1,1)®={2,2). We have then drawn
polygons on our transparencies, like the square shown in figure 3 in dot:ed
lines. We asked the children to find a message for this figure. At first they
came up with messages like : (3,1)B(3,3)m=(1,1)=(1,3). We then took away
the transparency with our square, we put a new one on top of the squaring, we
wrote on it the child's message : he was supposed to make a telephone call and
tell a friend which polygon we were looking at. We used the child's incorrect
message to draw the continuous line (Z) and asked the children to compare it
with the original picture (to do this we superposed the transparencies). The
children concluded fhat this message was incorrect and tried other messages.
Eventually a girl came up with a cearrect message and was able to explain to all
the pupils that : "When you write a message, you must give the names of the

points in the correct order".

Many children (11 out of 20) were then able to create a figure for which they
had nothing else than a message. In a third step, we asked them to "invent a
nice figure with 5 posts and to write the corresponding message". They had
then to give their message, but nothing else, to another group who had to re-
produce the polygon invented by the first group. When the second group was
ready, the first one came and checked : often.everything was correct, someti-
mes the first group had to help and suggest corrections. 11 children took
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part very actively in this "message game" during 90 minutes.

In a fourth step, we asked the children to put on their geohoards the polygon
corresponding to the following message : (2,5)®=(3,2)m=(1,1). We asked them
also to mark the points used by red "posts". 10 children did it easily and
fast. We then put our own figure on the squaring and we told the children
that "a friend gave us instructions by telephone : we had to do '+4 in red' ",
we were supposed to write the new message and tc realize the corresponding
figure, marking the points with green posts. The children were active (espe-
cially 6 of them). They discovered that : "It stays on the same lines"
(showing with the hands the vertical displacement). We asked them whether the
new figure, with green posts, was the same as the original one, with red posts.
After a short discussion they said that both were the same. They explained
this by showing that the corresponding sides were equal, and also by saying
that one could be put on top of the other. Nevertheless, the “+4 in red"
operator created a problem as one of the children wanted to transform the
original triangle (labelled (a) in figure 4) :Lnto triangle b : he was coun-

A

6 . . // .\\:_‘__:-.. [}
5 . e )

4 . T
3.

2 . a
1 . .
o . . . . . .

figure 4.

ting 4 dots, including the starting and final dots. Ancther child correctly
suggested to create triangle c¢; she said : "I started at (3,2) and I did +4,

so I got (7,2)". She then counted 4 intervals and explained the first child's
mistake. Finally a third child explained that : “You get triangle b for '+3
in red' and you can pass fram (b) to (c) by using '+1 in red' ". All the

children noticed that the three triangles were "the same" and were "in the

same columns". This’first aéproach of the translation was restricted to trans-
lations parallel to the coordinate axis. It lasted 3 sessions and many parti-
cipated.

In a fifth step, at the end of a session and after a long discussion concer-
ning translations, we put a transparency with a triangle on our grid. We as-
ked the children to name this figure. One of the less active children gave
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the correct message. We then told the children that "a friend phoned and

told us that all red numbers must became yvellow, and all the yellow ones must
became red", we asked the children to write the new message and to construct
the new figure. In fact we were asking them to make a symmetry with respect
to the y=x¢ line. Writing the new message was not a problem; but its inter-
pretation was more difficult : the name (4,6) becames (6,4) and a child wanted
to use this new name for the same point. We explained that the coordinate
axis did not move and the children understood that the image of (4,6) Ly our
red-yellow transformation is another point called (6,4). Only 12 of the 20
children were present and 4 were very active. They constructed the original
and the new triangle on their geoboards, they said that these triangles were
not the same "because you cannot put one on top of the other", but they ex-
plained, using their incamplete vocabulary, that : "they were the same in the
sense that one is the reverse of the other". They used hand movements to
show what happened. (ne child also said : "Teft becomes right, the lying lines
(horizontal) become standing anes (vertical)".

IV. DISCUSSICN.

This representation system is useful to teach young children what coordinate
systems are; it is also useful .~ let them have a better grasp of the differen—
ce between left and right, above and below, horizontal and vertical, ...

We nevertheless met two major difficulties : within this representation system,
a point is an ordered pair of numbers and, while a segment is only a set of

two points, a polygon is an ordered and closed sequence of points.

The "exchange of message" session was unexpectedly successful. These non-ver—
bal cammnication devices served as basis for fruitful verbal exchanges, first-
ly ketween the children who were creating the message, later between those who
were decoding it and finally between all of them, when ene group was checking
the results obtained by the other. When this session ended, it became ob-
vious that 11 children out of 20 had solved the difficulties mentioned above.
Exercises alout properties of the translation led to the discovery of the con-
servation of shape and to a first approach of parallelism. Tt was also a good
opportunity to discuss the difference between "number of points" and "nimber
of intervals between these points". As far as symmetry is concerned, ws gave
only a preliminary exercise and 4 children out of 12 gave the impression that
they understood. They lacked the vocahulary but showed by gestures that both
triangles would be alike if one could extract the original one out of the plane
and turn it upside down onto the other. We intend to work further in these
directions, using translations which will not be parallel to one of the axis;
we want to ask the children to work further with symmetries and then ask them
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to discover, whenever possible, which translation or symmetry we should use to
bring one polygon (given by a message) onto another (given by another message).
Finally we wonder whether it will be possible to let these children study

the composition of translations and symmetries.

V. CONCLUSION.

This very simple representation system enables 6 to 7 year olds (lst graders)
to approach easily, in a playful atmosphere, problems which are usually neglec-
ted by lst grade teachers : the importance of coordinate systems and of order-
ing of points is obvious. But this should not let us forget the properties of
translation and symmetry, which can thus be discovered by looking : conserva-
tion of shape and area (inaccessible to 1lst graders ?), difference between a
polygon and its image under a symmetry (why is my left hand a mirror image of
my right hand ?). There is also the main characteristic of this system : the
child learns first that pointé and polygons can be coded, they have a name
which is easy to use; and then the child learns to use these names, to apply
operators on "easy-to-handle" names instead of cumbersame objects. The child
reaches then a first meta-level.
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THE ROLE OF DIAGRAMS IN MATHEMATICAL EDUCATION

F. R. Watson, University of Keele, Staffordshire, U.K.

On fait la distinction entre des figures (qui commniquent des
renseignements non-spatials) et des images (qui communiquent des
renseignements spatials par des moyens spatials). On domne une
classification des figures qui est fondée sur l'oeuvre de Plunkett,
et qui est suivie par un rapport sur la recherche sur la
compriéhension des figures par les enfants. C'était une &tude
préliminaire; 125 enfants, dgés 12-15 ans, ont fait un examen
éerit qui consistait de 45 questions (on devait assortir des
Figures et des histoires, interpréter des figures, et finir des
Figures). L'intention principale de l'oewvre &tait la validation
de 1'examen, mais on donne aussi des indications de l'effet de
1'4ge, d'abilité et de sexe. On a fait une petite tnvestigaiion
sur. U'emploi des figures en la solution des problemes; on a fait
aussi une analyse des figures dans trois cours de mathématique.

On discute des moyens de perfectionner 1'enseignement des figures
avee des indications des emplois possibles de 1'ordinateur.

Diagrams as conveyors of information

Following Plunkett (1979), we distinguish between a ‘picture’ and a 'diagram’.
Both are spatial representations of information - in the case of a picture the
information is spatial, while for a diagram it is logical and non-spatial. Thus

a map, a blueprint (plan) for building a house, a drawing of a motor car engine
assembly are 'pictures', whereas an electrical circuit diagram, (only the
connections, not the layout, are important), a critical path analysis for building
a house, a graph of engine speed against time, are 'diagrams'. (Like all class-
ifications this one probably has 'fuzzy edges' - is a triangle of Torces a diagram
or a picture?? It would be worth exploring these doubtful areas, but the main
distinction will do for our purposes here.)

The main theme of this paper is that diagrams are an important means of commun-
jcating thought to others, and of holding thoughts in our own minds (ie an aid

to thinking). They are a language which children need to master. Bishop's work
is a striking illustration of the importance of cultural context in the way people
handle pictures. Janvier has done extensive work on the interpretation of
Cartesian graphs. However, as Plunkett remarks, we do not generally make any
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explicit attempt to improve children's proficiency in recognising, using and
constructing diagrams - what they can do is almost an incidental effect of teaching.
In the research which is reported briefly below, we tried to find out how well
children understood diagrams, ie whether they could recognise and read them, and
how, when encouraged to do so, they made use of them in solving problems. Using
time-tables and understanding the number Tine, mentioned by Plunkett as a frequent
source of difficulty, are aspecté of mainstream school mathematics which we hope
most children will master as part of their general education, and both belong within
the classification of diagrams which we discuss next.

The classification of diagram-types

The classification discussed here, which is a slight modification of that due to
Plunkett, involves seven distinguishable spatial relationships, which are used to
display information. They are labelled (a) to (f) in what follows:-

(al) 'Is near to' ('is in the same regions as', 'is inside'), usually used in

classification. S
Examples 1) 6 / 3 7

ii)

(a2) 'Is larger thaﬁ' ('same size as')

Examples  iii)

l shaded
4

or F L2z I 1 (exact comparison of areas

or lengths)
’ (iii)

1967 1980 (approximate comparison of size
i (volume) as in advertisements)

(b) 'Is connected to'
Examples v) family tree used for
vi) flowchart : general
vii) —s 2 'is one third of" relationships

Ar”.2
4\4»78 \"’9



(d)
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'Is next to' (1 dimensional)

Examples viii) 1, 1, 2, 3, 5, 8, 13, 21...

ix) 1, 4,9, 16...

"Is next to' (2 dimensional)
Examples  x) 1 2 3 &
M 12 13 14

xi)  (1,1) (1,2) (1.3)
(2.1) (2.2) (2,3)

5

15
21 22 23 24 25
31 32 33 34 35

6 7
16 17
26 27
36 37

(1,4)
(2,4)

(3,7) (3:2) (3.3) (3,4)

(in both (c) and (d), the relationships are within one set.

of sequence, or doyble sequence. )

(Fibonacci)

8 9
18 19
28 29
38 39

(1,5)
(2,5)
(3,5)

'Is opposite' (1 directional) - a one-way table

Examples  xii) chips | 20p
peas 15p
fish 90p

xiii) x {1 2 3 4
X2[1 4 9 16

'Is oppposite' (2 directional) - a two-way table

Examples  xiv) ;od . ‘ 0 1 2 3
0 01 2 3
1 1T 2 3 o
2 2 3 0 1
3 3 0 1 2
k|

Xv)

10
20
30
40

(1,6)
(2,6)
(3,6)

number square

dice scores

The idea is that
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In (é) relationships between two different sets (in general) are indicated;
the mapping described is X — Y. .
In (f) the relationships are between three sets, with mapping (X, Y) — Z.

For the examples considered, in xiv) X 2 Y =17 = {0, 1, 2, 3}, and in xv)
we may take X = Y =R, Z = {0, 1} .

Note, apart from the relatively unimportant (a2), all these categories are included
by Plunkett - the chief difference here is the emphasis on the distinction between
(c) and (e) (and (d) and (f)); it seems to me the underlying ideas are very
different, though the common use of 'next to' in displaying them rather confuses
the issue.

Neither classification caters for the nomogram(which uses the relation 'is

collinear with'), though this might be forcibly included in (b) if a spurious
“tidiness’ is desired. (See Watson (1981) for & further discussion).

A report of research on children's understanding of diagrams

This exploratory study (Mandara, 1980) was carried out with a small sample of
pupils aged 12-15 years in three schools. My purpose here is less to present
‘results' than to discuss the nature of the study and the methods used.

i) A written test of 45 items was given to 125 pupils drawn from the first four
years of three local schools. There were 69 boys and . 56 girls; pupils
were in 9 groups, six of which were described by the school as ‘average’,
and three as 'above average'. This was an opportunity sample - groups were
not matched or randomly selected and were, in fact, half-classes, (the
other half of each class being involved in an unrelated investigation,so as
to minimise disruption of normal school work). On the basis of written
responses, a few interviews were carried out with 'interesting' subjects -
these revealed, as anticipated, that wrong answers did not always indicate-
poor understanding of the diagrams, and that correct written answers could
be arrived at by wrong reasoning. The main purpose of the investigation
was to construct and try out the written tests, extracts from which are
available. (A pilot version was tried out first in the normal way.)

Since samples were small in size and possibly unrepresentative, statistical
comparisons are inappropriate, so that the results obtained must be
regarded merely as 'pointers' - they were that age and ability group



iii)

- 27 - .

had the anticipated positive effect on score, and that sex differences
were not significant. A comparison between the two fourth-year groups,
using SMP and SMG texts respectively, indicated that the textbook in use
had no effect on scores - though a check showed that, with respect to the
diagrams-test used, both series had covered fairly similar material.

As an extension, a short investigation ofi the use of diagrams in problem-
solving was made. Four problems were given to a group of chldren aged
14-15 years with specific instructions to "use a diagram as a stepping
stone to the correct solution". Some ignored the instruction - often
giving a wrong answer, while others gave the correct answer, with an
irrelevant diagram or picture which had clearly not been used to produce
the solution; yet others did what was asked with good results. To avoid
raising the distinction between 'diagram' and 'picture' (which had not
been discussed with the pupils) a subsequent small-scale exercise with

27 pupils aged 13 years involved choos1ng the diagram (from a given
collect1on) which would be most helpful in solving each of the 10
problems in the excercise. This revealed a number of misconceptions,

and appears a promising averue for further study. One feature which
emerged pointed to the need to provide children with an adequate repertoire
of diagram types - perhaps not surprisingly, they were unable to use or
interpret diagrams which related to parts of the course they‘had not yet
encountered. Diagrams are not self evident!

A survey was made of the diagram-types encountered in three textbooks - the
SMP 'letter' books (A - H), the SMG series (1-4), and New General
Mathematics (Books 1-4). (The first two might be classed as 'modern', the
third as somewhat more "traditional'.) The three schools involved in the
main study (i) used either SMP or SMG. MNew General Mathematics was used by
a fourth school in which a pilot version of the written test (i) was tried
out. This meant that comparisons between textbook series were restricted -
since NGM appeared to place rather less emphasis on diagrams than the other
two texts (particularly SMP), it would have been interesting to sze whether
this was reflected in the test results.

Venn diagrams (al) and the number line (c). function tables and graphs (e
and ) and linear programming (f) are common, as are statistical representation
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of data (frequency tables e, bar charts’f).

Flow charts (b) and arrow diagrams for relations (b) were also present, in
SMP and NGM, while fraction - and dot number - diagrams (a2), distance-time
graphs (f) and operations tables (f) were in SMP and SMG. What is less
evident - and would repay careful study - is the extent to which the use
of diagrams is an important feature of the course, and, more importantly,
whether this is brought out in the actual classroom teaching.

Some general remarks and conclusions

i)

For the most part, the questions were answered without too much difficulty.

A few of the test items were taken or adapted from previous studies

(Kerslake 1977APU1950) - facility values were generally similar to those
obtained by earlier investigators. The interpretation of distance-time

graphs, of (x, y) function graphs, and one question on generalised co-ordinates
again caused problems. Some difficulties may have arisen from question
ambiguity or lack of background, but low facilities in 3 questions were
somewhat surprising:-

Q10 (F = 8%, n = 95) Jim has some numbers p and q which satisfy
the relation p x q = 1 for all values of p and q.

f\J/{\

7

Q 24 (F = 43%, n = 125) The table shows bus fares from bus stop A to
bus stops B, C... , H for adults. Find total
fare paid by one adult travelling from D to G.

A ls e o Je TFr e Tw
Op | 15p | 23p | 34p | 45p 58p 69p 80p)

18%, n = 125)

Q43 (F =
To
Towns A,B and C are on the same motorway  From C
(in this order). B is 6 miles from A A 10
and C is 9 miles from B. B

Complete the table.
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iii)
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Translation skills, from stories to diagrams and vice versa were involved.
How can these best be developed? It seems that experience in using a
repertoire of diagrams is ]%kely to be helpful to children; it may be that
in current courses their exposure to diagrams is inadequate to give them a
confident mastery of this useful tool in problem-solving and communication.
Can we improve on the heuristic advice ‘Draw a diagram',by providing criteria
for what sort of diagram might be appropriate? This 1links with the typology
of diagrams which was attempted in the earlier part of this paper.

The important topic of graphs has already received some deserved attention
(Janvien777&Kers1ake77lﬁ. Some recent computer programs written by

R J Phillips may indicate a useful way of introducing ideas in this area.
Aspects of work with other types of diagrams would also probably benefit

from similar detailed research studies, and the computer offers additional
teaching possibilities in this area which merit exploration. There seems
plenty of opportunity for work in this field.

The computer may have an important role to play in other ways,too, for it
can animate 2 dimensional representations, so that they change with time,
and can also allow us much simpler ready access to 3 dimensional rapresent-

ations than that of building and manipulating models. 2-D views of

apparently 3-D objects can be generated, and the 'object' rotated ~elatively:
easily. Sections across given planes could also be produced at will. This
would quite Titerally 'add another dimension' to our thinking about diagrams.
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" UNE APPROCHE EXPERIMENTALE
POUR L'ETUDE DES PROCESSUS DE RESOLUTION DE PROBLEMES

Nicolas BALACHEFF
Laboratoire IMAG, Grencble, France

The aim of this paper is to present an experimental approach
for research on problem-solving, which is different from
those usually used. It was designed for a research on pupil
proving activity which is, for reasons exposed in this paper,
one of the main aspects of problem-solving processes.

This approach consists in putting pupils in a interaction
and commniocation situation in which they have a common
problem solving task. The main advantage of this experimental
sttuation is that it enables the problem-solving process to
be apprehended by means of the learrer's formulation requi-
ved by the problem solving aetivity itself.

After a presentation of this approach a description is maid
of the experiment. The learners weve 11 year olds (BALACHEFF
1980 a) and 15 year olds. A detailed ewample of a problem
solving process is described.

Introduction

Nos travaux actuel§ sont centrés sur 1'étude de ce que signifie prouver en ma-
thémathue pour les €léves de 11 3 16 ans (premier cycle de 1'enseignement
secondaire francais).

L'objet de cet exposé est de montrer ce que 1'outil expérimental que nous avons
développé 3 cette occasion peut apporter comme moyens nouveaux au domaine de
1'6tude des processus de résolution de probléme (Problem-solving) dont 1'&tude
des processus de preuve est 3 notre sens un complément nécessairg.

Horizon méthodologique

Dans les lignes suivantes nous envisageons les principales approches expérimen-
tales disponibles en signalant les limités qui nous permettront de nous situer
et relativement auxquelles nous avons &laboré notre propre outil.

~ L'épreuve papier-crayon ; elle permet difficilement de connaitre les proces—
sus mis en oeuvre par 1'&léve. Il peut y avoir une distance importante entre
le produit de son activitéd et cette activitd elle-méme (voir plus loin le
cas de Pascal).

— Le "thinking-aloud" ; dans ces situations, on demande au sujet d'expliciter
ce qu'il pense afin de rendre cbservable sa démarche de résolution. En fait
il faut regarder la signification de ce qu'il explicite relativement au dis-
positif expdrimental : le choix par le sujet de ce qu'il énonce peut &tre
déterminé par ce qu'il pense &tre pertinent pour 1'chservateur. Ceci prend
une importance particulidre lorsque le sujet est un &l&ve tandis que 1'chser—
vateur est un adulte. '
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~ L'interrogatoire clinique ; ici l'cbservateur intervient par ses questions
ou ses suggestions, dans le processus de recherche. Il peut ainsi agir sur
les choix du sujet, attirer son attention sur des faits qu'il avait négligés
ou introduire de nouvelles informations, et donc modifier de fagon profonde
sa démarche de r&solution.

Résolution de probléme et démarche de preuve

Résoudre un prcobléme signifie en trouver la solution, c'est-a~dire &tablir
qu'un énoncé donné, ou que l'on a découvert, est vrai. )

Cela signifie que dans le processus de résolution il y a une démarche par la-
quelle le sujet vise d s'assurer que ce qu'il produit est valide ; c'est ce

que nous appellerons une démarche de preuve. L'étude de cette démarche ou méme

sa prise en compte est absente de la plupart des recherches.

Cette lacune conduit & ne retenir du processus de résolution que l'aspect trai-
tement de 1'information, en identifiant les outils mathé&matiques utilisés ou
les thémes heuristiques mis en ceuwvre. Le risque d'une telle approche est de
présenter ce processus came séquentiel alors qu'il est en fait le lieu d'une
dialectique entre la situation problématique (le probléme et son environnement)
et le sujet come systéme de connaissance. L'analyse épistémologique ’

d'I. LAKATOS (1976) donne un modéle du fonctionnement de cette dialectique en
montrant comment, sous la pression des contre-exemples, peut évoluer la solu-
tion d'un probléme.

Ainsi il nous apparait que le processus de résolution est inséparable de la
démarche de preuve, et qu'elle en est mdme un constituant. Si nous continuons
dans la suite 3 les distinguer c'est que 1'expression "Résolution de probléme"
(Problem-solving) a pris une signification trés fortement 1ié au seul traite-
ment de 1'information. ‘

Nous considérons la résolution de probléme (Problem-solving) et la démarche de
preuve (Proving-process) commre deux processus en interaction &troite dans 1l'ac-

tivité du sujet résolvant un probléme.

Une autre approche expérimentale

De méme que pour les démarches expérimentales que nous avons évoquées, nous
cherchons 3 atteindre les processus de résolution de problémes mathématiques en
provoquant des explicitations, en particulier des verbalisations. C'est a partir
de ce matériau que nous essaierons de déterminer le champ conceptuel dans
lequel est résolu le probléme et d'identifier les procé&dures envisagées et
mises en oeuvre (Problem-space).

Nous désirons que cette explicitation s'intégre dans l'activité de 1'é&léve en
prenant sa signification dans la démarche de résolution elle-méme et non dans
les attentes, qui lui sont étrangéres, de 1'cbservateur.
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set peut stre obtenk dans une situation d'inizeracﬁion et de commmiaation ot

gs éléves ont pouY tache la pégolution en comun dTun probléme.

est UNe situation de formulation (B_ROUSSENJ 1978) car ies Eleves ne peuvent

satisfaire 3 1a consigne sans recourir ala verbalisation ou & des représenta”

tions. La comm‘micat'on n'est possj_ble que s'ils parviennent a <'accorder sur

un langage o . Ceci peut PrOvOqUeET une dialecticque de la formulation dans
laquelle nous verrons se préciser 1es notions utilisées.

par ailleuwrs: les éleves doivent o'accorder sur des critéres cormns pour’ accep™

ter ou cefuser Une assertion. Dans e telle gituation peuvent appaxaitre des
conflits sur 1e choix d'une stratégies gur une opération 5 réaliser: gur la
signification datun concept .- Ces conflits engagent les éleves dans une dia-
lectique de 1a validation (BROUSSERU 1978) et des processus de preuve 84 terme

desquels ils doivent parvenir 5 un consensus sur 1a validité des choix qui sont

faits.

Clest dans CeS débats que nous rouvercns la signification des processus obhser—
vés @ contre quelles alternatives ils sont choisis, quels arguments sont
agveloppés ? ) ‘

Ces aspects sont ceux qui sont favorables 5 1'étude quUe nous envisageonss mais
dans WS telle situation a'interaction il peut apparaltye des phénomenes socio
affectifs p\liSSa‘ﬂtS susceptibles de déplacer 1e débat hors gu domaine cognitif
qui nous intéresse. En particulier dans la gemarche de preuve des arguments

d' autorité peuvent € substituer a e arg\m\entation portant gur les contenus i
au fait a'un engagement affectif {mpor tant des &leves peuvent as1ibérement sou-
enir des propositions fausses O1 refuser des #noncés vrals.

Un moyen aréviter ces cbstacles cerait de végler la aituation par un enjeu ren”
forgant 1e gésir de réussite des s1aves, e fagon & disqualiffer ces COmpOrte™
ments qui leur feraient courir W risque jmportant atéchec. Nous en proposons

une illwstration dans le montadge expérjmental guivant @

de situation

je de Sithez—

Un exi

que nous avons utilisé dans

& ¢

Nous allons aserire ict le ajspositif expérizrenba.l
potre recherche : ,
Huit éléeves sont répartis &b deux &quipes
(8B et D) de guatre slaves qui wont 4 oo (\ /’ oo ¥
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I1 faut remarquer que le document produit par Pascal ne rend compte que des
derniers instants d'une démarche de résolution gui a duré plus d'une heure et

dont la majeure partie a &té riche et cohérente du point de vue mathématique.

Quelques résultats

Nous rapportons ici les résultats de nos observations qui concernent l'analyse
des démarches de résolution de probléme.

En 6e corme en 3e le probléme est abordé avec des procédures empiriques d'é&nu-
mératicn, ces procédures évoluant au cours de 1'expérience vers des procédures
plus structurées. Mais alors qu'en 6e, cette stiucturation reste implicite, en
3e elle est recherchée explicitement et s'amélicre sous la pression des exi-
gences de la cammunication. On cbserve une interaction forte entre la mise au
point de modes de désignation des rectangles et la structuration de 1'@&mméra-
tion.

En 6e, l'incertitude sur le résultat est grande et conduit les éléves a des
vérifications. Un obstacle & 1l'apparition de démarches de preuve est 1'impossi-
bilité des éléves & considérer la procédure commz articulation dfopérations
élémentaires. )

En 3e, les &léves ont rapidement la conviction d'avoir obtenu le résultat ;
cela est renforcé par leur conscience du caractére systématique (qu'ils n'éta-
blissent pas) des procédures utilisées.

Les principales procédures cbservées sont les décompositions perceptives (ligne,
colomme, petits pavés), les procédures de reconstruction de la figure & partir
du rectangle et les procédures fondées sur la classification des rectangles

suivant leur taille en nanbre de rectangles él@mentaires.
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Remarques
Nous avons souligné les apports qui nous apparaissent essentiels de la méthode
que nous utilisons. L'objet des débats lors du congrds sera, nous 1'espérors,
de mieux cerner ces apports et leurs limites. Parmi ces derniéres, il en est
une importante qui est dl au dispositif expérimental lui-méme ; la démarche
cbservée est cellé d'un individu en situation d'interaction et est donc
vraisemblablement différente de celle qu'il aurait suivie en étant seul, bien
que ce que nous faisons apparaitre appartienne 3 son camportement en situation
de résolution de problames.
En sciences humaines, la plupart des situations expérimentales interagissent
avec l'cbjet &tudié et 1l'une des taches du chercheur est de découvrir et con—
trdler cette interaction. Par ailleurs, la connaissance d'un phénoméne passe
par celle de ses divers aspects qui peuvent &tre saisis par différentes
approches.
Nous pensons que 1l'outil expérimental que nous proposons apparaitra camme com-
plémentaire des moyens déja disponibles.
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LA REPRESENTATION SYMBOLIQUE D'OPERATIONS ADDITIVES
EN SITUATION D'INTERACTION ET DE COMMUNICATION *

Jean BRUN
FPSE
Université de Genéve

Our purpose is to lay the accent on methodological questions

about the interpretation of symbolic representations, in

additive problems. These representations were collected in

sttuations of interaction and communication. The data will

allow to debate the question of the statute of the symbolic

representations.
Le but de cet exposé est de mettre 1'accent sur des questions méthologiques
d'interprétation des représentations symboliques. La présentation des données
recueillies selon un schéma expérimental classique (Groupe Expérimental/Groupe
Contr&le) dans des situtations d'interaction et de cammunication servira 3

poser le probléme de la détermination du statur de ces représentations.

