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PREFACE

The 1986 London Conference of PME marks the tenth anniversary
of the formation of the International Group for the Psychology
of Mathematics Education at the third ICME in Karlsruhe.
During that time, the group has grown considerably and the
annual conferences have proved successful in their declared
aim of fostering international communication about
psychological aspects of problems of mathematics education at
all levels. The range of headings under which the research
reports contained in this volume have been organised attests
to the flourishing of this area, and part of the success of
PME has been in carving out a domain of enquiry within the
emerging discipline of mathematics education.

The tenth annual conference takes place at the City
University, London from July 20th to July 25th, 1986. There
are a number of different ways in which participants at the
conference may make a contribution; research reports, poster
displays, working groups (initiated in 1984) and discussion
groups (new this year). The background papers for the research
reports, which are intended to be read before the
presentation, form the bulk of the contents of this volume and
have been organised under the following 7 headings:

1. Number and number operations

2. Spatial representation and geometrical understanding

3. Developing and/or using models of mathematical learning

4, Mathematical concept formation

5. The mathematical learning environment

6. Logic and proof

7. Problem solving strategies
The order in which they appear in this volume is alphabetic
within each heading and therefore does not necessarily reflect
the order of presentation within the meeting itself. The

plenary sessions have been chosen to reflect diverse themes of
potential interest to psychologists of mathematics education.
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FIRST-GRADERS' LEVELS OF VERBAL PROBLEM PERFORMANCE
Harriett C. Bebout
University of Cincinnati
Abstract
This study used past findings on children's informal
concrete modeling strategies for verbal problems and
the resultant proposed models of performance to cate-
gorize 45 first-graders into three concrete represen-
tational levels. The children were given an instruc-
tional treatment intended to teach them to write
formal symbolic representations that corresponded to
their informal concrete representations. Preinstruc-
tional and postinstructional measures of children's

performance, on verbal problem tasks at each level
are stated in the results.

Young children's informal number concepts and successful
strategies for solving verbal addition and subtraction problems have
been documented. (See summaries in Carpenter, Blume, Hiebert, Auick,
& Pimm, 1982; Ginsburg, 1983; Starkey & Gelman, 1982.) An important
feature of children's earliest solution strategies is their under-
standing of problem structure, as evidenced by their attempts to
represent problem structure with concrete items (Blume, 1981;
Carpenter, Hiebert, & Moser, 1981; Carpenter & Moser, 1982, 1983,
1984; Hiebert, 1982). Before formal instruction, children set out
concrete models that represent the underlying mathematical structure
of simple verbal problems land then manipulate these concrete
representations to find the solution.

Children come to formal instruction at different levels of verbal
problem solving performance. Some children can solve only those
problems with less apparent structures. Their progressively
sophisticated strategies have been studied and hierarchical models of
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performance have been proposed by Briars and Larkin (1984), Carpenter
and Moser (1983, 1984), Cobb (1986), and Riley, Greeno, and Heller
(1983).

The present study used these previously proposed models to
categorize children into three levels based on children's use of
problem structure for their concrete representations. This
categorization preceded a whole-class instructional treatment that
taught the same mathematical content to children at all levels. This
content intended to move children from their informal concrete
representational strategies to the formal symbolic representational
forms, i.e., number sentences or simple equations. The major
question posed involved the efficacy of teaching structure-based
symbolic representations to children at all three entering concrete

representational levels.

Method
Sample
The subjects were 45 first-graders in two classrooms during the
last quarter of the school year. The school was located in a rural

community near Madison, Wisconsin.

Procedure

The children's performances were evaluated with individual
interviews and group tests using problems from the current classi-
fication of verbal problems (Carpenter & Moser, 1984; Riley, et al.,
1983). According to their use of concrete representational strategies

Q=

during the individual interviews, children were categorized into the
levels of Basic, Direct Modeling, or Representation. A group paper-
and-pencil test was given to examine children's attempts to
symbolically represent and solve verbal problems prior to instruction.
Fourteen instructional lessons followed, with the intent of teaching
children to symbolically represent verbal problems with number
sentences that directly represented problem structure. A post-
instructional group paper-and-pencil test of verbal problems was
administered to determine the change in children's symbolic

representations and solutions.

Results and Discussion

Children's preinstructional and postinstructional symbolic
representations and solutions for Change type problems are presented in
Tables 1, 2, and 3.

The study indicated several results. One major result was that
after instruction in symbolically representing the structure of verbal
problems, children categorized at all three concrete modeling
performance levels were successful in writing correct number sentences
for the instructed verbal problem types. The children had been
categorized into levels prior to instruction in anticipation of the
instructional treatment not being appropriate for all levels of first-
graders. Posttest results indicated that over 80% of the children at
all three concrete modeling levels were successful in writing correct
number sentences for the instructed verbal problem types, Change and
Combine problems.

