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CONFERENCES PLEINIERES

{dans l'ordre du programme)






I
QUELQUES ORTENTATIONS THEORIGJES ET METHODOLOGIQUES
DES RECHIFRCHES TRANCAISES EN DIDACTIQUE DES MATHEMATIQUES

Gérard VERGNAUD, CNKS, Paris.

Research has developed in France along specific lines. This
spectficity is due to our philosophical and scientific tradi—
tions. For instance, the concept of “epistemological obstacle”
(Bachelard) ts hardly known outside France; the work of Piaget
i8 not interpreted in the sune way: although Piaget's work

18 our main reference, we are not satisfied with some of his
views, for instance about stages, abaut mathematical knowledge,
about logiciam. New theovetical concepts are presented such as
conceptual field, theoran in action, velational ealeulus,
didactic variables and effects, system of stgnifiers, didactic
contract. Also same methodological “asues are analyzed, the
stress is laid upon the necessity of using a variety of methods,
and upon the dmportance of experimenting in the class-room.
Class-room experiences require several conditions for them to
be fruitful and repeatable. Illustrations of the theoretical
conceptsand the methodological views are given and will be
explained orally in greater detail.

Les recherches se sont développées en France, depuis une quinzaine d‘’amées,
sur des bases théoriques et méthodologicues sensiblement aifférentes des bases
sur lesquelles elles se sont développées dans les autres pays. Cela tient
principalement 3 des traditions phi” wophiques et scientifiques différentes,
dont je domnerai deux exemples:

~ des philosophes des sciences trés influents en [rance commne Gaston
Rachelard et Georges Cangnilhem sont presque inconnus d 1'étranger, en tout
cas des professionnels de la recherche en &ducation mathématique.

~ les chercheurs francais tirent de 1'oeuvre de Jean Piaget des legons
différentes de celles qu'on en retirve en général dans les pays anglo~saxons.
Pourtant nous partageons avec de naibreux chercheurs dans le nonde les préoc-
cupations suivantes:

- comuent les connaissances math@matiques se développent-elles, chez l'enint

et 1'adolescent en particulier?

~ 2 travers quelles situations les concepts et les procédures mathémtiques

prerment-elles lewr signification?

-~ quelles conditions didactiques et vpsychosociales faut-il rassecbler your

assurer la transmission et 1'appropriation du savoir, c'est-d-dire la recons-

truction du savoir par celui qui apprend.




Certaines de ces questions ne sont pas nouvelles et 1'on connalt par exemple
la diversité des réponses apportées par les psychologues 3 la premiére ques~
tion. Bien que, parmi ces réponses, l'approche de Jean Piaget nous apparaisse
la meilleure et la plus féconde, nous n'en somes pas satisfaits:

1. Jean Plaget s'est désintéressé de l'acquisition des comnaissances sco-
laires. I1 a plut®t cherché i caractériser le développement des instruments
généraux de pensée, aui lui apparaissent relativement indépendants des cormais-
sances scolaires. :

2. Jean Plaget s'est intéressé davantape aux structures pouvant caractérser
un stade donné de développement qu'd 1'évolution adaptative des connaissances
dans une situation ou un ensemble de situations oit elles sont fonctionnelles.

3. Jean Plaget a séparé d'une maniére exagérée la connaissance mathématique
et la comnaissance de la réalit@ physique. Je pense notamment 3 ce qu'il a
&rit & plusieurs reprises sur 1'abstraction simple et 1'abstraction réfléchis—
sante, la premidre portant selon lui sur les propriétés des objets et &tant &
ce titre constitutive de la physique, la seconde portant sur 1'action du sujet
sur les objets et &tant spéeifiquement mathématique.

4. Jean Piaget a privilégié les opérations et les structures logiques
et contritu€ ainsi 2 minimdiser les contenus de connaissance, que ces contenus
relévent de la physique ou des mathématiques.

Ces difficultls et 1'insatisfaction pénérale dans laquelle nous Jaissent les
recherches psychologiques sur 1'apprentissage, nous ont conduit 3 définir de

nouveaux cadres théoriques:
CHAMP CONCEFIUEL

La premiére grande question concerne les choix 3 faire pour découper 3 bon
escient les contenus de comnalssance mathématiques et en &tudier de manidre
féconde la didactique et 1'acquisition. I1 n'est pas raisonnable d'&tudier
séparément 1'acquisition de concepts (et de procédures) qui, dans les situa~—
tions rencontrées et traitées par les &ldves sont difficilement dissociables.
Far exemple i1 serait aberrant de cdonduire des études séparées pour 1'acqui-
sition des concepts de muiltiplication et de division, de fraction, de rapport

et de nombre ratiomnel, de fonetion linaire et n-linéaire, d'analyse dimension-
nelle et d'espace vectoriel, puisque d@s les premiers problémes de type multi-
plicatif qu'il rencontre (proportions, surfaces, volumes), 1'enfant est con-

fronté 3 des relations qui relévent de 1'ensemble de ces concepts.

D'autre part, il est raisonnable, si 1'on veut &tudier la psychogenése des
contenus de connaissance, de découper la connaissance en domaines assez larges
pour pouvolr en &tudier 1'évolution chez 1'8ldve sur une assez longue période

de temps et 3 travers un ensemble de situations diversifides. Ia psychologie
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génétique nous apprend en effet que les connaissances se développent lentetent;
cela est vrai pour les contenus de connaissance comme pour les instruments

logioues de la pensgée.

Ce sont ces deux préoccupations ( interconnexion des concepts et évolution
psychogénétioue) qui m'ont conduit & définir la notion de champ conceptuel:

un champ conceptuel est un espace de problémes on de situations-problémes

dont le traitement implique des concepts et des procddures de plusieurs types

en &troite comnexion. Les deux champs conceptuels auxquels je we suis person-

nellement le plus intéressé sont les "structures additives” dtune part, les
“structures mltiplicatives” d'autre part. Bvidemment ces deux champs con-
ceptuels sont en relation 1'un avec 1'autre et en relation avec d'autres
chanps conceptuels conme l'espace, la dynamique, la logigue des classes, ete.
Mais 1ls wm'apparaissent avoir une unité suffisante pour justilier des études
distinctes. Ils me permettront @'illustrer brié&vement la notion de chanp con—
ceptuel:

- exemple des structures additives: les premiers principes concernant 1'ad-
dition et la soustraction, notamment 1'augmentation et la diminution d‘une
collection et 1'itération + 1 commencent & éire appréhendés dés 1'age de 3
ou I ans, ainsi que 1'a bien montré kochel CGelwan. Mais le développement des
structures additives passe ensuite par le comptaye, la conservation des quan—
tités discrétes et continues, la nwnération, le traitement de relations dif-
férencides (addition de mesures, transtormation d'une grandewr, comparaison,
composition de transformations, ete.) dont les plus complexes ne sont pas
comprises par la wajorité des €1l8ves avant 1'dge de 15 ans. On peut conduire,
dans le champ conceptuel des structures additives, des analyses hiérarchisées
sur la difficulté relative des différentes classes de problémes, sur la comple—
xité conceptuelle et la disponibilité des différentes procédures de traitement
d'une méme classe de problémes, sur la signification et 1'utilisation des
diflérents systémes de représentation symbolique. I1 est maintenant démontré
qie 1'acquisition des structures additives s'étend sur une période du dévelop-
pement de l'enfant et de 1'adolescent supérieure 8 dix amnées, et passe par
un résesu de chemins qui n'a que des rapports laches avec la théorie des
stades de pensée. On pent repérer dars cette acquisition, des sauts qualita—
tils importants (comne celui de 1'inversion d'une transformation) ainsi aue
des "bbstacles Epistémologiques” durables comme celui de la composition et de la

d&oanposition de fonetions, ou comme celui de 1'identification de 1'ensenble
des nombres naturels avee 1'ensemble des nombres relatifs positifs.

~ exenple des structures multiplicatives: Gerald Noelting a montré que la
wéme situation de comparaison de rapports pouvait étre utilise entre 1'dge
de 2 ou 3 ans et 1'age de 17 ans et qu'entre ces deux ages se succédaient

une dizaine d'Etapes différentes. Le cluunp conceptuel des structures multi-
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plicatives int&gre le concept de rapport et le relie aux concepts de propor—
tion et de fonction linéaire, ainsi qu'aux concepts de fraction et de nombre
rationnel. On peut ais@ment repérer, dans ce champ conceptuel, des relations
particuliérement difficiles, comme celles de produit et de quotient de dimen—
sions que l'enfant rencontre dans des problémes réputds &lémentaires. On peut
Egalement identifier des procddures plus disponibles que d'autres, comme
celles qui utilisent les propriétés de 1'isomorphisme f(x)=ax, sinsi que des
représentations symboliques plus natur’elleé que d'autres, comme les tableaux
de proportiornalité simple ou double. Des "obstacles &pistémologicues” parti-
culidrement difficiles 3 surmonter existent, notamment dans la construction
de 1'ensemble des nombres rationnels, et dans 1'utilisation des propriétés
des fonctions bilinfaires, trilinaires et n-lindaires (grandeur proportion~

nelle & plusieurs autres grandeurs indépendantes entre elles).

Pour résumer, la notion de champ conceptuel permet d'8tudier dfune maniére
nmieux int€grée le développement simultand et coordonné des différents con-
cepts nécessaires 3 la compréhension’d’un ensemble organisé de classes de
problémes, des procédures permettant de les traiter et des sytémes symbo—
liques permettant de les représenter. Les hiérarchies que ces études per-
mettent de mettre en &vidence ne forment pas un ordre total mais un ordre
partiel, contrairement au mod&le de la théorie des stades. La notion ge champ
conceptuel réhabilite les contenus de comnaissance, trop souvent minimisés

ou effacés par 1'approche structuraliste.

THEOREME EN ACTE ET CALCUL RELATTONNEL

La solution de probléme est la source et le critére du savoir. C'fest dans la
solution de probléme, ou plus généralement dans le traitement de situations—
problémes que sont €laborées les notions, et que sont abstraites les pro—
priétés pertinentes. C'est aussi dans la solution de probléme que sont
Eprouvées les connaissances opfratoires. Le psychologue et le maitre peuvent se
former une image des connaissances et représentations des éldves 3 partir

des observables dont ils disposent, c'est-a-dire des actions du sujet en
situation et des témalznages symboliques que le sujet fournit de son activitd:
formilations verbales, dessins, schémas, &critures ...

Les différentes réponses et solutions apportées par les 6laves peuvent étre
considérées comme engendrées par des régles de production, ou procé&dures.

Il est méthodologiquement décisif d'identifier ces régles ou procédures. Mais
on ne peut comprendre leur signification que si elles sont rapportées aux
relations auxquelles elles s'appliquent. En d'autres termes, i1 faut les con-
sidérer come des "théordmes"implicites. Le concept de "théordme en acte"




désigne les propriétés des relations saisies et utilisées par le sujet en
situation de solution de probléme, &tant entendu que cela ne sigmifie pas

qu'il est powr autant capable de les expliciter ou de les justifier.

Le concept de Yealeul relationnel" désipgne de son ¢oté les compositions déduc—
tives (et les inférences) qui rendent compte de ses productions. Un exemple
permetira d'é€clairer ce point: plusieurs auteurs (Freudenthal, lybecl, Ver-
gnaud) ont relevé le fait que, dans les problémes de type xmltiplieatif, les
E18ves utilisent plus naturellement les relations entre grandeurs de mdme
mature que les relations entre grandeurs de nature différente; pour caleuler
la distance parcourue par un train rapide, en 30 minutes, sachant qu'il par-
court U0 ldlométres en 16 minutes, de nombreux &léves (entre 11 et 13 ang)
font la décomposition suivante:
36 = (2 fois 16) + 4 = 2 fois 16 + 1/4 ge 16

done la distance parcourue est 2 fois M0 + 1/4 40 = 80 + 10 = 9.
In procBdant ainsi, les €ldves appliquent le théoréme

POV + W% = ZNIx) + NEx)
C'est un "théoréme en acte", car il est rarvement explicité, et c'est aussi
une production inventive des &l&ves car un tel théoré&ne ne leur a jamais 6té
enseign€. Ce théoréme en acte est le produit direct de la conceptualisation
des Eléves dang le champ des structures multiplicatives. I1 repose sur deux
théorémes en acte plus élémentaires

Flx + x') = £(x) + £(x")

£ x) = L)
et sur leur composition.
Ie concept de "théoréme en acte” renvoie donc 3 celui de "représentation cal-

culable implicite" (ou encore de théorie implicite).

VARTABLES DIDACTTQUES ET EFFETS DIDACTIQUES

Jean Plaget a le wérite d'avoir présenté, avec la théorie de 1'&quilibration
majorante, une thforie cohérente de 1'évolution des connaissances: la con—
maissance passerait d'un &tat d'équilibre d un autre par un déséquilibre de
transition au cours duquel les relations prises en compte par le sujet dans
1'état antériecur seraient mises en contradiction, soit par la prise en consi-
dération de relations nouvelles, soit par une tentative nouvelle de leg coor-
donner. Cette phase de conflit serait surnont&e au cours due phase de véorga—
nisation et de coordimation qui aboutirait d un nouvel &tat d'éguilibre. Si
1'on applique cette théorie anx connaissances mathématiques, on est amené i
considérer que les situations-problémes présentes aux €léves constituent wn
levier important pour faire &voluer leurs représentations et lewrs procédures.

(uy Brousseau a développé d ce sujet une "théorie des situations didactiques®
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dans laquelle il fait jouer un rdle important 3 la valeur des variables
numériques utilisées et & la quantité d'information 2 traiter. Les procé-
dures et les notions des enfants se forment en génfral pour des valeurs
petites et enti@res des variables mmériques; le changement de valeur est

de nature & faire échocuer les procédures "locales" des &ldves et 3 les obli-
ger @ €laborer des procédures plus puissantes. Il existe d'autres variables
de situation, sur lesquelles il est possib}e dtagir pour produire des effets
didactiques. On peut citer en pramier lieu la nature de la thche cognitive,
c'est-d~dire la nature de la classe de probléme et des opérations de pensée
nécessaires d sa solution: par exemple dans les problémes de type additif
et pour de jeunes &léves (6 i 8 ans), les questions portant sur 1'état ini-
tial ¢ une grandeur comnaissant la transdrimation qu'elle a subie et son &tat
final, sont de nature 3 obliger 1'enfant 3 analyser davantage les propriétés

des transformations et & découvrir la propriété d'inversion.