1 - Position du probléme

Le probléme didactique que nous &tudions concerne 1'influence des interactions
et camunications entre de jeunes &léves (2e année de 1'école primaire) sur la
production de représentations symboliques dans la résolution de problémes
additifs.

1.1. Notre vecherche se situe & 1'intersection de deux courants :

~ les travaux de la psychologie sociale génétigue, qui, reprenant l'analyse de
Piaget selon laquelle la "co-opération” est en corrélation &troite avec le
développement de la logique, a développd un paradigme expdrimental metttant
en évidence le caractére causal de 1'interaction sociale sur le développe-
ment cognitif. Ce facteur opére pour le mécanisme du "conflit socio-cognitif®
(A.N. Perret—Clermont, 1979) ;

- les travaux en didaétique des mathématiques : G. Brousseau (1978) distingue

clairement les caractéres de formulation dans les situations didactiques, en
insistant sur leur fonction dans le processus d'acquisation.

% Ces recherches ont &t& menées dans le cadre du contrat n® 1.706.0.78 entre
A.N. Perret—Clermont, J. Brun et le Fonds National Suisse de la Recherche
Scientifique en collaboration avec M.L. Schubaner-Leoni, El Hidi Sanda et™

F. Conne.
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G. Vergnaud (1977), développant sa thése de l'hamomorphisme entre la réalité
et la représentation, a bien montré, a travers l'exemple de l'acquisition de
1'addition, la nécessité d'une distinction entre le concept (signifié) et sa
représentation symbolique (signifiant), afin de mieux camprendre les rapports
qu'ils entretiennent et comment ils s'appuient 1'un sur 1l'autre.

1.2. Une connaissance mathématique intériorisée se manifeste chez un sujet
par des proc&dures d'action et par des procédures de symbolisation (formula-
tions orales ou écrites). La formulation d'une connaissance mathématique n'est
pas la simple expression, comme allant de soi, d'une conceptualisation déja
formée. Elle a ses propres ré&gles d'élaboration, en liaison avec la construc-
tion conceptuelle. Trop souvent la question didactique est posée en des termes
tels que "le passage au symbolisme", et considérée comme découlant naturelle-
ment de la maitrise des opérations par simple association des symboles adéquats.
Nous pensons pour notre part que 1'appropriation de 1l'écriture symbolique se
fait :

-~ au contact de la construction sociale qu'est le systéme des signes et leur
syntaxe. Colette Laborde (198C) a bien montré 1'importance de 1l'analyse his-
torique de cet héritage culturel. L'éléve qui s'y voit confronté s'en fait sa
propre représentation, en fonction de ce qu'il est & méme d'y investir, et de

la situation dans laquelle il se .iouve. Il ne peut se 1l'approprier d'zmblée;

- par confrontation des points de vue avec les autres acteurs de la situation
didactique aux prises avec la nécessaire formulation de la connaissance ma-
thématique. Dans ce contexte social d'interactions et de communications s'éla-

bore progressivement un code approprié ;

- en fonction des représentaitons que se fait 1'éléve des concepts a actiuliser
dans la situation. L'activité de symbolisation est lie au sens attribué aux
exigences cognitives de la situation et & 1l'identification que 1'éléve est a

méne de faire de la connaissance en jeu.

Notre hypoth&se de recherche est que la mise en situation d'interaction et de
communication favorise, chez les &léves, la production de représentations symbo-—
liques, et permet 1'évolution de ces représentations. A partir des recherches
expérimentales mises en oeuvre pour vérifier cette hypothése générale, nous
aborderons, ici deux catégories de questions :

a) quelles classes de procédures de symbolisation peut-on identifier dans ces
situations ?

b) quel est le statut des représentations synboliques ainsi actualisées ?
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Dans une recherche précédente, M.L. Schubauer - Léoni et A.N. Perret-Clermont

(1980) ont défini ainsi les situations d'interaction et de cammmnication :

- "Interaction entre pairs avec commnication i un troisiZme". Deux enfants
codent ensemble un message en vue de le cammuniquer 3 un troisidme, qui devra
le décoder en présence de 1'expérimentateur et des deux codeurs ;

- Interaction entre pairs : deux enfants codent ensemble un message que seul
1'expérimentateur verra et sur lequel il n'@mettra pas de jugement ;

~ comunication & un pair : un enfant code un message qu'un deuxiéme enfant
devra décoder en présence de l'expérimentateur et du codeur”.

2 - Méthode

Nous avons étudié 1l'activité de codage d'une é&quation (atb-c = x) par des

&léves scolarisés en 2e année primaire (7-8 ans).

- le dispositif expérimental se campose d'un jeu de 3 dés avec les régles du
jeu suivantes : deux dés sont rouges et font gagner des points ; un dé est
vert et fait perdre des points. Un support au jeu de dés est fourni sous for-—

me d'un parcours de cases oli 1'éléve, peut avancer, ou reculer un pion, en

fonction des points gagnés et perdus en langant les dés ;

et reculs) pour cbtenir le bilan du lancer de dés, et 3 représenter par une
&criture symbolique les op@rations effectuées. Cette consigne de codage est
la suivante : "Vous marquez tout ce qui s'est passé avec les points pendant
le jeu et les points que vous avez & la fin du jeu". Aux questions des é&laves,
1'expérimentateur se limite & répondre : "Cumme vous pensez le mieux" ;

- le déroulement de 1'expérience s'effectue en trois temps 3 quelques jours
d'intervalle. On vérifie, préalablement au moyen d'une épreuve collective
papier-crayon, que les sujets connaissent les symboles arithmétiques néces-—

saires (+, -, =).

a) temps 1 : situation Expérimentateur-Eléve. Chaque él&ve code le lancer de
dés selon la consigne ci-dessus.

b) temps 2 : un groupe d'éléves (1 classe) est: réparti en duos, mis en situa—
tion d'interaction ; ol la commnication est seuiement invoquée. Le disposi-
tif expérimental et la consigne sont les m@mes. Deux codages sont effectuds.
Le groupe contrdle (une autre classe) ne passe pas 3 ce temps 2.

c) temps 3 : répétition de la situation Expérimentateur-Eldve. On introduit
une variante au dispositif : un seul dé est lancé trois fois : lors du pre-
mier lancer on gagne des points et lors du troisiéme lancer on perd des
points.
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3 - Analyse
3.1. Les classes de procédures de symbolisation

La variété des écritures symboliques cbtenues nous donne une meilleure connais-—
sance des syst@mes de représentation (signifiants) utilisés par les &léves pour
coder la camposition des quantités positives et négatives, et de leur écart avec
1'écriture conventionnelle (qui nécessite 1'utilisation des signes +, -, =).

Les éléves utilisent :

- le dessin, avec représentation d'indices perceptifs, tels que la couleur ou
le placement des dés pour symholiser les opérations ;

- le langage naturel, avec des expressions telles que "gagné, perdu ; avencé,
reculé ; en plus, en moins ; en tout, g¢a fait, fin du jeu" ;

- les signes conventionnels : +, -, =

Cette connaissance des formulations est importante, mais, 3 elle seule, elle
ne suffit pas. Il est nécessaire de mettre en relation cet aspect "signifiant"
de la représentation avec l'aspect "signifié", c'est-a-dire avec les opérations
de pensée liées au concept en jeu dans la situation. Alors seulement, selon
nous, on pourra parler de procédures de symbolisation.

Nos observations ont mis en évidence trois niveaux de traitement du concept :

1. Aucune composition des quantités en jeu dans le lancer des trois dés, qui
est seulement décrit.

2. Une camposition partielle des quantités.

3. Une composition campléte des guantités.

En croisant les aspects "signifiant" et "signifié" on peut alors catégoriser

les productions écrites en termes de procédures de symbolisation.
3.2. Le statut des représentations symboliques cbservées

Quand on observe la répartition des productions écrites, recueillies dans nos
recherches, on constate une certaine dispersion de ces productions. Ainsi, &
1'intérieur du méme niveau de traitement du contenu mathématique de la situa-
tion, différents systémes de symbolisation sont présents.

En particulier, si 1'on considére le niveau 3, ol 1'éléve effectue la composi-
tion compléte atb-c = x, on voit que 1l'écriture symbolique de cette camposition
s'exprime, chez des enfants de cet 8ge, 3@ la fois par des indices perceptifs
(couleur, placement des dés ou des chiffres), par du langage naturel, et par
des symboles mathématiques.

On aurait pu s'attendre & wn degré de cchérence plus grand entre le niveau con-
ceptuel et l'utilisation des symboles conventionnels connus des enfants. Or

nous constatons des décalages importants. Ceux-ci nous interrogent sur le
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statui: de‘l'utilisation que font les enfants des symboles en question. Ainsi

en est~il du signe = . Il convient de se demander quel sens lui attribuent les
&laves quand on constate que la majorité du groupe de ceux qui ont effectud

une composition compldte des quantités en jeu utilisent 1'expression "en tout",
"ca fait", pour signifier le résultat d'un calcul, et non la relation d'égalité.

Mgthodologiquement il nous semble insuffisant de fonder une hidrarchisation
des productions écrites sur le seul degré d'adéquation 3 1'écriture convention-
nelle, méme si 1'uéage de ce code n'est pas indifférent. La question soulevée
ici est celle de son statut dans 1l'usage qui en est fait.

Dans une recherche, menée parall&lement sur la lecture des é&galités de type
athtc = x, F, Conhe a dégagé trois niveaux de signification pour les &léves :

a) Impératif : 1'&léve lit les signes comme un ordre qu'on lui domne ;

' b) calcul : 1'éléve voit dans 1'écriture la représentation de son action. Le
natbre final est pris comme 1'aboutissement d'un calcul et le = veut dire
"ca fait".

c) Relation : lire la relation signifie alors qu'on suspend le déroulement du
calcul. Le signe + par exemple ne signifie plus seulement une addition a

- effectuer, mais signifie l'opéraﬁion elle-méme. Le signe = accolé au résul-
tat ne veut pas dire "ca fait" et il peut précéder les temmes de 1'addition.
La concordance entre le déroulement temporel de l'action et le déroulement

spatial de l'écriture importe moins.

Ces observations confirment, en méme temps qu'elles éclairent, la nécessité de
préciser le statut de signifiants produits. La situation dans laquelle &volue
1'éléve est constitutive de ce statut.

Le but de notre exposé &tait d'abord de soulever la question méthodologique de
1'interprétation des productions &crites en termes de procédures de symbolisa—
tion, en proposant la mise en relation des catégories d'écritures symboliques
avec le traitement des aspects cognitifs de la situation. L'analyse du rdle
des caractéristiques d'interaction et de camunication de la situation sur le
statut des productions écrites est le second aspect de cette question. Elle
concerne 1'examen de 1'évolution des productions. L'exposé de M. Guillerault
et C. Laborde (Actes de cette Ve conférence) en souligne 1'importance et montre
le parti qu'on peut tirer de 1'analyse du déroulement continu des interactions
dans une situation ol la variable temps est fixée sur une durée assez longue.
Dans le cas de notre démarche expérimentale camparative, cette variable temps
est neutralisée : deux codages uniquement sont demandés pour que les produc-
tions entre le groupe expérimental et le groupe contrdle soient comparables.
Nous avons analysé 1'évolution des productions aux différents temps (disconti-
nus) de l'expérience. Les résultats de cette &volution montrent, sur de petits
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effectifs, une tendance 3 une progression plus importante des niveaux de procé4
dures de symbolisation dans le groupe d'él&ves mis en situation d'interaction.
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UNE STITUATION DE COMMUNICATION
EN GEOMETRIE

M., GUILLERAULT, C. LABORDE
Université 1 de Grencble

The aim of this paper is to analyse the linguistic procedures
involved in a pupil activity, which consists in writing a
mathematical discourse.

An analysis of mathematics texts reveals, in addition to the
natural language, the usage of symbolic notations. Furthermore
the natural language is extensively intermized with the symbo-
lie one.

Learners in the lower grades of the secundary school seem to
experience certain difficulties not only in using the symbo-
lie language of mathematics but even in designating mathema-
tical objects by symbols.

An experiment was designed to analyse not only the formal
features of the learners' discourse but also the cognitive
processes, which generate their forrulations.

This kind of study requires the comstruction of situations

of communication in which social and cognitive aspects are
involved. A situation of this type s presented and the verbal
interactions between two learners ave analysed. These learners
have jointly to deseribe a given geometrical figure in a writ-
ten message.

There iz a discussion of features mude relevant by this speci-
fic situation and comparisons are mede with other approaches
to similar problems.

I - Présentation des objectifs
Nous cherchons 3 déterminer les procldfs Linguistiques mis en ceuvre par Les

gleves dans une activité d'écriture d'un discours de type mathématique. Plus
précisément, nos questions sont & placer dans le cadre suivant :

Les textes mathématiques écrits présentent une utilisation conjointe et parfois
trés imbriquée de deux codes : le code sYHbolique et la langue naturelle, in-
dispensables tous deux non seulement pour 1'expression mais aussi pour le déve-
loppement des mathématiques.

L'éléve de 11-12-13 ans est particuliérement confrontd au probléme de l'utili-
sation du code symbolique, car c'est & partir de cet &ge qu'on lui demande plus
systématiquement qu'auparavant de lire des textes mathématiques présentant
cette imbrication des deux codes, de désigner des objets numériques ou géomé-
triques par des lettres. Or, l'emploi d'un symbolisme est porteur de difficul-
t&s tant au niveau conceptuel (représentation des cbjets par des symboles)
qu'au niveau linguistique (1'organisation du discours se trouve modifiée de par
1'utilisation du synbolisme 3 1'intérieur méme de la langue naturelle).
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Camment les &lé&ves de cet &ge utilisent-ils le code symbolique et la langue
naturelle et les font-ils fonctionner dans leur discours, pour d'une part dési-
gner des objets, d'autre part exprimer des relations entre ces derniers ?
Quelle est la part de 1l'implicite dans leur discours ?

Telles sont nos questions, mais nous les posons non pour étudier les seules
propriétés formelles de ce discours mais pour les appréhender en rapport avec
le contenu véhiculé et avec le sujet parlant. Autant que les formulations é&cri-
tes des éléves nous importe le travail cognitif qui a conduit 3 ces formula-—
tions. Nous rejoignons en cela les théories psycholinguistiques développées par
M. Brossard (1978) ou par A. Culioli (1976). Les énoncés ne prennent leur sens
entier qu'intégrés dans l'activité langagidre, qui dépend de nombreux paramé-
tres : ils sont résultats d'une construction d'un sujet énonciateur dans une
situation donnée (qu'on appelle situation d'énonciation). Nous nous plagons
ainsi dans le cadre théorique dans lequel Jean Brun (1979) définit une approche
en psychopédagogie des mathématicques. "... Cette étude des procédures et des
représentations (il s'agit des signifiants) revét toute sa signification en
psychopédagogie des mathématiques lorsqu'elle prend en compte les caractéris—
tiques de la situation didactique afin de préciser les conditions de procuction
et d'évolution de ces procédures et de ces représentations".

Les questions que nous posons ne peuvent donc recevoir de réponses que relati-
vement & une situation d'énonciation précise, dans un domaine conceptuel déter-
miné ol seront pris les objets mathématiques. Nous avons retenu le damaine
géométrique. Les objets mathématiques sont les points et les segments, les
relations entre ces objets les relations d'incidence et les relations métriques
"usuelles" (distance entre 2 points).

Nous avons construit une situation d'énonciation dans laquelle les formulations
obtenues constitueront effectivenent la solution a la tache demandée aux éléves
et ne seront pas simplement le résultat d'une ré&daction dans un deuxiéme temps
de la solution déja élaborée auparavant.

A cet premiére exigence s'ajoute une contrainte sur le plan méthodologique :
la nécessité pour nous d'avoir une trace de la genése des formulations predui-
tes par les éléves.

II - Le dispositif expérimental

Dans le cadre d'une situation de commnication, une figure géométrique est
proposée 4 un groupe de deux éléves (binfme des émetteurs ou codeurs). La
situation proposée est celle du type "jeu de messages".

Chaque groupe de codeurs disposant d'environ 50 minutes a pour consigne de se

mettre d'accord sur la rédaction d'un message ne devant comporter aucun dessin,
destiné 3 des éléves du méme dge (11-13 ans), et & qui il doit permettre de
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reconstituer exactement la figure donnée.

Un observateur note les principales phases de 1'élaboration du message, et la
discussion entre les deux émetteurs est enregistrée. Une fois le message ter-
miné, si les codeurs n'en ont pas eux-mémes déjd pris 1'initiative, 1'cbserva-
teur leur demande de procéder & une vérification consistant & redessiner la
figure 3 partir des indications de leur texte.

La situation d'énonciation que nous utilisons correspond & cette phase du jeu.
Elle a &té pratiquée avec 80 bindmes pris dans des colléges de la ré&gion
grenochloise.

2) Apalyse
a) la tAche passe effectivement par l'activité de formulation :

La situation construite rentre dans le cadre des situations de formulation
décrit et utilisé par G. Brousseau (1977), dans lequelles récepteurs et &met-
teurs sont engagés dans un jeu commun dont le succés dépend des deux partenai-
res, condition importante quant & la recherche du "meilleur" message par les
émetteurs. De plus, les interlocuteurs méme non présents &tant des &laves et
non le maitre capable de canpirendre des formulations peu clairés, les émetteurs

sont enclins & veiller 3 la clarté et & la précision de leurs formulations.
b) La structure de la situation :

Les caractéristiques importantes de cette situation d'énonciation sont les

suivantes :

-~ la présence de deux locuteurs qui ont a rédiger un message COMMI1 POUr in
interlocuteur, et qui procédent & des &changes verbaux pour réaliser cette
tache. Cette interaction entre les deux émetteurs est un facteur fondamental
de notre situation. Elle permet d'obtenir une trace de la genése du message,
de provoquer l'extériorisation de 1l'analyse géométrique de la figure et des
choix linguistiques qui ont lieu pour la décrire (choix d'un codage par let-
tres en nambres pour certains éléments clés de la figure par exemple). Le
seul recueil de formulations écrites d'un &léve ayant a effectuer exactement
la méme tache ne nous aurait apporté aucune information sur 1'élaboration de
ces formulations.

L'observation individuelle avec questions posées par 1'expérimentateur serait

susceptible d'apporter une information & ce propos. Nous préférons remplacer la

relation interviewer-interviewé, qui peut constituer parfois un &lément parasi-
te, difficilement analysable, par une interaction entre-pairs, dont A. Nelly
PerretClermont (1980) et Jean Brun (exposé dans ces actes) montrent 1'impor-—
tance sur le plan cognitif.
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Citons ici quelques aspects du rdle joué par cette interaction dans notre

expérience :

- facilitation dans 1'avancement du travail, par la possibilité de répartir
les taches (mesures, comparaisons, &criture du message, tracés ...), par la
présence du pair qui peut aider & surmonter les périodes de découragement
et d'absence d'idées, périodes délicates 3 gérer par 1'expérimentateur dans
1'entretien individuel.

~ une meilleure prise de conscience de 1'état du travail, une meilleure &valua-—
tion de l'efficacité des activités entreprises ou en projet, grice aux réac-
tions critiques voire 3 la centradiction apportée par le partenaire, une anti-
cipation possible sur les effets du message., par la présence du camarade qui
peut évoquer 1'interlocuteur absent.

Nous voyons dans cette interaction un &lément susceptible de contribuer d'une
certaine manidre 3 la richesse des dbservations. La contrepartie en est que
les données recueillies seront en général plus camplexes 3 analyser que celles
cbtenues au cours d'un entretien individuel. Ceperdant, il serait abusif de
conclure que notre méthode apporte nécessairement davantage d'informations
que cette dernidre. Le travail 3 deux peut camporter des phases non explici-
tées, il tend 3 &touffer certains modeles géométriques ou linguistiques et a
eh renforcer d'autres. (1'apparition du codage serait plutdt favorisée par le
travail 3 deux). Nous sommes donc contraints pevrune meilleure vue d'ensemble

3 un narbre d'cbservations plus élevé.

- 1'interlocuteur est absent, et la possibilité n'est pas donnée aux décodeurs
de manifester leur réactions d'incompréhension du message aux émetteurs. Ce
feed-back, noyau de régulation de la situation n'existe pas dans notre
expérience. C'en est une limite. Cependant, le temps assez long (variable de
la 'situation) laissé aux émetteurs permet en fait, comme nous 1'avons sou-
vent constaté, une &volution importante incluant la prise en campte des
décodeurs (communication invoquée) .

c) Deux facteurs de la situation :

Aprés avoir fixé la structure de la situation, nous en avons déterminé deux

facteurs importants parmi tous ceux dont elle dépend : la complexité de la

tache et la longueur du temps donné aux éléves pour leur travail.

Nous avons choisi une tiche complexe et donc laissé un temps assez long (de
50 & 60 minutes) pour 1'é&laboration du message.

La camplexité de la tiche tient & la complexité de la figure proposée. Cette
figure ne camporte aucun synbole (lettres, nawbres, ...) accompagnateur ;
nous voulions laisser les &léves libres de coder certains &léments. La struc-

ture de la figure, rend nécessaire la prise en considération de relatiors de
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dépendance entre les cbjets géamétriques & décrire. Cette complexité va
rejaillir sur la complexité du message verbal, particuliérement en cas d'ab-
sence de codage, ou en cas de présence d'un codage peu adapté & la procédure

de description de la figure.

Nous faisons 1'hypothése que le temps important laissé aux deux codeurs leur
permettrait d'élaborer de nouvelles stratégies quand ils prendraient conscien—
ce de leur inadéquation et que le jeu de 1'interaction entre les deux codeurs
pourrait se dérouler pleinement et plus subtilement que si cette interaction
s'exergait sur une durée réduite. Cette hypothése a &té confirmée par 1'expé-
rience, tant au niveau de 1'évolution des procédures de description de la fi-
gure et des formulations écrites qu'en ce qui concerne 1'interaction entre les
deux éléves. Ainsi la réaction & une contradiction apportée par le partenaire
n'est-elle pas nécessairement immddiate mais peut se produire plus tard au
cours du travail & deux.

En conclusion 3 cette bréve analyse de la situation construite, nous insiste-
rons sur le caractére camplexe et évolutif qu'elle présente et qui est le plus
adapté, pensons-nous, d répondre d nos questions sur les conditions de produc-—
tion de formulations des éléves.

III - Illustration de la méthode : quelques données de 1'expérience

L'étude des messages et des échanges oraux entre émetteurs confirme le fait
que les productions obtenues dépendent pour beaucoup de 1l'interaction des deux
émetteurs et de la longueur du temps de travail :

- dans la plupart des cas, une évolution tré&s nette se produit dans 1l'analyse
de la figure et donc dans la procédure de description. Une étape transitoire
de description "inventaire" sans relations de dépendance entre différents
éléments de la figure se fait jour au début du travail de tré&s nambreux
bindmes ;

~ en régle générale, si le codage est évoqué quelquefois d'emblée au vu de la
figure, il est en fait beaucoup plus souvent adopté, comme solution de pro-
bléme géamdtrique, linguistique (probléme de vocabulaire ou d'utilisation de
systémes de renvoi). Solution pour un des émetteurs, il n'est pas toujours
percu comme tel par l'autre et dans bien des cas sera adopté sous la forme
proposée ou sous une autre forme par les deux éléves aprés qu'ils se soient

=

heurtés a plusieurs cbstacles qui n'ont pu &tre swrmontés.

En outre, la situation nous permet d'analyser d'une part 1l'élaboration des
formulations sur le plan linguistique (ambigquités, vocabulaire), d'autre part,
les significations accordées par les éléves aux notions géométriques en Jjeu

(point, segment et relations d'incidence) .
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PROBLEM SOLVING PROCESSES OF UPPER ELEMENIARY SCHOOLCHITDREN
A CASE STUDY

Nicholas A. Branca
San Diego State University

Ce papier décrit une série d'interviews accordées & une éleve
inscrite au cours élémentaire pendant qu'elle résolvait qu du
moins essaysit de résoudre une série de problimes de mathéma-
tiques. Pendant les deux dermizres années pris de 90 élzves
ont participé & ce projet basé sur les travaur de Polya et
Kruteskii. Le programme est établi dans le but d'emseigner aux
éleves des "Sth and 6th grades” les procédés de solutions. Un
choix d'éleves a été fait selon leur capacité (supérieure,
moyenne ou inférieure) et ils ont été interviewds individuelle-
ment et périodiquement pendant plusieurs mois. On a exigé
qu'ils réfléchissent & haute voix pendant qu'ils s'efforgaient
de résoudre les problemes. Les problémes ont §té choisis pour
les structures fondamentales de mathématiques et aussi pour
les modeles et leur relation avec le travail effectué en classe.
L'éleve choisie comme sujet de ce papier est en "6th grade’ et
selon les tests qu'elle a passés en 5th grade, serait d'une
inteliigence inférieure d la moyenme. Dans ce papier on pré-
sente ses réponses aux 3 problemes apparemment différents mais
qui en réalité exigent tous les 3 le nombre de combinéds de deux
Eléments d'un ensemble donné. Les réponses montrent sa fagon
d'utiliser les procédés employés pour résoudre les problemes et
L'attention portée & la structure; elles indiquent aussi un
niveau de capacité mathématique non apparente lors des tests
donnés en classe.

For the past two years, approximately ninety fifth and sixth grade students have
participated in a National Science Foundation funded project designed to in-
vestigate prcblem-solving processes of upper elementary school students. The
project, based on the works of Polya and Kruteskii, consists of two camponents;
an instructional coamponent designed to teach prablem solving and an cbserva-
tional component designed to study selected individual students as they solve
or attempt to solve various mathematical prablems in interview settings. As
part of the cbservational camponent, students were interviewed every few months
and asked to think aloud as they worked on prcblems. The problems were

This research was supported in part by NSF grant No. SED 79-19617. Any opinions,
findings and conclusions expressed in this report are those of the author and
do not necessarily reflect the views of the National Science Foundation.
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selected because of their underlying mathematical structures and/or patterns
and their relationship to the classroom instruction. Descriptions of each of
these components along with brief reviews of related research have appearad
in earlier papers, (Silver, Branca and Adams, 1980) and (Branca, Silver and
Adams, 1980).