Another result concerned the noninstructed problems, Compare and

e



Equalize problems. The instruction that children received in writing
sentences to represent verbal problem structure did not appear to
transfer to these two noninstructed problem types. Although over

one-half of the children were able to solve these problem types on the

posttest, less than 10% of the children wrote correct number
sentences for Compare and Equalize problems.

The study indicated that young children at varying levels of
preinstructional ability were successful in learning to symbolically
represent and solve verbal problems with number sentences that directly
represent verbal problem structure. The study suggests an early
program of verbal problem solving instruction that teaches children the
formal symbols of mathematics to coincide with their informal concrete

modeling strategies.
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Preinstructional and Postinstructional Performance on Group Tests for Direct

Table
Hodeling Level Students (Ws22) - Change Problems
Verba
Problem Correct Correct Direct Representation Rerepresentation
Type Sentence Solution Form Complete Incomplete Form Complete Incomplete Cther
Change 1 pre 16 15 8+7=0 16 3 3
post 22 22 9+h=0 22 - =
Change 2 pre 16 W 13-9=0 16 3 3
post 20 19 12-9=0 20 2 z
Change 3 pre 1 7 - i 12-9=0 i = 17
post 19 21 19 1 n-7=0 = = 2
Change 4 pre 9 " - 2 14-9=0 9 3 5
post 21} 16 16 - 15-8= 5 - 1
Change S pre 0 L [O+6=13 - 7 13-6=0] - - 20
post 20 16 [O+s=11 20 1 11-5=0 - = 1
Change 6 pre 3 6 [O-4=8 - 3 4+8=] 3 - 17
post 20 20 ([O-5-8 20 - 5+8= = = 2
Table Preinstructional and Postinstructional Performance on Group Tests for Basic
Level Students (N=12) =~ Change Problems
Verbal
Problem Correct Correct Direct Representation Rerepresentation
Jype Sentence Solution Form Complete Incomplete Form Complete Incomplete Cther
Change 1 pre 7 7 8«=0 7 3 2
post n R’ g+hi=] n - |
Change 2 pre 9 5 13-9=0 9 2 1
post 1l 10 12-9=0Q 1 1 -
Change 3 pre 0 1 9+d=12 - 1 12-9=0 "
post 9 7 0= 3 - 1n-7=0 - - 3
Change & pre 7 8 14-=9 - 1 14-9= 7 2 2
post 12 7 15-0=8 3 - 15-8=0 E = =
‘Change § pre 0 1 [O+6=13 - 2 13-6= - 0
post 10 10 [O+5=1 10 - 1-5= - 2
Change 6 pre 4 6  [J-4=8 - 1 44+8a ] i ] 6
post g 3 0O-5=8 g = s+8=] = = 3
Table Preinstructional and Postinstructional Performances on Group Tests for
Rerepresenting Level Students (N=11) - Change Problems
Verbal
Problem Correct Correct Direct Representation Rerepresentation
Iype lution _Form _ Complete Incomplete Form Complece Incomplete Cther
Change 1 pre 7 [ 8+7=0 7 - L
post 11 10 9+4=J 1" - =
Change 2 pre 7 10 7 2 2
post 10 7 12-9=0 10 ] -
Change 3 pre 2 3 9+[J=12 = 5 12-9= 2 2] &
post 11 10 7+0=n [l - =t = -
Change h pre 3 7 14-0=9 - 3 0] 3 = 5
post 1) 7 15-00=8 10 - D i - =
CThange § pre 1 b [O+6=13 = 5 13-6=0) 1 a 5
post n ) O¢5.H n - ||—5=D - = -
Change 6 pre 2 5 0O-4=8 -— & 448= ] 2 1 &
post 11 5 d-s=8 n - 5+8=] - = -
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THE FEASIBILITY OF ASSESSING 7-11 YEAR OLD PUPILS'
UNDERSTANDING OF NUMBER IN A CLASS ADMINISTERED TEST

Brenda Denvir
Centre for Educational Studies,
King's College London (KQC), University of London

Aim of Study and Rationale
—
The aim of this work was to:-
investigate the extent to which a class assessment instrument
would yield reliable diagnostic information about individual
pupil's mathematical understanding
The potential value of a class assessment instrument is two-fold. It would
provide: 1. a diagnostic assessment instrument for the teacher; 2. a data

collection instrument for research into children's understanding of number,

Theoretical Stance

A constructivist view of learning, which has a Piagetian basis and is
described by Schaeffer et al (1974) and more recently by von Glasersfeld (1985) is
adopted in this study. Children are seen to construct their own knowledge by
making links between previously unrelated ideas. The solutions which they offer
will depend on their mental "re-presentation" (von Glasersfeld 1985) of the task,
that is the overall definition or "meaning" which the task, as it is presented,
evokes in the mind as a result of previous experience. The extent to which
different individuals - pupils and teachers - attach the same meaning to a task,
will depend on their common experience and the opportunity they have to negotiate
meaning.