&tat initial dépense de 4 francs &tat final

?

exemple : @ @ Eﬂ

De néme 1'accroissement du nombre de données 3 traiter et la présence de
données inutiles sont de nature 3 rendre fonctionnelle et Economique 1'uti-
lisation d'un diagramme, d'un tableai, d'une &mation. Un bon exemple de
ltutilisation des variables de commande didactique est fourni par le travail
d'Annie Bescot et Francoise Richard, sur la combinatoire; un exemple sur les

proportions sera présenté@ oralement.

Toutefois, le changement des variables de situation, ay lieu de permettre

le passage @ des procédures de niveau suprieur, peut entrainer la régressim
8 des procédures moins puissantes, mais plus fiables, ainsi que le montrent
les recherches de Claude Comiti et Annie Bessot. Plusieurs autres travaux
présentés & PME (Douady-Perrin, Artigne-Robinet) s'intéressent ainsi 3 1'ef-
fet didactique de la manipulation des variables de situation. Ces effets ne
sont pas automatiques, 1'€tat des connaissances antérieures du sujet est &vi-
dement un €lément déterminant de 1'apparition ou de la non-apparition de ces
effets. Les effets didactiques sont plus aisément constatables au plan des
proc&dures de traitement qf ay plan des concepts. Pourtant on peut repérer
certains exemples d'&laboration de concepts nouveaux en situabion: 1'exemple
de la composition de transformations additives montre que les &lédves par—
viennent d traiter certaines situatiors conceptuellement complexes avec des
moyens plus rudimentaires, en opérant des glissements de sens adquats 3 on
peut alors choisir les variables de telle manidre que les glissements de

sens solent rendus impossibles et (espérer) provoquer ainsi 1'&laboration
d'un nouveau concept, celui de la composition de transformations ( exemple
dormé& oralement).
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SIGNIFIANTS ET REPRESENTATIONS SYMBOLIQUES:

Les math@naticiens font un usage de plus en plus syst&matique, notamment
dans 1'enseipnement, de rveprésentations symboliques canoniques (Graphiques,
tableaux, diagramies, ...). Bemarquons au Passage que les 8galités et les
&uations forment également une représentation symbolique ainsi que le lan~
gage naturel lui-méme, Paute de faire suffisamment la distinction entre le
concept et sa représentation, c'est-d-dire entre le signifié et le signi-
fiant, il arrive fré&uemment qu’on prenne les symboles et les opérations
sur ces symboles pour 1l'essentiel de la connalssance et de 1'activité mathé-
matiques, alors que cette connaissance et cette activité se situent prinei-
palement au plan conceptuel. Des questions importantes se posent au plan des
sipnifiants. Far exemple, les différents systémes de signifiants ne mettent
pas également en évidence les dilférentes propriétés des relations mathé-
mtiques qu'elles symbolisent: 1'algBbre se préte bien aux manipulations

de synboleset @ 1'utilisation des opérations sur les nombres, les graphiques

permettent mieux 1'estimation des ordres de grandeur, la croissance, la
décroissance, la continuité, ete. A 1l'inverse, ils ne se prétent puére au
caleul. Quelques recherches ont &té conduiles sur les diagrammes et sw les
tableaux, de manidre i déterminer quels aspects des relations ces représen—
tations permettaient de mieux symboliser et de traiter (exemples dommnés
oralement).

L'étude des syst@mes de représentation symbolique montre aussi que leur lec—
ture et leur utilisation pose des problémes spécifiques: par exeuple le pla-

cement de donnes nuriqies sur une droite graduée, suppose des opérations

de pensée beaucoup plus camplexes quf on ne 1'imagine habituellement et s'avére

relativement difficile pour des €léves de 10 4 13 ans (exemple donné orale-
ment). Infin la fortmilation en langage naturel de certaines relations mathé-
matiques et de certaines propriétés sauléve d elle seule un probléme consi-
dérable. Colette Iaborde et Michel Guillerault traitent cette question dans
leur recherche. Pour ma part, je me contenterai de rappeler ce que j'ai dit
tout & 1'heure sur les "théorémes en.acte.

Utiliser une"propriété carrecte™ au cours de la solution d'un probléme est
essentiel. Mais cela ne fait pas une théorie wath@matique explicite. Seule
la formlation dans le langage natwurel, et @ventuellement dans un systéme
symboligue adéquat, permet d'objectiver claircment les propriétés utilisées,
de distinguer les propriétés carrectes des propriétés fausses, et de leur
apporter un début de validation. Une partie importante de la didactique
consiste Justement dans ce souci d'explicitation, qui est d'ailleurs indis-

sociablement 1ié & la construction des objets math@matiques proprement dits
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comme ceux de nombre, d'ensemble de nombres, de fonetion, de relation, d'es—

pace, de plan, de droite, de groupe, ete.

La didactique repose done sur deux pieds principaux:

- la construction de situations sigrificatives pour 1'€léve et productrices
d'effets didactioues;

- Texpliitdion des relations traites, 1'analyse de leurs proprié&tés et
la construction des objets mathématiques pdrtinents.
L'utilisation de systémes symboliques spéeifiquement mathématiques, ayant une
syntaxe explicite, apparalt alors indispensable. Mais elle ne doit pas masquer
le problére plus fondamental qui lui est sous—Jacent, celui du concept.

CONTRAT DIDACTIQUE

Je ne peux pas terminer cette analyse rapide de nos cadres théoriques sans
mentionner ce gue Guy Brousseau a appelé le ™eontrat didactique™, c'est~a-
dire 1'ensemble des attentes implicites qui réglent le fonetionnement de la
classe et les rapports entre le maitre et les €léves. De nombreux malentendus
surgissent en effet 3 ce niveau, qQui sont r’esponsables d'interprétations
erronfes des énoncés de probldmes et des demandes du maitre. ILa notion de
contrat n'est pas une notion purement sociale, elle implique directement le
contertt des connaissances. Je laisse 3 Guy Brousseau et i d'autres le soin

d'illustrer ce concept.

ORIENTATIONS METHOPOLOCIQUES

Les questions méthodologiques powrraient d elles~seules justifier un long
expos€. Je w'en tiendrai ici 3 deux idées principales:

1. la nécessité de recourir i une giversitéd de méthodes ;
2. la nécessité de développer I'expérimentation 3 1'intérieur de la elasse.

L'enseignement et 1'acquisition des connaissances math@matiques constituent
un objet d'é€tude trop complexe pour qu'on puisse espérer le comprerdre avec
une seule approche méthodologique. Plusieurs d'entre nous ont done fait le
choix de 1'aborder de plusieurs manidres: entretiens individuels, expériences
papier-crayon obéissant i un Plun expérimental strict, expériences dans la
classe, analyses de wmanuel, recherches sur 1'histoire de 1'enseignement des
mthératiques, questionnaires destings aux maitres, etec. Ia finalité de ces
différentes méthodes n'est pas la mime.




Les entretiens individuels de type clinique et critique, tels que Piaget les
a développés, demeurent d won avis une méthode essentielle pour 1'analyse des
difficultés conceptuelles et pour 1l'analyse des procédures par lesquelles

les El&ves traitent uns situation donnée. Ils sont indispensables pour Eéprou—
ver le solidité@ des conceptions des &léves (grace a4 1'utilisation de la
contradiction) et pour analyser 1'évolution des procédures et des conceptions
en situation. Ils prermettent de mieux faire la part entre les conduites vrai~
ment sipnificatives d'une conception, et les artefacts ou autres réponses
anecdotiques.

I1 s'agit cependant d'une méthode collteuse en temps, et il serait déruaisonna-
ble de se priver des expériences papier-crayon, qui ont le mérite de toucher
de larges Echantillons, et de permetire ainsi, lorsqufelles ont été plani-
fiées dans ce but, de faire des comparaisons muitiples gqui seraient iupos—
sibles avec les entretiens individuels.

Par exemple, Graciela Ricco, André Rouchier et moi-méme avons conduit 80
entretiens individuels pour &tudier la compréhension des propriétés de tri-
1inéarité du volume, A travers une série d'items oll les gestes, les dessins
et les silences des sujets €taient importants. Jamais nous n'aurions pucbtenr
les uenes informations avec une autre wéthode. Inversement, nous avons conduit
une étude papier—crayon sur la régle de trois, qui permet un grand nowbre de
comparaisons en fonction des valeurs nunériques choisies: cetle étude aurait

&t& dispendieuse avec la méthode des entretiena.

Que représente 1'expérimentation en classe par rapport & ces méthodes que je

viens de rappeler et que tout le monde connait?

Ltexpérimentation en classe, conme toute expérimentation, n'a de sens que si
on la conduit avec une probl&mtique claire en téte, c'est--dire si 1'on a
fait un choix réiléchi du théme et des aspects étudiés. I1 est vain de se
livrer 3 une observation du travail en classe, sl 1'on a pas élaboré soigeu-
sement les situations et les questions proposes aux €léves, et si l'on n'a
pas cherché 3 expliciter, aussi clairement que possible, les objectifs didac-
tiques qu'on se donne, les hypothéses qu'on fait sur ce qui va se passer:

par exemple sur le volume en classe de cinquidme (Eléves de 12 4 13 ans envi-
ron) nous avons conctruit une s&quence didactique que présentera André Rou-
chier: pour chaque gséance, nous avons réfléchi longuement 3 la situation pré-
sentée, aux objectifs que nous voulions atteindre, aux conduites que nous
attendions et aux effets que nous espérions produire. Ni le choix du matériel,
ni le choix des valeurs des variables, ni 1'enchainement des questions, ni

leur formlation ne peuvent etre laissés au hasard. Clest & cette condition
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seulement que nos observations prennent un sens et sont suffisamment précises.
Sans cette condition, 1'observation demeure vaghie, peu fiable et peu répé-
table.

L'enjeu scientifique est en effet important: est-il possible, au niveau d'une
séquence didactique relativement lonpue et complexe, et au niveau de toute
une classe, d'obsevrver des régularités dans les &vénements qui se produisent,
régularités interprétables par 1'analyse des conditions qui leur ont donné
naissance, pouvant comme telles 8tre considérées comme des faits didactiques.

Lorsaque les psychologies ont développé la technique des entretiens individuels
cliniques, ils ont &t€ confrontés a un probléme analogue, et ce n'est qu'avec
de nultiples précautions qu'ils ont pu mettre en &vidence des faits psycholo-
giques incontestables et répétables, au moins 4 un certain niveau de leeture

des observations.

On peut espérer qu'il en ira de méme dans la recherche en didactique et qu'il
sera possible d'€tablir des faits didactiaques, c'est~d~dire des faits concer—
nant la transwission et 1'appropriation du saveir par 1'action finalisBe de

1'école. Le critére de la répdtabilité est un critére exigeant. I1 est impos—
sible de le satisfaire 4 la lettre, mais il est peat~8tre moins malaisé qu'on
Ie croit de s'en approcher, & un certain niveay d'interprétation des &énenments.
En effet, lorsqu'on répdte la méme sdquence didactique avec plusieurs classes
d'€l8ves, on constate des rémilarités trés importantes, notamment au niveay
des distributions de conduites , et les variations prennent elles-mémes un
sens par rapport d ces rémularités. La répétition permet en tout cas d'amé~
liorer la formilation des objectifs et des hypothéses et de remettre en charn~
tier les propositions didactiques qui ont fait 1'objet de 1'expérience.

L'expérimentation en classe n'est pas pour autant la vole royale de la recher—
che, d'une part parce qu'elle ne permet pas, méme avec de bons moyens dfenre-
gistrement, d'analyser dans le détail tous les processus en jeu, d'autre part
parce qu'elle est d'autant meilleure qu'elle peut s'appuyer sur les résultats
obtenus par d'autres méthodes (entretiens individuels, expériences planifiées)
In retour elle permet de déceler des phénomdnes qu'il serait intéressant de
regarder avee la loupe des entretiens individuels. En tout cas, on ne Voit pas
comrent la recherche en didactique pourrait faire 1'économie de 1'expérimen~
tation en classe.




7 -

REFERENCES

Tris introductory conference refers mainly to papers published in volume I
of the Conference "Psychology of Mathematics Education", Grenoble, 1981,
ard in this volume (n:II): papers presented by Artigue, M. and Robinet, J.,
Balacheff, N., Bessot, A. and Comiti, C., Brun, J., Brousseau, G., Douady,
R. and Perrin, M.J., Guillerault, M. and Laborde, C., Ricco, G. and
Rouchier, A., Rogalski, J.

Other references are :
»

Bzchelard, G. La formation de 1'esprit scientifique, Paris, Vrin, 1972.

Gelman, R., Gallistel, C.R. The child's understanding of number, Cambridge,
M.A., Harvard University Press, 1978.

Freudenthal, M. Veeding and Sowing. Preface to a science of mathematical
education, Boston, Reidel, 1978.

Lyoeck, L. Studies of mathematics in teaching of science in G8teborg,
Irstitute of Education, n®72, 1978.

Noslting, G. The development of proporticnal reasoning and the ratio
concept: part 1. determination of stages, Educational Studies in
Mathematics, 1980, 217-253.

Vergnaud, G. Didactics and acquisition of "multiplicative structures"
in secondary schools. Cognitive Develoment Research in Science and
Methematics. The University of Leeds, 1979, 190-201.




Research on Mathematical Learning and Thinking in the United States®

Jeremy Kilpatrick

University of Georgia

Any survey of the educational research scene in the United States is
bound to be not only limited, but also rapidly outdated. The scene is com-
Plex, and it is volatile. These observations are only slightly less true
if one's view is restricted to research on mathematical learning and think-
ing. Before one movement has begun to fade, another comes along, and al-
though there are important ways in which the scene remains relatively con-
stant over time, US research on mathematical learning and thinking is affec-
ted by the swirling currents in the surrounding seas of educational research.
The metaphor of the pendulum is often invoked to characterize change in
mathematics education in the United States, but I find that metaphors relat-
ing to weather and the ocean capture more of its rhythm and unpredictability.

If we look, for example, at the learning theories that have been used as
bases for mathematics teaching, we see that the tides of theory can change
quickly. When Howard Fehr (1953) surveyed the then-prominent learning theo-
ries of conditioning, connectionism, and gestalt psychology to identify im~
plicatiops for classroom practice, he did not note the wave of cognitive
psychology that was about to sweep American educational research. When Lee
Shulman (1970) used the issue of discovery learning to contrast the implica~
tions for mathematics teaching of Bruner's cognitive developmentalism with
Gagné's neobehavioralism and Ausubel's cognitive theory of meaningful verbal

learning, he did not anticipate that within a few years not only would

1Paper presented at the meeting of the International Group for the Psychology
of Mathematics Education, Grenoble, 13-18 July 1981. I am grateful to Tom
Romberg for suggestions about the contents and to Jim Wilson for comments on
an earlier draft.




discovery learning be largely abandoned as an issue in American mathematics
educational research, but Ausubel and Bruner would no longer be active in
educational research and Gagné would have recanted much of his neobehavior-
alist position. At present, we are enjoying the brisk breezes of information-
processing psychology, but who can say what the weather is just over the
horizon?