This paper describes a series of interviews conducted with one student, &
current sixth grader. The student has been involved in the program since

she was in the fifth grade where she was evaluated as slightly below average
in mathematics for the class, based on school administered tests. The
student was considered to have excellent reading ability but did not achieve
as well in mathematics compared to others at the same level. Three interviews
will be considered, each dealing with a different problem that basically asks
to solve for the number of combinations of two elements from a given set.

The interviews were conductd during the seventh and ninth months of the fifth

grade academic year and the sixth month of the sixth grade academic year.

In the first interview under consideration, the student was asked to solvé
the following problem:

Suppose there are 8 people at a party. If each person shakes hands with
everyone else at the party, how many handshakes will there he?

Exerpts from the taped protocol of the student, S, and interviewer, I,
appear below:

Let's see - 8 people — that'll be probably 8 times 8 which is 64,
Why do you think 4? How did you do that?

Each person shakes hands with 7 people so that would be 8 times 7.
Why did you change it from & times ® to & times 772

n = v = W

'Cuz at first I thought it would be —-- T thought each person would shake
hands with himself...but I forgot to realize that when they shook hands
they'd shake hands with 7 people. They don't shake hands with themselves.

T OK Now ~ think about it again. & people, each shake hands with 7 people
you say ~ so that's 8 times 7 is 55. Let's look at a different problem.
Suppose that you and I are at the party. Let's say we shake hands. How
many handshakes is that?

S One.

-

OK ~ you shook hands with me - and T shook hands with you.

n

Oh! That would be two handshakes! Tt would be one because me shaking
hands with you and you shaking hands with me is the same thing. 2nd so it
would be counted that way, so it would only be - oh.
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—

Does that change the problem now? What are you thinking about now?

S Each person would shake hands with other people so probably be half as
many as before so it would be like - oh darn! it can't be divided. It
would be like each person would shake hands ahout -- each person would
shake hands 7 times but their handshaking - one handshake would like count
for two people so therefore ~-- I don't know what to do!

-

OK -Suppose we do this, If you have a problem like this and you

don't know what to do, a good strategy to use -- is to get a similar
problem that might be a little bit easier. Let's suppose there are only 3
people at the party. Do you think you could do that problem?

S Uh ~huh.

Another good strategy is to actually make a model of this or to think
of a model. .... What are you doing?

[aal

S Drawing stick figures. Stick figure 1 shakes hands with stick figure 2 —-
and I draw a line and show 'em shaking hands ...so that's 2 handshakes and
2 and 3 here to shake hands.

I So the total would be what?
S Three. So maybe 8 would be 8 handshakes.
I OK. That would be a good hypothesis. If 3 is 3 handshakes, maybe 8 would

be 8 handshakes. What are you going to do now? What are you thinking?
At this point the student drew & figures and drew lines to represent
handshakes. She then switched to circles to represent the people and finally
started to keep track by tallying.

After the student determined the answer to be 28, the following dialog took
place:
I 28 - Now explain to me what you did again?

S I wrote the numbers 1, 2, 3, 4, 5, &, 7, and 8 and draw a tally mark for
each one they shook hands with. Then after they had shaken hands with
everyone I erased them.

I OK. What if there were ten people at the party? How could you do that?
S The same way.
I Which would be what?
S By tallying each handshake or recording it or remembering it.
It would take a lot of brains to remember it, though.
I In fact drawing the figures seemed to help you to do it.
S The lines get all messed up. Like a spider web or something.

I That was a good idea to make a tally mark. That kept track of
all of those. Remember the first thing you thought about?

Multiplying.

[ O]

What did you multiply first?

92}

8 times 8.
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I But then you changed that. Do you remember why you changed that?
S Because each person only shakes hands with 7 people.

—

But then you did a different multiplication. Do you remember? What
did you do then?

8 times 7.

Right. Which is what?

56

OK. But then you thought that wasn't right either. Do you remember why?

N = n = Wn

Because you mentioned how about trying...because I got kinda confused and
couldn't do it...and then you mentioned trying to do a problem similar to.
that but you know like a smaller number - and I tried it with 3. And that
turned out to be 3 - and so that made me think of it.

I That made you think of doing what? That made you think of a different way?

v

Uh, huh - a different way. And that one - the diagramming was OK because
I just had to draw 3 lines,

L]

OK. Now also though we said something about when you did 8 times 7. Why
was that wrong, € times 7? Do you remembher?

S Because when people shake hands with each other like if one shakes hands
with two, or A shakes hands with B or John shakes hands with Mary or what-
ever shakes hands with whatever, it's only one handshake. And you made me
realize that when you had me shake hands with you.

Rl

OK - but then you said something about 56 wouldn't be right. What did
you say after that?

S Because it would only count as one if two people shook hands with each
other.

I Do you remember you had an idea after that?

w

Drawing figures and lines.

OK - but there was something else you said after that. It had to do with
counting each of the handshakes twice.

bl

Divide by two - but 7 won't divide by two.
What did you want to divide by two?

56. Maybe..that would be smarter.

And what would happen if you divide 56 by two?
I'll find out —= I got 281! k

What do you think of that?

It's the right answer.

N = W

The right answer. So you had a good idea before if you divide by 2.
I just thought of dividing 7 and 8 by two and T thought "what?"

H W - N - WD H

Do you remember in class what we were saying - in fact just yesterday -
if you're multiplying two numbers together and you want to divide by two,
you only divide one of them by two, not hoth of them.

After the students confusion regarding division was cleared up, she was asked
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again about the problem with ten people at the party. She realized that in
addition to using the tallying method, she could determine the answer
quickly by multiplying 10 and 9 and dividing by 2.

The second interview under consideration took place two months after the
first. The student was presented the following problem chosen because of
its relationship to the handshake probilem:

Suppose there are 8 cities. If each city is to be connected directly to
every other city with a road, how many roads would there be?

The student read the problem aloud and begen making a sketch.

S Let's see... make a city... looks like a box... because T think maybe I can
do it with a diagram...But then, T did the same thing with... people were
supposed to shake hands, and that didn't work, because there was just a
mess of lines all over... ©Oh, well, I'll try it out anyway...
1,2,3,4,5,6,7,8. That's 8 cities, because each box represents a city.

Let's see; A,B,C,D,E,F,G,H, now, okay,... A is connected to F... oh!
directly? Does that mean they have to go a straight line?

I No, not on your diagram. It doesn't have to be a straight line. What it
means 1s that you can go from one city to another without going through
some other city.

5'0h, I see... Well, when its like this... T have a city A, a city B, and
then City C. City B can get to City C by the same road... but would it have
to have a separate road?

I How are you thinking about it?

w

I'm starting at City A. Then I'm going to a city past here, and they can
go past there, and there, that cars can go... go like that, and like that,
too. But that depends on how they're arranged. 1,2,3,4,5,6,7,8. Okay,
there's 8, and each city has to have a road to each 8 of them. That's
almost like that problem we were doing which is with the license plates,
see how many combinations you can... Okay, and first... and this is almost
the same thing. You can put, like, there's... you do it for each road.
There's an A-B road, an A-C road, an A-D road, an A-E road, an A-F road,
an A-G rosd, an A-H road. And so, then you go to B. There doesn't need
to be a B road... a B-A road, because there's an A-B road. So then we'll
go... there's no B-B road either... and... a B-C road, a B-D road, a B-E
road,... and a B-F road, a B-G road, and a R-H road. Next is C.

The student continued systematically in this way until all 28 possibilities
were listed.

The third interview in the series occured eleven months after the first. The
following problem, also chosen hecause of its similar structure, was
presented:

Suppose there are 10 students competing in tennis. If each student must
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compete with everyone eise once. How many different two-person matches
would there be?

The student's first response was to multiply 10 times 9 getting 90. She then
evaluated that answer and stated, "for each two-person match it would
probably be half of 90 or around there." She was not confident of this method
and she immediately drew lines to represent the tennis players and proceeded
to count.

S This guy has a two-person match with him, so he can't have any more two—
person matches with that guy, and then he has one with him... that's
2,3,4,5,6,7,8. Eight? Oh, yeah, 4 and 5 is 9, so he has 9 matches. So no
one else can have any matches with this guy. So that's... put down 9,
okay, and erase that guy, because he's had all of the matches he can have.
So then this qguy has a match with everybody, so that's.1,2,3,4,5,6,7,8...
that's 8 matches, Rye-bye... Say he loses all of them, he's kicked out. So
this guy has all the matches he can, 7, erase him... This quy has all the
matches he can, 8... woops, that's not &, it is 6, Yeah, that's all the
matches he can have, and this guy has all his, that’s 5,... erase him...
this guy has all his, 4,... ard then 3, and then 2, and you can't get any
more because there's no 2-person matches with just one person. And this is
the winner. Her hair is standing on end bhecause she put it that way because
she didn't want to get real hot with her hair going down her shoulders.
She's wearing "Nikey's". She has two arms. And she's real happy. So if
you add all these up... 44.

When the student was questioned regarding her original thinking about helf of
90, she could not rectify the two answers. The student was then asked if she
had ever done a problem like this before. She remembered doing a problem the
year before about "shaking hands" and remembered drawing lines and getting
"tangled up". ’ “ .

The complete protocols of the interviews containéd rich illustrations of both
sophisticated mathematical thinking as well as serious misunderstandings.
They illustrate the student's use of problem-solving processes and the
fluctuation between attention to detail and to underlying structure. The
interviews are time consuming to administer, but can provide a picture of a

student's mathematical ability not apparent from classroom measures.
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ANALYSIS AND IMPROVEMENT OF SIXTH-GRADERS
ABTLITY TO SOLVE WORD PROBLEMS

Erik De Corte and Raf Somers

University of Leuven, Belgium

Les deux objectifs de cette recherche étaient : (1) obtenir
une meilleure compréhension des processus cognitifs qui se
déroulent chez des éléves du sixiéme année de 1'école pri-
maire pendant la solution de problémes arithmétiques; (2)
examiner la possibilité d'améliorer au moyen d'instruction

la capacité des éléves ¢ résoudre des problémes. Dans la pre-
miére partie de l'expérience des domnées quantitatives et
qualitatives concernant les comportements des éléves pendant
le processus de solution de problémes ont été rassemblées dans
deux classes. Les résultats ont montré des défauts importants
dans les stratégies de solution des enfuants, surtout sur le
plan de 1l'analyse des problémes. L'hypothése a été formulée
que ses défauts peuvent Etre surmonter par wne instruction
appropriée. Afin d'éprouver cette hypothése un expériment
formatif a été fait. Un programme d'instruction a été appli—
qué pendant deux semaines dans la classe expérimentale. L'ob-
Jeetif du programme était d'instruire aux éléves une méthode
pour résoudre des problémes, dont l'estimation de la solution
avant de procédér 4 1'effectuation d'opérations arithmétiques
est le composant essentiel. On est parti de la supposition que
L'estimation de la solution remplirait wne fonction heuris-—
tique dans le processus de solution de problémes, dans le
sens que l'action d'estimer incite les éléves d analyser le
probléme et 4 vérifier la solution trouvée. A la fin du pro-—
gramme d'instruction un posttest a été donné dans la classe
expérimentale, ainsi que dans le groupe de contrdle. Les
résultats quantitatifs de cet expériment formatif supportent
L'hypothése, mais des recherches ultérieures sont nécessaires
afin de pouvolr interpréter ces résultats en termes qualita-
tifs relatifs aux processus d'apprentissage.

ESTIMATING THE OUTCOME OF A TASK AS A
HEURISTIC STRATEGY IN WORD PROBLEM SOLVING

The main objectives of the present study were to get a better understan-

ding of children's solution processes with respect to arithmetic word pro-
blems and to investigate the possibility of improving their problem-solving
ability through instruction. The view of problem solving behind this study
can be summarized as foliows. Children's ability in solving arithmetic word

problems is strongly determined by the degree to which they have an appro-
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priate orientation basis which enables them to approach unfamiliar tasks for
which they lack a ready-made solution procedure intelligently and systema-~
tically. Possessing such an orientation basis involves pupils' being equip-
ped with two complementary types of actions : (1) actions that consist of
being able to use and apply relevant conceptual knowledge of subject-matter
content such as concepts, principles, etc.; and (2) thinking procedures for
analyzing and transforming a problem to the point where it has reached a
form that is familiar and makes contact with specific subject-matter content

(De Corte, 1980; De Corte & Verschaffel, 1980).

With respect to pupils of the sixth-grade, the highest class of the elemen-
tary school in Belgium, it is often established that they are not very
successful in solving word problems. It was hypothesized in our study that
this is mainly due to a lack of the second kind of actions mentioned above -
namely, thinking procedures. Therefore, to improve sixth-graders' problem-
solving ability they should acquire the attitude and the skills to analyze
and represent the relations between the data of the problem before starting
to perform computations. Besides techniques for problem analysis, verifica-
tion actions form another component of the equipment of an efficient problem
solver. We thought, then, that systematically estimating the outcome of a
word problem before working out the solution would be an effective heuristic
strategy that leads pupils to analyze the problem on the one hand and to
anticipate the solution on the other. The analysis of the problem provides
the problem solver with an appropriate orientation toward the solution pro-
cess, while the anticipated solution provides him with a means for verifying
his final outcome. We have defined the concept estimating as follows : esti-
mating is trying to get the approximate solution to an arithmetic task by

passing roughly and in an abbreviated way through the solutionm process.

ASCERTAINING STUDY

Within the theoretical framework described above, we carried out an investi-
gation consisting of an ascertaining and a teaching experiment (Kalmykova,
1970, p. 128; see also De Corte & Verschaffel, 1980). The objective of the
ascertaining study was to determine how well (pérformanée data) and how
(process data) sixth-graders solve simple and more complex word problems.

A specially designed test was administered in an gxperimental (N=20) and

a control class (N=21). The test consisted of ten items : one numerical task
(multiply .523 by 289.25) and nine word problems. Four of the nine word
problems were of the more simplé type : for example, "Maria got 180 fr.

(francs) to go to the bakery; she received 11.25 fr. in change; how much

did she have to pay ?" The other five word problems were more complex :
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for example, "Five workers got their wages after ten days; altogether they
received 50,000 fr.; under the same conditioms, how much would the total
amount of the wages of six workers after eight days be ?" Besides the test
scores, we collected more qualitative data on the experimental pupils' ac-
tions during the solution of some items. The techniques used for this were
written reports of the 20 pupils describing their solution processes with
respect to two problems, and thinking-aloud protocols of 3 children with

regard to three problems.

We found that, on the average, these sixth-graders commit a great many
errors, namely 53 % in the experimental class and 42 % in the control group.
On the other hand, there is a significant difference between the two groups
Q)(.OS); in spite of this, we have, nevertheless, continued the study with
those classes. When comparing the results on the test administered at the
end of the teaching experiment it will, of course, be necessary to take the

difference in initial level between the groups into account.

In a further analysis, two categories of errors were distinguished : thin-
king errors due to choosing and carrying out an incorrect arithmetic opera-
tion, and techmical errors due to mistakes in the execution of an arithmetic
operation (De Corte & Verschaffel, 1980). The distribution of all the obser-—
ved errors in the experimental class over the two categories is as follows :
78 % thinking errors and 22 % technical errors. This result justifies the
conclusion that, for those sixth-graders, the difficulties with respect to
word problems are set primarily in the thinking phase of the solutiom pro-
cess. We hypothesize that this is due to the fact that pupils do not suffi-
ciently apply methods for problem analysis to more or less unfamiliar tasks.
The most important result of the analysis of the qualitative data is that
sixth-graders, in fact, employ systematic analysis rather rarely when they
are confronted with a word problem. On the contrary, it seems quite custo-
mary for them to start performing computations almost immediately after
they have read a task, or they try to get external cues - for example, by
asking questions - concerning the computations that have to be performed.
Another finding is the almost complete lack of verification actions perfor-

med by pupils.

We can conclude that sixth-graders are not very successful in solving word
problems, and our findings support the hypothesis that is mainly due to the
fact that those pupils do not possess the attitude and the skills to analyze

problems.
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TEACHING EXPERIMENT

The teaching experiment was an attempt to contribute to the verification of
the following hypothesis : fostering pupils' thinking skills by equipping
them with appropriate methods for problem analysis will lead to an improve-
ment in their ability to solve arithmetic word problems. To stimulate skills
in problem analysis among the experimental learners, they were taught a solu-
tion procedure, the core of which consisted of the use of estimating as a
heuristic strategy. More specifically, we developed a five-point solution
procedure : (1) read the task; (2) estimate the solution; (3) solve the

task; (4) verify the solution; (5) note the solution. The experimental teach-
ing program was implemented during a two-week period in the experimental
class. Meanwhile the control class was taught according to the normally
prescribed arithmetic program : the teacher presented tasks which were simi~
lar to those discussed in the experimental class though treated in the usual
way - namely, without instructing the pupils systematically in the heuristic
estimation strategy. When the experimental teaching program was terminated,

a posttest was administered to the pupils of the experimental and comtrol
groups. The test consisted of two parts : the ten jtems of the pretest (part
1) and ten new items (part 2), similar in nature to the pretest tasks. The
pupils of the experimental class were again asked to write a short descrip-
tion of the solution process employed in the same two items as in the ascer-

taining study.

Table 1 gives an overview of the average results of the two groups on the
pretest (i.e. the test of the ascertaining study) and the posttest. In addi-
tion to the data in the table, we mention that, on the posttest, there are
no significant differences between the experimental class and the control
class; we reiterate here that the pretest scores were significantly better

in the control group.

Tabel 1. Average results (in Z) in the experimental and the control groups n

Pretest Posttest, part 1 Posttest, part 2 Posttest, total

Experimental 477 65% (xx) 76% (%%) 71% (%)
class (N=20)

Control class 587% 55% (n.s.) 70% (%) 62% (n.s.)
(N=21)

(1) For each of the posttest results, an indication is given whether there is a
significant difference with the pretest score : % = significant at the .0l
level (t-test); n.s. = not significant.
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Table 1 shows that the result of the experimental group on the posttest is
significantly better than on the pretest. The result of the control group

on part 1 and on the total posttest is at the same level as on the pretest,
while there is a significant increase on part 2. This last finding means
that part 2 of the posttest was probably easier than part 1; the difference
between parts 1 and 2 in the experimental class points in the same direction.
From all these data, we can conclude that the findings support the hypothe-
sis which was the starting point of this teaching experiment : when we teach
pupils a solution procedure for word problems in which estimating as a heu-
ristic strategy is of prime importance, their ability to solve such problems

will increase.

The direct comparison of the experimental and control classes is thwarted by
the significant difference between the initial levels of both groups. Ne-
vertheless, the comparison leads to findings that are convergent with the
preceding conclusion. The significant difference between the two groups esta-
blished on the pretest in favor of the control class, no longer occurs on
part 1 of the posttest; there is even an obvious tendency in the opposite
direction. Indeed, the score of the experimental class is here 10 7 higher
than in the control class, and this difference is almost significant at the
.05 level. The score of the experimental group on part 2 of the posttest

is also higher than the result of the control group; the same is, then, true
for the total test. However, none of these differences is significant.

A more detailed analysis showed that the score of the experimental pupils on
the simple word problems in the posttest (part 1) is 21 7 higher than on the
pretest; this difference is significant at the .01 level. For the complex
word problems the difference is 15 7, which is just below the .05 level of
significance. In the control class pupils performance on the posttest for
the two types of problems lies at the same level as on the pretest. In other
words, in contrast with the control group, the experimental class makes

considerable progress on both types of word problems.

We attempted to collect qualitative data concerning the processes and ac-—
tions underlying children's problem-solving performance on the posttest by
means of an analysis of their answer protocols and of the written reports.
However, we have not been very successful in this regard, as compared to the
ascertaining study. The quantitative results discussed above show that the
children of the experimental group, who have acquired a solution strategy
during the experimental teaching program, achieve better results in solving
arithmetic word problems. Undoubtedly this has to do with the faet that, by
applying the solution procedure, they are more appropriately oriented to-

ward solving the tasks. The data collected do, however, not allow us to de-
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cide whether or not the quantitative improvement in achievement is due to

the acquisition of the heuristic estimation strategy as such; further re-
search is needed to examine if this is the determining factor in the solu-
tion procedure. Meanwhile, in view of such research, we wish to state the
hypothesis that the acquisition by the learners of the heuristic estimation
strategy leads to a qualitative improvement in their problem-solving activity
with respect to word problems, through which a quantitative increase in achie-
vement occurs. This hypothesis is not only based on the central position of
the estimation-strategy in the solution procedure taught to the children

but also on certain data that emerge from an analysis of the scores and the

answer protocols from the posttest.

In further research with respecr to this hypothesis, special attention should
be paid to the collection of qualitative data on pupils' problem-solving
processes before, during, and after the experimental teaching program. It is
also our opinion, however, that, in view of theory-construction about lear-—
ning to solve problems in elementary school children, it is extremely desira-
ble as well to conduct, in addition to classroom teaching experiments, clini-
cal teaching experiments in which the experimental teaching program is imple-
mented with an individual learner or with small groups of children. Such
small-scale teaching experiments in which learning is guided and stimulated
almost individually,are essential for theory-building because they make it
possible to observe and record the effects of all sorts of interventions on
the course of the learning process with a high degree of precision. This
methodological proposal meets Resnick's (1980) comments during the 1980 AERA-
meeting in Boston on a previous classroom teaching experiment (De Corte &

Verschaffel, 1980).
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OEDIPE. DEVANT bE. SPHINX
ETUDE DES BIAIS DE QUBLQUES QUESTIONNEMENTS DE PSYCHOLOGIE APPLIQUEE
Josette ADDA Université PARIS VII

Like the question asked by the Sphinx to OEdipus,most of the
psychological tests intended to evaluate mathematical abili-~
ties are enigmas more than problems.

They are founded on two types of difficulties:to find what
is the "good" property among all properties involved,to take
off all the parasites surrounding a question which becomes
then a trivial one.All these operations are up the stream of
the mathematical behavior that they are intended to study.

"Ce n'était pas au premier venu d'expliquer 1'énigme,

I1 y fallait de la divination." -Ofdipe —Roi(Sophocle)

"Me voici,moi qui eus accés au chant de la

belle et céleste victoire,

En déchiffrant 1l'indéchiffrable énigme de la Vierge"
Les Phéniciennes(Buripide)

Pour pouvoir poursuivre sa route vers Thébes et son destin,Ofdipe eut 2
affronter le sphinx gt son énigme.On sait que la question & laquelle étaient
soumis les passants étaitVQuel est l'animal,qui le matin marche & quatre
pattes,2 deux 3 midi,a trois le soir?" ."Chague jour les Thébains se réunis-
saient en une assemblée uniquement consacrée & résoudre le cruel probléme,
Aprés chacun de ces congrés infructueux,le sphinx devorait une victime sur
la montagne.Enfin OEdipe vint qui trouva la solution'

I1 st répondre "1'homme" et,depuis lors,chacun d'entre nous a rencontré
cette question légéndaire,l'a cherchée,le plus souvent sans succésjpuis,
apprenant la réponse d'OEdipe,l'a trouvée évidente! La victoire d'OEdipe
prouve-t-elle que lui seul savait que 1l'homme marche successivement & quatre
pattes,puis sur ses deux jambes,puis aidé d'un b8ton?Certes nonjtous ceux
qui s'étonnent de ne pas avoir trouvé la solution savaient bien cela.Il ne
s'agit done pas d'un"contr8le de connaissances"(pour parler en termes modernes)
On diwa qu'il s'agit d'un"contr8le d'aptitude’ou d'un "test d'intelligence".
Je ne rafpﬂlerai pas les sophismes bien connus sur le fait queAle mot "intel-
ligence "utilisé ici n'est pas défini.Cherchons quelle aptitude peut &ire en
jeu iciscertainement pas l'aptitude logique & faire une déduction mais plutdt
1'aptitude & voir qu'une question peut en cacher une autre ;Le mot"énigme"
gsignifiait originellement(To KUyt x]x A)rdéfinition ambigue",Le Sphinx
utilise une expression imagée en parlant de matin,midi et soir,il sait que

le passant prendra ces expressions au pied de la lettre(et de m8me pour les

pattes).L'aptitude & passer d'un niveau de langage & un autre est certainement

i
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celle qui est le plus impliquée dans la résolution des énigmes et...ds nom-
breux tests psychologiques dont nous allons parler.Il s'agira des tests,cepen—
dant,qui sont sensés évaluer des aptitudes mathématiques.Certes la"pensée la-~
térale”,mise en lumidre par DE BONO(I969-1972) joue un grand r8le dans la re-
cherche mathématique mais nous verrons sur des exemples qu'elle intervient ici
d'une tout autre manidre et que ces tests sont en fait des énigmes et non pas

des'problémes mathématiques”,

I - DEVINER QUELLE EST LA"BONNE"PROPRIETE —

Lorsque le Sphinx parle de matin,midi et soir,doit-on comprendre qufil
s'agit d'une méme journée et d'éclairages différents?Doit—on comprendre qu'il
s'agit de métamorphoses d'un &tre selon les saisons?Un enfant moderne ne pen—
sera~t-il pas aux divers aspects que peut présenter une méme espéce d'animaux
placés a des longitudes différentes?,..lLa principale difficulté de la question
est de deviner de quelle propriété le Sphinx veut parler,en choisissant parmi
toutes les propriétés que l'on peut trouver aux éléments en jeu, Dans la
plupart des questions de psychologie,il y a une infinité de propriéfés qui
peuvent 8tre également envisegées de manidre tout aussi légitime scientifique—~
ment (c'est donc une situation totalement différente de celle'd'un choix heu-
ristique).

J'ai déja parlé a 1la rencontre IGPHME de Warwiek (J.ADDA~1979) des questions
en "etc" sous forme de suites & continuer:qu'il s'agisse de suites de nombres
ou de figures(cf.par ex.les tests de SPEARMAN &t de BONNARDEL),donner la
"bonne réponse",c'est choisir parmi 1'infinité d'extrapolations possibles
celle qui correspond 2 un'prolongement canonique” de celle ,parmi toutes les
propriétés communes aux éléments proposés,qui a été choisie par le guestionneur
et,puisque le test a &té en général sérieusement étalonné,qui est choisie
par la majorité des individus correspondant a la norme.Il s'agit donc 13 d'un
critére indéniablement anti-mathématique.On peut s'inquiéter de voir de telles
questions apparzftre depuis peu dans des manuels de mathématiques comme si,
par un renversement pervers  l'enseignement des mathématiques devait constituer
un apprentissage pour la résolution des tests qui avaient yinitialement,été
élaborés avec l'intention de détecter des aptitudes mathématiques,Les mathé-
maticiens ayant largement proclamé que l'on devait ,au contraire,développer
les possibilités d'imaginer des fonctions possédant des propriétés complexesy
on aurait pu croire que cela conduirait les psychologues i renoncer & ces teuts;
curieusement,c'est 1'effet inverse qui s'est produit:certains enseignants font
désormais une formation aux tests plut8t qu'une formation mathématiqué?On

trouve m@me,dans un manuel pour classes de CPA,1'exercice suivant:
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e 3. Calcui mental :
Compléte les suites :

2 4 6 8 -

7 14 21 28 . . . . .
.. .25 30 . . . .
.. . . 3440 . . .