Research studies carried out for example by Carpenter and Moser (1982), Hart
(1981) and Steffe (1983), based on individual interviews, have indicated that it is
often possible to identify occasions when pupils are blindly following rules, -
situations where they have a clear grasp of "what they are doing and why" and
numerous occasions when the response is along the continuum between these two
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extremes. Thus, whilst recognising that it is not possible or even meaningful to
make a precise assessment of a child's understanding, it is hypothesised that for
most children an individual interview will give a more accurate description than a
class test.

In attempting to use assessment procedures in which meaning cannot be
negotiated, there is likely to be an inaccurate description of the attainment of
pupils whose perception of a task differs from that of the teacher. This study
examines how closely pupils' performance in a class assessment of the understanding
of number matches their performance in an individual interview when both are based
on an empirically designed learning hierarchy.

Background and Methodology

This present study is based on the findings of earlier work (Denvir and Brown,
1986a). It is hypothesised here that some inferences about the strategies and
perceptions which children have available for tackling questions about number may
be made from their written responses to suitably designed items. Items were
developed so that they could be administered to a whole class of T7-11 year old
pupils. The items were orally and/or pictorially administered in the class test. A
subsample were interviewed individually and performances in the two testing modes
were compared.,

The fourteen skills assessed are, in order of difficulty

8 knowledge of standard number word sequence

oF interpolation between decade numbers (whole number intervals)
35 estimation of numerosity of haphazard array of dots

4, cardinal representation of numeral

S. solution of addition and subtraction word problems

6. representation of multiplication word problems

Tl enumeration of grouped collections

8. representation of addition and subtraction word problems
9. "ten more than" and "ten less than" two digit numbers
10. estimation of numerosity of cartesian array

1. mental subtraction of two digit numbers

12. representation of division word problems

13. interpolation between decade numbers (0.1 intervals)

14, solution of proportion problem

-8-

The details of the class assessment sample and the interviewed sub-sample are

shown in Table 1, Performance in the interview was regarded as a reliable

description of pupils' understanding against which performance 1in the
assessment could be compared.
Table 1

Number of Pupils in Main Sample by School and Year
Number of Pupils in Interviewed Sub-sample in brackets

Year of Junior School and Age Range

School 1 2 3 4 Total
7.9-8.8 8.9-9.8 9.9-10.8 10.9-11.8
A 23*%(7) - 25(10) = 48(17)
B - 19(3) 19(3) 17(4) 55(10)
c 20%(6) 23(4) 22(5) 29(3) 94(18)
D - 18% 17 17* 52
Total 43(13) 60(7) 83(18) 63(7) 249(u5)

*In these classes four skills: 6, 12, 13, 14 were omitted from the assessment,
Figure 1 shows performance in the class test and the interview for
interviewed subsample who were assessed on every skill (n=32).
Figure 1
Skills Passed and Failed in Class and Interview by Age

PUPILS ———

Yok 52332 33 FD 42 4TI ES LS EESIE TSI RT ST

!
SlgLLﬁz

|

=l gw @ T

Scoreclnterviw 3 F 4 5 5 8 4 9 q Q 10 10 4o 10 1o 4 UMb g W12 12 0z 13 63 43 03 a3 gk 03 1y
CassTest 2 3 1 3 5 7 3 3 8 1069 8 916 v 17T §9 w0wwn 998 w0a @ I 4
Discrepancies 3 © 3 2 4 § 1 21 0 1 & L & (0 64 4 S23 22 0% 443 0 50

[ oo in class assassment

poss in interview

Failin dass asseament PO in Gos usseument ] Fail ia class anesment
POss1h interview A Foilin intervien: failininterview
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Figure 2 shows the number successful on each skill in the class assessment and
the interview for the subsample assessment on all the skills.

For every child interviewed the interview responses which differed from the
class result were examined in order to shed light on possible reasons for the
variation and these are outlined in 'Discussion' below.