A3 one measure of the difficulty I have in seeing what is happening in
the mathematics education research scene, let me cite an observation I made
eight years ago concerning the annual growth in the number of research studies
(Kilpatrick, 1973). I noted that there had been a jump of 44 percent in one
year, from 1970 to 1971, in the number of dissertations dealing with research
related to school mathematics listed in the annual survey of the Journal for

Research in Mathematics Education. A look at the annual surveys for the

years from 1970 to 1980, however, shows how much of an aberration that jump
was, The rate of growth in the number of dissertations cited has been much
more modest over the decade, and there are some signs that it may be slowing
dowvn. Somewhat more steady has been the growth in the number of journal ar-
ticles published, and there has been a marked increase in the number of
journals that publish articles on mathematics education research. I have not
looked closely at the data, but my impression is that the greatest growth
over the past few years has been in the number of authors and journals from
outside the United States.

My record as an analyst, then, is not perfect. Furthermore, one can
argue that a native of the culture is the wrong person to ask for an insight-
ful picture of its condition. It is with some reservations, therefore, that
I offer the remarks that follow. I shall first attempt to identify some

current problems in US research in mathematics education that arise
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primarily from the context in which it is embedded. Much of our research has
been heavily criticized for ignoring this context, so I will make sure it
gets appropriate attention by treating it first.. Then I shall attempt to
sketch some theoretical and methodological issues in US research on mathe-
matical learning and thinking. Finally, I shall attempt to make the dis-
cussion more concrete and focused by examining how some of these problems and
issues are reflected in US research on a topic I am especially familiar
with--mathematical problem solving. It goes without saying that all of these
views are my own; I have no idea how widely they might be shared either

within the culture or outside it.

Current Problems in US Research in Mathematics Education

Problems of Climate and Morale

The climate for research in mathematics education in the US today is not
an especially healthy one. Much of the torrent of research that appeared in
the 1960s and 1970s was powered by federal dollars appropriated to improve the
mathematics curriculum and the teaching of mathematics--although it should be
quickly added that only a tiny fraction of those dollars actually supported
the research. That stream of dollars has all but dried up. Americans in-
creasingly entrusted educational affairs to the federal government in the
past three decades principally because of their concern about manpower needs
(Spring, 1976). That tide seems to have turned, however. Although the con~
cern remains, people have lost faith in the government's ability to meet edu-
cational needs through its policies and programs. The widely held belief
that educational research efforts have been mostly ineffective suggests that,
even if more money were to become available to improve American education,

little of it would likely be earmarked for research. Education is turning to

the states and to private enterprise for increased funding, but these agencies




have a meager record of supporting research in wathematics education, and I
see little likelihood that this will change soon.
One might take heart from Heinrich Bauersfeld's (1979) observation that

it is in the periods of deep economic depression . . .

that the creative framework and fundamental research are

prepared which are to build the substance of the following

period of ascension and flower. {p. 199)
Perhaps, as the frantie data gathering slows down, more penetrating and schol-
arly analyses will appear in the literature of US mathematics education. Per-
haps. But we face a more serious problem than economic depression; we in the
United States appear to have lost much of our faith in the public school's
power to transform our people and our society. A devaluation of education as
an institution and as a profession pervades American life, demoralizing teach-

ers and researchers alike. The duration, depth, and ultimate impact of this

depression of the spirit are impossible to foresee.

Problems of Identity and Status

Bauersfeld (1979) also noted that the mathematics educator must "develop
his own self-concept” (P. 210). This is happening in the United States to
some extent, but the community of researchers in mathematics education lacks
the coherence and identity a true community ought to have. It is not simply
that a comprehensive professional organization is lacking; the Special Interest
Group for Research in Mathematics Education of the American Educational Re-
search Association, together with the North American branch of IME, £ill much
of the need for organization. And it is not simply that doctoral disserta-
tions that are the candidate's first and last venture into research continue
to flood the terrain--although that is a serious problem. The root problem
runs deeper and touches on matters of professional identity and status. It
is perhaps not surprising that, with some notable exceptions, US mathematicians

view research in mathematics education with a disinterest that borders on
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disdain: the status differential between the mathematician and the educa-
tionist is deeply embedded in our culture. Harder to explain is the (large-
ly covert) disparagement of each other's work that one sees between research-
ers in mathematics education and researchers in éducational psychology in the
United States. Despite much borrowing across the fence between the two
fields, these neighbors--again with some exceptions on both sides--strongly
resent encroachments on their territory. Relations between researchers in
mathematics education and mathematics teachers are somewhat more cordial,
probably because neither poses much of a threat professionally to the other.
All of this territoriality on the part of US researchers in mathematics edu-
cation might be more productive of a group identity if the territory itself

were more clearly marked out. Uncertainty about its boundaries, however, is

pervasive.

Problems of Purpose and Effectiveness

Some of the uncertainty as to what constitutes research in mathematics
education in the United States arises from accusations that it has been in-
effective in changing school practice. The consensus on this point seems to
Ee that too many researchers have been studying the wrong things in the wrong
ways, Researchers are (perhaps overly) disillusioned with traditional meth-
ods of educational research, but they are uncertain about how to use newer
methods appropriately and effectively. Many people are convinced that the
vrong research questions have been asked, but few examples of the right
questions have been proposed. Lurking below the surface is the issue of how
research should affect educational practice. Outside of mathematics educa-
tion one hears the argument that, on the one hand, the best educational re-
search is both pure and applied (Greeno, 1978) and, on the other hand, the
researcher and the practitioner ought to expect little from each other
(Phillips, 1980). Inside US mathematics education, one hears mostly silence

on this issue.




Theoretical Issues in US Research on Mathematical Learning and Thinking

The preceding gloomy litany of problems provides a backdrop against which
to view current theoretical issues, as I see them; in US research on mathema-
tical learning and thinking. To get a better sénse of how US researchers are
dealing with theory, I examined the 38 articles in the ten issues of the

Journal for Reséarch in Mathematics Education from July 1979 to May 1981. Of

these articles, 35 had authors with US affiliations only. I looked at each
article to see if an attempt had been made to link the question under inves-
tigation to some explicit theoretical context. For 20 of the articles, I
could find no such attempt. Six of the remaining articles dealt with
aptitude-treatment interactions, and although the authors seldom specified
the theoretical bases for their activities, I gave them credit for some con-
tact with theory. Of the remaining nine articles, three made more than cas-
ual use of Piaget's genetic epistemology, two were linked with expectation
theory, and one concerned each of the following: causal attribution theory,
a theory of attention, an application of graph theory to the representation
of cognitive structure, and information-processing theory. I may have been
too harsh in some of my judgments, but I conclude from this and other obser-
vations that a lack of attention to theory is characteristic of US research
in this field., Further, when theoretical constructs and contexts are used,
they are not "home grown"--they are today, as they have been for years, bor-
rowed from outside mathematics education, As Donald Sanders (1981) has noted:
[We have a] tendency to approach educating through constructs
rooted in psychology or the social sciences rather than through
theories or constructs fitting to phenomena as they appear in
educational settings. . . . Educational research rooted in the
theories and paradigms of velated disciplines may advance those
disciplines, but it does not necessarily advance scientific
knowledge of the process of educating. (pp. 9-10)

One of our greatest needs in research on mathematical learning and

thinking is for conceptual, theory-building analyses of the constructs and
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assumptions we are using. Such analyses must, of course, be informed by em-
pirical data--and, paradoxically, "despite rampant empiricism . . . there is
very little trustworthy data representing the facts of the educating process"
(Sanders, 1981, p. 9). Another need is to shift more of our attention to the
study of mathematics learning and thinking as they occur in school, We must
take full account in our research of the multiple contexts in which both
learning and thinking occur. Each is embedded in interacting systems of the
pupil’'s cognitions, the subject matter, and the social setting. We have ten-
ded to concentrate on at most one of these systems, and we have neglected in-
teractions within the system, not to mention interactions between systems.
For example, the study of concept learning has too frequently been pursued by
US researchers as though the learning of a mathematical concept were uninflu-
enced by the learner's knowledge, the existence of related mathematical con-
cepts, or the teacher's beliefs about the concept. To design and conduct
studies that can handle the complexities of these multiple contexts is per-
haps the biggest challenge we face. A final need is to devote some attention
to scholarly inquiry into and reflection on our own research activities.
Scriven (1980) terms this "self-referent research," and at first it may seem
just another gimmick to find something else to do research on. But just as
metacognition--cognition about one's own cognitions-~-is indispensable for in-
tellectual growth, so some metaresearch efforts are required for the growth

of our field.

Methodological Issues in US Research on Mathematical Learning and Thinking

The key methodological issue, as I see it, is how to take full account
of the complexity of mathematical learning and thinking by adopting and a-
dapting new methods of investigation without at the same time compromising
our standards of quality in conducting and reporting research. US researchers

are actively exploring approaches such as the teaching experiment (Kantowski,
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1978), the case study (Stake, 1978), and the ethnographic study (Rist, 1980).
Fach approach holds promise, but no approach will suffice by itself. Some re-
searchers are advocating more "artistic" approaches (Eisner, 1981), but it is
an open question whether such approaches can be pursued successfully by peo-
ple who have been trained as scientists and not as artists. The oldest re-
frain in research in mathematics education is the call for replication stud-
ies. The new refrain ought to be a call for convergent lines of investigation
in which studies explore a question from a variety of perspectives using a
variety of methods.

US researchers are presently rather disenchanted with quantitative meth-
ods of data analysis--although one might not necessarily conclude that from

reading the articles in the Journal for Research in Mathematics Education.

There is some danger, I think, that the reaction may be too extreme, and the
quantitative baby may go out with the statistical testing bath water. Rather
than abandoning quantitative metﬁods in favor of qualitative ones, our ef-
forts should be directed towards enriching both. In particular, new techni-
ques of exploratory data analysis and presentation should be explored by re-
searchers in mathematics education, and they should consider techniques for
the reanalysis of data and the meta-analysis of studies.

Also, the development of instruments to assess mathematical learning and
thinking ought to be given priority as a valid, vital research enterprise.
We have been too prone to investigate those constructs for which we have in-
struments at hand rather than taking the time and effort to develop new

instruments for assessing our constructs.

Research on Problem Solving in Mathematics

The designation of “problem solving" as the catchword of the 1980s in US
mathematics education ought to gladden researchers concerned with mathematical

problem solving, and one can expect that their ranks will swell in the next
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few years, but the problems of morale and identity touch them, too. The
profession seems to have convinced itself that problem solving is important
in school mathematics; the public, however, may not understand, or accept,
this argument in the same way. Claims that reséarch is needed to understand
how children solve mathematical problems and how to teach them to solve such
problems are likely to fall on uninterested ears. Some US researchers on
problem solving in mathematics have formed informal networks of association
that have been developed through working groups of the Georgia Center for the
Study of Learning and Teaching Mathematics and through the National Science
Foundation's meetings of project directors. These networks are fragile, how-
ever, I am not sure they can withstand the impending heavy weather of further
reductions in federal funding.

Researchers on problem solving are as guilty as anyone in US mathematics
education of failing to develop clear theoretical rationales to support their
work. The name of Polya is invoked as though that absolved the writer of any
responsibility to provide a scholarly analysis of problem solving. The term
process" is used as though its meaning in the context of mathematical prob-
lem solving had received a clear exegesis. Mathematics educators should crit-
ically examine the possible contributions of information-processing psychology
to our theory-building work--to see whether, as Resnick and Ford (1981) assert,

for the first time, psychology has a language and a body of
experimental methods that is simultaneously addressing both
the skills involved in performance and the nature of the
comprehension underlying that performance. (p. 197)
The stress that information-processing psychology gives to the role of memory
is reflected in rvecent work such as that of Ed Silver (1981), and researchers
such as Alan Schoenfeld (1981) are attempting to adapt the information-
processing notion of "executive decisions" to the analysis of mathematical

problem solving. We still lack, however, those 'home grown" adaptations of

the information-processing metaphor that would illuminate the specifically




mathematical characteristics of mathematical problem solving.

With regard to methodology, I would respectfully suggest that the pro-
liferation of schemes for analyzing '"thinking aloud" protocols is not get-
ting us very far. It would be good to see more attempts by researchers in
mathematics education to check results obtained from protocol analysis
against results obtained by other methods, such as reaction-time studies.
More studies ought to employ nmlfiple methodologies--in the spirit, if not on
the scale, of Krutetskii's (1976) work. (Some examples of recent studies in
which multiple methodologies were used can be found in Harvey & Romberg,
1980.) Serious attention should be given to the tasks used in problem-
solving research. Some recent work has been done on this issue (Goldin &
McClintock, 1979), but better instruments for assessment are still needed.

I end this cursory survey on a note that 1 wish could resonate through
the ranks of mathematics educators who do research in the United States--—
and perhaps it is needed in other countries, too. Research on mathematical
problem solving is beginning to move out into the classroom, and the work of
such people as Mary Grace Kantowski at Florida, Perry Lanier at Michigan
State, Dick Lesh at Northwestern, and Nick Branca at San Diego State bears
witness to the wisdom of this move. But we still need to reconceptualize our
approaches so that mathematics teachers can become full partners in the re-
search enterprise. As observers such as Sanders (1981) have pointed out, in
no profession other than education does one find such a sharp differentiation
between the community of researchers and the community of practitioners. The
time seems ripe, if we are to move ahead confidently and productively, for re-
search in mathematics education to develop its self-concept as an endeavor

demanding stronger links with practice as well as better scholarship.



References

Bauersfeld, H. Research related to the mathematical learning process. In
B. Christiansen & H. G. Steiner (Eds.), New trends in mathematics teaching
(Vol. 4). Paris: Unesco, 1979.

Eisner, E. W. On the differences between scientific and artistic approaches
to qualitative research. Educational Researcher, 1981, 10(4), 5-9.

Fehr, H. Theories of learning related to the field of mathematics. In
H. Fehr (Ed.), The learning of mathematics: Its theory and practice (2ist
Yearbook of the NCTM). Washington, DC: National Council of Teachers of
Mathematics, 1953,

Goldin, G. A., & McClintock, C. E. (Eds.). Task variables in mathematical
problem solving. Columbus, OH: ERIC Clearinghouse for Science, Mathe-
matics and Environmental Education, 1979.