. . 80 . 100

On en arrive 1& & faire compléter des suites dont on ne donne que deux ter -
mes!C'est,bien slr,parce qu'il y a une suite de suites et que la "bonne"
propriété des deux premidres est d'8tre des suites arithmétiques,alors toutes
les autres doivent nécessairement 8tre aussi des suites arithmétiques!

Les nombreux tests dits de “similitude" ou d"analogie" ou ceux du type
"cherchez 1l'intrus"sont basés sur cette méme démarche;deviner la "bonne"
propriété"” et en trouver une autre,mBme astucieuse ,n'est pas souvent payant:s

ex:Dans le WISC,a la question "similitudes-pour les sujets de 8 ans et
plus non suspects de retard mental",pour "49 ;121" il est ordonné de noter ©
la réponse que je trouve excellente"la somme des chiffres est égale a 4(préuve
par 9)";les "bonnes" réponses’ ynotées 2points étant"ce sont des carrés parfaits;
ont pour racines des nombres impairs ou des nombres premiers“(il est également
prévu de domnner 1 point pour "ce sont des nombres impairs").

A ce sujet,le test dit"Tast de raisonnement me parait particuliérement
interessant & analyser,d'autant qu'il est"trés fréquemment utilisé par les
cabinets de sélection"(citation de GOBET 1976).I1 comporte 40 suites & conti-
nuer et les critéres permettant de déterminer les "bonnes "propriétés y sont
de nature trés différente selon les suites;le "raisonnement"en jeu consiste
surtout & penser & changer de niveau linguistique et cela différemment
selon les cas.Dans son ouvrage "Les tests démystifiés "G.CGOBET(1976) a bien
caractérisé les divers types de critéres:

ex:"un 2 douze 5 huit4 dix ,
dix ayant trois lettres ,3 est la réponse"...
... "Extrémement rares sont les personnes adultes qui trouvent la réponse
exacte de cet exercice dans le temps alloué par le test.Un seul auditeur ,
Jusqu'd ce jour ,m'a déclaré 8tre parvenu trés rapidement au résultat en
utiligant les deux procédés indiqués.Il avait travaillé au chiffre dans 1'armée!"

Autre cas:une alternance de huit nombres écrits en chiffres romains avec
sept nombres écrits en chiffres arabes;ilfaut, pour remplacerrle: point placé
aprés le dernier nombre en chiffres romains,avoir remarqué que chaque écri-—

ture en chiffres romains est suivie du nombre de barres qui la composent!



Je citerai pour terminer deux autres exemples de ce genre

de devinettes : :

On donne cinq nombres de trois chiffres; 3 cOté de
quatre de ces nombres se trouve une lettre majuscule : il faut
la trouver pour le cinquieme : 434 (Q) 327 (T) 875 (H) 927 (N}

Les qualres lettres données étant la premigre leltre du
nombre écril en toutes lettres 3 coté duquel elles se trouvent, i
en sera de méme pour le cinquieme. Par exemple :

20( )

220 €crit en toutes lettres donne : deux cent vingt: la premigre

lettre étant D, la réponse est :
20 (D)

Soit Ia ligne ci-dessous :
A3UIS2USA;A3E6FICSR2NA..
Pour résoudre ce probléme et rempl chacun des six
points par la lettre qui convient, il faut deviner quavant le
point-virgule on donne la méthode 2 employer. En effet :
— la lettre U du premier groupe de trois lettres a i
c6té d'elle le chiflre I et elle occupe la premigre place dans le
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— la lettre S qui a le chiffre 2 occupe ta deuxiéme
place ;
— la lettre A qui a le chiffre 3 occupe la tioisieme
place ;
En opérant de méme pour les letires placées aprés le
point-virgule, on obtient 1a réponse qui est :

FRANCE

. .

C’est ce type de «problémes devinettes » que de nombreux
cadres — méme parmi ceux qui sont sortis des plus grandes
€écoles — n'arrivent pas 4 résoudre. Ne supposant pas que I'on
puisse leur poser de telles questions, ils se livrent 3 de savants
calculs qui ne les ménent i rien.

Il n'en est pas de méme pour les jeunes de douze-treize
ans. N'ayant encore que de faibles connaissances, ils utilisent
ces connaissances sans penser que 1a question posée puisse les
dépasser et ils arrivent au résultat. J'ai pu le constater plusicurs
fois ; en particulier un jeunc gargon de onze ans et sept mois &
qui j'ai posé le probléme que si peu de cadres résolvent (un 2
douze § huit 4 dix) a trouvé la réponse en moins de trente
secondes.

deuxigme groupe de trois lettres: M

— la lettre U du premier groupe de trois lettres a &
coté d'elle le chiffre | et elle occupe la premicre place dans le
deuxiéme groupe de trois lettres ;

s

( Extrait de GOBET (1976) )

Notons surtout ,puisqu'il est sensé s'agir de "raisonnement® que la pensée
latérale utilisée en mathématiques ne consiste pas & chercher des homonymes
correspondant & une méme désignation mais & chercher des procédés heuristiques~—
des modes de résolution. différents,d'un probléme.Les exercices mathématiques
comportant différents niveaux de langage,comme ceux portant sur la numération.
par exemple sont relativement exceptionnels et souvent dus 2 de récentes tra—
ditions purement scolaires et fort artificielles s;et 1l'on sait qu'ils sont
rarement réussis par les éléves (cof J.ADDA-1975).C "est,par contre,la,la source
de la plupart des énigmes:cf.dans le Dictionnaire encyclop‘édique Quillet,la
citation suivante ,dans la rubrique de définition du mot "énigme's

"Voici une énigme dont la réponse est"oiseau
Cing voyelles,une consonne,
En frangais composent mon nom,
Et je porte sur ma personne
De quoi 1'écrire sans crayon,"

et qui est due & VOLTAIRE:

II-DECOUVRIR LE QUESTIONNEMANT DERRIERE SON HABILLAGE.

L'"habillage" d'un probléme peut le camoufler(nous avons vu que le questionnement
du 3phinx ne recouvrait aucune difficulté réelle qui aurait subsisté si la
question avait été posée directement) et méme induire des réponses fausses,

Souvent,c'est simplement la progression des questions d'une batterie qui
constitue le piége en induisant de traiter la question n par le m@me procédé
que la question n-l (voir exemples dans J.ADDA 1976).

Les"épreuves d'arithmétique"” du WISC comportent deux exercices avec un texte
trés embrouillé;lfenfant doit lire 2 haute voix avant de donner sa réponse au
bout de 120".La difficulté de ces exercices est beaucoup plus de lecture que

.
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d'arithmétique.Je tiens & témoigner que je me suis moi-méme trompéellet que,
attentive au calcul,j'ai confondu les personnages et calculé ce que posséde
M,Lenoir et non ce que possdde M.Dupont!

Le "Test de compréhension de concepts numériques" a pour but explicite
"de situer le niveau atteint par 1l'enfant(entre 10et 13 ans )dans ce qu'on
appelle communément "la comprehension du sens des opérations"",Sa premiédre
partie comprend 9exercices formés chacun d'une petite histoire suivie d'une
question conduisant & un calcul et la réponse doit &tre donnéde par une sélec--
tion dans un "choix multiple".Curieusement,les nombres qui sont proposés com-
me réponses sont écrits sous forme d'opérations et les questions ne portent
pas directement sur les nombres que l'on veut faire trouver mais ce sont. des

questions au second degré commengant chacune par''comment fais-tu pour trouver..¥

Ainsi,lorsque l'histoire induit le résultat"10-2",1la réponse "10-2"obtient 2
points mais la réponse "2+87qui peut bien correspondre en effet a ce que
certains "font pour trouver...?obtient 1 point!Tl me semble vicieux de faire
ainsi choisir entre un niveau mathématique et un niveau apparemment métama—
thématique,ou plut8t de confondre une réponse et une métaréponse,Notons que
les auires réponses offertes sont,elles,facilement rejetables mais que l'enfant
est certainement,par la forme des réponses proposécs,induit & penser que la
solution est un calcul et non un nombre.Une telle pratique risque de conduire
& croire que 10-2 est trés différent de 2K 4 et presque égal i 248 I

La deuxiéme partie du méme test est composée de 6 exercices:pour chacun
d'eux on propose un calcul (2 une opération)et on demande de rédiger une his—
toire qui y conduirait.la lecture du manuel de notation est succulentejon 1lit
par exemple:"toutes réponses du itype"J'ai une soustraction 64~16 et je trouve
48"ou "Un éléve est convoqué au tableau:il a & faire une division 8:4.Combien
trouve-t-il?, ¥, . seront cotées O car elles ne sont pas des illustrations valables
de la compréhension conceptuelle des opérations"

Les "épreuves cliniques" de la "Batterie UDN 80" sont longuement analysées
dans l'ouvrage de C.MFLJAC(1979).0n est stupéfait de voir que l'auteur espére
étudier le dénombrement"spontanéd” avec des situations aussi artificielles.

Par exemple ,dans l'épreuve dite"des poupées”,on dispose des poupées ct des
robes sur une table puis on énonce la consigne:"0uvre les yeux,regarde ces
poupéesselles ont trés froid,tu vas aller chercher les robes pour les habiller;
Mais attention:elles veulent toutes s'habiller en mame temps;il ne faut pas
apporter de robes en trop;va chercher juste ce qu'il faut de robes".

Non seulement,il ne s'agit pas du tout d'une démarche spontanée mais ,de plus
la consigne semble vraiment énoncée par un Sphinx:son décodage est autrement

plus difficile que la résolution du probléme numérique sous-jaeent,
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Enfin,on retrouve dans ces épreuves que l'auteur affirme d'ailleurs large—
ment inspirées par PIAGET,le biais linguistique caractéristique de 1'Ecole de
Genéve:l'utilisation d'un certain jargon qui ne correspond au langage d'aucun
enfant réel ni en Suisse ni en France(cf J.ADDA 1980),

Exemple:"Tu vois cette poupée doit faire ce chemin(A) et cette autre,l'autre
chemin(B).Est-ce que ce sera le méme long chemin,est-ce qu'elles seront au
bout du chemin fatiguées toutes lesdeux pareilles?",Le pauvre OEdipe aura bien
du mal & comprendre que le Sphinx lui demande 12 tout simplement de comparer
les longueurs des baguettes A et B.Les protocoles rapportés montrent bien
d'ailleurs que ces questions sont vécues comme des énigmes.C'est par exemple
le cas d'enfants "3 qui il était demandé de calculer 6+3(avecliberté de se
servir d'un matériel comme ils le voulaient)"et qui ont disposé les bchettes
de la maniére suivante ! g; c:g:! 5

Nous avons vu que devant ces épreuves prétendiment "mathématiques",l'enfant
interrogé rencontre comme principale difficulté celle de rechercher olest le
probléme sous-jacent.Or,lorsqu'il 1'a trouvé,il s'apergoit,tel OEdipe,qu'il
n'y a plus de probléme du tout.Aucune réflexion mathématique n'intervient(on.
pourrait comparer, par eppasition,ces tests ,par exemple ,2 des exercices de
type Olympiades ou m@me & certaines récréations mathématiques).Réussir ou
échouer & de telles énigmes ne peut rien indiquer sur une quelgonque aptitude

mathématique,il s'agit seulement d'une aptitude & passer des tests,

.Notes

1-On dira peut-8tre que dans l'objectif de préparer leurs éléves 2 trouver un
emploi,ils ont raison de les préparer a répondre aux épreuves de sélection
des entreprises plutdt qu'a obtenir des dipl8mes universitaires!

2-Rappelons qu'il sfagit d'untest"pour les sujets de 8 ans et plus ,non suspects
de retard mental",
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THE MUTUAL RELATIONSHIP BETWEEN HIGHER MATHEMATICS
AND A COMPLETE COGNITIVE THEORY FOR MATHEMATICAL EDUCATION

David Tall, University of Warwick, U.K.

Il existe une relation entre les mathématiques supérieures

et la théorie cognitive qui devrait leur étre d'un mutuel
profit. La théorie cognitive sera enrichie si elle tient
compte des exemples divers de la pensée mathématique, et
inversement la théorie cognitive qui peut adopter ces modes

de pensée peut contribuer & la compréhension des mathématiques.

Ainsi, la recherche dans ces domaines de la pensée peut étre
profitable de nombreuses fagons:

1. Pour 1'apprentissage des mathématiques au niveau des années
terminales et universitaires.

2. pPour le développement d'une théorie cognitive plus compléte
de 1'enseignement des mathématiques.

3. Pour la compréhension de 1'aspect cognitif des mathématiques
et de 1'histoire des mathématiques, du processus créateur de la
recherche et de l'attitude des mathématicians de métier envers
leur sujet.

On considérera la recherche récente qui & étudié la différence
entre les définitions mathématiques formelles et les significa-
tions personelles données aux concepts par les individus.

Cette recherche a révélé des différences frappantes entre la
théorie formelle et la perception qu'’en ont les étudiants et
mathématiciens professionels. Méme si 1'on enseigne des
définitions formelles, l'imagerie conceptuelle de 1'étudiant
dépendra des expériences de 1'individu et pourra étre trés
différente de la théorie formelle.

La recherche met en valeur la question centrale de la
"signification” en mathématiques et sugg@re qu'une théorie
générale et adaptée & l'enseignement des mathématiques devra

se fonder sur une acquisition "significative" de la connaissance,
c'est a dire reliant la croissance des structures cognitives
chez 1’individu aux mathématiques 2 étudier et aux processus

de pensée & développer.
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INTRODUCTION

The psychology of mathematical education to date has been mainly concerned with
the learning processes of children and the methods necessary to educate them in
current mathematical theories. There have been far fewer studies of cognitive
development at higher levels, with implications that cut two ways. On the one
hand, the lack of knowledge of cognitive processes at more advanced stages of
education can lead to weaknesses in the teaching of mathematics at college and
university. On the other hand, the lack of study at this level has severely
hampered the development of a complete cognitive theory of mathematical
education by excluding the rich and varied examples of more sophisticated
mathematical thinking. This lack of understanding of higher mathematical
thinking has another serious implication: because the thinking processes of
professional mathematicians are not well understood, this impairs our

understanding of the nature of mathematics itself.

THE LEARNING OF MATHEMATICS AT COLLEGE AND UNIVERSITY

The most immediate application of cognitive studies at higher level is to
provide a framework for the reassesment of teaching and learning of mathematics
at college and university. My own work has concentrated mainly on the study of
calculus and analysis: infinite processes, the concept of infinity, limits,
continuity, differentiation, integration, the nature of number systems, use of

infinitesimals, understanding of proofs, and so on.

A key idea that has helped in these studies is the distinction between a
concept definition, which is the form of words used to describe a concept, and
the concept image, which is the cognitive structure in the mind of an individual
that is related to the concept (Vinner & Hershkowitz 1980, Tall & Vinner 1981).
The concept image is more than a mental picture, for instance it is partially

generated by the related processes experienced by the individual.

Suitably worded questionnaires have revealed the diverse nature of students'
concept images in mathematics (see, for example, Schwarzenberger & Tall 1978,
Cornu 1980, Tall & Vinner 1981). Mathematical terms like "function", "limit",
""tends to'", "continuous", and so on, all evoke a variety of concept images and
the images evoked in a single individual can vary with the context. (Relevant
examples will be discussed in Grenoble, but are omitted here because of limited

space.)
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The notion of concept image is useful for describing the development of
understanding of axiomatic theories. For example, an answer to the question
"what is a mathematical group?'’ might be to list the group axioms. But this is
just the concept definition. To each individual the notion of a group is more
than that: he has his own concept image (possibly empty) of the group concept
developed through experience of manipulating the theory. This experience leads
to a "feeling" for the concept generated by sensory input reacting with the
concept image in his cognitive structure. In particular, each individual's

intuition for a concept is a direct result of his own concept image.

The development of concept images may be usefully encouraged in the first place
by presenting the individual with generic processes and generic examples: these
are specific cases from which the individual can abstract the general theory.
The technique is common in education at all levels, be it the interpretation of
the specific statement 2+3=3+2 as a generic example of the commutative law or
the generic method of solving any given set of linear equations through a few
well-known examples. Formally such examples play a redundant role in higher
mathematics: and individual case never proves a general theorem. But in
cognitive terms their use may be crucial because abstraction from generic

examples seems to be an essential way in which human beings form concepts.

Tnvestigations into conceptual imagery can lead to new strategies for teaching,
by providing students with experiences that help in the creation of a concept
image that is consistent with, and supportive of, the formal structure of

mathematics. These experiences may themselves be formally unnecessary.

In analysis, for example, there is a school of thought which excludes the use
of pictures because they are thought to give false intuitions. On the
assumption mentioned above, that intuition is a direct result of concept image,
it follows that true intuitions are more likely to come from a suitably
developed concept image. By suitably formulating concept definitions, pictorial
ideas may be used with great profit. As an illustration, one may define a
function f:D » R (from a subset D of the real numbers R) to be pictorially
continuous if over any closed interval [a,b] in D,

given e > 0, there exists d > 0 such that for x,y € [a,b],

|x-y} < d implies [£(x)-£(y)| < e.

It is easy to show that, given a pencil that draws a line of given thickness,
the graph of a pictorially continuous function can be drawn to any specified
scale over a closed interval [a,b] in its domain without the pencil leaving the

paper. What actually happens is that the graph lies inside the pencil line:
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It is also easy to show that if f is differentiable at some point x,, then
given a piece of paper of any specified width and a pencil which draws a line
of specified thickness, there is a small interval containing x, such that the
graph over this interval scaled up to the width of the paper can be drawn
inside a straight pencil line. This process can be exemplified using high

resolution graphics on a computer, giving valuable cognitive support.

Based on these ideas it is easy to give students a recursive method of

drawing an everywhere continuous, nowhere differentiable function. By
physically drawing the successive approximations they may gain a psychomotor
feeling for the properties of the function and by using the concept definitions
and properties just mentioned these intuitions may be translated directly into
a formal proof. (See Tall 1981.)

By reformulating mathematics, taking into account student's concept imagery,

the theory may be enriched and made meaningful to a wider range of students.
A MEANINGFUL THEORY OF MATHEMATICAL THINKING

The study of mathematical thinking at higher levels demands an appropriate
cognitive framework., In my own investigations, behaviourist theories which
refuse to speculate on the nature of the thinking process have proved to be of
little practical value. An extension of Piaget's theory of stages to higher
levels also seems inappropriate. It is my belief that the best kind of overall
theory of cognitive development is one which relates the developing cognitive
structure of the individual to the conceptual framework that he either creates
or is expected to master. Two useful existing theories which satisfy these
criteria are those of Ausubel et al. 1978 and Skemp 1979; they both apply to

all individuals at all ages.

In a meaningful learning theory, the individual's concept image of the
mathematics he is expected to master is of paramount importance.  The cognitive
development is likely to pass through transition phases where new information
causes a restructuring of the concept image; this may involve a period of
conflict before the resolution leads to a new stage of thinking, as observed

by Piaget. But the theory would suggest not a small number of Piagetian stages,
but many transistions in many conceptual areas throughout life. It is the

study of such transitions and how they may be effected which I believe to be

a matter of central importance in a cognitive theory of mathematical education.
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THE NATURE OF MATHEMATICS

Given an adequate cognitive theory, the study of the processes of mathematical
research may reveal insights into the nature of mathematics itself. A recent
personal investigation (Tall 1980) confirmed the classical accounts (e.g.
Hadamard 1945) that the activity is anything but logical, with the individual
doing the research painfully putting together conceptual images from his
cognitive structure, groping intuitively for new patterns (often inaccurately)

long before they could be logically verified.

There is a subtle blend of choice and consequence in research: the mathematician
chooses (or invents) his starting points, implicitly or explicitly (these may
include his concept definitions, his axioms and, to a certain extent, his rules
of procedure) but from then on there are logical consequences implicitly built

into the system which he must discover.

Educationists would do well to note this balance of choice and consequence,
invention and discovery, in mathematical theories. Many decisions in
mathematical education have been based on arbitrary starting points, chosen
by mathematicians for mathematical reasons, and such starting points may be
inappropriate for cognitive development. For instance, Piaget's notion of
conservation of number is implicitly built on Cantor and Frege's choice of
one-one correspondences between sets for the starting point for the theory of
cardinal number. The mathematical theory was never intended to take into
account the cognitive development of the child, where repetitive processes of
counting fit naturally into the human development of action schemata. A
reappraisal of the theory of cardinal numbers, as in Freudenthal 1973 or
Stewart & Tall 1979, shows that the emphasis on one-one correspondence at the

expense of counting is unwarranted.

The mathematics educationist therefore needs a flexible view of mathematics,
one which attempts to see it therough the eyes of the learner and reformulates
the structure in a potentially meaningful way. In doing so, one cannot escape
the need to know something of the higher realms of mathematics, so that it can
be made the servant of the educational process rather than the master.

Thus the circle closes: a theory of cognitive development enhanced by studies
in higher mathematics may be applied to understand and modify the higher
mathematics itself.
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APPRENTISSAGE DE LA NOTION DE LiIMITE
MODELES SPONTANES ET MODELES PROPRES .

Bernard CORNU , Université de Grenoble |

Within the mathematical activity, mathewatical
nottons are not only used according to their formal
definition, but also through menial representations
which may differ for different people . These "indi
vidual models"” are elaborated from "spontareous mo-
deis" ( models which pre-exist, Ftafore the learning
of the mathematical notion, and which criginate for
example in datly experience ) , interfering with
the mathematical definition . In this puaper, uve
study the spontaneous models and the eluboration of
the individual models for the notion of limit among
students . We notice that the notion of limit denot
very often a bound you cannot cross over, which can
cr cannot be approached . It is sometimes viewed as
reachabie, other times as unreachable . The term
"tends to" is also used with quite distinct meaning
which de not always agree with corv:ct mathematical
usage . We relate this study to the historical

evolution of the concept of limit .

MODELES SPONTANES ET MODELES PROPRES

vité mathématique ne se réduit pas a la mise bout & b
positiomns selon des régles logiques; un objet mathémat
pas mis en jeu uniquement d'aprés les axiomes ou les

qui le caractérisent. Le mathématicien - profession
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ou &léve - met en jeu 3 chaque instant des aspects trés person~
nels de la notion mathématique qu'il manipule : Il a présents i
l'esprit des exemples particuliers, chaque notion déclenche en
lui des images, et ce sont ces images qui font foncticnner bien
souvent l'intuition. La représentation mentale que le mathéma-
ticien a d'une notion donne # cette notion son aspect dynamique,
vivant . Elle permet au mathématicien de faire fonctionner 1la
notion. Au contraire, la définition mathématique formelle est
bien souvent figée ; elle reste bien sfr le recours et le garant
permanent, et elle permet 1'écriture et la communication. Mais

3 elle seule, elle ne suffit pas & déclencher 1'activité mathé-
matique . Il est intéressant d'étudier la formation de cette
représentation mentale des notions mathématiques, et il est
important de la prendre en compte dans l'enseignement (cf. Tall

& Vinner, 1981) .

En ce qui concerne la notion de limite, il se trouve que bien
avant d'en avoir commencé 1'étude en classe, les &lé&ves en ont
déja une idée, provenant de la vie quotidienne : l¢ mot "limite"
s'emploie en frangais courant, il a un certain nombre de sens,
cemme nous le verrons par la suite. Ces sens sont la plupart Ju
temps différents du sens mathématique. L'&l&ve 3 qui on va enseci-
gner la notion de limite a donc déji en lui ce que nous appelons
des mcdéics spontonés . La dessus, le professeur va donnrer la
définition mathématique, assortie d'exemples et de théorémes od
l'objet mathématique intervient et fonctionne. Il serait illusoire
de penser que la définition mathématique va effacer toutes les
conceptions antérieures Jde 1'éléve, en prendre Ila place pour
donner lieu a un modéle mathématigue qui désormais sera seul i
intervenir dans 1'activité mathématique . Bien au contraire, ccotte
définition va entrer en conflit avec les modéles spontanés. T1

va se produive des mélanges, des adaptations, pour finalement
aboutir chez 1'éldve 3 des modales ¢ngendrés a la fois par les
modéles spontanés et la définition mathématique : nous lcs appe-
lons medéles propres . Sur une méme notion, il peut y en avoir
plusieurs chez un méme éléve. 11s peuvent &tre (et ils sont bien

souvent) inexacts sur le plan mathématique . Mais, lorsque 1'&loye

aura a résoudre des exercices ou des problémes, il -cttra en jeu
ses modeéles propres, et non la notion mathématique a 1'drat pur
Alnsi, la plupart des erreurs ifailes par les étudiants 4 prop s

de la notion do limite ne sont pas le failt uniquemont du hasarld
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ou de 1'inattention, mais elles sont la ccnséquence logique de
leurs modéles propres. L'@tude des erreurs permet d'ailleurs de
retrouver les modédles propres des &tudiants (cf. les travaux de
Aline ROBERT sur la convergence des suites ). Par rapport 3 la
notion mathématique, les mod&les propres ne sont ni totalement
faux, ni totalement justes. La plupart du temps, ils sont issus
d'exemples, et ils peuvent donc &tre opérants sur certains exem-
ples et sur certains types d'exercices. Les exercices qu'un
étudiant rencontre lors de sa scolarité sont assez semblables

les uns aux autres, et on voit souvent des &tudiants réussir
leurs études sans trop de difficultés avec des modéles propres
mathématiquement faux, car ces modéles propres ont &té suffisants
pour le champ couvert par les exercices rencontrés. C'est en
prenant des exercices inhabituels, allant & contresens des schémas
classiques, qu'on arrive & repérer les inadéquations de certains
modé&les propres . Les mod&les propres ont aussi un caracté@re
évolutif : Au fur et & mesure qu'on les utilise, ils s'affinent,
se précisent, se corrigent . Mais ils peuvent rester éloignés du

modéle mathématique fort longtemps .
LA NOTION DE LIMITE

Nous avons cherché, au moyen de différents tests (cf. Cornu, 1980),
3 déceler la signification du mot "limite'" et de 1l'expression

“tend vers" chez des éléves, juste avant qu'ils regoivent un ensei-
gnement sur la limite, en classe de seconde . Les mé@mes tests ont
&té proposés ensuite 3 des &tudiants de différents niveaux, de

fagon a voir 1'évolution des réponses selon l'avancement des études.
De ces tests, nous avons tiré un certain nombre de renseignements

sur les modéles spontanés :

En ce qui concerne 1l'expression "tend vers", on observe d'abord
qu'elle ne fait pas vraiment partie du vocabulaire usuel des Eleves
de seconde. Ils ont du mal a donner des exemples de phrases com-
portant cette expression. Bien souvent, l'expression "tendre vers"

remplace "avoir tendance i'"; elle peut ne pas contenir d'idée de

variation effective : " Ce bleu tend vers le violet" , ou au con-
traire traduire une 8volution : " Ce régime politique tend vers le
socialisme'" . Dans un contexte mathématique, on a pu distinguer

quatre modéles dans l'esprit des élaves :

Modéle a : tend vers = se rapproche de (éventuellement en en restant
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éloigné). Ainsi, si une grandeur augmente par exemple de 1 a 3,
on peut dire qu'elle tend vers 10

Modé&le b : tend vers = se rapproche de ... jusqu'd l'atteindre .
Par exemple, si x augmente de | & 3, alors l+x tend vers 4 . Il
peut y avoir évolution avec le temps : d&s qu'on a atteint la va-
leur désignée, "gi ne tend plus'" !