Figure 2 \

Number of Children Successful in Class AssessShent and Interview

4 5 ‘I? Number EF Pupils scoring —— Jo
! io
SKILLS | % Y 2 ' 1 B
2 zi0d 0% % B a0% UM p
3 WA V% ai% U U y A
v AT i g %
b IZ20%a0% 00 a0% 40 ¢ MU A 1 8 P l{l/’
6 M1 NN A A AAANAIN / /
1 e o A T
s MM I AV U AT L
% A 4 ¢
9 L { ",“w 4 V, L ] d 2P dbs WM// scorea n
108411 MM M /, 17 A / ///// interview
0] aviazinatinatatantavanavineninsiz) e
12414 il afzgy mlr’red "
B Al ol / class ;est l
I

Performance on every skill except the hardest one was higher in the interview than
the assessment. There was a total of 76 out of 448 (17%) pupil-skills on which
performance differed in the class assessment and the interviews. Overall there was
a reasonable correlation but for some individuals, especially those who performed
badly on the class assessment, the discrepancy was unacceptably large. In
particular there were six pupils (whose records of performance are asterisked in
Figure 2) whose understanding would have been grossly misrepresented by the class
test.

-10-

Discussion
_,_.—l—l—'_--

The possible reasons for variations between response in the class assessment and

the interview are:-

1. Learning. This may come about in the interview because the pupil tries to

resolve inconsistencies.

2. Borderline knowledge. During construction of new knowledge, there is

rarely an abrupt transition from "not knowing" to "knowing". More often
the pupil appears to "know" on some occasions and "not know" on others.

3. Knowledge assessed in the class assessment is different from knowledge

assessed in Interview. Asking the same question in a different context
may stimulate quite different thought patterns in the child, which may
produce different answers.
4. Anxiety greater in one context than another.
5. Failure to understand the point of the question in the class assessment.
6. 1Incorrect assumptions made about the necessary strategy for a correct
solution.
T. Expectation of feedback in interview produces better motivation.
8. 1Inability to hear, see or attend in the class assessment
9. Accidental error in class.
10. Poor short term memory affects performance in the class.
11. Correctly guessing or estimating the answer in class.
Conclusions
1. It was not found possible to design written items for all of the number skills
which the earlier study (Denvir and Brown, 1986a) had identified as crucial in

the development of the understanding of number.
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2% There were differences between pupils' performances in the class test and the
interview. The number of differences varied according to the skill and the
pupil.

3. Of the 32 pupils in the interview sample, six would have been significantly
misplaced by taking performance in the class test rather than performance in
the interview as a measure of their attainment in number. For each of these
six pupils performance in the class test underestimated their understanding of
number .

4, Nevertheless, the class assessment instrument designed in this study did
provide an initial assessment of pupils' understanding of number from which
pupils needing further diagnostic assessment could be identified. In
particular, it was generally the case that if a pupil was successful on a
skill in the class assessment then she was successful in the interview.
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HOW DO CHILDREN COPE WITH THE INFINITY OF NUMBERS?
Ruma Falk, Drorit Gassner, Francoise Ben-Zoor and Karin Ben-Simon
Department of Psychology and the Sturman Center for Human Development,

The Hebrew University, Jerusalem

What does ''understanding infinity" mean? We certainly do not grasp it by any
gensory means nor by imagination, we know that there are infinitely many numbers,
and that there does not exist a largest number. We conceive the infinity of
numbers although we do not perceive it. Two sets of pioneering studies of child-
ren's ideas of infinity should be noted, one by Fischbein and his students and
the other by Gelman and her associates. Fischbein et al. (1979) and Tirosh
(1985) presented a variety of questions many of them concerning the unending
divisibility of line segments (following the lead of Piaget and Inhelder, 1967)
and similar geometrical problems. We chose to focus on potential infinity in the
numerical area rather than on the infinite divisibility of line segments. A
ot Ry

child may relate to the physical constraints of the task of dividing a segment,
which is not what we are interested in, and rightfully claim that the partition-
ing will eventually terminate because 'there is no more space'. Moreover, we
preferred not to rely on geometrical images in order to avoid the need to refer
to idealized concepts like a point that has neither length nor area. Evane and
Gelman (1982) interviewed young children about the "biggest number' and mapped
several developmental stages, from '"finite and small" through '"finite and large"
to "infinite", in children's understanding of infinity. We tried to devise a
choice situation in which a child's understanding of infinity could be exhibited
without having to answer direct questions about the largest (smallest) number.
We reasoned that the comprehension of the idea that the integers are unbounded
should be expressed not only by a readiness to recite the slogan that '"there is
no biggest number", but also by the ability to name a larger number than any
number you may suggest. Our purpose was to find out whether children understand
this principle so that they can profitably apply it in a competitive game, and

whether they are able to verbalize it.