Greeno, J. G. Significant basic research questions and significant applied
research questions are the same questions. Paper presented at the meeting
of the American Educational Research Association, Toronto, March 1978,

Harvey, J. G., & Romberg, T. A. Problem-solving studies in mathematics.
Madison: University of Wisconsin-Madison, Wisconsin Research and Develop-
ment Center for Individualized Schooling, 1980.

Kantowski, M. G. The teaching experiment and Soviet studies of problem sol-
ving. In L. L. Hatfield (Ed.), Mathematical problem solving: Papers from
a research workshop. Columbus, OH: ERIC Clearinghouse for Science, Mathe-
matics and Environmental Education, 1978.

Kilpatrick, J. Research in the teaching and learning of mathematics. Paper
presented at the meeting of the Mathematical Association of America, Dallas,
28 January 1973,

Krutetskii, V. A, The psychology of mathematical abilities in schoolchildren.
(J. Teller, trans.). Chicago: University of Chicago Press, 1976.

Phillips, D. C. What do the researcher and the practitioner have to offer
each other? Educational Researcher, 1980, gﬁll), 17-20; 24,

Resnick, L. B., & Ford, W. W. The psychology of mathematics for instruction.
Hillsdale, NJ: Lawrence Erlbaum Associates, 1961,

Rist, R. Blitzkreig ethnography: On the transformation of a method into a
movement, Educational Researcher, 1980, 2(2), 8-10,

Sanders, D. P. Educational inquiry as developmental research. FEducational
Researcher, 1981, 10(3), 8-13,

Schoenfeld, A. H. Episodes and executive decisions in mathematical problem
solving. Paper presented at the meeting of the Amepican Fducational Re-
search Association, Los Angeles, April 1981,




29

Scriven, M. Self-referent research. FEducational Researcher, 1980, 9(u), 7~
11; 9(6), 11-18; 30.

Shulman, L. S. Psychology and mathematics education. 1In E. G. Begle (Ed.),
Mathematics education (69th Yearbook of the National Society for the Study
of Education, Part I). Chicago: University of Chicago Press, 1970.

Silver, E. A. Recall of mathematical problem information: Solving related
problems. Journal for Research in Mathematics Education, 1981, 12, 5h-64.

Spring, J. The sorting machine: National educational policy since 1945,
New York: David McKay, 1976.

Stake, R, E. The case study method in social inquiry. Educational Researcher,
1978, 7(2), 5-8.







Towards a Research Consensus in Some Problem Areas
in the Learning and Teaching of Mathematics
by
Thomas A, Romberg
University of Wisconsin-Madison
usa
A significant turning point in the history of rescarch in any araa
occurs vhen from the chaos of competing ideas about a problem area, a
single paradigm emerges which implicitly defines for practitioners the
legitimate problems and methods of research., I believe that current work
on several problem areas within the learning and teaching of mathematics
should be viewed as foreshadowing the emergence of a firm research consensus

in these areas,

TOWARDS HORMAL SCIENCE
To build this argument, I follow Thomas Kuhn's description of the
“route of normal science." In his now classic treatise on the growth of

science, The Structure of Scientific Revolutions (1979), Kuhn argues that

the road to a research consenus in any area is arduous. 1In the absence

of a paradigm or set of organizing principles, all facts that could

possibly pertain to a problem area are likely to seem equally relevant,

As a result, early fact-gathering is a nearly random activity. Furthermore,
in the absence of a reason for secking some particular form of instruction,
early fact-gathering is usually restricted to the wealth of data that lie
ready at hand. Thus, facts accessible to observation and experiment are
pooled together with data retrievable from reports of classroom teaching,

curriculum development, or program evaluation,
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Although early fact-collecting has been essential to the origin of
many significant séienccs, one somehow hes}tates to call the resulting
literature scientific. Research in mathematics education during the
decade of the 60s was largely that type of random fact-gathering. For

example, in 1969, for rhe Review of Educational Research issue on science

and mathematics education, I argued that research at that time could "be
characterized as large in quantity, poor but improving in quality, and
diverse" (Romberg, 1969, p. 473). The diverse problems being studied at
that time made it difficult to classify studies even into reasonable
problem areas. Hence, the copious literature simply lacked an Implicitc
body of intertwined theoretical and methodological beliefs that permitted
easy selection, evaluation, and criticism. Ralph Tyler echoed this argument
in his summary for the National Conference on Needed Research in Mathematics
Education,
I conclude that we seem to have reached a consensus on a broad
definition for research in mathematics education and upon the
value of such research for the practical enterprises of teaching
and learning in mathematics. There still remain two frequently
voiced criticims: (1) current research is not sufficiently
discriminating in selecting problems that are significant; and
(2) current research seems to be scattered in the sense that
it is difficulty to put together the various investigations and
their findings in a way that provides the cumulative development
of knowledge, thought to be characteristic of the natural sciences
(Tyler, 1969, p. 135).
As the decade drew to a close, salesmanship gave way to questioning, and
in some cases, to careful inquiry. We began to realize that learning
and teaching in schools is complicated., The changes in content alone

(called the "modern math" revolution) were not sufficient to produce

drastic changes in mathematical learning,




The next decade might be characterized as a period of confrontation,
confusion, and reflection., For example, by 1975, the Subcommittee on
Research at the National Institute of Education sponsored Euclid Conference
on Basic Mathematics Skills and Learning argued that we had now gone beyond

fact-gathering.

We agree with the critics that past research in this area (mathema—
tics education) has been inadequate. Past studies can be charac-—
terized as a plethora of piecemeal studies rather than sets of
studies reflecting scholarly chains of inquiry. Too many studies
have been based on an inadequate conceptualization of the problem
being investigated, and have employed poor instrumentation and
inappropriate methodology. We feel that these faulcs of past and
current research are the typical characteristics of emerging filelds
of inquiry. On the other hand, it is clear that we now know more
about the teaching and learning of mathematics than we did some
fifteen years ago before there was substantial federal support

for educational research. In particular, we have eliminated some
options which seemed at one time to be viable but proved to be
unproductive and we have developed a much more sophisticated
research mechodology and have identified some potentially promising
directions for research. For example, we know not to rely solely
on simplistic frameworks such as behavior modification of discovery
learning to solve our problems, not to use standardized performance
tests as sensitive dependent variables, and not to rely on quasi-
experimental designs from agriculture as canons of research method-
ology. In summary, we feel that a promising start has now been
made both in terms of research completed and in terms of improve-
ments in research methods (Romberg et al., 1975, pp. 2-3).

The literature of the past decade was filled with arguments such
as: behaviorism vs, constructivism, quantitative vs. qualitative
methods, advocates of open schooling vs. traditional, proponents of activic
instruction vs. seatwork, and so forth, The claims, counterclaims, and
arguments of researchers must have been confusing to teachers, administrato
and graduate students., But, it really should be no surprise that, in the
early stages of the development of any science, scholars confronting
portions of the same range of phenomena arrive at different descriptions an

interpretations, However, during such a period of confusion, there is
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envitably reflection. Some scholars are able to sift through the morass
and through reflection plece together concepts and propositions which
encompass and clarify the conflicts. What happens then is a group previously
interested in the general study of a field, like mathematical learning and
teaching is transformed into a scientific group committed to a specific
problem area like adolescent learning of rational numbers. By the end of
the past decade, I am suggesting that for some problem areas, within mathe-
matics education, consensus is beginning to emerge, as in counting and early
learning of numbers, learning of rational numbers, and verbal problem solving,

Kuln argues that such consensus has two essential characteristics.
First, the synthesis by bringing clarity to a confused area is sufficiently
unprecedented to attract a group of adherents. Simultaneously, the synthesis
is open-ended, leaving all sorts of problems for the redefined group of
practitioners to work on.

Elsewhare, I have argued that "the key step in (the) evolutionary
sequence from myth and tradition to theory is model building" (Xomberg,
1981, p. 186). The purpose of building a model is to unpack the broad
assertions about a problem in order to elucidate the key variables and
the relationships between them. Going from macro-assercioﬁs to micro-
analysis is the critical step,

The development of a model starts in some empirical situation that
presents a "problem" for which an "answer" can be very misleading. One
must recognize that real situations rarely appear well-defined and are
often embedded in an environment that makes it hard to obtain a clear

statement of the situation. Formulating rhe preblem involves specifying




the assumptions, concepts, and principles one believes are operating in

the real situation. Such specification must of course be selective by

its bias, and most often deals with only a small parc of the larger
problem. This simplification or idealization is important since the
general problem is usually exceedingly complex and involves many processes.
Some features of reality will appear significant and many irrelevant. A
model's validity rests on its ability to represent the situation inftially
described. What I am claiming is that for some problem areas in the
learning and teaching of mathematics we are now in the model bullding
stage.

In summation, I believe, the “route to normal science" in any area

often can be viewed in terms of six stages:

Stage 1: fact-collecting. HMHere random studies are carried out with
lictle focus and no sense of order.

Stage 2: confrontation, confusfon, and reflection. That is a period
of sorting out facts, deciding on problems, arguing about well
varlables, etc.

Stage 3: model building. This is a time for organizing ideas about well
identified variables, etc. (The current stage addressed
in this paper.)

Although not relevent to this paper Kubn suggests there are at least

three other stages that follow;

Stage 4: paradigm selection.

Stage 5: onormal science.

Stage 6; scilentific revolutions.



Also, one essential characteristic marking the distinction between
the notion of model and the classical notion of theory is that the point
of a model often lies more in whether it illuminates the nature of a
phenomenon than in whether it is true. The;e is nothing outrageous in
the fact that models that generate very different propositions about the
same phenomenon can coexist without invalidating each other.

Finally, whereas a theory is conceived of as having a certain minimum
of generality, instances can be quoted of mathematical wodels that explain only
specific facts. This notion of model contravenes the postulate that science
deals only in generalities. We can go even further and say that recent
progress in the social sciences is partly connected with the fact that it
has been considered worthwhile to analyze things that, without necessarily
being unique, are specific. Admittedly, this kind of model usually in-
cludes some general propositions, but these propositions by themselves are
inadequate for explaining an observed reality, In summary, if a model is falsgi-
fiable, uniquely fits the phenomena under study, and has some generality
(often called a "fitring"” model), it is a theory. Otherwise, it is a
"guiding” model. It is important to understand that this characterization
of modeling is utterly at variance with the epistemological notions offered
by classical physics, to which the social and human sciences clung slavishly
throughout the whole of the nineteenth century and part of the twentieth.
Because having a "fitring' model implies properties such uniqueness, generality,
and verifiability, at present it is unsuitable for describing the results of
attempted formalizations applied to the analysis of mathematics teaching
and learning. Only by posing "guiding models" will we ever be able to build

a theory of mathematical education.




AN EXAMPLE: TEACHING MATHEMATICS IN ELEMENTARY CLASSROOMS

Several problem areas in mathematics education could have been
chosen to 1llustrate the trend toward research consensus. For example,
Carpenter, Blume, Hiebert, Anick, and Pimm (1981) have just completed an
extensive review of carly number research and I (Romberg, in press) have
argued that consensus is nearing in that area, Similarly, Swafford (1981)
has traced the evolution of assessing attitudes toward mathematics and
model building has begun (see Nimier, 1980).

For this paper, I have selected classroom instruction, in particular,
what teachers do in elementary schools., Space does not permit a detailed
conslderatién of all the issues associated with this development but
let me pose the problem and trace the trend toward consensus in this
area.

To wme the problem is self-evident. Teaching litrle children is hard
work; but the teaching of mathematics in most primary school classrooms
after modern mathematics programs were introduced was not just hard it
was poorly done. The writing of such schooling critics as Charles

Silberman, Crisis in the Classroom (1970); John liolt, How Children Fail

(1964); Carl Bereiter, Why Is Teaching Mathematics Se Awful?; H. W.

Sobel, "The anacronistie practices . . ." (1969); or Morris Kline

Why Johnny Can't Add (1973) to name a few are filled with examples of

bad mathematics teaching in primary school., Perhaps it is impossible
to teach the initial ideas of mathematics well, given the state of our
knowledge about mathematics and how children leaen, And, probably the

teaching of mathematics in primary school has always been poor.




But, it has become a problem of research interest as a result of the
"modern mathematics" movement. The intentions of the curriculum reform
movement were honorable, but in retrospect, the reformers in attempting
to organize mathematics, failed to see the complexity of the pedagogical
problems they faced. Because proposed curriculum activities were not
often understood by teachers, the resulting instruction too often became
chaotic, stultifying, and at best dull and non-motivating.

During the 1960's researchers interested in this problem area found
litele in the existing research to help clarify the problem. The publication

of the Handbook of Research on Teaching (Gage, 1963) helped scholars to

see the complexity of the problem., Reviews during the era, such as those by
Davis (1967) and Fey (1969), indicated the lack of consensus on how to study
the problem of classroom teaching, what was involved, etc.

During the 1970's, two lines of research, best summarized by
Bellack (1978 and 1981), became prominent. In the first approach,
rooted in behavieral psychology and called "process—-product research"
(Dunkin & Biddle, 1974), observers count frequencies of classroom
behaviors (processes). Then these frequencies are correlated with
student performance (product). Gage's recent book, Th; Scientific

Basis of the Art of Teaching (1979), summarizes this line of inquiry.

Recent syntheses of this research suggest that for mathematics in the
elementary grades, the classroom with the following characteristics
leads to increased academic performance (Rosenshine, 1976; Rosenshine

& Berliner, 1976; Medley, 1977; Brophy, 1979):
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o The teacher keeps the students on academic tasks, and the
content coverage is extensive.

o The teacher and workbook questions are highly structured,
and elicit a relacively high rate of correct answers from
students.,

o The teachers and materials provide lmmediate, academically-
orfented feedback, praising correct responses and exploring
incorrect ones.

o Instruction is provided to the whole class or to small groups.

o Teachers monitor student performance during recitation
sessions, and provide individualized feedback to students.