Mod&le ¢ : tend vers = se rapproche de ... sans jamais l'atteindre
Par exemple, 1/x tend vers O lorsque x tend vers 1'infini .

Les modé&les a, b, ¢ contiennent la notion de variation : pour
qu'une grandeur tende vers un nombre, elle doit varier. Une fonc-
tion constante ne peut pas tendre vers quelque chose .

Modsle d : tend vers = "a tendance 3 ressembler 3" , "est voisin

de" . Par exemple : 2,8 tend vers 3

Le mot "limite" est évidemment plus habituel dans le langage quo-
tidien des él8ves. Il désigne presque toujours quelque chose de
statique, de fixe : limite géographique, limite & ne pas dépasser
(morale ou ré&glementaire), borne qué l'on s'interdit de franchir

"

"les limites de la condition humainel.. L3 apparait la nct.»on de

difficulté 3 atteindre la limite, et donc la notion de "se r.ppro-

cher indéfiniment". Parfois, la limite est ce qui sépare deux
choses : la limite entre un champ de blé et un champ de mais ; le
nombre 0 est la limite entre le positif et le négatif . Mais le

plus souvent, la limite est la fin : il n'y a rien de 1'autre
coté . Les mod&les principaux sont les suivants :

Modé&le a : Une limite est infranchissable, c'est une borne
Mod&le B : Le mod&le qu'ont certains &léves coincide avec la

notion de borne supérieure ou de borne inférieure

Modéle Yy : La limite peut &tre atteinte

Modéle § : La limite est impossible & atteindre .

Le caractére infranchissable de la limite est prédominant . Cela
aura des conséquences dans 1'activité mathématique . On notera que

pour beaucoup, la notion de limite ne contient aucune idée dc¢

variation, de mouvement, de rapprochement de cette limite

En général, "limite" et "tend vers" ne s'emploient pas dans le
méme contexte . La limite désigne quelque chose de précis, alors
que 1'on peut tendre vers quelque chose de plus vague . Un exemple
on dira que la suite

0,9 0,99 0,%99 0,9999 Cen

"a pour limite 1", ou "tend vers 0,9999..." . Ou encore, que la
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- : . 2
suite 1-1/n "a pour limite 1", mais que la suite n~ "tend vers
1'infini". Pour certains &ldves, une suite illimitée n'a pas de
limite ... puisqu'elle est illimitée . On constate que quelques

dtudiants réservent le mot "limite" aux suites dont la limite est
atteinte, et emploient 1'expression "tend vers" pour les suites

dont la limite n'est pas atteinte.

I1 est intéressant de constater que les moddles identifié&s chez
des &laves de seconde se retrouvent dans les mod&les propres des
dtudiants de tous les niveaux . Les tests que nous avons fait

passer nous ont montré que méme chez des étudiants tré&s avancés,
la notion mathématique n'a pas pris la place des modéles sponta-
nés . Leurs modéles propres sont extremement marqués par la con-

ception initiale
LA LIMITE ET SON HISTOIRE

Avant d'arriver 3 la notion de limite que nous connaissons tous
maintenant, les mathématiciens ont eu beaucoup de mal & préciser
cette notion. L'd&tude de l'histoire de la notion de limite permet
de voir que la plupart des mod&les que nous avons rencontrés chez
des &léves ont existé et ont jouéd un rdle dans 1'évolution de la
notion de limite. On employait encore au siécle dernier le mot
"limite" pour désigner les bormes d'un intervalle ; le débat pour
savoir si la limite peut &tre atteinte ou non, si l'on peut se
rapprocher indéfiniment d'un point sans le toucher, a &té au coeur
de la construction de 1'analyse, en particulier du calcul diffé-
rentiel, au XVIII® si&cle . Les fagons d'opérer des grands mathé-
maticiens d'alors apportent un éclairage intéressant pour la com-—
préhension des modéles qu'ont les &tudiants aujourd'hui. L'évolu-
tion historique permet aussi de situer les réelles difficultés de
la notion de limite, et de comprendre que la définition mathéma-

tique ne suffit pas 3 effacer toutes les difficultés
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L'ACQUISITION DU CONCEPT DE CONVERGENCE DES
SUITES NUMERIQUES DANS L'ENSEIGNEMENT SUPERIEUR.

A.ROBERT. Maitre Assistante de Mathématiques
Université& PARIS VI

Oun punpose in this article is to show how Lo acquire in College
Studies the concept of the convergency o4 infinite sequences.

We have elaborated a List of exercices and questions meant to allow
the students who answer them a way Lo express thein views of the
convergency of inginite sequences. Among the 1370 papers collected
Ain the 1979-80 school years, we have been studying the expressed
patterns, procedures and errons, the relationships between them
and how they will all be altered duting the 4 college years.
Although this subject is only thaught duning the §inst year, noti-
ceable changes are observed throughout the dollowing years, both
An reference to the expressed patierns and the procedures.

Notre objectif est de décrire 1'acquisition du concept de convergence des suites
numériques dans 1'enseignement supérieur (frangais) - grice i une &étude synchro-
nique de productions &crites en temps limitd par des &tudiants en cours de scola-
rité universitaire (& divers niveaux). Nous avions &tabli 3 cet effet un ques-
tionnaire comportant a la fois des exercices classiques sur les suites numériques
et des questions destinées 3 faire exprimer aux &tudiants interrogés les "repré-
sentations” qu'ils se font de la convergence des suites.

(D

Nous avons mené une &tude clinique et statistique de 1370 copies d'étudiants
de classes préparatoires aux grandes écoles, de premier cycle universitaire scien—
tifique et de second cycle universitaire de mathématiques - toutes les copies ont
été recueillies en 1979-80.

Nous nous sommes efforcés d'analyser les représentations (ou modéles) exprimées,
les procédures utilisées au cours des exercices et les erreurs auxquelles elles
peuvent donner lieu, la relation entre les modéles exprimés et les procédures, et

la répartition des conduites observées dans les copies au fur et 3 mesure du dé-

roulement des études universitaires.

Nous avons constaté une &volution notable des modéles exprimés, non sans rapport

d'ailleurs avec ce que l'on peut observer historiquement au fur et i mesure de

(2)

1'élaboration du concept jusqu'i sa forme actuelle . On remarque par exemple

1 . e e .
M En collaboration avec Madame J. Mac Aleese, statisticienne.

@) Cf. le travail de Madame M.C. Rour.
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l'apparition croissante de 1'expression du mod&le "mixte" caractérisé par une
description 3 la fois "dynamique" (un (terme général d'une suite) se rapproche

"statique" (traduction de la définition de la convergence en

de sa limite) et
¢ et N ). Corrélativement, les représentations monotones de la convergence
("les suites convergentes sont les suites monotones bornées') que 1l'on rencontre
en début de scolarité universitaire disparaissent des copies.

On note dans tous les exercices une augmentation simultanée de 1'expression des
modéles mixtes ou statiques et des procédures conduisant 3 la réussite des exer-—
cices; le mod@le dynamique, quant a lui, s'avére en général non discriminant par
rapport aux performances. Toutefois la relation entre le modéle exprimé dans

une copie et les proc&dures qui sont développées au cours des exercices est
variable suivant les t&3ches considérées et suivant le niveau, ce qui nécessite

une étude précise.

L'étude détaillée des solutions de chaque exercice par chaque &tudiant a per-
mis de dégager des types de procé&dures - "algébriques" (souvent erronées),
"formelles" (basées sur 1'exploitation de la définitiomn), utilisant tel ou tel
théoréme sur les suites, etc...

Si la répartition des procédures utilisées s'avére variable (13 encore)

selon la tdche considérée, elle semble au contraire bien cohérente dans chaque
copie et permet d'esquisser des types de comportement (conduites).

De plus, on peut noter, outre la relation avec les modéles evoquée ci-dessus,

(1

1'augmentation simultanée du nombre d'années d'études et 1'utilisation de
procédures conduisant & la réussite, et, le cas échéant, parmi ces derniéres
1'augmentation de celles qui présentent des changements de stratégie en cours

de démonstration.

I1 s'avére enfin que les erreurs commises par les &étudiants ne sont général-
lement pas fortuites. On trouve, par exemple, & l'origine des erreurs, des
lacunes dans les connaissances antérieures, des &mergences réductrices de
certains mod&les exprimés, 1'application erronde de th&or&mes, 1'application
de théorémes erronés (thBorémes en acte), etc... Nous nous sommes intdressés
plus particuliérement aux cas de "reconnaissances de formes' ol seule la forme
du thé&oréme ou de la définition est prise en compte, ce qui peut amener 3 des
conclusions dénuées de sens. Nous avons aussi remarqué que la production et
donc 1'utilisation de théordmes en acte relévent souvent de la méconnaissance

de certains présupposés qui existent dans les énoncés des théordmes corrects

(n

Compté au moment du passage du questionnaire.



- 329 -

dont sont issus les "théor@mes" erronds. Par exemple, 1'existence de la
limite est un présupposé dans des théorémes algébriques sur sa valeur -
méme si cette existence est supposée explicitement au début de 1'"énoncé,

elle est présupposée au moment de la formulation algébrique du théoréme.

Dans toutes ces analyses, nous avons constaté des différences importantes
entre les filidres classes préparatoires et premier cycle universitaire.
Il n'en reste pas moins que, mfme si on se limite aux filidres les plus
"efficaces" quant aux performances, il y a suffisamment d'&volution entre
les conduites de premiére année et de dernidre année d'enseignement supé-
rieur pour qu'on puisse affirmer que, en ce qui concerne cette notion de
convergence de suites (réputée acquise en premidre année) 1'"acquisition"

continue les années suivantes.

Pour terminer, nous voudrions insister sur la mise en &vidence des diffé-—
rences entre les individus recevant un méme enseignement et entre les di-
vers enseignements.

Les premiers résultats obtenus vont nous permettre de continuer ce travail

en affinant 1'&tude des rapports entre 1'enseignement dispensé aux &tu-

(1

diants et l'acquisition individuelle du concept.

(N

Cf. le travail de Madame F. Boschet sur les manuels de premier cycle
universitaire.
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CONCEPTUAL DIFFICULTIES FOR FIRST YEAR UNIVERSITY STUDENTS
IN THE ACQUISITION OF THE NOTION OF LIMIT OF A FUNCTION

G. ERVYNCK
University of Leuven, Belgium

RESUME

Dans cette communication nous voulons attirver l'attention sur quelques diffi-
cultés rencontrées par des étudiants entrant en premiére année de l'universi-
té. Ces étudiants ont choisi une spéeialisation en mathématique ou physique

et ont regu, au cours de 1'enseignement secondaire une initiation d la théo-
rie des fonctions. Ils ont été suivis de prés pendant les troils premiers mois
de leur séjour & 1l'université. Les difficultés rencontrées au début du cours
d'analyse mathématique, en particulier avee la notion de limite permettent de
constater 1'existence, chez ces étudiants, d'un image concept de la notion de
fonetion qui ne correspond pas entiérement 4 la définition formelle d'aprés
Dedekind et qui par conséquent entrave considérablement 1'introduction de la
définition (e, 8) de la notion de limite. On constate que le concept image de
fonction peut Etre situé 4 deux niveaux,au niveau I, le plus élémentaire,
L'étudiant identifie une fonetion 4 une courbe ou un graphe, au niveau II,
plus évolué, <1 1l'identifie & une formule. Il semble &tre trés difficile de
s'affranchir des limitations imposées par cette conception. On peut Etre méme
y ajouter un niveau III ou, plus généralement, on congoit qu'une notion mathé-
matique solt convenablement introduite en assemblant judicieusement une chaine
de symboles, procédant par analogie avec une définition rencontrée antérieure-
ment.

§ 1. INTRODUCTION

The paper concerns the difficulties involved in the acquisition of some con-
cepts of mathematical analysis by 18-year old students, beginning their first
year at the university. The sample consisted of a group of 52 students, all
having choosen a specialisation in mathematics or physics, hence they may be
considered as well disposed towards the subject and entered university with
the reputation of being a good student of mathematics at the secundary in-
struction Tevel. The following observations are the results of a series of
tests which underwent this students in the first three months of their in-
struction and of a series of lectures, working-sessions and informal conver-
sations with them.

During the two or three previous years the students' instruction included an
introduction to the fundamental ideas of mathematical analysis, with emphasis
on the techniques of the calculus (representation of function, calculus of
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derivatives and primitive functions, 1imits). The development of theoretical
notions was not very elaborate.

§ 2. THE CONCEPT IMAGE OF A LIMIT

In a logical development of the theory of functions of real variables,
the first fundamental notion met with is this of a limit. It is an occasion
to test the real level of mathematical understanding and ability towards ab-
stract thinking of the students. It is also a representative test, for the
result are, later on, confirmed in introducing notions of convergence of se-
quences and series, topology and integrals (with the current confusion of in-
tegrals and primitive functions). AT1 this topics show us the same slow evo-
Tution from a rather visual concept image towards the understanding of the
very abstract idea.

The starting point in introducing limits is the intension to study the
behaviour of a function in a neighbourhood of a point Xgs which is admitted
by the studentsof being useful without further difficulties, on the basis of
some striking examples such as

f(x) = %3 or .. = Elg_ﬁ , Or .. : sin(%&, etc. (x_ = 0)

Developing a correct mathematical intuition of the 1imit, the aim of
the course is to arrive at a full understanding of the formal definition, in
our case

Tim f =L iff ¥>0, 6>0
XX
such that # x e Dom (f), if 0 < |x—x0| < §, then |f(x)-L| < e.

It is not difficult to obtain a verbal formulation of the idea involved
in the formal definition : "if x is close to Xo then f(x) is close to the
Timit L" is a commonly accepted statement. But the trouble begins in turning
this statement into mathematical terms : it seems to be rather difficult to
understand thoroughly

- the meaning of "x approaches xo";

- the interconnection of the role of ¢ and n;

- the role and the order of the quantifiers ¥ and 3

- the insignificance of the case x=a and the value f(a);

- the fact that X, has to be a closure point of the domain of the function.
A clooser Took at this problems reveals that the use of graphical representa-
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tions may help to overcome the inherent difficulty of passing from a visual

image into a formal definition. Most students stick to the graph : there are
no difficulties if the function is capable of being fully represented, with

all particularities, on a sheet of paper. But if a convenient visual aid is

Tacking the troubles rises again : about 50 % of the students were incapable
to comment the absence of a limit for x = 0 of the function f(x) = sin(%),
some of them were even incapable of describing correctly the behaviour of
this function. And things are still worse with more complicated functions
such as

F(x) = x sin(d) or  f(x) = (x sin )"

Meanwhile this remark furnishes us an explanation of the fact that students
don't recognize the common nature of the 1imit of a function and the Timit
of a sequence or series (It is a pity that sequences are seldom endowed in
textbooks with a graphical reprensentation).

Of course, closely related to the idea of curve or graph is the idea
of formula and this implies a further step towards abstraction : the identi-
fication of a function with a formula. This is strongly encouraged by the
numerous exercices found.in textbooks. If the function is described by a
formula, the whole machinery of theorems and rules (de 1'Hospital), makes
the calculus of limits much easier. Some students become true experts in this
field.

§ 3. INTERPRETATION

The behaviour of first year students versus the introduction of 1imits
is a typical illustration of the formation of a concept image of a mathemati-
cal idea (Tall and Vinner, 1980). We may say that a primitive concept image
(level I) consists in the visual and extremely intuitive assimilation of a
function with a curve or graph. Because all students are familiar with coor-
dinate methods, this concept image is easily replaced by another one (level
11) where a formula is used as a substitute for a function. The mathematical
insight of a lot of students doesn't evolve further on. They assimilate a
function with a computer (= formula) which furnishes the values of f(x) for
variable x and which is linked with a plotter, producing the graph. In this
circumstances it is extremely difficult to explain the true meaning of the
(e, 8)-definition, because the modern Dedekind-definition of a function is
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Tacking and it is the Tatter "static" idea which confers the limit its full
signification. Of course, the Dedekind-definition is introduced at an early
stage in secondary schools in the context of set theory, but most teachers
don't Tike it and abandon it joyfully beginning function theory. However, we
have to admit that the visualisation offered by Venn-diagrams is unable to
replace the use of graphs. Nevertheless, the old "dynamical® view of a func-
tion is at the origin of most complications in explaining the 1imit and it
requires a lot of work to banish misconceptions. Even current terminology
s not very suitable (e.g. x "approaching" Xo)'

The (imaginary) self-sufficiency of a formula has so great a power
that it extends to the formation of concept images at a level III, which
exceedes the domain of limits, namely the concept of the self-consistency of
a string of symbols. In a few words we can describe it as follows : if we
assemble in a certain, wellchosen order a set of mathematical symbols [the
order is often a copy some other previously established formula), this
assemblage acquires by its own a meaning and we have to discover this mea-
ning by one or another trick (often by analogy with something already well
known). In this way, the stringent requirement in mathematics of establishing
a non-contradictory and non-void definition is greatly bypassed.

Examples of such concept images are (1) the use of the = symbol : « + o
and » x « have a meaning, but 0 x = has not, "is not defined" (but why? and
why is 0 x = = 0 in measure theory?); (2) in integral calculus : given a
function f, you write the integral sign / before it, and dx after, resulting
in the string Jf dx and this is the integral of f (but what about integrabi-
Tity of f?); (3) in convergence theory of series : for a given countable set

@

of numbers (xn; n€ IN), you write = Xn and by the very act of writing it
n=0
down there must exist a number called the sum of the series (without reference

to all elementary notions of convergence).
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ASPECTS OF DEFINITION IN MATHRMATICS

David Pimm = University of Warwick

Cet article concerne des aspects du fgle de définitions en
mathgmatiques. Le discussion est divisé en quatre. Lg premiere
partie concerne la metaphore, qui existe en chaque définition
grace au presence du verbe "@tre",en faisagt 1'identific§tion
entre les deux parties,Pour discggggbles merites d'une défin-—
ition on doit comprendre quelques,de ses consequences.Pour
eux découvrir, on doit l'accepter.

Y . Los g el N
La deuxieme est au sujet de définition vis-a-vis des organ—

isateurs en avance(conception d'Ausubel), T1 s'agit d'un
filtrepour des situations mathéﬁatiqnes par rapport 2 1'iden~
tification des examples et des non-examples. Il faut contrdler
chaque definition sgggerée contre les faits qu'on voudrait
achever par cette definition, Une example de "longueur"esﬁ
discutée et aussi les relations entre 1'intuition et la défi-
nition,

La troisighe partie traite 1'intention en mathématiques et la
role centrale qu'il joue en decisions de Jugement et de valeur.
La discussion se tourne sur une definition de Euclid et une
contre-example de cette definition de Connelley fait en 1978,
Est-ce du'on peut parler d'une vraie définition(ou une vraie
conception)en mathematiques? On trouve que tout le temps, les
mathematiciens tournent les processus entre objects(par exemple
les numeros,les sequences,les permutations) et puis on cherche
une definition.

La deraiére partie discute courtement la conception de Imre
Lakatos de definition preuve-genérée et/aussi une quotation
d'Aristotle sur la relation entre une definition et une mangue
de preuve.Il y a aussi un appendice sur des choses en mathema—
tiques dont on peut vraiment parler de comprendre.

In this paper I intend to discuss some points concerning the nature and use
of definitions in mathematics. The examples cited will necessarily be brief
and will be dealt with at greater length at Grenoble.First let me set this
paper in a slightly broader context,Any treatment of mathematical understand—
ing should contend with specific features of mathematics itself.As Putnam said
"Taxonomy without theory is blind" (1975).Too narrow or age-limited a study
of mathematics can miss certain aspects which have ramifications throughout
mathematical education.Appendix 1 contains a preliminary list of mathematical

terms for which T feel it makes sense to 4alk about understanding.

A second general point concerns the way we inquire about understanding.The
question "Do you understand" tends to force a dichotomous yes/no answer and

encourages the view that there ape only two states of understanding,all or
I’
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none.A far better question would be "Show me your understanding. Let ne see
the nature,quality and extent of it".For me,understanding is a far vaguer
notion.My understanding of something waxes and wanes,it alters continually,
fading in and out,but,as Larry gopes claims,"it deepens as the number of per—
spectives I have on it increases",Consider the many diferent ways of looking
at angle or fraction.No one way is sufficient by itself.Below are comments on
some aspects of definitions that I would like to discuss.

a) Metaphor:(see Pimm(1981a) for further remarks on this topic)

Definitions create identifications,The metaphoric quality arises initially
from the unvarying use of the copula "to be" in that they assert an X is some-
thing.While this may have originally identified the literal meaning (e.g.
multiplication is repeated addition),wih widening use the two ideas,forerly
the same,become separated.Repeated addition,far from being a synonym, becomes
merely one possible model for interpreting a statement about multiplication.
Various metaphors are of use in understanding fractions.Fractions seen as
operators provide a useful means for coming to grips with their multiplication
(composition),but this is not helpful for making sense of their addition, so
an alternative image is required.Neither view is the right way of looki g at
fractions.The judgement as to their relative worth depends on your intention,

what you are trying to achieve(a point to which I shall return later).

At a higher mathematical level,consider the definition of the tangent space

to a manifold in terms of derivations on it.Here the concept image differs
widely from its definition.Why are we so willing to accept opaque definitions
and work with them rather than question them?In part,to challenge a Serinition
requires some understanding of its consequences~to discover some of the conseg—
uencesrequires working within the framework established by it.But isn't this
just another instance of the indoctrination theory of education,just as we
learn to perceive in part as the result of social conditioning(see Lakatos,
1976,p.17).There is a dearth of criticism in mathematics and many of the social
characteristics of mathematics,those of choice among alternatives,negociabil-
ity of meaning and concepts,exploration,committment,intention and so forth can
be well illustrated by critical discussion of definitions(see Pimn,1931b).Such
decisions are made about mathematical objects—what is the path we should

follow among such conflicting criteria as intuitiveness,plausability,power—
fulness,generalisability and simplicity?One guiding suggestion by Larry Copes
is"given the chance to define something in a less-intuitive but more general-
isable way,have the definition make sense, then lay the"groundwork" for later

generalisation of the definition by proving the logical equivalence,"

b) Definitions as advanced organisers.
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Definitions allow us to focus attention on certain s2lient features of mathe~
matical situations which often will become examples of a concept.An example
has to be an example of something,"This drawing was not in her mind an example
of anytring geometrical.It was not a consequence but a starting point.But
after we have developed some theorems the drawings become examples. " (Hawkins,
1980,p.44).Definitions therefore act as filters through which to view mathe-
matical situations.We even can accord something the status of being an example
or not,Is 1 a prime number or not?hell, it depends.It depends in part on
whether or not we want it to be prime - for that decision will guide our
choice and judgement of an appropriate definition of primality.We must have
some understanding of a concept before we are able to judge whether or not a
proposed definition for it is a good one,"Any extensional criterion for a
concept would have to be checked to make sure it gave the right results,
otherwise the choice of the criterion would be arbvitrary and unjustified.”
(searle,1969,p.9).Consider, "The length gf a parameterised plane curve (x(%),
y(t)),where a& t<b, is defined to bejqédx’(t) +y72§521&t ".We check that the
definition agrees with our known examples(e.g. length of a straight line.
perimeter of a circle) and this encourages us to accept it as a valid charact—
erisation of length. It also acts as a device for extension in that we can now
calculate the lengths of curves we were previously unable to.It also suggests
the possibility of non-rectifiable curves(since irtegrals sometimes fail to
exist) and so acceptance of a definition may also entail a revision of our
intuitions about a notion.The Jjustification for calling the value of the

above integral "length" however comes from the previous examples.

¢) Intention in mathematics:

There is often a concealed proposition behind a definition,verifying that the
definition does indeed do what we want it to do. The judgement of adequacy or
otherwise depends on our intention, what we want the definition to do.Consider
the following definition from Euclid T¥,9. "Equal solid figures are those
contained by similar planes equal in é;énitude and multitude" . From its use the
required sense of equal is 'same volume'.David Fowler(to whom I am most grate-
ful for this example)suggests a planar pseudo-Buclidean definition: equal
polygons are those contained by lines equal in magnitude and multitude.If
equal here were intended to capture 'same perimeter',then this is a satisfact-
ory definition;if it were'same area',then it is an unsatisfactory one,for
polygons are not determined by their sides(except for triangles)-we can flex
them,I will illustrate Connelley!s flexible polyhedron, an object which inval-
idates Buclid's definition and is thus a counter-example to a definition.Thus

both definitions contain hidden theorems w .ich turn out to be false,though in

the case of the Euclidean one, it was only shown to be inappropriate in 1978.



- 387

What a definition is intended to capture is a primary basis for any judgement

of its adequacy.

But would we ever say a definition(or concept) were the true one?0mar Khayyam

in Discussion of Difficulties in Fuclid,dealt with the parallel postulase and

the definition of ratio in Buclid's Elements.He refers to two definitions,
Famous Ratio(the celebrated,intricate Book V,5) and True Ratio,where the
latter is based on the process of anthyphairesis~the so~called Euclidean
algorithm, (In passing,Khayyam also makes the definition"like magnitudes.,.

are those whose difference has a meaning".In other words, pairs of magnitudes
to which the Fuclidean algorithm can be applied-a completely functional and
process-related definition).One reason for studying the history of mathematics
is to discover instances of definitions(or ways of looking at certain situat-—
ions) being superceded by others and the reasons for it, Fowler's work (1979,
1981) on pre-Euclidean mathematics is an attempt to reconstruct an older
conception of ratio (based on the process of anthyphairesis) which he believes
was erradicated by the more powerful,abstract proportion~theory methods to be
found in Buclid BookfjiHe feels this reconstruction is necessary in order to
make sense of much of The Elemerts,particularly Book IL and Book glthe latter
of which,in terms of the number of lines)oomprises one third of the entire
work),What were those Greek mathematicians trying to do which led to this

mathematics?