The second approach, rooted in sociology and called “interpretive
research’ (Bellack, 1981), involves observers describing the flow of
classroom events as percelved and interpreted by teachers and students.
Studies of classrooms, such as: Sharp and Green (1975), Bouwles and
Cintils (1976), Bossert (1979), Lundgren and Pettersson (1979) and
recently Popkewlcz, Tabachnick, and Wehlage (1981) picture schools with
characteristics quite different from the first approach (Romberg, 1980).

o Schooling is a collective experience for children.

o Time is the major control mechanism of schools.

o The students at a particular age are assumed to be wmore
similar to each other than they are different.

o Tnstruction within a time segment involves children working
on a lesson which addresses competition, evaluation, order

and control,
»

o Overt knowledge and skills to be transmitted to the children
are expressed in terms of copgnitive terms rather than social
vocational development,

These five characteristics are traditional elements which make an Americ:

school a school., The job for teachers then is to asslga lessons to

a class of students, start and stop the lessons according to some schedule,



explain the rules and procedures of the lesson, judge the action of the
students during the lesson and maintain order and control throughout.
For students the job is to be active participants in each lesson,
attend to the explanation of rules and procedures, work independently
on tasks, and try to be successful.

Also, during the 70's a lot of other activities not directly part
of either main approach contributed to the problem area such as: program
evaluations in mathematics classrooms (e.g., Romberg, 1976); retrospective
accounts of curriculum implementation (e.g., Shulman & Tamir, 1978);
studies of organizational decision making (e.g., Anglin, 1976); and
analytic critiques of research (e.g., Doyle, 1978).

Today, many of the ideas from these approaches and independent
activities are being brought together in "time-on-task" models. Borg
(1980) has traced the historical background of such models. One such
model has been used in the Beginning Teacher Evaluation Study (BTES)
(Fisher et al., 1980) and more recently in the IGE Evaluation Project
(Romberg, 1976), Coordinated Studies in Mathematics (Romberg, Small,

& Carnahan, 1979), and the Sandy Bay Study (Romberg & Collis, 1980).
Excellent reviews of this approach have been written by'Westbury
(1979), and Anderson (1980). In fact, the steps associated with an
instructional model based on this had been outlined recently by Good
(1981).

The past 20 years of research on classroom teaching in mathemétics
has followed the stages outlined above. Early research dealt with

describing the phenomena of classrooms and how they operate, This




was followed by considerable controversy, reflection, alternate
approaches, etc. Now I believe there is emerging a consensus agsociated

with models of how time is spent in classrooms,

CHARACTERISTICS OF TRANSITION TO MODEL BUILDING

To summarize this argument about the route to normal science, I
would like to emphasize three characteristics of this evolution. The
first, is the shift from "macro-analysis" to "micro-analysis." Model
building includes a very careful micro-analysis of the processes that
are involved in a particular problem area. Studies of “good" and "bad"
teaching give way to detailed analysis of specific aspects of teaching
(decision making, planning, instruction, etc.).

The second characteristic is a discipline sbift. In chis case from
mathematics to psychology and sociology. The mathematics to be taught anq
the way it is to be organized as the areas of principal concern has been
replaced by behaviors and intentions, I must admit this shift in some
cases has been over done as Buchman (198Q) has recently argued.

The third characteristic is the shift from individual research to
collaborative programs, Lakatos (1978) has outlined the importance of
chains of research which link to form a larger conceptual framework
about a particular phenomena, Problems such as the study of classroom
learning are complex and go beyond the capabilities of an individual
researcher to Investigate, Collaborative teams with members having
different conceptual backgrounds (i.e., mathematicians, sociologists,
psychologists, educators, teacher trainers, etc, working together) are

needed,
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CONCLUSION

From the time when I entered the educational research arena (nearly
25 years ago) what constituted a reasonable research agenda and how one
went about doing research has changed. I believe we are near a significant
turning point in the history of research in matheﬁatics education. We have
gone from a variety of atheoretic, fact collecting studies to a period of
model building. We have learned to appreciate the contributions that
other scholars (particularly psychologists and sociologists) can make.
This is an international trend which I believe is already producing important

research for the area of the teaching and learning of mathematics.
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WHAT 13 A GOOD ENVIHONMEBNT IPOR THE THPRLLICENT LEARNING OF MATIEMATICSE?
DO SCHOOLS PROVIDE I'P?  CAN ‘Ptigy?

Richard RB. Skemp, University of Warwick.

A ICME IV (]980) on a ébauché un nouveau modele d*intelligence, tout en montrant

le rapport avec le travail déj§ Ffait sur la comprehension des mathematigues. On

a Fait ressortir la fonction adaptive de 1'iptelligence vis-a-vis de 1'environne-
ment physique et social. On a prééenté les mathéhaciques comme un exemple puissant,
et utile a plusiers points de vue, de cette activite de 1'intelligence humaine qui
contribue pulssamment % notre maitrise de 1'environnement physique, et gui nous
rend capables de coopérer avec les autres. Elle est agssi un exemple de notre

. s - .
puissance creatrice. C'est surtout pour ces raisons-la que les mathématiques sont
si importantes dans le monde d'aujourd'hui.

Sur plusieurs plans, 1‘'environnement des écoles differe de celui du monde de
travail, ou les mathematiques sont exploitées d’une facon pratique. En particulier
1'ecole ne fournit A 1'éléve aucunne des trois situatizns majeures dans lesquelles
les mathématiques peuvent atre apercues comme une source de pouvoir et de devert-
issement. P ’

Un caracteristique important de l'intqlligence, clest qu'ell? nous donne le
pouvoir de construire (c’est a dire de developper et de mettre a 1'epreuve) des
structures conqutuelles qui,/a leur tour, nous per@eqyent g'inventer des strat-
égies ou des methodes pour execuler une grande variete de taches. on a distinguée
trois facons de développer, et Lrois facons de mettre a 1'epreuve. Mais de ces
six fagons, deux seulement sont employees dans les methodes conventionelles
d'enselgner les mathématiques. .

Puisqu’on doit toujours s'adapter a un environnement, nous devons nous
demander si 1'adaptation & 1'environnement d'une école aide aux enfants d'apprendre
les mathéﬁaciques. Je reconnais que les ecoles différent beaucoup entre elles,
mais j'arrive, & contre-coeur, 3 la conclusion que beaucoup d'é&oles ne conscig;
uent pas un bon environnement pour apprendre d'une facon intelligente les mathe-
matiques. L0

pourraient-elles le fairep Oui, si elles le desiraient vraiment. Mail il ne
suffirait pas de ne changer que le programme scolaire.

the preseni paper is a direcl sequel to Lhe one T presented last year at ICME
1V (Skemp, 1980). In that paper, [ described how 1 saw malhematics as one of
Lthe mosl important examples of the funciiouning of human intelligence, by which
(both in generul and in this particular case) we are better able to do three
things:

(i) Lo achicve goals in Lhe physical world

(ii) to co-operale with our fellow beings

(iii) to creale.

AL the end T wrote: "I*ve been describing the way mathewmatics is for people
like air navigators, scientists, technologisls, bankers, industrialists,
creative malhemalicians, Por wany children, this is not the way it is. ‘fThey
see it variously as a job to be done, a ithreat to be averted, a complicated
exercise for fulfilling teachers' expeclations, or (in Erlwanger's memorable

dsY ag ' s c ¥ i
words ) a8 a sel of rules for wmaki ng avcune marks on paper A boia 1l i
23 N I E 1Lg
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contrast that I want to explore further today: between mathematics as a
source of power for those who use it successfully in the adult world, and
mathematics as at best a chore and at worst a source of failure as it is for
S0 many in the world of school, Mathematics is indeed one of the most
successful products of human intelligence, cumulatively over many genera-
tions., DBut what has been coming through to me ever more strongly since-
writing the ICME paper, is that the uses for whose achievement mathematical
schemas are so powerful a source of help find little or no counterpart in
the child's school situation. It's not Just that the uses are different:
it is that the kinds of use are different. Some good examples of these
differences are given by Davis (1980) in his thoughtful essay "The Possibly
Elusive Content that needs to be Learned", the whole of which is highly

relevant to the problems on which T shall be focussing today.

In my talk today I shall be taking a wide-angle view, focussing on global
features rather than detail, with situational influences and implied goals
rather than the overt and explicit contents of teaching, important though
the latter are also. My justification for this is that details may change
their meaning in different contexts, and the most well-intentioned and well-
devised teaching can fail to achieve its goal unless account is taken also
of the wider context in which this is taking place, and especially of the
reality of the situation as it is construed by the learner. To adapt an
aphorism I heard many years ago: "What you are doing shouts so loud, I

cannot hear what you say."

A human child is at the most learning age of the most learning animal that
this earth has.yet produced. Yet daily mathematical instruction for about

36 weeks a year for about 10 years produces the truly dismal kind of result
of which we are repeatedly made aware by surveys in my own country (and

the story seems to be the same, with minor variations, elsewhere): namely
that children have learnt to perform routine processes well, but are bad at
adapting these to the requirements of new situations, Adaptability is a key
feature of intelligence, so the inference seems clear to me. Lack of adapta~
bility suggests strongly that the mathematical learning which has this as its
outcome is not making full use of children's intelligence. Mathematics is
not being taught in ways which bring about intelligent learning, or it is not

being taught in an environment favourable to intelligent learning, or both.

As conceived in my own model (Skemp, 1979), intelligent learning consists of
(i) the construction of appropriate schemas;
(ii) devising from these particular plans for particular tasks. These may

include routine plans (algorithms) for frequently—encountered tasks
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When the tasks are non-routine, (ii) becomes problem-solving.,

The Fivat of these may be called "knowing-that", and the sccond and Lhird
“knowing—how"., We also neced "being able™ ~ efficiency al putling these plans
{methods) into action accuralely and quickly. "These are ofben called “skills",
but for me skill implies adaptabilily, so I would only accept this term if con-
ceplual back-up is also available if needed., It is the parent schemas from which
new plans can be derived when necessary which are the sources of adaptability.

S0 we need now Lo think about ihe processes by which these schemas come into being.

My own position here is a conslructivisl one, that conceptual knowledge cannot
be lransmilbied directly. Only Lhe learner himself can constracr these schemas

within hig owa mind.

Yeaching is an interveniion in this invisible activity. A learner can be greatly
helped by a teacher who has a good mental model of the processes by which the
learner construcks his schemas. Babt if this is not the case, I can see no

reason Lo expect Lhal leaching will do good at a level better than chance. And

this may nol be far from the way Lthings are.
So now lel me offer part of my own model of schema construction.

SCHEMA CONSTRUCTTON
SCHRMA BUTLDING SCHEMA TISTING

Mode 1
from our own encounters

wilh actuality:

cxperience.

Mode 2
from Lhe schemas
of others:

communication,

Rode 5
from within,
Ly formation of higher orvder concepls:
by exlrapolalion,
imagination, intuition:

creativity.

Mode 1
againal expectations
of events in actuality:
experiment.
Mode 2
comparison with
the schemas of others:

discussion,

Mode 3
comparison with one's
own existing konowledge
and beliefu;

internal consistency.

Figure 1. (from Skemp, 1979)



- b -

As T use the term, construction includes both building and testing, The left
hand column describes ways by which a schema is changed; the right hand column,
ways in which we check whether a change is for the better. These are the
methods which our intelligence has at its disposal for schema construction:

and they work best when used in combination. The question is now, to what
extent do they describe the methods by which mathematics is learnt in school?
As I continue, you may like to fill in your own assessments in the table below,

allotting marks from zero to ten.

USED AT ALL USED WELL
Building Testing Building Testing
Mode 1
Mode 2
Mode 3
Table 1

Building mode 1. This is used freely in the first few years of school, and
then usvally replaced by work on paper, which is seen as its purpose. For
example, structural material such as multibase, abacus, are used for develop-
ing the concepts involved in place-value notation, and as a means for obtaining
answers o questions such as 375 + 283, 375 - 283, The aim is for children

to be able to do without help of this kind. Mode 1 building is often put to
good use in these early years, and my complaint is only that it is discarded

too soon.

Testing mode 1 is the reverse process — using a mathematical model to predict
an outcome with physical materials and events, and then putting this prediction
to the test. This may be done as a means of checking up on one's model, as
for example by dropping a stone and a feather simultaneously in vacuum, This
is the world of the experimental scientist, heavily dependent on mathematical
models. Or it may be as a means for achieving a goal in the physical world.
For example, if we fly on such and such a bearing we expect to arrive at

Newfoundland, Again, the navigator is heavily dependent on a mathematical model.

Certainly, experimental error can be a source of difficulty if we want to
introduce mode 1 testing into the classroom. But my complaint is that teachers
do not even try. They don't use mode 1 testing even when experimental error
would present little or noproblem. If structural materials are used to build
mathematical models, it is often possible to use these models to make and test
predictions of outcomes with these physical materials. 1In some initial trials
of this I have been impressed by the pleasure shown by children when their
prediction was confirmed by the ocutcome,
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Overall, | would see Lhe development of mode 1 testing as closely reluted to

the development of closer links between matlhemalics teaching and science teaching.

Mode 2 building, fThis is the main wethod used in the majority of classrooms.
Bsually it is done very badly. Here is an example from a text book which is
popular in bogland. [t comes in a chapter on area, This begun by explaining
why, for a rectangle,
area = length x breadth,
followed by exercises in calculating areas of figures which were either rect-—
angles, or could be divided into rectangles. MWithout any furlher explanation:
Circles
Phe circumlerence of a circle (that is its perimeter, or the length of its
boundary) is found by measurement to be a 1little more than three times the
lenglh of its diameter, In any circle the circumference is approximately
%.1416 tLimes ihe diameter, which is roughly 31 Limes the diameter. Neither

of these figures is exacl, as the exact number

NBig

cannot be expressed either as a fraction or a decimal, YThe number is
represented by the Greek letter 7 (pi).
Circumference = el or T
Avea = Trr*t
Examples of this kind of "telling, not teaching" abound. Contributions for my

collection will be welcome!?

What is wrong wilh the approach which this typifies, and what needs to be done
instead for communication to be a successful contributor to schema building, I

have discussed al length elsewhere (Skemp, 1971).

Teslbing wode 2. ‘This refers bto the testing of schemas., Tndicaling, e.g. by a
tick or a cross, whether an answer is right or wrong is not testing mode 2, Nor
ig indicating whether a method is corrvect necessarily testing by mode 2, since it

miy be confined Lo showing whelher or nobt a rule has been correctly followed., If
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however a method is discussed in relation to a parent schema, this I would call
mode 2 testing, in combination with mode % — consistency with one's own existing
knowledge and beliefs. If we consider this a little further, we shall see that
fruitful discussion depends on the presence of shared schemas, or the discussants

are not talking about the same things.

A very basic way of helping to ensure that discussants are talking about the same
thing is to bring in wmode 1 testing also. Thus, both discussants will be looking
at the same physical objects and events. BEven 80, a shared schema is still nec—

essary also, for without this they will not give the same interpretations to what

they see.

There are itwo other features of discussion which make it valuable in schema con-
struction. Successful communication involves the attachment of symbols and the
clear formulation of one's ideas as preliminaries for communication, and these

in turn favour reflection. The need sometimes to defend one's ideas also promotes
reflection, with the object of being in a position to justify one's ideas in

relation to an accepted body of knowledge.

Thus I would see discussion as a most valuable mode of schema construction,
especially when combined with mode 3, And since mode 3 is the most sophist-
icated kind of testing, I would wish sometimes to support discussion with mode

1 testing.

To what extent do we find discussion of the kind I have been describing - a
genuine interaction of mathematical ideas, of the kind we ourselves enjoy with
colleagues and graduate students - in school mathematics lessons? . Before you
answer, bear in mind that this would involve teachers listening to children's
ideas (not just checking their answers), and children listening and responding
to each others' ideas. How often do we find this taking place in the average

mathematics lesson?

Building moded.. The two clearest examples of this in mathematics learning are
extrapolation, and the formation of higher order concepts. Much of mathematical
learning requires one or both of these activities. Bxtrapolating is done by

teachers all the time, but seldom in such a way that the pupils also extrapolate
in their own minds, since they are not told what is happening. Consider malti-
plication. Tirst they learn to mualtiply the natural numbers. (Often this is

taught as repeated addition, which makes the concept particulariy hard to extra—

polate.) ‘Phen they are told how to multiply positive and negative integers,




tractions, matrices, What Lhey are not told is that "sultiplication" now means
gomeLhing dilferent, The concepl itself has been extrapolaled, and not Just the
method for doing it. Without this essentiol informalion it is unlikely Lhal
pupils will achieve relational understanding of this new meaning, So when they
are asked "Which is larger, 2n or n+17" they give replies such as "20, because

wultiplying always mokes bigger,” (Hurt, 1981).

The formalion of higher order concepts invo]vgs the process of repeated abstrac-
Lion: the discovery of regularities among objects and events which are not
physicaul, but mental, objects and events, The constructivist principle shows
particularly clearly here, since cvery learner has to make these discoveries
afresh, Yel Lhe need for good teaching is also here particularly great, since
even Lhe most gifted pupila, leave alone the average, are unlikely to be able to
repeat, unaided, and in a few years, discoveries which have taken some of the
best brains of mankind collectively many centuries fo discover. SJo we have a
puradox. Children can't be told this knowledge, and they can't construct it
unaided. "o resolve Lhis puaradox, children need teachers who are able indirectly
to direct the mental creativity of others. How many teachers of this kind do you

know?

It your answer is the same as mine, move's the pity, because mode 3 building is
one of the most exciting and powerful activities in mathematics when it happens
successfully. By helping it to happen, leachers might gain from their pupils
real gratitude, and even devotion,
Festing Mode 3. ‘his is quile a sophisticated activity, involving reflection not
only on mathemalical ideas in lhemselves but on relalionships of implication
between them, (If ABC is a triangle in which ABe = AEB, ihen ves). Formal
proofls apre an example of this in its fully developed form, Memorising formal
proofs (yes, this does happen) is an example of its gross mis-use. Its proper

se would be greatly encouraged by discussion, initially quite informal, in which
the participanls together examined statements, methods, results, using consistency
wilh accepted mathematical ideas as crilerion for acceptance or refutalion, For
Lhis, relaotional understanding is a necessary bul not sufficient condition. By
taking part in this activity over a period of years, pupils might arrive at a
slage where Lhe activity itself, independent of its particular content, could be
conceptunlised and reflected on. Only in Lhis way are they likely to reach an
underslunding of Lhe nature and purpose of formal proof, 1 doubt if this is
achieved very ofllen, As a good use of mode 3 testing, T would certainly also

accept the less sophisticated aclivily of informal discussion, which [ see as a
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valuable means of leading pupils to an intuitive understanding of the nature of
proof. How much of this takes place? I suspect that it varies greatly among
classrooms. In those where text books and work cards are the predominant method
of teaching, there can be very little.

* * * * *
Now to the uses of mathematics, as experienced by children in schools, I said
earlier that not only were the uses different from those in the adult world, but
the kinds of use. The importance I attach to this is based on the assumption
that we construct different kinds of schema for different kinds of use. Hence,
only the right kinds of use will favour the construction of sound mathematical

schemas. Again, you may like to record your own assessments as we go along.

Uses of mathematics as experienced by children in schools.

(i) to achieve goals in the physical world
(ii) to co-operate with others
(iii) to create.
Or do they experience it as
(a) a job to be done
(b) a threat to be averted
(¢) an exercise in fulfilling teachers' expectations
(d) a set of rules for making marks on paper?
Table 2

In group (i), mathematics provides an inexhaustible source of models from which
particular plans of action can be derived for the achievement of a wide variety
of goals in a wide variety of conditions. Even the same model can, by changing
the units, be put to a variety of different uses. R.g.

d = vt D =kd E = IR

are these different uses of the same mathematical model,
In your judgement, is this how mathematics is made to appear to school children?
Does it actually give them greater power to predict and control their environ-—

ment, in their own here-and-now experience? Please consider your verdict.

Uses in group {ii) relate to the interpersonal, the social uses of mathematics

for co-operation in science, technology, industry, Again, I can find no analogous
use in the classroom. The kinds of co-operation which take place (e.g.) between
designer and engineer, air navigator and ground controller, lens designer and

computer programmer, just are not found,
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Uses in geoup (iii). lere T refee Lo Lhe uses of mulhemulical schemas as agents

of their own growth, By reflecling on our schemas, extrapolaling, imagining "What
if ...", and somelimes also by intuitive leaps, existing knowledge can be used
lo create knowledge. It is closely celated to mode 3 building., Though particular
characleristic of pure mathematics, there can be a payoff also in mode 1. [ find
it exciting that an exlrapolation of the idea of square root to that of a negative
number has useful practical applications in electronics. Can we find similar
excilements for children®? S

¥ * X * *
Having filled in wy own assessmenls in tables 1 and 2, 1 find Lhe results bolh
depressing and hopeful. Depressing, because it seems to me that we're setting
children a learning task which makes considerable demands on their intelligence,
but we are nol providing them with a situation in which they can use their intell-
igence Lo best effecl., Nather the opposile. We are asking them to make an impor-—
tant and difficult iniellectual journey, not just on level ground but a climb
Lo conuiderable heights of abstraclion, with their legs and their hands tied.
1 am hopeful also: [or if we untie them, there is reason to think that we shall
be pleasantly surprised at Lhe progress which children lhen make. Bul ihe changes
which will be necessary are more than changes in curriculum: ~they are major
changes in our conceplion of what is a good learning environment, And il the
wajority of teachers are Lhemselves Lhe results of learning situations of the

kind [ have described, how can we persuade them first to untie themselves?
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PSYCHOLOGICAL BLOCKS TO LUEARNING OF MATHEMATICS
IN REENTRY WOMEN

Melanie Branca W. Alma Marosz
Southwestern College San Diego State University
Chula Vista, California San Diego, California
U.S5.A. *U.S.A.

ABSTRACT

Les campus universitaires des Etats-Unis votent awjourd'hui
u 1'intérieur de leur domaine un nowveau groupe d'étudiants:
des femmes qui choisissent de recommencer leur instruction
wniversitairve quand elles sont déju d'un certain dgz. Un
grand pourcentage de ces femmes souffrent des angoisses a
propos des cours de "maths" requis, et elles pergoivent
les unités de valeur en mathematiques comme un obstacle
asses décourageant quad il s'agit de véaliser leurs pro-
jects. Des tests psychologiques administrés & un groupe
de ces fenmes, qui ont participé dans des travaur prati-
ques destings u enlever leurs angoisses a propos des
Mpaths, ", ont, en réalité, montré qu'il s'agissait de’
hauts niveaux d'inquiétude quand elles devaient faire face
& des phrases contenant des termes de mathématiques comne
symbolisme. Lés vésultats ont aussi indiqué la préférence
de ces femmes pour des renseignemenis absorbés mieux par
la vue que par le son, ainsi qu'une préférence pour la
participation plus que pour l'observation. Les processus
de vaisonnement de ces [emmes avaient tendance & réfléter
Uapplication des regles apprises auparavant. Le labora-
toire contre les angoisses au sujet des mathématiques
était conduit pav des psychologues et par des enseignants
de mathématiques qui travaillaient ensemble. Le contenu
du laboratoire se concentrait suv la cupacité des femmes
de survivre sous pression et sur leur fagon de vésoudre
leurs problemes dans une ambiance peu menagante. Les
dvaluations faites aprés indiquaient un effort positif

de la part de ces femmes pour dominer leurs angoisses.
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College campuses in the United States today are seeing within their student
body a new group of students: women who choose to resume their education in
their middle years ("reentry" women). These women, many of whom have raised a
family, are now returning to school with great determination to pursue a new
and meaningful career. San Diego State University, a large public university
in Southern California recently conducted a new student orientation program
especially for reentry students. A large percentage of the women indicated at
that time that they would like to pursue a career that involves mathematics,
but they perceived this need for mathematics as a formidable roadblock in

their plans.

To assist these women in achieving their goals, several women facuity
organized a workshop modeled after the experiences reported by Shelia

Tobias. Nineteen reentry women participated in the week-long workshop which
met for two hours each day. The women ranged in age from 27 to 62 with a
median age of 40.5 and an average age of 44. The women entered San Diego
State University in the Fall of 1980 after a sustained absence from academic
life. Their declared majors are in the areas of Social Work, Speech
Pathology, History, Psychology, Anthropology, Zoology, Microbiology, Nursing,
Art, Business Administration, and Liberal Studies. Eleven of the group are

currently registered in a mathematics course.

In conjunction with the workshop each woman was administered a mathematics
anxiety rating scale as well as a cognitive style mapping questionnaire.
Results of the math anxiety scale indicated that a high percentage of these
women were comfortable with doing arithmetic operations or problems where an
arithmetic operation is clearly indicated. However, many of them showed high
levels of anxiety on statements where a reference was made to mathematics
using symbolism. Nearly all of them registered high levels of anxiety when a

reference was made to evaluating their mathematical skills.

The cognitive mapping questionnaire indicated that certain personality and
learning characteristics could be identified as being typical of this group
of reentry women. Identification of their characteristics served not only to
describe the group and support initial perceptions, but also to point out
possible reasons for learning difficulties and/or anxieties as well as to
indicate activities which could be incorporated into the workshop and from
which the women would be likely to profit.
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This group of reentry women endorsed statements reflecting a strong
commitment to personal principles, a good knowledge of themselves, an
awareness of time, reflected in a sense of the importance of meeting time
deadlines and an ability and/or a preference for working independently on
projects or problems. All of these attributesg are consistent with
characterizing this group as being dedicated, serious students with clear

goals to which they are committed.

These women also tended to be uniform with respect to certain learning
characteristics which are related to academic pursuits. They tended to
prefer visual input for both verbal and numeric information. Furthermore,
input of numeric information by hearing was overwhelmingly the least
preferred modality of information processing. Of the five senses,
information processing by the sense of touch was predominately preferred to
any other of the five senses. They also indicated a strong preference for
learning by doing rather than learning by observing. They tended to take a
non-assert.ive role in their relationship with others, avoiding or feeling
uncomfortable with a role which called for persuasion or convincing others of
their viewpoint. They tended to deemphasize the role of their peer group in
influencing their actions or providing assistance for them. Finally the
reasoning processes of these women tended to reflect primarily the

application of previously learned rules.

The workshop organized to assist these women was conducted by three
professionals trained in psychology or counseling and two mathematics
educators. Activities were divided approximately evenly between the

counseling group and the mathematics group.

The counseling group presented activities which were designed to provide the
women with experiences in managing stressful situations and to encourage
acknowledgement of their anxieties. These included activities such as a
demonstration of relaxation techniques, a discussion of the socialization of
women and its possible effects on their attitude toward mathematics, clues on
overcoming test anxiety and a discussion of cognitive restructuring of self-

imposed belief systems.

The mathematics group engaged the women in activities designed to convince

them of their ability to learn unfamiliar mathematical language as well as
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some problem-solving techniques. Geometric transformations were used in a
very intuitive manner to create figures which would tesselate a plane and
several geometric theorems were demonstrated by using transformations. Games
and mathematic puzzles were used to demonstrate some of the problem- solving
techniques found in Polya's work. Activities were chosen which provided the
women with an opportunity to seek solutions by manipulating objects or
drawing diagrams. Interactive participation by the women was encouraged and

did, indeed, take place.

During the final sessions of the workshop each woman conferred with a member
of the staff who provided an interpretation of the cognitive style mapping
administered earlier in the week., Each also had a conference to assess their
mathematics needs. Following the workshop tutors were provided for those
women currently enrolled in a mathematics course. Care was taken to insure
that the tutors were cognizant of the special problems of reentry women.

This group of women have subsequently formed the nucleus of a network

designed to provide support for reentry women.

An evaluation instrument administered at the conclusion of the workshop
indicated a very high degree of satisfaction on the part of the women. The
statement in the evaluation which elicited the greatest positive response was
"The workshop gave me a basic feeling of support.” A follow-up investigation
of these women currently registered in a mathematics course will be done at
the conclusion of the Spring term to determine their accompl ishments and

possible changes in attitude toward mathematics.
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* COGNITIVE FUNCTIONING, CLASSROOM LEARNING AND EVALUATION: TWO PROJECTS
by
Kevin F. Collis, University of Tasmania, Australia
and

Thomas A. Romberg, University of Wisconsin, U,S.A.
ABSTRACT

Dans ce mémoire, les auteurs veuleat discuter les progres de deux
études collaboratives.

Le premier programme s'intéresse au rapport entre la facultéd de
transformations cognitives (CPC) et le niveau de réussites aux problémes
d'addition et de soustraction pour un groupe d'enfants agés de 4 & 8 ans
en Tasmanie en Australie. D'abord, on a groupé les enfants selon leur
CPC--un indice composé des résultats de deux séries de tests, le premier
qui a mesuré 'M-space" et le deuxiZme qui a mesuré le nivean du
développement cognitif. Ensgite, on a exam}né le rapport entre le groupe
dans lequel l'éstgdiant a étg place et sa reussite a propos d'autres
variables. Les resultads preliminaries mon trent que:

(1) 411 y a une augmentation significative du niveau de reussites
sur les problemes mathématiques qui accompagne chaque augmentatior
du CPC.

(11) les enfants de CPC different utilisent des stratégies differentes

(i11) 1le niveau de travail actif ("engagement") s'cleve selon 1'aug-
mentation du CPC.

(iv) 1les étudiants ayant un CPC éleve's'appliquent aux taches quelle
que soit l'activité du professeur.