True definitions would be of true concepts~objects in some unchanging, Platonic
world.In the study of mathematics we turn processes into objects, for which we
then seek definitions.We even reify mathematical activity itself, the posing
and solving of problems, into mathematics, a body of knowledge.There are many
examples of lower-level processes becoming the objects of study at higher
levels.Initially we have the process of counting producing numbers as invar—
iants of the construction.Differentiation moves from process to an element of
a function space of operators.A permutation of a set becomes a thing, a seque-
nce of numbers becomes a thing.However,in mathematics,one central criterion
with regard to both concepts and co-structions is usefulness, one of practic—
ality and pragmatism,This implies that as our intention changes, our attention
may change and with it this criterion of usefulness.We may see our mathematical
objects differently or even our judgement as to what constitues an object of
interest.We have changeable concepts in that their very existence seems to be
dependent on our purposes. Fisher's (19€éQarticle on the demise of invariant
theory describes a ghost town in our Platonic world where no-one goes any more.

The objects are no longer attended to and it is almost as if they were never

there because we have forgetten them, Except of course they have influenced
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objects and ideas to which we do still attend which we hope to understand. But
" above all mathematics is a human mental activity and as such our concepts and
their definitions change in accordance with our requirements.For example,is the
change in the concept of group which can be seen throughout the nineteenth
century a sequence of approximations to the true concept, or a reflection of
the chaaging use to which it was being put(see Pimm 1979 for further details)?
Mathematicians in the main have negociated a high degrée of agreement about
their constructs and the ability to agree over such characteristics of mental

objecte leads to the feeling of their having an independent existence.

VMathematics is above all a constructive activity. Our Platonic world is litt-
ered with such constructions, some unfinished(by our lights),some misshapen,
some broken,some discarded,some currently being played with and explored.But
it is nct random discovery,it is building with an end in mind. We are shaping
our Platonic world by our designs and we have the ability to pull down and
rebuild.Why were certain definitions accepted over others which may have been
simpler or more intuitive or despite their ontological shortcomings? In part
because they were useful constructs which permitted the solution of problems.
Pragmatism often rules in the world of mathematics also.As Hilbert said," In
mathematics,as elsewhere,success is the supreme court to whose decisions

everyone submits".

d) Proof-generated Definitions and Definition-generated Proofs:

No discussion of definitions would be complete without mention of Lakatos work

in Proofs and Refutations on the tangled interrelationships between the notions

of theorem statement, theorem proof and definiticn of concepts. There is no
space here to do this notion justice(though I will make some remarks during my
presentatioa. Let me end by quoting Aristotle on what at first sight seems to
be a reverse instance of Lakatos' notion of proof-generated definition.

"Tt would appear that in mathematics too some things are difficult to prove
owing to the want of a definition,for instancethat the line parallel to the
side and cutting the plane figure(e.g.rectangle,D.P.) divides similarly the
base and the area. But once the definition is stated,the said becomes immed-
iately clz:ar.For the areas and the bases have the same antanairesisjsuch is
the definition of the same ratio."(Topics 158b29).

_APPENDIX 1
Different aspects we can come to understand.
a) Concept:Whence does it arise,why is it useful,what is its use?Concept image.
b) Definition:What makes a definition a good one?Examinition of alternatives,

definitions as advanced organisers,proof-generated definitions
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c) Statement of a theorem:Relating two or more concepts.

d) Proof of a theorem:Globally or line-by-line.What makes it a proof?Can you

abstract a method(e.g. induction,contradiction,compactness),

e) Problem:Why is it a problem?What are the consequences of its solution?
Heuristic and problem-posing as tools for further understanding(S.Brown,
L.Burton,P,Halmos,G.Polya,M.Walter).

£) Solution:Why is it a solution?Justification,pragmatism(it works).Is it the
only one,the best one?Grounds for acceptability,the social and negotiated

qualities of the decision.

‘g) Example/non-example/counterexample:What is it an example of?Connelley's

flexible sphere is a counterexample to a definition.Lakatosian theory-based
taxonomy of local and global counterexamples and their uses.
g) Axiom:What makes it an axiom?Intuitive guality,basicness,inability to prove
at this stage(e.g. Aéﬂiz).
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THE PUPIL'S VIEW OF MATHEMATICS LEARNING

Dr. C. Hoyles,
Polytechnic of North London, England

. 2 -z .
Ce rapport représente les résultats de recherches examinent
. la réaction d'éléves de 14 ans 4 leurs experiences scolaires -

bonnes et mauvaises. Ce rapport décoit en particulier les
traits révélateurs dans les expériences d'enseignement de

. rd
mathématiques. 11 fut demandé a 84 613ves au cours

d'entrevues semi-structurfes de commenter les occasions
lorsqu'ils eurent conscience d'€tre particulifrement bons

ou particulifrement mauvais dans leurs études.

Une histoire consista en un &vénement "critique" réellement
vcu par 1'é18ve et relata ce qu'il ressentit & ce moment-14.
La structure de 1l'entrevue utilis€e et les moyens par
lesquels les donndes qualitative furent analysées sont
discutés ici.

INTRODUCTION AND METHODOLOGY

The research¥* described in this paper was concerned with an
examination of how fourteen year old pupils perceived good and
bad experiences associated with their learning in school, how and
why they judged specific learning situations as good or bad and
what they perceived to influence these judgments. An attempt was
made to 'capture' these perceptions by asking pupils to tell stories
about times during which they had felt particularly good or
particularly bad when learning. The research also aimed to
discover how frequently stories about mathematics, good or bad,
might be told and to find out if these mathematics stories had
any distinctive features in a comparison with stories about other
areas.

In order to investigate the pupils' view of learning, 84 fourteen
year old secondary school pupils gave descriptions of actual
events (called stories) which they had experienced and which

#*The research was conceived as an extension to a secondary
school population of the Higher Education Learning Project
(Physics) (Bliss and Ogborn 1977) which had studied how
learning at university was viewed by Physics undergraduates.
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they felt had been particularly significant in their learning.

This approach was used since

- it allowed the pupils to talk about things that were real
and meaningful to themselves;

- it enabled an analysis of learning situations to be made
from the pupils' point of view, that is from their internal
frame of reference;

_ it allowed all factors perceived by the pupils as important
to be brought into the analysis and did not require the
restriction of attention to a limited set of pre-determined
influences;

- it enabled the interviewer to penetrate the actual meaning
of the pupils' descriptions if these were superficial,

ambiguous or ill-defined.

A semi-structured interview was used fo collect the stories.*
A fixed schedule of questions was not appropriate in this inter-
view since the pupil was free to describe any event, or sequence
of events, that came to mind, but a systematic approach was
adopted and an outline structure developed. 8ix stages of the
interview were distinguished: -
- the informal introduction aimed at setting the pupil atl ease
and where the research is described in a chatty manner;
- the collection of pupil data;
- the formal introduction where the request for a 'story' of
a critical incident is made;
- the elicitation of the concrete details of the event described;
- the elicitation of how the pupil had felt at the time of the
event;
- the request for a further story.

The nature of the interview, with its probing style and
reiteration of detail, was structured to make if difficult for a
pupil to make up a story and not betray this through inconsisten-
cies or contraditions. The interview was also specifically
designed so as to put the pupil at ease and encourage him or her,
in a non-directive and neutral manner, to talk openly.

% The interview was based on the critical incident technique
used by Herzberg (1967) in his studies of motivation to
work and had also been used in the HELP(P) study.
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ANALYSIS OF STORIES

After the collection of the stories, procedures of analysis were
developed which aimed to be both flexible enough to catch the
essence of the stories yet rigorous enough to allow comparisons
to be made between stories. The taped protocol of each interview
was transcribed verbatim and checked.

In order for a description to be accepted as a story for coding
and analysis, the following three components had to be
identifisple: -~
Tre context or situation in which the story took place,
called the situation;
The feeling expressed, called the feeling;
The factors which appeared to be associated with the
feeling, called the reasons.
Any pupil descriptions which did not contain all of these three
component:s were discarded, leaving a total of 281 stories
available for analysis. These stories were then coded, that
is summarised into a series of descriptive statements and fitted
into a standard outline structure. The statements were firstly
taken directly from the interview transcripts and then standar-
dised. Two categorial schemes, one for feelings and one for
reasons, were inductively developed for the‘statements, using
an a posteriori approach to content analysis. A summary of the
categorial schemes derived will be distributed at the conference.

DISCUSSION OF RESULTS

Descriptive research of this kind produces a complex array of
rfindings, some of which are directly quantifiable and can be
analysed for statistical significance, while others are more
suggestive and insightful and though not widely generalisable
offer useful insights.

Out of the total of the 281 stories collected in this research
a significant proportion (114 stories, approximately 40%)

was concerned with mathematics and this proportion did not
merely reflect the time and emphasis given to the subject in
the school curriculum. Nearly one-third of all good stories
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and one-half of all bad stories were, in fact, about mathematics
learning. Out of the 114 mathematics stories collected, a
significant proportion (over 63%) was bad. In all the other
areas taken together the proportion of bad stories was less

than half (44.3%).

It would be reasonable to assume that the frequency of recall
of stories about mathematics 1s, to a certain extent, a
reflection of the strength of reaction to learning experiences
in the subject; that is pupils would be more likely to recall
experiences to which they had reacted strongly than those which
had a lesser effect on them. These findings, therefore,
suggested that mathematics fends to provoke both strong and
adverse reactions in fourteen year old pupils.

In a comparison of these mathematics stories with stories about
other areas, it appeared that the major sources of satisféction
and dissatisfaction in the mathematics learning experiences
were, in general, similar to those relating to other areas of
learning in school; that is, satisfaction tended to be
attributed to involvement or success in work and dissatisfaction
more likely to be blamed on the teacher. However, within the
sorts of reasons and feelings described in all the stories,

some quite marked differences in emphasis were apparent in the
mathematics stories.

Firstly, the stories showed quite clearly that pupils were much
more concerned with their own role in relation to learning
mathematics than learning other subjects. Puplls had strong
ideas about what they were capable of doing and what they were
capable of understanding in mathematics and their mathematical
experiences were dominated by this focus on self and feelings
about oneself. There was, however, dilversity within the
mathematics stories which suggested that pupils differed in the
goals they set themselves with regard to mathematics. For
example, some pupils liked being able to do their mathematics
on their own and liked to know 'why' as well as 'how';

some pupils enjoyed challenge in the subject; some puplils were
well satisfied if they could just grasp 'what to do' in order
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to reach a successful solution; a greal many pupils were very
concerned with the outcome of their work, its rightness or
wrongness and the marks they received. Despite these individual
differences of goal, however, the stories indicated that it was
when =z pupil failed to reach his or her particular goal, what-
ever it happened to be, that he or she began to doubt his or her
ability. The following quotation from one o the interviews 1is
given as an illustration of this tendency - '

"1 just wanted to get something down on paper, that's all ...
just be able to write down a few lines to show I'd at least
tried and was not completely stupid. It was no good.

I was just a failure ... I knew I would never be able to get
anywhere with it, no matter how long I sat there ...".

Further investigation is needed in order to find out in more
detail the types of goals to which pupils aspire in mathematics,
how trhey come to choose these goals, and the consequences for
them of failure to reach these goals.

The stories also showed that anxiety, feelings of inadequacy

and feeling of shame were quite common features of bad
experiences in learning mathematics. In addition, from some of
these stories it is possible to speculafte as to the type of
situation which seemed to provoke or accentuate such feelings.
For example there was some indication that pupils in mathematics
were particularly fearful and resentful of teachers who seemed to
impose additional demands on them. Pupils were appreciative of

a secure, encouraging environment in their mathematics lessons
and liked teachers to provide a structured logical progression

in their work, with plenty of patient explanation, encouragement
and friendliness. Pupils, therefore, seemed to want teachers to
'make it easy' or 'tell them the way', perhaps in order to
relieve any tension they might feel in their mathematics learning.

CONCLUSIONS

The pupils' stories about mathematics learning in this research
can be seen to highlight certain problems for the teacher and
mathematics educator, firstly in terms of apparently conflicting
expectations between pupils, and secondly in terms of pupil
expectations which would appear to be at variance with good
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educational practice. For example, the stories indicated that
pupils want security and structure in their mathematics, but

the provision of too much structure would probably discourage
creativity and exploration in the subject and mitigate against
pupils taking any responsibility for their own work and progress.
Pupils were extremely concerned with the outcome of their work,
they wanted to 'do it', 'finish it' and 'get it right', but

this very concern could mitigate against involvement in the
subject itself.*

Pupils appeared to demand grades and assessment yet seemed to

see these as 'information' as to their mathematical ability and
therefore judged themselves highly if they did well in mathematics
but found it difficult to rationalise any failure in the subject.
This also seemed to lead them to associate such failure with
feelings of inadequacy and anxiety. Pupils wanted to be given
mathematics of an ‘appropriate' standard but quickly lost confid-
ence if teachers left them behind or put pressure on them. Pupils
did not talk about what their mathematics was about, or how it
may be used. They did not appear to see that the subject could
be of any interest in itself but only as something to be done,
something to be mastered, something with an existence of its own.

This research has left questions unanswered and avenues
unexplored yet it has perhaps provided many insights and
pointers for future work. It is perhaps appropriate and in
keeping with the 'spirit' of the research to end with a
quotation from one pupil after he had told his stories:-

"I really enjoyed that, miss, you sitting there and listening
to me - makes a change somehow, doesn't it?".

* The absence of this involvement, according to Lefcourt (1976)
would, at least partly, explain why any anxiety in mathematics
learning tends to be debilitating rather than facilitating.
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ASSESSMENT OF MATHEMATICS ANXIETY
Lucreda A. Hutton
Indiana University-Purdue University at Indianapolis

Abstract

Evaluation du "Mathematics Anxiety"

Ce qui suit donne un resumé des progfés fait sur le projet du present
auteur et d'Eugéne E. Levitt, directeur du departement de Psychiatrie,
Indiana University.

L' anxiété induite par les mathematiques produit des sensations
de tension et d'anxiété qui peuvent amener le sujet a Gviter de prendre
des cours importants de mathematiques et meme a Echouer a ces cours.

Dans une @tude conduite par Richard Suinn on a trouvékque plus d'un tiers
d'etudiants, suivant un programme de rehabilitation psychologique,

que 1'anxieté induite par les mathematiques etait au centre de Teur
prob]em@s.

Une performance faible en mathematiques limite serieusement la
carriére de nombreux etudiants. Dans notre societé technologique les
mathematiques jouent un role important dans un nombre croissant de
carrieres. ;

La manifestation d' une forte anxieté chez le professeur de cours
elementaires est un probléme particulierement grave. Ses‘étudiants (ages
de 6 ans 3 12 ans) sont souvent exposes a leur premiers cours et peuvent
etre fortement influences par 1'attitude de Teur professeur.

Les buts de ce projet sont: 1) D'étudier 1a frequence de 1'anxiété
induite par les mathematiques dans certains cours; 2) D'etudier 1'anxiété
induite par Tes mathematiques en tant que fonction de 1'anxiéte induite
par les examens; 3) D'etudier 1'anxieté induite par les mathematiques
en tant que fonction de certaines variables demographiques (age, genre,
etc...); 4) D'etudier 1'anxieté induite par les mathematiques en tant
que fonction du succés dans certains cours mathematiques; 5) D'etudier
1'influence de certains developpements en classe; 6) D'etudier 1'effet
des calculateurs sur 1'anxiété induite par les mathematiques; 7) D'evaluer
certaines methodes pour reduire 1'anxiete.

Cing questionnaires furent distribués a 1000 etudiants. Les resultats
sont sous etude et seront donnés a la conference de Grenoble.
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This is a progress report of an on-going research study by the
author and co-investigator, Eugene E. Levitt, Director, Department of
Psychiatry at Indiana University.

Mathematics is becoming an integral part of the preparation for
an ever increasing list of careers. Our technological advancements
are emphasizing the critical importance of mathematical knowledge in
our developing society. However, many capable students entering college
lack the high school prerequisites for entry level mathematics courses.
These students are severely limited in their career choices. In a
survey of a random sample of entering freshmen at the University of
California at Berkeley in 1972, Lucy Sells reported that 57% of the
males and 92% of the females lacked the mathematics prerequisites for
any college-level calculus or statistics courses. Many of these students
at our college take remedial mathematics courses. These courses have
a success rate of only 50 or 60 percent. Sells identified mathematics
as a "critical filter" in career selection (Sells, 1973).

This math avoidance and poor mathematics performance is currently
being self-identified by many students as "math anxiety". The best
seller book entitled "Overcoming Math Anxiety" by Sheila Tobias (Tobias,
1978a) popularized the term "math anxiety" as well as the idea that
females were especially susceptable. One definition of math anxiety
is "feeling of tension and anxiety that interfere with the manipglifion
of numbers and the solving of mathematical problems in a wide variéfi—

of ordinary life and academic ons ichardson & Suinn, 1972).

Mathematics avoidance and poor mathematics performance are prevelant
among women in the USA (Carnegie Commission on Higher Education, 1973;
Betz, 1977).The reasons for male-female differences in mathematical
performance are not clear. Social processes are given much credit for
female math avoidance by John Ernest (1976, "Mathematics and Sex")
While Tobias (1978b) cites an unfortunate early experience with a
particular mathematics teacher as one probable cause.

The debilitating effects of academic anxieties on student performance
have Tong been recognized (Spielberger & Sarason, 1978). Educational
and psychological researchers have been studying the effects of anxieties
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for many years. However, it is only recently that subject specific
anxieties have been considered. Mathematics anxiety involves feelings
of tension and anxiety that can result in avoidance of or failure in
fundamental mathematics courses. In a study by Suinn it was reported
that over one-third of the students responding to a behavior therapy
program indicated that mathematics anxiety was at the center of their
problems (Suinn, 1970). Of special concern are what appear to be
clinical manifestations of strong mathematics anxiety among pre-service
elementary teachers. The elementary teacher is usually the student's
first formal mathematics teacher and thereby can have a profound effect on
student attitudes. In a survey of 80 public colleges and universities
representing the 50 states in the U.S.A., 24 baccalaureate degrees were
ranked by mathematics requirements and correlated by degrees conferred
by sex in 1974-1975 (Lavroff, 1980). Mathematics anxiety scores were

a more powerful correlate to the choice of academic majors than sex.
Female education majors reported the highest anxiety scores of any
degree group. Lavroff reported that nearly half of these students
reported that "fear of mathematics" had kept them from selecting the
major they wanted.

The objectives of this study are: 1) To investigate the prevalence
of mathematics anxiety of students in certain undergraduate mathematics
courses; 2) To investigate the relationship of mathematics anxiety
to general test anxiety; 3) To investigate the relationship of mathematics
anxiety to certain demographic variables (age, sex, etc.); 4) To
investigate the relationship of mathematics anxiety to achievement in
mathematics courses; 5) To assess the causal impact of certain classroom
factors on mathématics anxietyi 6) To investigate specifically the
effects of hand calculators on mathematics anxiety; and 7) To evaluate
certain methods for reducing mathematics anxiety.

We are concerned with the relationships among mathematics anxiety,
general test anxiety, and anxiety proneness in general. We have collected
data in a number of different mathematics courses such as beginnihg
courses for business majors, for elementary education majors, and courses
that are usually taken only by math majors. The following three anxiety
scales were administered to a sample of 1000 students in these mathematics
classes at the beginning of Fall 1980 semester:
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1. The Mathematics Anxiety Rating Scale (Richardson, Frank C.
& Suinn, Richard D., The MARS: Psychometric Data, Journal
of Counseling Psychology, Vol. 19, 551-554, 1972). Data
presented in this reference indicates that MARS is-valid, reliable
and has high internal consistency.

2. Test Anxiety Inventory (Consulting Psychologist Press). This

~ instrument was developed recently by C. D. Spielberger of the

University of South Florida. The TAI consists of 20 statements
pertaining to how the individual generally feels; responses
are recorded on a 4-point Likert scale.

3. State-Trait Anxiety Inventory (consulting Psychologist Press).
The STAI scale is intended to assess individual differences
in anxiety proneness. This scale consists of 20 statements
pertaining to how the individual generally feels; responses
are recorded on a 4-point Likert scale.

The responses to these three scales are being analyzed for consideration

of the first three objectives listed above. The semester grades of students
who responded to the three anxiety scales are also being compared with
levels of anxiety to investigate the question of a relationship between
mathematics anxiety and achievement in mathematics (Objective 4).

A Teacher-by-Subject survey was prepared and distributed to elementary
teachers in the Indianapolis Public Schools (students age 6 years through
12 years). The survey asked the teachers to indicate their Tike-dislike
for teaching the various subjects in the elementary school curriculum,

e.g., writing, grammar, reading, mathematics, social studies and science.

It also asked them to rate their preparation for teaching the various
subjects. This survey was developed to consider the hypotheses: a)
elementary teachers do not like mathematics, b) elementary teachers

do not consider themselves well prepared to teach mathematics, and c)
elementary teachers pass their dislike for mathematics on to their students.

Interviews with elementary education students who consider themselves
to be math anxious gave rise to the thesis that mathematics students
who are experiencing difficulties may have a generalized set of characteristics
which they attriubte to mathematics teachers. If this is true, perhaps
these characteristics will furnish clues to causal questions. To investi-
gate this question a survey listing 17 personality traits and their
antonyms was distributed to a sample of students. The results of this
survey are "anxiously" awaited.
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‘Analyses of the above data is currently in progress. Regretfully
at this writing the results are not in reportable form. However, the
results will be distributed in Grenoble and their implications for mathematics
. education will be discussed.
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MATHEMATICAL INVOLVEMENT - A SIGNIFICANT AFFECTIVE VARIABLE?

A.J.Bishop

Cambridge University Department of Education

‘Il y a un grand gouffre entre les recherches traditionelles
el sujet des attitudes mathématiques des él8ves et leur
conduite en classe. Dans cet article l'auteur lie les
recherches au sujet d'inguietude et celles de la conduite

des professeurs, aux recherches récentes au sujet 4’
tachievement motivation' et ‘attribution theory'. Il propose
une variable nouvelle 'mathematical involvement' gui peut
nous aider avec les recherches observantes des attitudes en

classe.

In this paper I want to bring together some ideas from different areas of
research which all relate to the affective dimension of mathematics learn-
ing in the classroom. It is my impression that there is a gap between

studies of the affective side of mathematics and the reality of the class-
room, which I see as an example of a more general division between psych-

ological research and classroom teaching (Bishop, 1980).

Traditionally research into pupils' attitudes to mathematics has involved
some sort of self-reporting system relating to various scales. For example
in the IEA study (Husen, 1967) five attitude scales were used, relating to
mathematics as a process, the difficulties of learning mathematics, the

place of mathematics in society, school and school learning, man and his
environment. The approach was typically psychometric. No behavioural, indi-
vidual observational evidence were used, only group written responses to
written stimulii. There was much concern about the types of statements used,

the reliability of the responses and the quantitative analyses of results.

There was however, little relationship between this type of research and what
was happening in the classrooms. Occasionally affective measures have been
used alongside achievement tests to evaluate teaching experiments, so at
least there was an assumption that attitudes were modifiable though how modi-
fiable is still unknown. The construct of 'attitude' seems to relate to
rather deep-seated and persistent phenomena. Although the children arrive

at a mathematics lesson with certain attitudes towards mathematics, and leave
again with certain attitudes, we know very little about what occurred in

between - how did their attitudes affect what happened in the lesson? How
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With an increasing concern for disadvantaged groups in our educational
systems came a research focus on problems surrounding negative attitudes.
'Fear of mathematics' (mathophobia) and 'anxiety' studies have been under-
taken with for example, slow learners, adults, girls, and black children in
America, and their combined picture has shown us how Ffightening mathematics
can be for some peoplé. Moreover it is clear from these studies that the

teaching situation is more to blame than the subject itself.

So, if we are to understand more about the mechanisms by which teachers
modify pupils' affective responses then we must attempt to focus on the
dynamics of ‘the mathematics classroom. Fortunately observational research
has developed considerably over the last decade and many interesting find-
ings are emerging. For example, the procesg-product methodology of Good,
Brophy, Grouws and others has thrown into question the teacher' use of
praise. In terms of effective teaching and developing favourable attitudes
to the subject one would expect teacher praise to have a significant effect.
However Good and Grouws (1977) found that more effective teachers used
comparatively little praise and criticism, and Good (1980) reports Brophy's
findings that the use of praise seems to be "determined more by students'
personal qualities or teachers' perceptions of students' needs for praise

than by the quality of student conduct or achievement" (p.9).

Now it is the case that these studies use increases in pupils' achievement
test scores as the criteria of effective teaching and we must be cautious
about interpreting these findings in relation to pupils' affective develop-
ment. Nevertheless research like this shows that "obvious" teaching strat-
egies like the use of praise have a non-obvious relationship with pupil
outcomes. Indeed Good and Grouws' (1977) research shows that other aspects
of effective teaching could well have much more significance for the devel-
opment of favourable attitudes - general clarity of instruction, a task-

focussed environment, and higher achievement expectations, for example.

So what should be observed in observational research in order to understand
better the affective side of mathematics learning in classrooms? In my

view, in order to answer that question, we need to search for richer and more
"surface" constructs than 'attitudes' and 'anxiety'. Such a search has
taken me into the extensive literature concerning achievement motivation and
attribution theory. The ideas of achievement motivation, and the 'need to

achieve' have been around for quite a long time now (Atkinson, 1964) but have
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not really been taken up by the education profession. Perhaps this is due
to difficulties of testing achievement motivation but also I think it is
because this characterization of motivation does not offer much possibility
for direct modification by the teacher. The pupil arrives in the classroom
with certain needs and motivations, and Atkinson's ideas can certainly help
us to appreciate why the pupil may or may not get any satisfaction from a
particular mathematics lesson. But the idea of motivating the pupil, sounds
rather like what Football managers do-to their teams, and does not have much

educational appeal. IndeedKelly (1955) would argue that 'motivation' itself

"is a redundant construct. Man is motivated, by definition; the question is

towards what?