(v) 1le pourcentage d'étudiants qui utilisent les algorithmes enseignés
pour trouver la solution d'un probléme ne s'@levd as selon
1'augmentation du CPC,

Le deuxiéme programme de recherches vise au développgment d'une serie
de "super-items" (Cureton, 1965) pour examiner la capacite des etudiants
agés de 8 4 17 ans 3 résoudre des problémes mathématigues. La technique
utilisée est fondée sur un procédeé qui vient d'étre developper (Biggs &
Collis, 1981); ainsi, on peut analyser les réponses des étudiants selon
les caractéristiques de leur structure. Dans ce pProgramme, on a renverse
le procédé habituel: on cherche a développer des questions d'une structure
particuliére afin que la réponse correcte soit un indice d'une apritude a
résoudre les problemes mathématiques d'un tel niveau,

N

Nou§ avons choisi les criteres suivants selon les quels nous avons
developpe les quatre questions posees vis-a-vis “la tige" de chaque
probleme.
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1. une, seule structure: 1'étudiant doit utiliser un seul renseignement
qui est presénté d'une facon bien claire dans la tige.

2. plusieurs structures: 1'étudiant doit utiliser au moins deux
opérations complétes mais differentes a propos des renseignements
séparés dans la tige. .

3. un rapport: L'@tudiant doit utiliser au moins deux opérationi B
complétes mals differentes qui montrent une compréhension intégrée

de la plupart des renseignements dans la tige.

4. une abstraction extensive: 1'@tudiant doit utiliser un principe
abstrait qui est évoqué par les renseignements dans la tige entiere.

Au moment actuel, on vient de développer les problemes et en automne

on espére les examinee d'une facon empirique a propos d'un échantillon
assez large d'étudlants américains.

E
¥

To this point, my attention has been devoted mainly to children's
processing capabilicy whereas my co-author, Professor T, A, Romberg,
has had extensive experience In experimental classroom research and
analysis, The jolnt projects that we have undertaken have underlying
them the notlons that not only might more rapid improvement in classroom
instruction result from the collaborative approach bur also that new
light might be shed on fundamental issues in our own special areas
of interest, Currently, we are engaged in two jJoint projects which
I wish to report in this paper, The flrst, and larger of the two
projects, is still being analyzed but enough has been done to give
a preliminary flavour of what the final results are likely to be.

The second lLas only just reached the end of stage 1 of_a two-stage
project but the approach and preliminary results are of sufficient
interest to warrant reporting at this conference.

Project No, 1: Cognitive Level a.l Performance

on Addition and Subtraction Problems

The intentlion In this project was to endeavour to classify a
population of children aged 4 to B years into groups according to their

Cognitlve Processing Capabilities (CPC)--this was done by giving two



batteries of tests one to measure M-space (Case, 1978) and one to
measure Cognitive Developmental Level. The tests in both batteries

were intended to bear implicitly on the early learning of mathematical
material. The CPC measures and their descriptions were to be obtained
by combining the information obtained from the two batteries of tests.
Following this classificatory procedure, the relationship between each
distinct group with particular CPC characteristics and various experiences
incorporating mathematical content in the beginning school years was to
be examined. A preliminary examination of some of this data was
reported by my co-author at Berkeley last year (Romberg & Collis, 1980a).
Let us summarize the results of grouping according to CPC measures.

It was found that, using Factor Analytic techniques and a cluster
analysis procedure (for details, see Romberg & Collis, 1980b, c), the
population of 4 to 8 year olds could be assigned to six groups with the
associated characteristics summarized in Table 1.

The tables following Table 1 indicate the directioﬁ in which
the analyses are leading us with respect to the relationship between
CPC level and the following five variables:

‘(i) achievement on elementary addition and subtraction problems,

(ii) strategies used by pupils on elementary addition and
subtraction problems;
(ii1) pupil engagement on school tasks;
(1v) . teacher actions: the effect on pupil engagement;

(v) pupil use of addition and subtraction algorithms,

All the results quoted below are from the total population and are

independent of both age and grade or class,
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Table 1

M-space Groupings with Associated Characteristics

»

Group M~space Measure Characteristic

1 1 elementary qualitative comparisons only,
lack quantitative and logical ability

2 2 qualitative correspondence, lack specific
quantitative and logical skills

3 2 *S+ high qualitative correspondence, have
certaln specific quantitative skills
(i.e., counting for specific purposes),
do not reach criterion on logical skills

4 3 %5~ high qualitative correspondence, high on
quantitative skills, do not reach criterion
on logical skills

5 3 *5+ ) ,
ceiling on qualitative correspondence, high

6 4 *5- on quantitative skills, high on logilcal skills

*S+ and S- represent the presence/absence respectively of a spatial ability
as measured by one of the tests.

(1) Achievement: Table 2 shows the percentage correct by CPC level on
addition and subtraction problems using numbers up to 20. The results are
the combined scores for two tests, one in which physical material was
available and one in which physical material was not available. The results
show a significant increase in achievement by CPC level--the biggest gains
being made between levels 1 and 2 and again between levels 2 and 3.

(ii) Strategies: Table 3 shows the percentage of the various kinds of
strategies used by the same children on the same problems as were involved

in the results in Table 2.
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Table 2

Achievement on Tests C+ Tasmanian Data
(% Correct, Total Population)

CPC Level % Correst Responses No. of Trials Involved
1 22 180
2 65 450
3 81 396
4 83 264
5,6 96 252
Total ' 72 1542
Table 3

Pupil Strategies on Tests C+ Tasmanian Data
(% of Times Strategy Used; Total Population)

cpC Direct ; Routine Mental Non-routine
Level Modeling Counting Operation? Mental Op.3 Inappropriate
1 28 0 1 0. 70
2 36 18 13 6 27
3 18 .33 26 10 13
4 11 30 35 14 9
5,6 13 40 42 6 0

1
Using physical material, e.g., counters, fingers, etc.
2Using known number facts or relationships

*Innovative use of number facts or relationships
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There are several interesting features of Table 3 which need
careful consideration, three of which.will be mentioned here, Flrst,
there is a very significant drop in the use of inappropriate strategies
employed from levels 1 through to level 3; second, the use of direct
modeling goes down as CPC level rises and the use of counting and
routine mental operations rises; third, the reduction in use of
inappropriate strategies is spread over the other categories, with
counting and routine mental operations taking the largest and almost
equal shares,

(L11) Pupil Engagement; Table 4 gives us information on the percentage
of class time during which the children at the varlous CPC levels are

engaged on the school task in hand,

Table 4

Pupil Engagement on Task
Tasmanian Classroom Observational Data
(% of Time Pupil on Task; Total Population)

CrC Level 4 Time On Task % Time Off Task
1 64 36
2 65 35
3 70 30
4 76 24

5,6 87 ) 13




§
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It appears from these results that those pupils who can best afford
to be off task spend more time in this state than their colleagues with
higher CPC levels. The data is being broken down for more detailed
examination at this time and will be reported more fully in our final
report. However, one piece of analysls which is available and is of
interest in this context is that when engaged the level 1 group spend
86% of this time on content and 14% on being given directions as to
what to do--the percentages in the same categories for level 5, 6 are
91% and 9%. In other words, there does not seem to be a lot of difference
between the levels in what the engaged time is spent on but there is a
large difference in the amount of time spent attending to classroom
tasks from level to level,

(iv) Teacher Action and Pupil Fngagement: Table 5 gives us information

on percentage of time that the pupil remains engaged on his/her classroom

task when the teacher does various things,

Table 5

Teacher Action vs, Pupil Engagement on Task
Tasmanian Classroom Observational Data
(% of Time Pupil on Task; Total Population)

Ccpc

Level Individual Pupil Small Group Large Group But Interacting Not Interact

TEACHER ACTION
Speaking to Speaking to Speaking To Not Speaking Not Speaking

1
2
3
4

5,6

67 55 65 62 51
61 71 77 63 60
69 82 78 63 66
73 72 87 76 76

79 92 95 89 91




It can be seen from this summary that regardless of what the teacher
is doing the children with higher CPC levels tend to spend more of their
time on the school task in hand., In addition, some of the patterns of
behaviour suggested in the table may repay closer examination, e.g., the
reacher not speaking nor interacting with anyone seems to have the
greatest distraction from task engagement for the 10Qer CPC level pupils.

(v) Pupil Use of Algoritlms: Table 6 shows the percentage of children,

by CPC level, who, having learned the algoritims for addition and

subtraction, actually used them to obtain the answer to a problen.

Table 6

Use of Xnown Algorithm to Solve Problem Tasks D and E
Tasmanian Data
(% Using Algorithm, Total Population of Subjects Who Hlad Learned Algorichum)

% Using
CPC lLevel % Using Algorithm Inappropriate Strategy % Using Counting

2 24 37 8
3 19 19 22
4 20 19 , 18

5,6 25 3 32

Children at all CPC levels use the taught algorithm infrequently,
between one~fifrh and one~fourth of the number of times when it is
appropriate. They appear to prefer to fall back on more "primitive"

strategies such as counting which they have used successfully previously.



It can be seen that the data on these tests parallel those in Table 3
in that, with rise in CPC level, the use of inappropriate strategies
decreases significantly at the same rime as use of counting strategies
increases. It is of interest to note that when the children cease to
use inappropriate strategies they do not, in the main, turn to the
algorithm which has been taught as the appropriate strategy. In fact,
for this population, the use of the algorithm does not increase
significantly with increasing CPC level. It is interesting to speculate
on the reasons for this. Perhaps the emphasis on understanding the
relationship between the algorithm and its application is misplaced

at least at this early stage; perhaps we should treat problem solving
strategies and algorithmic procedures as discrete entities, teach
them separately and worry about bringing them together at a later
stage in the child's mathematical development.

Project No. 2: Cognitive Level and Assessment

of Students' Problem Solving Hathematical Capability

This project has set out to combine an evaluation technique designed
by two Australian researchers (Biggs & Collis, 198l) with a mathematical
item type proposed sometime ago by Curecon (1965) in order to devise
multiple~choice items which could be used to test validly a student's
cépacity for solving mathematical problems. Based initially on the
cognitive development literature, Collis and Biggs devised a response
mwodel which enabled a child's response to a particular question to be
classified according to the way in which it was structured. The

response model or SOLO* Taxonomy proposes that there are five basic

e bt e
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categories within the concrete operational mode of functioning (i.e.,
7 + years to 15 + years). These basic gategories* are set out

dlagrammatically in Figure 1.

Resporse Structure

$0L0

Cue
Description e

Response’
.

Extended Abstract

Relatione! *

[

Multi-structural

o
o
o
*
x
X

|
z

KLY: Kinds of dats uied:

x » frrelevant or fnappropri

|

'
!

o o = Related and given in afs
o
[
x o0 » Related and hvpothetical
x
tnf-structural {_—‘ not gtven.
gy
PR J—
°
[
[ — o
x

Pre-structural

|

o0 oie e e eix

1

Figure 1, S8SO0LO response description.

ATt should be noted that Biggs and Collls (1981) do not confine thelr use

of this model to mathematics--it can be applicd across the whole curriculum,
Moreover, the model Is equally applicable in other modes of functioning,
viz., sensori-wotor, pre-operational and formal--the concrete mode is

dealt with here because it covers the range of compulsory schooling in most
countries, For full details, the reader is referred to Biggs, J. B., &
Collis, K. F. Evaluating the Quality of Learning: The S0LO Taxonomy,
Academlc Press Inc., New York. (In press, expected release Nov. 198L.)




The above diagram is meant to cover the general case. For particular
content areas, certain ldiosyncracies peculiar to the area need to be
taken into account. For mathematics, the following can serve as a highly
condensed summary of a response model which is meaningful within the

context of school-based mathematical material.

Summary of Response Modes

UNI-STRUCTURAL RESPONSES

Marked by a single direct relationship to concretely (either physically
or iconically) available criteria, ) B

MULTI-STRUCTURAL RESPONSES

The ability to handle multiple operations with small numbers by a
series of meaningful closures, for instance, may be seen as analogous
to using a sequence of given, but unconnected, propositions to support
a particular judgment in other content areas.

RELATIONAL RESPONSES

The individual relates elements within the immediately available
concrete system and forms generalizations on this basis.

EXTENDED ABSTRACT RESPONSES

Acceptance of lack of closure, use of the reciprocal operation and
ability to work with multiple interacting and abstract systems
involve a comprehensive use of the given data together with related
hypothetical constructs and abstract principles,

Superitems

Cureton (1965} seems to have been responsible for coining this term
to describe sets of questions which were asked about a particular problem
situation. Typically, the problem situation would be described in the
stem which would consist of a paragraph describing the problem and the
items would consist of a series of questions which could be answered by
reference to the information in the stem. Cureton's basic interest

was methodological but others (e.g., Wearne & Romberg, 1976) have used




the notion since to develop tests of mathematical problem solving.

This latter work showed that the tests were useful because they provided
more information about the student as well as a more refined measure of
the child's problem-solving ability. However, they did not give infor-
mation about the level of a child's reasoning in respect of each problem
situation. It is this latter aspect that this project is designed to
shed light on.

It is hypothesized that, by using the SOLO technique In reverse, as
it were, one ought to be able to design ltems such that a serles of
questions on the stem would require a more and more sophisticated use
of the information in the stem in order to obtain a correct result. This
increase in sophistication should parallel the increasing complexity of
structure noted in the SOLO categories.

Criteria for Construction of Superitems

Clearly the construction of these {tems consists of two parts, (a)
the writing of the stem and (b) the construction and writing of questions
to reflect the SOLO levels, The former is concerned with content validity.
This has been achieved in the present study by outlining six items for
each of the content areas set up by the National Assessment of Educational
Progress (NAEP) publication on mathematics objectives (NAEP, 1977) and carrying
out several content vs. category checks using math teachers, educators and
mathematlcians. The latter requires that suitable criteria be set up to
enable four questions to be asked which would not only require a knowledge
of the information in the stem but would also be such that a correct

response Lo cach question would be indicative of an ability to respond
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to the information in the stem at least at the level reflected in the
SOLO structure of the particular question. To achieve this last the
following criteria were set up for designing the questions:;

1. ‘Uni-structural: Use of-one obvious piece of information
coming directly from the stem.

2. Multi-structural: Use of two or more discrete closures

directly related to separate pieces

of information contained in the stem.

3. Relational: Use of two or more closures directly related to
an integrated understanding of the information
in the stem.

4. Extended Abstract: Use of an abstract general principle
or hypothesis which is derived from
or suggested by the information in
the stem,

In each superitem, the correct achievement of question 1 would
indicate an ability to respond to the problem concerned at at least
the uni-structural level. Likewise success.on question 2 corresponds
to an ability to respond at multi-structural level and so on,
Conclusion

The above is meant to outline the first stage in the development of
a critical aspect of a set of superitems to test mathematical problem
solving. The next stage will be to subject the hypotheses generated to
empirical test and this will be undertaken in the Fall semester of this

year.




71

References

Biggs, J. B., & Collis, K. F, Evaluatfng the quality of learning: The 3

SOLO taxonomy, New York; Academic Press Inc., in press.
Case, R. A developmentally based theory and technology of instruction.

Review of Fducational Research, 1978, 48, 439-463.

Cureton, E, E. Reliability and validity: Basic assumptions and

experimental designs. Educational and Psychological Measurement,

1965, 25, 327-346.

o -

Komberg, T, A., & Collis, K. F, Cognitive level and performeance on \
addition and subtraction problems. In R. Karplus (Ed.), Proceedings | ‘/
of the Fourth International Conference for the Psychology of :
Mathematics Fducation, Berkeley, California: University of -‘
California, 1980. (a) -

Romberg, T. A., & Collis, K. F. The assessment of children's M-space “
(Technical Report No. 540). Madison: Wisconsin Research and { \/,
Development Center for Individualized Schooling, 1980. (b) ;

.

Romberg, T. A., & Collis, K. F. The assessment of children's cognitive A

processing capabilities (Technical Report No. 539). Madison:

<

Wisconsin Research and Development Center for Individualized

Schooling, 1980. (c) o

Wearne, D. C., & Romberg, T. A. DMP Accountability Tests (Working

Paper No. 217). Madison: Wisconsin Research and Development

Center for Individualized Schooling, 1977.



- su -

MATHEMATICAL VERNACULAR : AN INTRODUCTION

Jan Donkers

tntroduction

In studying problems of language in mathematics education one frequently comes
across discussions about problems that are mainly of a socio-psychological
character. As it is indicated in a survey paper by Austin and Howson [1]},
little research has been done about formal aspects of language in mathematics
education, In this paper we shall deal with such formal aspects. These formal
aspects apparently have a more than formal significance.

We shall briefly discuss the so-called Mathematical Vernacular, sometimes

abbreviated as M.V, By this wemean a system of rules and conventions that enables
one to present 4 mathematical text in an umambiguous manner and such that the
structure becomes immediately clear.

The ideas have originally been developed by Prof. N.G. de Bruijn in his lectures
on Language and Structure of Mathematics at the University of Technology in
Eindhoven (cf. 2], [3]). In Eindhoven we have started a studygroup to elaborate
De Bruijn's ideas and to gain some experience in applying his ideas to mathe-

matical texts (cf. [4]).
This paper discusses some experiences with the translation of mathematical

texts and describes a few of the main rules, notations and egonventionms.
We shall do this by weans of an example: a translation into M.V. of a mathematica
text (see Appendi; 1). We have chosen a part of text from Rudin's Principles of
Modern Analysis (see Appendix 2), because it demonstrates some features of M.V.
quite well and because it appears to be a well known and clearly written book,
which, in our opinion, is frequently used in the English speaking countries.
This cext is called Rudin's text. It is not exactly his text because we have put
together by cutting and pasting from his book. We are mainly interested in the
proof of theorem 1.20(a), the so called archimedian property for the reals.

In the proof some definitions and a part of a theorem are used, so there is a
translation of these as well. Translated are only those parts of the definitions
which are relevant to the proof. So we have examples of two important specimens
of mathematical texts, namely a definition-text and a proof-text.

We do notintend to criticise the book nor the part of text that wehave taken
from it. We only use this as a typical example to illustrate the main features

of M.V.

Some general remarks

We shall make a few remarks to begin with.
(1) We use the well known logical operators 1, A, v, » and the

logical symbols V, 3, and 3! (the last one for'unique existence).




NETEN

(2) Everything in MV. Bs wrdtten fn some conLext. What we mean by context

1s the tollowing:
(i) all the intvoduced variables, still valid at a given moment (every
variable with a description of its meaning by specifying its domain)

(ii) al]l the assumptions, valid at a given moment,
o e able to tead (and understand) a text, it Ls necessary that the words
and symbols which have buan defined previously are known. Such words and sym-
ols are 22£|anu[Umuxm£ch.For cxample: the symbol < stands for an
order relation on a set, P(A) means the power set of a set A; € has the
meaning “is element of”, eto.
We mark the beginning as well as the end of the lifetime of every assumption
and every variable as follows: a variable is introduced by using a pointed
flag and the introduction of an assumption is wmade by using a rectangular
tlug. ‘The length of the flagstaff gives the duration of the validity (briefly
the lifetime) of the variable or the assumption respectively.

(}) Several times we used the word translation, but by this is not meant a
literally translation. So it would be better to speak of rewriting the
given text in M.V, At sume places the M.V, text differs from Rudin's text,

but we shall come back to this point later.

-
‘Phe context-structure

On the first two lines of the M.V, text we see two pointed flags. In the first
Flag a varlable-pair of type "ovdered set"is introduced and in the second flag
a variable of type “subset of $".

Ou line 8 as well as on line 18 there is a rectangular flag, marking the
introduction of an assuamption. Note that in contrast with the pointed flags,
in which it may happen that symbols appear for the first time, nothing new is
inside a rectangular flag. 'This means, every symbol, word or sentence, used
inside a vectangulax flag is alrcady known, because it has been defined previously
Looking at the flag-structure, we see that the staff of the first flag spvans
lines 1 to th. Phe other two flagstaffs of the first 11 lines end on line 10.
Phey wark the context. So on every line it is immediately clear what is in the
context (of that line). On lines 12 and 13 the context is empty.

What happens if a flagstaff ends? A characteristic of a pointed flag is that
it can be followed by a generalization. Tndeed, the sentence following the end
of a Flagstaff of a pointed flagg ofcten starts with "for every ..." or with

a universal quantifier. For an example we refer to line 33,
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Prom Rudin's text it is not clear whether we have to write theorem 1.20 (a)
with or without a context. The proof starts using

% ancl y as if theywere mentioned before. So it suggests a non-void context

(that means, implicity using & pointed flag). On the other hand, the theorem
is stated by means of an implication and suggests a generalization. It is quite
usual in mathematical texts, to state a theorem in a non-void context. In a

non-void context, the M.V. text of theorem 1.20(a) could be:

+
Let x ¢ R, y € R >

[nx > y]

Theorem: 3
nedt

Proof:;

Suppose ....

The end of a flagstaff of a rectangular flag is often followed by an
implication. In case of a contradiction it is followed by the negation of the
assumption, as is the case on line 32.

On line 26 appears a peculiar flag. It is a pointed-rectangular flag and is
called a double (or mixed) flag. A double flag indicates what is called
existential elimination. The general scheme for existential elimination looks

like this:

3x€A [(pix)1

Let x € A j:>>

Suppose P(x) ]

Q
Q

On the line following the existential proposition, there appears a pointed flag

S S

with the introduction of the variable x with its type description. On the next
line, the assumption P(x) is introduced inside a recwmngulac flag. Within these
two context flags the proposition ¢ is derived, which does not contain the vari-
able x. Hence we obtained, outside the flags, the following two propositions:
(1) BXEA[P(X)] '

@ v alP0 - @)

From these two propositions we may conclude to Q outside the context.




phe scheme for the existential elimination 1s an important one, becauase it
fu applied frequently in a mathematical text. Many times a text is obscure,
beeause one does not realize that one is dealingwith existential elimination.

Here is an examplesd

=] xzl then x>0 ..
xedit t b ¢

In Lhe M.V. text, there Is an example oF existential elimination on the lines

25 and following. This has to be read as follows:

25 then 3 [a-x < wx}
il

e d!

3
Let m € 4 ;:::>

Suppose a-xX < mx AJ

30 contradiction
L

31 contradiction

Since vkistential elimination occurs so often and since P(x) can be a long
cxpression, it is easy to have a shorthand notation. We use the double flag

wilh the standard text 'vhoose . accordingly” for short,

Various kinds of definitions

The symbol ™:i=" on line 3 indicates a definition. In M.V. the things we define
can be: statements, substantives and names.

fhe definition on line 3 is an example of a substantive definition. This is
expressed by using the capital S, the so-called substantive binder (or quan-
tifier). What is a substantive? In the sentence: "p is a ...", we use.at the
open place a substantive, For example: “p is a real number”. We consider "veal
number™ as a substantive instead of as being a compound of an adjective and a
substantive. In "p is a positive real number less than 100", the combination
“positive ... 100" is a substantive. Using the binder S, we write this sub-
stantive as

Sxel( (0« x < 100).

The usage of the substantive binder helps to make a text clear. Sometimes it
makes things easier to handle, as is the case with

divisor of n = Ska% (Bmczgkm = n}) .

the usage of this binder S has the advantage of giving a clear signal.
As to the definition on line 3, one is probably more familiar with an expression

like: "an element § of S is called an upper bound of E, if ... ".
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The Jdefinition on line 4 is the definition of a' name. The arrow is an operator
that  ussigns a set to a substantive. S0 B is the name of the set of all upper
bounds of E. One may write B ;= {xeSlx is an upperbound of E} as well.

on line % appears the definition of the statement: ME is bounded above".

The name-definition on line 10 appears within more context than the other
definitions. Thisexpressces thatone has Lo shov that there is exactly one least
upper bound of E.In that case we can speak of the lsast upper Lound. So if the
set of least upper bounds of E is not empty, then it is a singleton and we give
its element a name: sup E.

In M.V. we don't accept things like "sup E exists" as in Rudin's definition 1.10
because we do not want to give names to objects which have not been proved (or
explicitly assumed) to exist. As a consequence the M.V. text of line 11 deviates
from Rudin's text.

It is obvious that the definitions made in the first part of the M.V. text
may be used cutside the given context. Sometimes an extra'reference is needed,

as is the case with the lines 20, 21 and 22.

Concluding remarks

Up to now, we have given a very brief explanation of the main notations and

conventions in M.V.
In our opinion, using M.V. has certain advantages.
-

(1} it clarifies the context structure as well as the logical structure of a
mathematical text, expecially with respect to definitions and proofs.

(2) It clarifies the way the language is used in a mathematical text (e.g.
substantives - statements — names).,

(3) It seems a relevant aid for the teacher when he is preparing a lesson.
It can clarify some obscure passages in a mathematical text and raise some

hidden thoughts to a level of consciousness.

It will be obvious that a textbook entirely written in M,V; would be a
very dull one. M.V. is not well suited for communication between
mathematicians when they discuss a mathematical problem, for example at the
blackboard or by mail. Of course, during moments of confusion or mwisunderstandii
in such discussions, one might want to use M.V. anyway. But we think, if one ha§
some experience with M.V., one gets another view on mathematical texts. In any cf
in. is because of our experience with M.V., . that in reading an ordinary mathe-

matical text, we begin to sce the difficulties earlier and more clearly.
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Let (8,<): ordered set ::)

Let BeP(8)

N F = S <
upper bound of E e LVXQE(X B) )
B := (upper bound of E)}
E is bounded above := B # ¢
least upper bound of E := Sacn [VYdS(y<uﬂth)J

(clearly there is at most one least upper bound of E)

Suppose E has a least upper bound

then a:aes fo is a least upper bound of E}

sup E := the least upper bound of E

il

1.19 Theorem: (R,<) has the l.u.b. property.

.20 (a) Theorem: V [nx>y

de*vydR3n£Z+
Proof:

Let x € mi y € R ﬁ—:::>

A= [zdR|3n€Z+[z=nx]}

then x ¢ A, so A ¥ @.

Suppose — 3ncz+[nx>yj

o
or Vn€z+[nx—yj

then y is an upperfbound of A
hence A is bounded above } (with respect to (R,<))
define (th. 1.19) a := sup A

then a-x < a
hence a - x is not an upper bound of A

— < <
then Bmez+[a x<mx |

choose m accordingi;:>

then o< (m+1)x
but (m+1)xeA
sO0 @ is not an upper bound of A

contradiction

‘contradiction

3“CZ+[nx>y]

conclusion: deR+vy€RaneA*Lnx>y]'

Appendix 1

(8,<) has the l.u.b. property := VEEP(S)'E#wlB(E)#ﬂ + E has aleast upper bog




Appendix 2

1.7 Definition Suppose § 15 an ordered set. and £ 5. I there exists a
fe§ such that x 5 ff for every x € E. we say that £ is bounded above, and call
B an upper bound of E.

1.8 Defloltion Suppose S is an ordered sct, £ < S, and £ is bounded above.
Suppose there cxists an a € § with the following propertics:

(i) ais an upper bound of £.
(i) 1f y <a then y is not an upper bound of E.

Then a is calied the least upper bound of E [that there is sl most one such
a is clear from (i)} or the supremum of E, and we write
a ~ sup E.

1.16 Definitlon  An ordercd sct S is said 10 have the least-upper-bound property

if the following is true:
if £c S, E is not empty, snd £ is bounded above, then sup E exists in .

1.19 Theorem There exists an ordered field R which has the least-upper-bound
property.
1.20 Theorem

(4) M x€ R, ye K, and x> 0, then there is a positive integer n such that

nx >y

Proof
(a) 1et A bethe sct of all nx, where n funs through the positive integers.

1 () were false, then y would be an upper bound of 4. But then 4 has a
least wpper bound in R Put x = sup 4. Since x >0, a — x <a, and
a = x is not an upper bound of A4 Mence 3 — x <mx for some positive -
integer m. But then o < {m + e 4, which is impossible, since o is an

upper bound of 4

From: W. Rudin, Principles of mathematical analysis (3rxd edition).
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QUERIES AROUND THE NUMBER CONCEPT
Jan VAN DEN BRINK

OW & OC, Utrecht, State University, The Netherlands.

Résumé

Questions par rapport & la notion du nombre.

Iy a des problémes irrésolus autour de la notion du nombre telle quielle est
connue par les petits enfants.

Leurs idées se distinguent beaucoup des ndtres.

Comment découvrir les idées des enfants ?

Comment les comprendre ?

Comment appliquer ces résultats dans Penseignement ?

On présentera trois sujets
I. Pobservation mutuclle qui est notre méthode de recherche ;
IL. une énumération de sujets possibles de recherche qui nous frappaient ;
HI. une discussion détaillée de trois parmi ces sujets
a) le comptage acoustique ;
b) le comptage de mouvements au licu de celui d’objets ;

¢} Pentendement enfantin du nombre
décrit mathématiquement et psychologiquement.
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