In the last decade, however, a theory has been developed which does suggest
a way-in to the problems of helping children who appear to have either
negative attitudes towards mathematics or motivations towards other things

than mathematics in mathematics lessons. Attribution theory refers to the

field of research concerned with how individuals explain the causes of

events to themselves. Weiner (1974) has been the leader of a group trying

to understand how individuals with different needs for achievement see the
causes of their successes and failures. In particular they have looked at
so~called 'internal' causes like ability, and effort, and 'external' causes,
like task difficulty and luck. As well as the internal/external dimension
there has been much interest in the 'stability' of these factors with ability

and task difficulty being stable, whereas effort and luck are unstable.

Bar-Tal (1978) in an excellent summary article sets out the typical findings:
after success, people feel most pride when they can attribute that success
to either ability or effort (internal) and less pride when they think it was
due to good luck or the ease of the task; failures attributed to lack of
ability or effort result in shame, in contrast to attributions of failure to
bad luck or task difficulty. If we then add in the achievement motivation
differences it appears that pupils high in achievement-needs tend to attrib-
ute success to the external causes. More importantly, high N-ach pupils

tend to attribute failure to lack of effort, which is unstable and therefore

-changeable, whereas low N-ach pupils attribute failure to lack of ability,

which is stable and does not allow for the possibility of change.

What are now beginning to emerge in the literature are studies which show
that by providing learners with appropriate feedback they can be encouraged
to change their attribution patterns. For example, Dweck (1975) carried out

a study with elementary school children who showed 'helpless' behaviour i.e.
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giving-up in the face of failure. They were attributing their failure to

lack of ability, but by giving them particular verbal feedback during the

"training sessions Dweck taught them to attribute failure to lack of effort.

The results showed that the children continued in this and began to improve
their performance. These findings have been replicated and more studies are

appearing.

This has been a brief and therefore superficial overview of what is a highly
complex area (see, for example, Covington et al., 1980) but we know enough
from existing studies of teacher-pupil interaction to realise the signifi-
cance and potential of teacher expectations and feedback following success-
ful or unsuccessful learner performance. For example, we know (now) that
praise following success is not necessarily the best thing to offer. Further
challenges, or analysis of the reasons for that success may be more bene-

ficial.

What we need now are studies which explore these ideas in the mathematics
classroom, and in order to do this we need to choose,amongst other things,
what to observe. I have decided to focus initially on what I call Mathemat-
ical Involvement - the engagement of a pupil in a mathematical task. It is
a dependent variable - dependent on the teacher, the pupil and the context.
It is also assumed that it has a controlling effect, in the sense that if
the pupil is not mathematically involved then there is little chance of him

producing successful performance.

It is a variable, in the sense that a pupil at any one time may or may not
be mathematically involved. It will therefore be possible to use the
critical incident technique which I have used previously in work on teacher
decision-making (Bishop, 1976), to study the reasons offered by the partic-
ipants for the discontinuities in involvement. Mathematical involvement
relates to effort and task-difficulty (attribution theory), and also to
other phenomena analysed in classroom observational research, like 'time-

on-task' and 'engaged time'.

‘The important teacher behaviours which will be studied will relate to

initiating mathematical involvement by the creation of tasks appropriate to
the pupils and sustaining it , by encouragement, feedback and by the control

of extra-individual aspects (peers, physical constraints etc.).

The aim will be to explore the relationships between teacher behaviour,

‘mathematical involvement and pupils' attributions, and hopefuliy to see
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whether teachers can be encouraged to modify and ‘educate' those
attributions.

S5a
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BILINGUALISM AND REASONING IN MATHEMATICS

L.C.S. Dawe, Research Student

Cambridge University Department of Education

Dans cette communication, on essayera de prééenter le contexte
dans lequel s'est déroulée une etude sur des enfants bilingues
qui apprennent les mathematiques dans une langue différente de
Jeur langue maternelle dans des €coles anglaises.

L'énchantillon consiste de 203 enfants bilingues et de 167
enfants monolingues de langue anglaise, qui ont entre 11 et 14
ans. Les sujets venaient de 5 écoles anglaises. Les bilingues
représentent 4 paires de langues: Penjabi-anglais, sujets
d'origine indienne; Mirpuri-anglais, sujets d'origine pakista-
naise; Italian-anglais; et Patois-anglais, sujets d'origine
caribéenne. Des tests de raisonnement déductif et de resolut-
ion de problemes en arithmétique représentent les principales
variables dépendantes. Explorer 1'influence de la compétence
d'un enfant dans sa langue maternelle sur sa capacite &
raisonner mathématiquement dans une deuxieme langue (ici
1'anglais) est un des buts principal de 1'&tude. On cherche
d'autre part a etablir quelles sont les variables linguistiques
spéecifiques-telles que la comprehension &crite ou la capacité
3 utiliser les mots d'articulation logique-qui peuvent rendre
compte d'une grande proportion de la variance des résultats
aux tests de raisonnement et de résolution de problémes. En
testant 1'hypothése de 1'interdépendance linguistigue proposée
par Cummins (1979) sur plusieurs couples de langues, en espere
éclairer d'un jour nouveau la gquestion de 1'éducation des
enfants qui apprennent les mathématiques dans une deuxiéme
langue.

In different countries throughout the world many people, both adults and
children, aré called upon to work or study in a language other than the one
they would normally speak at home. Such a situation is well known in
Europe and perhaps more recently has developed in North America. For
example, many Canadians are finding it necessary or desirable to study
through the medium of a second language. In Canadian schools many English
children are taught through the principal medium of French - the so called
"immersion" programs - while French speaking university students in various
disciplines are required to work from textbooks written in English. 1In
other industrial nations it is common to fina well established minority
languages, for example Welsh in Great Britain, Spanish in(the USA and where
immigrant communities have been established additional languages to that of

the host country have increasing cultural and educational significance as
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the community grows and their children attend school. Again, in developing
countries, formal education is often given in a European or a national
language which is not that of the learnex, Nowhere is this more evident
than in Africa where both French and English still assume much educational
significance. We see then that bilingualism has international importance
when we begin to examine the problems surrounding the education of children
who are requiied to learn in a second language. And, in particular, it is
of great interest to us as mathematics educators to understand how this

specifically relates to the teaching and learning of mathematics.

In Britain today there are large numbers of children learning mathematics in
a second language. Many of these are children of immigrant families from
India, Pakistan, Africa and the West Indies. The current debate about the
provision of mother tongue teaching for such children has focused on the
type of provision, how it could be introduced and more fundamentally why it
should be supported. In seeking to answer such questions educators have
turned to research for evidence on which to base decisions. Unfortunately
it is preciseiy here that confusion has been increased by contradictory
research findings. With respect to mathematics a recent extensive survey

of the literature carried out for my own research has revealed little

significant mathematical work to build on.

Up until the late 1960's most studies which either directly or indirectly
dealﬁ with mathematics, concentrated on school achievement as the dependent
variable. In the main, they pointed towards a handicap for bilinguals in
problem solving, but not arithmetic skills, when compared with monolinguvals
(Macnamara, 1966). The contrast between the performances in the two types
of arithmetic is almost certainly a reflection of the difference in their
dependence on language. As such, the results found are not surprising.
However other findings (for a review see Austin and Howsen, 1979) suggest
that the problem hinges on partial linguistic mastery and that the apparent
retardation is not absolute. Rather the results can be retrieved by thcse
dtudents who eventually become competent in the deeper structures of a
second language and find it as easy to 'think in' as their first language -
a phenomenon Macnamara (1970) calls 'grasp of language'. It seems however
that relatively few bilingual children reach this stage and even among
very competent adult bilinguals D'Anglejan et al (1979) found weaknesses

in the more demanding cognitive activities involved in the retrieval and

manipulation of stored information in the second language. Morris (1978)
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concludes that it is very likely that those who must learn mathematics in a
second language are handicapped, and further, that this would carry over

into scientific and technological subjects which use mathematics.

During the 1970's the quality of research in the area improved markedly.
Studies were better controlled and earlier methodological shortcomings taken
into account. Few were specifically concerned with mathematics but the
general picture which émerged tended to reverse the trend of earlier invest-
igations which pointed to poor academic achievement of bilingual children.
Thus in certain circumstances bilingual children have been found to have
superior cognitive flexibility, a more diversified set of mental abilities,
and to show advantages on measures of creativity, divergent thinking and
problem solving in science (for reviews see Cummins, 1976; Kessler and
Quinn, 1980). Of particular mathematical interest was a study of Finnish
migrant worker's children in Swedish schools (Skutnab-Kangas and

Toukomaa, 1976). These researchers found that mother tongue development was
a key factor for success in mathematics at school despite the fact that it
was taught in Swedish. Thus a.new theoretical line of thought began to
emerge which tried to explain differential academic achievement of bilingual
children in terms of the strength of thei; two languages, rather than
blaming either bilingualism itself or linguistic mismatch per se for the
observed academic retardation among many language minority children. A
recent theory of linguistic interdependence in learning has been put forward
by Cummins (1979). His work has emerged from the well documented success

of 'immersion' programs in Canadian schools for English speaking children
during the last decade, findings which cut across earlier research and which

were clearly inconsistent with earlier theories.

My own research in Cambridge has been concerned with the effect of language
variables on reasoning in mathematics and mathematical achievement at school.
In particular, when the children are bilingual and at a stage of cognitive
development where language is becoming increasingly important as a vehicle
for classroom learning and communication of thought. ' The sample consists of
203 bilingual and 167 monolingual children in the late primary and early
secondary years of English schools aged 11~14 years. Five language groups
are represented: Punjabi - English speakers of Indian origin, Mirpuri -
English speakers of Pakistani origin, Italian - English speakers, Creole -
English speakers of Caribbean origin and monolingual English children.

Some key questions to be answered are:
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1. Does the child's first language competence have an important
functional influence on his/her ability to reason in mathematics
in a second language?

2. Do particular language pairs exert different effects?

3. Do 'additive' bilinguals (Lambert, 1977) outperform English
monolinguals and other bilinguals on tests of reasoning and
problem solving in mathematics?

4. What specific variables account for a major proportion of the
variance in mathematics reasoning scores?

5. What light does the study throw on the current debate of ‘cognitive

advantage vs cognitive deficit' from a mathematical standpoint?

At this stage the data has been punched preparatory to analysis and I hope
to be able to present some initial findings at the Conference. To helyp
clarify this the major variables are given below. The test instruments were

constructed by the researcher in English and validated in a pilot study.

- A. Dependent Variables

{;ic’ﬁ'{ 1. A test of deductive reasoning through linear syllogisms. k//

2. A test of word problems in arithmetic.

B. Independent Variables

1. Reading Comprehension in English (using a Cloze procedure to
probe deeper language structures).

2. A test of logical connectives in English (see Strevens, 1971)
using a Cloze technique.

3. A test of listening comprehension in the child's mother tongue.

4. A non-verbal test of mathematical development related to

Piagetian cognitive stage (Cornish and Wines, 1977) .

These six tests were given to all children in the sample together with a
questionnaire which enables one to either control for, or include as
independent variables, such variables as age, sex, school, school achievement,
home background variables, language usage and so on. Children were eligible
for selection provided their teachers considered them to be literate in
English and spoke the language fluently enough to be well understood in

ordinary conversation. The mother tongue testing was carried out by native
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speakers of the languages concerned who were themselves teachers attached

to the different schools.

Apart from the initial results, it is intended to review a number of problems
encountered during the research and decisions taken concerning their solution.
Of particular importance in this regard is a definition of bilingualism

and how it can be measured.
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ASSIMILATION OF MODELS OF UNDERSTANDING
BY ELEMENTARY SCHOOL TEACHERS

Jacques C. Bergeron, Université de Montréal
Nicolas Herscovics, Concordia University
Jean Dionne, Université Laval

Dans la premidre année d'un projet de quatre ans, nous avons cher-
ché wn moyen d'enseigner des modZles de compréhension pour les
rendre accessibles aux maitres du primaire. Aprés une &tude pré-
alable de ces modéles avee un groupe de 28 enseignants, il s’'a-
gissait, par wni travail en petites équipes, de classer suivant
quatre modes de compréhension (intuitif, instrumental, relation-
nel, formel) les interprétations recueillies au cours d'une
discussion plénidre préalable portant sur des notions telles que
le nombre, l'addition, la soustraction, ete.

Les résultats obtenus par le groupe expérimental, comparés a
ceux d'un groupe contréle, montrent que la formation aux mo-
d2les de compréhension permet aux enseignants de découvrir wun
nombre bien supérieur de fagons de comprendre une notion don-
née. De plus, la réussite 4 deux tests de transfert chez le
groupe expérimental indique que les enseignants peuvent appli-
quer ces moddles pour analyser des notions voisines. La réus-
site au test passé en équipes s'est avérée supérieure d celle
du test passé individuellement.

D'autres effets psycho-pédagogiques importants, qui font 1'ob-
jet d'une autre commmication, ont aussi pu étre observés
(Herscovies, Bergeron, Nantais-Martin, 1981).

(Version frangaise disponible auprés des auteurs)

1. INTRODUCTION

At last year's meeting in Berkeley, we introduced our four-year research project
on the pre-service and in-service training of teachers. 1In this communication

the results and problems encountered in our first year of experimentation are re-
ported. 1In order to put it in context, we recall the major outline of this pré—

ject.

Eventually, we wish to train teachers in the use of clinical methods such as the
diagnostic interview and the teaching experiment. Such a training would allow
them to go beyond the written work of the students and reach into their thinking
and learning processes (Herscovics & Bergeron, 1980). However, some exploratory
work has shown that such a training must be done within a frame of reference
which will allow the teachers to analyse their observations as well as their pe-

dagogical interventions (Bergeron & Herscovics, 1980). This justifies a prior

The research reported in this paper was funded by the Quebec Ministry of
Education (FCAC grant no. EQ1741)
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training in the use of models of understanding and of learning models.

For this first year's experiment we set ourselves three main objectives:

1) to develop an appropriate teaching method for the models of understanding;

2) to apply these models to the analysis of mathematical concepts and algorithms
used in the primary school program; 3) to elaborate methods of evalﬁating our

teachers.' progresses.

2. SELECTION OF SUBJECTS

In this first experimentation we have selected as our subjects a group of prac-
ticing teachers. This enabled us to benefit from their teaching experience

and, their daily contact with pupils made it possible for them to verify imme-
diately in their classroom the different modes of understanding under study.

Our research was carried out within the framework of a regular in-service course
offered within a program for the improvement of practicing elementary school
teachers (Certificate in Mathematics and Science from the Université de Mon-
tréal). Twenty-eight teachers from the six grades of the primary school par-
ticipated in this first mathematics course during a fifteen-week period and

meeting once a week for three hours.

About half of our subjects were working at the first three grades and the other
half at grades 4, 5 and 6. They averaged 14 years in scolarity and had taken
courses in traditional algebra and Euclidean geometry. That these courses had
been taken a long time ago is evidenced by the fact that they averaged 13 years
. of teaching experience.
3. TEACHING METHOD AND COURSE ORGANIZATION

The first part of the course was devoted to the theory, the second part to the
application of this theory and, the last month was kept for the teachers' pro-

jects.
The first three weeks were assigned to the study of the Bruner (1960), the

Skemp (1976), and the Byers and Herscovics (1977) models of understanding, as
well as to some notions of Piaget's theory of development (stages, conservation,
reversibility). Following this introduction, teachers had to analyze with the
help of these models the concepts of number, numeral, addition, subtraction,
zero, multiplication, division, positional decimal notation, and the algoxithms

for addition and subtraction.

Considering the difficﬁlties we ourselves had experienced with such analyses

and the time it took us (several days of reflection were sometimes needed for a

simple concept), we could not expect teachers to succeed within a three-hour
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period. Moreover, in keeping with a constructivist philosophy of learning, we
could rot simply transmit our conclusions. Instead, we had to develop a teach-

ing method which allowed the teachers to get .involved.

The method we have conceived is characterized by the fact that it mobilizes

the analytical resources of the whole group. At first, a general discussion of
the question "What does it mean to understand this concept?" provided a great
variety of answers. Following this, teachers were divided into small teams of

4 or 5 whose task was to classify these various interpretations according to the
four modes of understanding: intuitive, instrumental, relational, and formal.
Finally, the entire group was convened and each team reported on its classifi-

cation.

4. EVALUATION OF RE3ULTS

Different means have been used to evaluate the extent to which teachers had as-

similated the models of understanding.

4.1 PERCEPTION OF UNDERSTANDING BY UNTRAINED TEACHERS

In order to judge the effect of the teachers' training in the use of models of
understanding, we have used a control group as a basis for comparison. The se-
lected group consisted of 19 teachers working at the same elementary grades and
with comparable teaching experience. Moreover, they were enrolled in the same
program and were taking their second mathematics course. Two questions were
asked:
1) "Are there several ways of understanding the addition of two natural numbers
whose sum does not exceed 92"
2) "Are there several ways of understanding the number zero?"
"If yes, give an example for each way".

"If no, explain what it means to understand this notion."

The evaluation of their answers was based on criteria discussed in the section
on transfer tests. For addition, most of these teachers have interpreted "un-
derstanding” in terms of "modes of representation" which they had studied in
their course. This explains why they focussed on different representations
rather than on different ways of adding. The following table shows the number

of teachers who have identified 1, 2, 3,or 4 modes of understanding.
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no.of modes 0 1 2 3 4 total/76 % i
question on + [i] 6 8 5 0 37 49
question on 0O 3 8 6 2 0 26 34

The percentages are based on the total number of modes that can be identified
(76) , namely 4 modes for each of the 19 teachers. These results cannot be con-
sidered>as the outcome of individual reflections since the questionnaire was
administered to a class of teachers who discussed it in small groups of three.
Nevertheless, we can note that the teachers' perception of understanding is not
uniform but varies according to the concept in gquestion (49% for addition, 34%

for the number zero).

4.2 PERCEPTION OF UNDERSTANDING BY TEACHERS ACQUAINTED WITH MODLLS

We report here the results of the experimental group's analyses performed in

teams and also those obtained from two transfer tests.

TEAM REPORTS

As described under "teaching method", following a general discussion of a given
concept small teams of teachers had to report the various modes of understanding
they had identified. For five of these concepts we have recorded each team's
report. The following table shows the number of teams who have identilied O,

1, 2, 3 or 4 different modes.

no.of modes 0 1 2 3 4 total/24 %
number 1 1 0 2 2 15 62
addition 0 0 1 2 3 20 83
zero 0 0 [1] 3 3 21 87
numeration 0 0 0 1 5 23 95
+ algorithm 0 0 1 2 3 20 83

Percentages are based on the total number of modes which can be identified (24),
namely 4 modes for each of 6 teams. As is shown for addition in the following
section, more than one criterion can be used to characterize a given mode of
understanding. As with the control group, we have considered an identification

as acceptable if at least one of the criteria was mentioned. This can be jus-

tified by the fact that we are more interested in the multiplicity of the modes
identified by the teacher (the number of different ways of understanding a
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concept) than in the number of criteria used to describe a single mode.
A c;mparison of the results between the experimertal group and the control
group (83% vs 49% for addition, 87% vs 34% for zero) shows remarquable diffe-
rences. However, these cannot be attributed solely to the assimilation of the
models of understanding. Indeed, two other variables must be taken into ac-
count. On one hand, the experimental group had the advantage of a general dis-
cussion whereas the control group was limited to discussions in groups of three.
_On the other hand, the general discussion lasted one hour for each concept
while the small-group discussions took about 15 minutes. The time spent by the
control group was restricted due to the fact that only a half-hour could be al-

loted within the other course.

TRANSFER TESTS

wpransfer® is defined as "a phenomenon by which progress achieved in the learn-
ing of a given activity brings about an improvement in a different but more oxr
jess related activity" (Piéron, 1979). We accept this definition but wish to
extend it in the sense that transfer can also mean "that progress achieved in
a given activity brings about the ability to use this activity in a different

but more or less related activity.

Two tests verifying a possible transfer in the ability to use the models were
administered. The first one, from addition to subtraction, dealt with indivi-
dual transfer and the second test, from multiplication to divisioen, dealt with
transfer at the team level. The closeness of the related operations was war-
ranted by the difficulties we had ourselves experienced in the analysis of the

concepts.

The following tables show the results of the first transfer test and the crite-
ria used to describe various modes of understanding. These criteria take into
account various investigations of early arithmetic (Carpenter & Moser, 1979;

Fuson, 1979; Nescher, 1979).

no. of modes 0 1 2 3 4 total/112 %

Addition 1 4 6 9 8 75 67

Subtraction 1 2 6 171 2 73 65
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*
Intuitive Instrumental®” Relational Formal
-to add to ~to count all -to count on to be able to
interchange
symbolic with
ADDITION . . . .
o -to bring ~to memorize ad- {~to relate to }Jiconic and enacH
together dition facts subtraction tive represen-
(5 2= 9) tations
-to remove -to count ~to count back
remainder —same as
SUBTRACTION
above
-to memorize sub--to relate to
traction facts addition
(9 -2 =5)

** in the sense of construction

* in the sense of unquantified action;
We can consider here a transfer since only in the case of addition was there
any teaching and not in the case of subtraction. We now explain how we arrived
at an index of transfer. The 75 modes identified for addition, out of a pos-
sible 112 (4 modes for each of the 28 teachers), give us 67%. It should be no-
ted that comparing this with the 65% achieved in subtraction (73/112) would
give us an index of 97% (73/75). However, this would be misleading since the
modes identified for addition were not always the same as for subtraction. By
using for our ratio only those cases where they were the same (66) and the num-
ber of correct identifications for addition (75) we obtain an index of 88%
(66/75) . This index is comparable with the one obtained in the second transfer

test.

no. of modes o]l 1] 2] 3|4 |totarsios” | g
Multiplication 0 0 1 11{ 15 95 88 .
Division 0 0 1 7 19 99 92

* one subject withdrew leaving us with 27 x 4.

Since the number of modes identified in division which correspond with the ones
in multiplication is 88, the ratio 88/95 gives us a transfer index of 92%. Two
reasons can explain the better results in this second test (88%, 92%) as com-
pared with the first one (67%, 65%). First we must recall that the multipli-
cation/division test was administered to teams of teachers whereas the addi-
tion/subtraction test involved individual work. The other reason is related to

experience. The concept of addition was only the third one analysed while
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multiplication was the sixth.
CONCLUSIONS
In the first experiment we wanted to find ou; if the models of understanding
were "teachable" in the sense of being assimilable by our subjects. Our re-
sults show that the answer is affirmative. In fact, the experimental group
was quite successful in identifying various modes of understanding for each

concept.

The transfer tests show that teachers can apply tehir newly acquired analytic
tools to closely related concepts. Their results indicate quite a difference
between individual transfer and team transfer. This confirms our belief that a
training in the application of the models ought to pool the group's resources

and that our method of instruction was appropriate.

We think that this experience has benefited our teachers. In comparing their
work with the control group, it seems clear that their perception of unders-
tanding has evolved. Both the team reports and the transfer tests show that a
far greater multiplicity in the ways of understanding a concept were identified
by the experimental group as compared to the untrained teachers. Other effects
of a psycho-pedagogical nature have been observed and are reported in another
paper by Herscovics, Bergeron, Nantais-Martin (Grenoble, 1981).
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SOME PSYCHO-PEDAGOGICAL EFFECTS ASSOCIATED WITH THE STUDY
OF MODELS OF UNDERSTANDING BY PRIMARY SCHOOL TEACHERS

Nicolas Herscovics, Concordia University
Jacques C. Bergeron, Université de Montréal
Nicole Nantais-Martin, Université de Montréal

Dans une premidre commmication, Bergeron, Herscovics et Dionne
(Grenoble, 1981) ont déerit leur méthode d'enseignement des mo-
déles de la compréhension ainsi que les moyens employés pour
déterminer le degré d'assimilation de ces modéles par des ensei-
gnants du primaire. Cette formation a4 1'analyse conceptuelle a
eu des conséquences psycho-pédagogiques intéressantes.

Une approche didactique intégrant la mathématique, la psycho-
logie, la pédagogie et 1'épistémologie a provoqué certaines for-
mes d'anxiété. Celles-ci n'ont &té que passagéres et plusieurs
évidences indiquent que les enseignants ont changé leur percep-
tion de la mathématique, de leur propre compétence mathématique,
ainsi que des processus d'apprentissage.

Comme en témoigne la tendance qu'ils ont acquise d se décentrer
de la réponse écrite pour s'attacher davantage aux processus de
pensée, les enseignants ont développé une perception construc-
tiviste de 1'apprentissage. ,

(Version frangaise disponible auprés des auteurs)

In a first communication, Bergeron, Herscovics and Dionne (Grenoble, 1981) have
described how they taught models of understanding to primary school teachers and
the means of evaluation used to assess the degree of assimilation they achieved
within a regular 45-hour certificate course. Such a training in conceptual an-
alysis has had a number of interesting psycho-pedagogical effects which are the

topic of this second communication.

MATHEMATICAL COMPETENCE OF OUR TEACHERS

A first effect relates to changes observed in the experimental group at the
mathematical level. Judging by the number of courses taken up to their initial
training, their content, and the time elapsed since the last course, the mathe-
matical competence of our teachers was rather limited. This led us to discard
the standard "pretest-test" format in order to avoid the anxiety and the nega-
tive attitude generated by failure at such tests. However, several signs point
to a weakness in mathematics. For instance, we note that in their analyses the

teachers were often confusing notions such as area and surface, number and

The research reported in this paper was funded by the Quebec Ministry of
Education (FCAC grant EQ-1741)
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numeral, the operation of addition with its algorithm.

The gonfusion about area is particularly revealing. Right at the beginning of
the course, we had passed around a questionnaire on this topic. The questionnaire
was not meant to be used as a pretest. It was merely to allow the teachers to
follow the changes in their own thinking while learning about the models of un—
derstanding which were illustrated by being applied to the notion of area.

The following question was asked:

-"How would you go about estimating the area of this figure?"

Of the 27 teachers who answered, 14 indicated that

they would cover the figure with square units whose

number would give them an approximation; two tea- ///

chers suggested enclosing it inside a rectangle and

then estimating visually the proportion taken up by

the figure; six others would have measured the con-

tour of the figure with the help of a string which they would use to construct
a rectangle with the same perimeter and then apply the formula for the area of
a rectangle; finally, five teachers indicated that they simply had no idea. Re-
markably, 8 of the last 13 teachers mentioned were working at the upper primary
grades (4,5,6) in which the concept of area is taught. The discussions on area
within the context of modes of understanding led all our subjects to master this
notion. Of course this cannot be attributed solely to the models since a purely
mathematical discussion would probably have yielded the same mastery. However,
such a discussion would not have brought about a reflection on the cognitive

aspect.

By focusing the teacher on the cognitive aspect of learning, we think that we
have changed his perception of his own mathematical competence. Indeed, in an
anonymous questionnaire handed out at the end of the course, 25 out of 28 parti-
cipants thought they had achieved a better understanding of mathematics.

This is somewhat surprising for we did not expect people who had taught "elemen-
tary" notions such as number, addition, subtraction, etc. for so many years,
would feel, after a few weeks of analyseé, that they themselves had attained a
better grasp. We suggest as a possible explanation that the analysis of under-
standing, not only changes their perception of their own competence, but also
their perception of mathematics. In fact, the models assign to mathematics cog-
nitive dimensions which go beyond the current instrumental and formal inter-

pretations. Through their analyses, teachers have to reconstruct mathematics in

a psycho-genetic context which valorizes the intuitive and relational aspects.,
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CAUSES OF ANXIETY

Despite our caution, not all forms of anxiety could be avoided. Indeed, during
the first five weeks, reports from school consultants and private comments by
teachers revealed that some of them were ill at ease with the required task of
analyzing concepts, and that such demands could shake their initial self-assu-~

rance. This can be attributed to several factors.

First of all, the teachers were expecting a regular course in mathematics which
would not over-emphasize the psycho-pedagogical aspects. Then, there is the fact
that a long established tendency to evaluate only the written answers hampered
tﬁe acceptance of a new form of evaluation based on the processes used. This is
clearly shown by the oft-repeated question: "How can one be sure tha® this un-
derstanding is not instrumental?". It took five weeks for the teachers to realize
that the criteria used to determine these processes are generally mere indica-
tions and not proofs. Indeed, nothing can guarantee that the procedures used

are not the result of instrumental learning. Only through an appropriate ques-

tioning can it be determined.

Another reason for anxiety was sometimes due to differences between the treat-
ment of a concept in the textbooks used by teachers in their own classroom and
the treatment suggested by the conclusions they had reached during discussions
in the course. For instance, their textbook treated addition in terms of states
(the states preceding and following the union of two sets) while ignoring the

operator interpretation (the natural act of adding to).

The in-depth analysis of a mathematical concept brings out its great complexity
which while putting it under a new light ,also can become a very justifiable cause
of uneasiness. For example, the concept of number perceived as a measure of a
quantity of discrete objects (Vergnaud,1979) raises guestions about units of
measure (Steffe et al.,198l), about various ways of counting (Comiti et al.,1980),
about conservation of number (Piaget,1965), as well as problems associated with

its symbolic representation (Ginsburg,1977).

A last source of anxiety that we have been able to identify is related to the
difficulty of interpreting the modes of understanding. We had chosen several cri-
teria to describe a given mode and many teachers gathered them under other clas-
sifications. For instance, in the transfer tests, 13 out of 28 subjects confused
some of the modes, the greatest confusion appearing between the intuitive and
instrumental modes, and between the relational and formal modes. The following

table shows the nature and the distribution of the mistakes:
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ADDITION SUBTRACTION
Mode Int. Instr. Relat. Formal Int. Instr. Relat. Formal
Int. 5 3 0 4 3 1
Instr. 1 3 1 2
Relat. 5 9

Note: The sum of these numbers exceeds 13 since the same teacher can be mistaken
several times.

We ourselves probably contributed to this confusion. As a matter of fact, we
used unquantified action as a criterion for intuitive understanding while ex-
tending Skemp's definition of instrumental understanding ("rules without reason")
to include a first quantification of the previous action, without communicating
this extension explicitly enough. Aas regards the confusion between relational
and formal, it was due to tﬁe fact that several teachers had interpreted "rela-

tional" to mean the "relation" between the symbolic expression and its enactive

and iconic representations.

In retrospect, we find that we have tried to adapt the tetrahedral model (Byers
& Herscovics, 1977) to the construction of concepts. As a matter of fact, as

mentioned earlier, we had included a "first construction" in the instrumental

mode, had associated reflective abstraction with the relational mode, and ended
up identifying the formal mode as a "formalization" of relational understanding.
Following discussions with Skemp (1981), we have realized that the model we are
developing should allow us to differentiate between understanding considered as

a state and understanding coﬁsidered as a path on which one treads slowly.

DE-EMPHASIZING THE ANSWER

In our first experiment, our aim was to instruct teachers in the analysis of
understanding in order to provide a framework for their eventual training in
clinical methods. These methods would then allow them to de-emphasize the so-
called "products" of learning (the written answers) and instead, focus on their
students' thinking processes. However, we have some evidence showing that such
a de-emphasis can already result from the use of models of understanding in the

analysis of concepts.

A first indication comes from the analyses done in teams. Table 4.2 of the pre-

vious communication by Bergeron et al.(1981) shows that many teams were able to
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identify four modes for several of the concepts dealt with. This means that they
were able to discriminate between the instrumental and relational modes which
often differed in terms of procedures (cf. addition: to count all or to count on).
Thus we note that, due to the models, teachers begin to take into account the

processes used.

As a second sign we have the projects which were carried out by the teachers

within the course. Small teams varying from three to five teachers followed the
evolution of a given concept or algorithm throughout the different primary gra-
des by interviewing from one to three children in each grade. And, it is on the

basis of the children's thinking that all the teams evaluated their understanding.

Finally, patent indications were provided by the answers to two questionnaires
handed out in the last weeks of the course. To the question "Do you think that
the use of models of understanding in your teaching is desirable?" all the
answers (18 replies) were affirmative and the following justifications were given:
"allows us to follow the child in his reasoning"(5); "allows us to think about
the way we teach, to evaluate and help the children"(5); "yes, for we were

asking only for one mode of understanding (instrumental)"(3); unjustified

"yes” (5) .

These answers confirmed those obtained two weeks before to the question: "Has

this course led you to improve your teaching of some mathematical concepts? -If

yes, can you describe the changes in one of your lessons {(for example, in the

preparation, in guestioning of the students, in the interpretation of the feed-

back, in the evaluation of the written work, etc.)?". Out of 25 teachers 24 re-

ported an improvement in their teaching relating it to the lesson (13), to the

questioning (17), to evaluation (13), or to remediation (10). The following com-

ments provide some of the flavor:

-"When I now prepare a lesson I try to reach the four types of understanding
with the child."

-"0ften when correcting the exercise book I even ask the ones who have every-
thing good."

-"For subtractioﬁ I had 5 out of 25 pupils who knew the why for the 1 we borrow.
I couldn't get over it."

-"I try as often as possible to have the child explain his procedure and I

don't take his mistakes as a sign of a total lack of understanding."”
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CONCLUSIONS
By raising the question "What does it mean to understand such a concept?" we
Have encouraged the teachers to consider the psycho-pedagogical aspect of the
teaching of mathematics. Even if this has made them aware of the complexity of
the notions they taught, they did not feel that their own mathematical know-
ledge was being examined. In light of their weakness in this subject, a direct
examination might have provoked mathematical anxiety. Although other forms of
anxiety were induced, these were of a temporary nature and we have several in-
dications showing that the course has brought about changes in their perception
of mathematics and of their own competence in this discipline. These changes,
resulting from an approach which integrates mathematics, psychology, pedagogy
and epistemology, are particularly important since they provide the teacher with

a constructivist viewpoint of the learning process.

That the teachers develop such a constructivist perception of the learning pro-
cess has been shown by their tendency to de-emphasize the written answer. This
is evidenced by the increased importance they attach to the questioning of the
pupils as indicated’by the comment "Often when correcting the exercise book I
even ask the ones who have everything good." The idea expressed by this teacher
is most interesting: not only is she questioning the students who make mistakes,
but she also questions those "who ha&e everything good". This remark underlines
the complementary roles played by the written test and by the questioning. If
the former allows for the evaluation of skills, only by an appropriate question-

ing can one evaluate the process used.
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The Nature of Geometrical Objects as Conceived

by Teachers and Prospective Teachers

Shlomo Vinner
Hebrew University, Jerusalem

Dans les classes de géométrie de 1l'enseignement secondoire,

nsiste souvent sur 1, la nature déductive de la géométrie

2, la nature des objets géométriques,
La question de la nature des objets.géométriques peut &tre traitée
de bien des fagons et elle a soulevé de nombreuses controverses chez
les mathématiciens. Dans la perspective de ces controverses, il
est intiressant d'étudier comment les enseignants et les futurs
enseignants de mathématiques congoivent cette question. Bien qu'ils
soient le plus souvent ignorants des grands débats philosophiques,
on retrouve chez eux des philosophies personnelles, implicitles, a .
la fois naives et complexes. Ce sont ces "philosophies spontanées”
que nous avons tenté de mettre au jour.

Des questionnaires ont été distribués aux ensgignantﬁ et aux
futurs enseignants. L'analyse des réponses a permis de dégager
trois conceptions principales: .

1. Les objets géométriques sont des objets ?égls;‘ces objets font
partie de notre espace. Certains sont visibles, d’gutrei pas.

2. La géométrie s'occupe de déterminer quels sont les &noncés qut
pevvent &tre déduits d'un ensemble de ‘postulats. It @'y_a done
pas lieu de se préoccuper de la nature des obggts géométriques;
ils peuvent &tre congus comme des objets abtraits. Toutfois,
de tels objets n'existent pas. . .

3. On aceccorde aux objets géométriques différents status‘extstentzels.

T1ls existent en théorie, dans l'univers des abstractions ou dans

l'esprit du sujet.

§1 The Problem

o

on

The question of the nature of the mathematical objects is mainly
a philosophical one. Nevertheless, it finds its way to the mathe-
matical curriculum and to Math textbooks. Consider, for instance,
the question what numbers are. One of the answers to it is that
numbers are abstract objects that have many different representa-
tions. Hence, therg should be a distinction between numbers and
numerals (number names). It is taught very often at the elementary
level to second or third graders. It is also one of the reasons
(although not necessarily the only one) for including enumeration
systems in the junior high curriculum.

The question of the nature of geometrical objects has a slightly
different character (note that we are discussing geometrical objects
as mathematical objects and not as physical objects). At the
elementary level, where only some geometrical figures are introduced
to the students, it does not rise because the geometrical object is

identical with the geometrical figure drawn at the book or elsewherc.
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On the other hand, at the junior high level or at the secondary level,
when Euclidean geometry is introduced (if at all) as a deductive
theory, it is raised, in one way or another, by textbooks or teachers.
The student is told that the geometrical points and lines are
different from those which are drawn in the books oxr on the black-
board. The straight line is infinite and between any two of its
points there is another point. The point has no dimensions and so on.
Later on, in most cases, this question is ignored or even forgotten
and it is not clear whether it has any importance to the student's
geometrical development. On the other hand also the contrary is not
c¢lear. Our starting point is that whenever cognition faces new
objects it seeks an answer to the question what these objects are.
Part of this answer classifies the reality to which these objects
belong and another part determines the relations between the objects
and their reality or between the objects and themselves. (Those who
watch children can tell how they know to distinguish between physical
reality, fairy tale reality, T.V. reality and so on. Also how they
form realities for microbes, molecules, numbers and so on.) This
cognitive process is spontaneous and in many cases not verbal. The
person concerned is very often verbally unaware of it. We are
interested in the question what types of reality people associate
with geometrical objects. As we just said this might be implicit and
non-verbal and if this is so how can we find it out? There are two
answers to that. First, we observe behavior and raise some hypotheses
about the (implicit) concepts that might form such a behavior.
Second, when being questioned, the subject, sometimes, can make the
unconscious-couscious the non-verbal-verbal and the implicit-explicit.
The chance for this to happen is greater if the subject is at the
threshold of verbality.
§2 The Sample and the Questionnaires

Our aim was to inquire naive approaches to geometrical objects.
Therefore we chose éubjects who (in most cases) did not have formal
training in the philosophy of Mathematics. On the other hand, they
are very likely to develop (implicitly or explicitly) personal, :
"homemade", philosophies about the nature of mathematical objects in
general, and particularly about the geometrical objects. The sample
consisted of 2 groups, The first one included 18 prospective ,
teachers (who were students in their second or third year of studies

toward a B.Sc. degree in Math or toward a teaching certificate).

The second group included 29 Math, teachers at the junior high or at
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the senior high levels., Two questionnaires, based on infoimal

discussions with students, were compiled. They were administered

to the above sample in 1978, 1979. The questionnaires were:

QUESTIONNAIRE I: 1. In the introduction to a Geometry textbook was
written: "The points we draw have a notable size so that we can see
them. But real points are so tiny that they cannot be drawn by any
pencil even if we could make it as sharp as we wish’. In addition
to this also the following was written: "We all know what straight
line is and how it looks like. This is a drawing of a straight
line: e Of course, it is not a real one because
a real line has no width. 4 real line cannot be drawn”. In a
homework assignment, given after this had been taught, one student
wrote: "It follows from the text that points and lines cannot be seen
or sensed. From this point of view they are like molecules. Also
molecules cannot be seen or sensed. However, they exist in the
world and scientists inquire their properties. In a similar way,
mathematicians inquire the properties of points, lines and other
geometrical shapes”.

As a prospective teacher (or teacher) what will you write in
the student's notebook: A. Correct B. Incorrect C. Something
else (please speeify). Add a comment to explain your view.

2. Another student wrote: "Everything in the world has width,
even small particles as molecules and atoms. If points and lines
do not have width it follous that they do not exist. [Therefore,
Geometry inquires things that do not exist".

What will you write in the student's notebook: A. Correct
B. Incorreet C. Something else (please specify). Add a comment
to exzplain your view.

QUESTIOENAIRE II: 1. In your opinion, is there any difference
between an abstract object and an imaginary object? A. Yes B. No.
If yes please specify.

2. Is every abstract object is also an imaginary object?
A. Yes B, VJlo.

3. Arve there abstract objects which are also imaginary objects?
A. Yes B. HNo. If yes please note one or two.

4, The geometricul, figures are: A. real objects in the spoce,
alithough it is impossible to see them. B, abstract objects.
C. imaginary objects. D. something else (please specify)

The second questionnalre is meant to clarify the status of the
geometrical objects in a more direct way. It also expresses two
different quite common approaches to mathematical objects. The
first one assign to geometrical objects an existence which is somehow
independent of our mind. The second one considers them as something
formed by our mind and in this sense they area sort of imaginary
objects. Abstract objects, according to that, will be a special
case of imaginary objects, whereas according to the first approach

they are not,
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£3 The Results

The answers to the questionnaire were analysed and classified.
The. considerations leading to our classification cannot be given here,
however, the interested reader will (hopefully) be able to reconstruct
them in the specific cases that will follow. Both the answer profile
znd the written comments were used to determine the category of the
subject. Sometimes, the differences between the categories are very
small and sometimes the subjects are inconsistent, having elements from
conflicting catgories (something which we consider quite natural in such
2 complicated situation). In case of inconsistencies the category
was determined according to the dominant elements. The answer profile
will be denoted for instance by 774287743 (which means that the answer
to question 1 in questionnaire I was A, the answer to question 2 was
B and answer to question 4 in questionnaire II was B). The words
"prospective teacher” will be denoted by PT and the word "teacher" will
be denoted by T,

Cetezory I: The Geometrical objects are real. They are part of our
space.
J142BIT4A(PT): It is possible to inquire also things which are
vot corerete but neveritkeless they exist in space like points and lines.

T1£2BIT4A(PT): These things exist but they cannot be drawn
azeuvrately on paper.

TICZBII4A(PT) I would <introduce the point as the intersection of

siraight lines since straight lines can be seen in space (for instance
tre sides of a cubel.

TI1C2BITL4A(T): Partially correct because many lines together form
a surface which is real.

T142BIT4B(T): There is rno need to waste time on concepts having
o imporitance at all. One chould explain that a point is something
very thin and so ig the line. The more we draw them accurately the
closzr vz pproacﬂ reality...Abstract objects exist whereas imaginary
cijests do not exist.

Category I1: Geometry only inquires what can be derived from certain
hypotheses, geometrical objects are idealizations that do not exist,
abstract objects do not exist. Ceometry is only a tool by means of

which we can inquire the real world.

TiB2AIT4B(PT]): Kolecules exist in reality, they are part of
rature whereas points and lines are abstractions of reality; they are
{dzalizations. Lines ard points as presented in the questionnaire do
vot exist at all. Houever, in a less "ideal" form there are lines
ir. rzzliiy. The inquiry of the idealizations helps us to understand
rezliiy.
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I1BEZAZT4B(T): Geometry does not deal with objects that exist
nature. As a natter of faet it does not inquire things, It is a
means to solve problems (ineluding problems in science).

TI1LZ2ATICA(T): The student is very realistic. He lacks
imagination but I don't blame him. He was not taught that we can wo:
in the "as if" method ...Imaginary objects emerge from imcgination.
As to absiract objects-you start with something that exists and you
disregard some of its properties until you reach the abstruct object
Category II1: There are two worlds-the concrete and the abstract.
The geonetrical objects exist in the abstract world or in theory or
in the human mind or imagination.

I1B2BIT4B(T): It is true that points and lines do ncov have
conerete ezistence. However, they exist in theory or as abstroct
objects. One has to emphasize the abstract existence. Not only this
which you ecan see or touch exist.

I1BZBIT4B(PT): There are several modes of existence. One can
also inquire things which exist only in theory.

I1BE2BII4B(PT): They exist in the human minds.

The statistical results are shown in table 1.

Table 1

Category I Categorgmil Category III|Totay

s
!

L PTs 4(227) 4(227) 10(567) 18
R 3(107)

120612) | 29
If categories II and III are considered together (as categorie

which are "professionally acceptable’) and Xz'is used then there is
a significant difference (p<0.07) between PTs and Ts. One possible
reason for that is that the more one teaches geometry the more he
believes that geometrical objects are part of reality. However, the

might be also alternative explanations.

As to the relations between abstract objects and imaginary obj
there are 4 cognitive maps involved (I dis for imaginary and A is for

abstract).

Map 1 Map 2 Map 3 Map 4
<::::E:::> <j//%::::> <::E::§z:§::5::> <::§§z:::) (::E?;t::>
N o
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(A typical example of an imaginary object whiech is not abstract

was a witch, Something like that was mentioned by several students
who clained that imaginary objects and abstract objects were

different.)

There was no significant difference between the two groups, hence

the results are given in one table.

TABLE 2
Map 1 Map 2 Maps 3 and 4
X o= 49 357 417 o247

£4 An Educational Comment

The variety of approaches that exist in teachers {and also in

professional mathematicians) suggest that there is no point to teach

i

any of those at the junior high or at the senior high ley§;sq '''''''''''''
a naive philosophy about the nature of ggpmef?izél'objebts. It is
better not to interfer with thi§_§@oﬁ{£neous and autonomous process.
This principle of non-interference was advised also in Vinner, 1978
and Vinner and Tall, 1981. Of course, it is worthwhile to draw

teachers' attention to this problem.
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PROVOCATIVE TEXTS AND SPONTANEOUS REACTIONS OF TEACHERS -
A METHOD FOR RECOGNIZING TEACHING AND LEARNING OF MATHEMATICS

Bernhard Andelfinger, Landesinstitut Nordrhein-Westfalen, Neuss
FRG

Le sondage est de la plus haute importance dans le
secteur des recherches empiriques de la formation
mathématique. Les questions résultent des structu-
res déji existantes d'un sujet, p.ex. de la propor-
tionalité., Mais est~ce qu'il y a un phénomdne homo-
logue & la propotionalité? Le meilleur contexte ou
plus réel serait peut-&tre "fonction" ou "isor
morphisme"

Pour reconnaltre des domaines d'enseigner et

d'apprendre des experlences on peut faire usage de

textes provocants permettant des réactions spontanees
et de grande portée des personnes interviewées.

Ces questions sont & pourvoir d'un titre provocant,

d'un ensemble de thdorémes avec des mots-clé im-

portants et d'une grande portée et d'un passage de

texte s'adressant au professeur comme expert.

L'analyse de l'ensemble de ces réactions spontanees

donne deux sortes des variables:

a) L'étendue des sujets existants en fait dans la
procédure d'enseigner et d'apprendre.

b) Formes de sujet, p.ex, structures et caractéri-—
stiques d'enseigner et d'apprendre ces sujets,
information de difficultés et avertissements
concernant la procédure d° enselgnet et d'ap~-
prendre.

Les résultats peuvent étre utilisés de former les

idédes directrices pour la recherche ou pour servir

de contrepartie en face des résultats déja publiés
dans un tel domaine.

AIMS OF QUESTIONING TEACHERS

Teachexrs influence pupils by teaching and see the everyday
learning of pupils. Teachers are influenced by didacticians,
textbooks, administrations, society.

Therefore questioning teachers can give information about the
everyday teaching-learning process under realistic clrcumstan-
ces and restrictions. Infoxmation can be used for further ex-
ploration or for validating results of research.

Questioning must be aimed at important problems of everyday
schooling, it must be volunt:ary and somewhat "provocative®.
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STRUCTURE OF TEACHER ORIENTED QUESTION TEXTS
Useful texts should be composed of a heading, some sentences with
cues belonging to educational problems in the field aimed at, some
sentences addressed to the teacher as an expert.
The heading should be an important and actual issue, not directed
to the teacher himself but to his teaching problems.The heading
can be a question or a statement; it must be most familiar to the
teacher.
The sentences with didactical cues shall open a wide range of re-
actions. Therefore the cues must belong to the daily experiences
of the teacher but they should not be too well sorted yet. It is
useful to give chains of cues so that the teacher has a lot of
cognitive and affective calls while reading the text. The cues
should represent both the practical and the didactical aspects
of teaching. Then the teacher will react as practitioner as well
as curriculum expert.
The last set of sentences should be divided into four subsets.
First the teacher should be invited to give spontaneous reac—
tions - not to all cues and questions raised but to the "impor-
tant"” ones. The choice then made by the teacher is very impor-
tant for analyzing the answers.
Second there should be sentences inviting the teacher to give
hints for successful teaching and learning because he is an
expert.
Third the teacher should be confirmed that he will be given the
results of questioning.
And last not least it is very important to set the teacher free
from essay styled answers. And do not forget to add an empty
sheet of paper!

QUESTIONING

You can make the questioning by using a widespread teacher's
bulletin or by a teachers'organization.

Questioning should not be made by using educational depart-
ments, governments etc. In this case teachers will react as
conformists or non-conformists but not as teachers teaching
pupils and not as experts for puplls® learning.

The questioning must be informal and voluntary.

The author's experiments show that about 5% of addressed
‘teachers will react. Answers have a volume of 1/2-2 pages.
About 90% of the answers are on a high level reflecting prac-
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tice. They do not reproduce didactical theories.

ANALYSIS OF THE REACTIONS

Because the question texts are not quantitative qualitative va-
riables must be searched for.

Above all there are two sorts of variables - dependent on one
another - coming out of the answers:

(1) The RANGE VARIABLES
The answers show ranges of topics really existing in the
teaching-learning process. You will see the range of topics,
topics separated from one another and topics connected
with one another.

{(2) The SHAPE VARIABLES
The answers show for each topic
- structures and characteristics of teaching and learning
in the topic
- difficulties of teaching and learning in the topic
- hints for teaching and learning.

Only in very few cases you will find hints for changing the
ranges of topics or for restructuring the network of the topics.
Teachers seem to be "topic experts".

WHAT CAN BE DONE WITH THE QUESTIONING RESULTS?

The results can be used as a first exploration of an unknown
field of teaching and learning. Then headings and cues must be
taken of this field. The range variables and shape variables
found set up new focl for research.

In another way the results can be a counterpart for research
already done in a field of teaching and learning. Then.you will
choose the headings and cues
- for a special aspect of the field not yet very well known
- or for getting information about the validity of the shape

of the field already known by research
- or for getting information about the network of topics in

a widespread field etc.

The results can also be used for curriculum revision, in-
service~training of teachers ( Sturgess, 1980).
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EXAMPLE: " FRACTIONS OR DECIMALS?"

The questioning was done in 1980. The text was published in a
mathematics teachers journal. Out of 2 000 teachers 67
answered. The results were published in the same Jjournal
(Andelfinger, 1980).

The heading was: "Fractions or decimals?”

The most important cues were:
(a) pupils )
- reject computation with fractions
- like decimals
- are experts in decimal computation
- are experts in decimal computation with pocket
calculators.

(b) for daily life
- fractions are unnecessary
- decimals are good.

(c) mathematicians
- need fractions
~ have many ways to deal with fractioms.

{c) curriculum
- brings fractions too early
- brings fractions too late
- brings decimals too late
brings decimals after fractioms.

ANALYSIS OF THE REACTIONS

Some main results will be given here (for further results see:
Andelfinger, 1980).

(a) Range variables

You can see that fractions and decimals are widely separated
toplcs. They have nearly no common problems and difficulties.
Prop@gtional problems and problems of some other fopics are
noticed by the teachers but not as very important problems
for fractions and decimals.

Obviously there are two ranges, fractions and decimals. They
are only in loose connection with one another and with other
topics.
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(b) Shape Variables

- the image of fractions for teachers and pupils is negative;
the image of decimals is positive.
- difficulties in teaching and learning of fractions are:
- first fraction computing comes too early
- kids cannot compute easily with natural numbers
- kids do not have a feeling for the order of numbers
- the building of formulas, definitions and algorithms for
fraction computing is too big
-~ didactical methods (e.g. operators) stop the idea of the
number line; therefore pupils have no idea of fractions
- kids have problems to see fractions as quotients
- computing fractions in algebra is different from computing
fractions in arithmetics
- kids cannot see a pair of numbers as one number
- "external" fractions (between measurements) and"internal"
fractions are two different types of fractions for pupils.
~ there are nearly no difficulties in teaching and learning of
decimals excepted the problem how to put the decimal point.
~ for hints see: Andelfinger, 1980.

USE OF THE RESULTS - TWO EXAMPLES

(a) an example for explorative use

It seems to be important how fractions and decimals are sepa-
rated and connected in the mind of pupils.

Further research for these connections is needed.

(b) An example for use as a counterpart to research results
already available

Teachers stated that pupils had had problems to see fractions

as quotients.

Kieren shows that embedding fractions in a quotient field is

very important for gaining the idea of rational numbers

(Kieren,1975).

Suarez says that it is very difficult for most pupils to get

the idea of rational numbers (Suarez, 1977).

When we compare our results to those of Kieren and Suarez we

understand one difficulty for pupils in comprehending ratio-

nal numbers. Obviously partitioning is not the same as

making a quotient.
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The results of questioning give a lot of hints for curriculum

revision on secondary level, e.g.:

- natural numbers and decimals should be teached in connection
with one another

-~ for pupils in the beginning of secondary level decimals are
not fractions ( except 0.5) and fractions are not proportions
or guotients.,
Therefore the way to the concept of rational numbers cannot
follow the "linear" mathematical way N —» ot — o.
Learning of rational numbers is a spiral way combining more
and more the different aspects of rational numbers for many

years.

REMARKS
Further questioning was done in 1980. The headings were:
- "Applied mathematical problem solving - math, folklore or
what else?"
- "Rule of three - very easy". (see References)
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