Method
A number-game played by the child and the experimenter was devised. The instruct-

ions ran as follows: "Each of us should say a number. The one whose number is
larger will win. Would you like to be the first or the second?" After answering,

and before playing, the child was asked to explain her choice. Upon choosing and
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playing several times, a "continuous game', in which both players were alternately
naming increasing numbers for five or six rounds in succession, was played. At
that point the child was asked for how long the game can go on and whether it will
ever end. Next, a variation of the game in which the winner is the one whose
number is the smallest was suggested. This game was played in several versions:
one with only non-negative integers, another with integers including negative
numbers, and a third version with only positive numbers including fractions. The
versions played with each child were determined by the child's ability to mani-
pulate negative numbers and/or fractions. The dialog was not strictly structured.
We tried to follow the spontaneous and free expressions of the children, sometimes

at the expense of missing responses to some of our intended questions.

Results
The preliminary results of 95 children, 56 girls and 39 boys, aged 5(0) to 12(6),
were analysed. The three games involving a possible endless succession of numbers
were labeled: 1. Upwards - Natural Numbers

2. Downwards - Integers

3. Downwards - Positive Rationals.
All children but one played game 1; 33 played game 2, and 48 game 3. Every child
was assigned three scores for three functions involved in each game: performance
in the game, ability to verbalize the principle of winning, and understanding the
boundlessness of the numbers and/or the idea that the game may go on indefinitely
(the possible scores were +, -, or ?). The distribution of the percentages of
positive scores by grade (age) and task (i.e., game and function) is presented in
Table 1. The percentages were computed out of the available responses in that
grade and task. Empty cells represent cases where less than a third of the child-

ren in the grade responded to the task.

A general developmental trend is apparent. Preschoolers and some children in
grades 1-3 could hardly play even the continuous part of game l. Most 6 and 7
year olds failed in understanding the boundlessness of the integers. This under-
standing, and the ability to explain why one should play second, rise steadily
with age and characterize the majority of the 11-12 age group. The conception of
infinity-in games 2 and 3 appears later than in game 1, partly because children
become familiar with negative numbers and fractions only in older ages. However,
the results suggest that once they learn about negative numbers they easily per-

ceive their symmetry to positive numbers all the way to infinity. Understanding
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of the infinitesimal appears to pose additional difficulties. Quite a few subjects

could understand the endlessness of the process in game 1 but not in game 3; there
were no cases where the reverse was true. By and large, correct choices in a game
preceded formulations of the principle of winning, which in turn preceded the
understanding of the infinity of the process.

Table 1. Percentage of positive scores (out of the available responses in a
given category), by grade (age) and task.

Type o f g ame and function
Grade l.Upwards D o wn w a r d s
Age range Natural Numbers| 2. Int eger s 3. Positive Rationals
Number of Perfor| Princi] Infini| Perfoz| Princil-Infini|Perfor|Princi|Infini
children mance | ple ty mance | ple ty mance |ple ty
Kindergarte% '
5(0)~6(0) 25 0 0
n=4
1
6(1)-7(6) 69 60 31
n=13
2
7(0)~8(6) 77 70 46
n=13
3
8(0)-9(2) | 64 71 55 75%
n=11
4
9(3)-10(6)| 91 70 73 100* | 100% | 100 | s0* 50%
a=llk
5
9(5)-11(2)| 100 93 81 100 | 100% | 72
n=21
6-7
10(11)-12(6) 100 ; 92 86 100 100 78 100 61
n=22 |

% Out of less than half the subjects of that grade.

Verbal responses. Many responses were informative and instructive. Consider a few

examples (the games to which the reponses refer are designated by their numbers):

Negative scores: Shoshi's 8(6) answer to the question why she chose to be first

in the continuous part of game 1, was: "Because I thought that you'll be the first
to run out of numbers.'" Shoshi seemed on the alert to seize the "last number",
however, she was not successful. When we got to 10,000 she said "I have no more

numbers ... I don't know whether there are numbers beyond 10,000." Ron 11(0), 2.
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"... just as we'll eventually reach the end of big numbers, so we'll get to the
end of negative numbers. It is the same, only one had put a minus in front of it."
Erez 12(5), 3. "If we play a long time the numbers will end because they get

smaller and smaller.'

Positive scores: Itai 6(6), when asked how long game 1 may go on: "Until no end,
the numbers will never stop, because if there is, say, a milliard, one can add to
it another and another milliard, until infinity." When asked what happens if we
add one to infinity: '"Nothing, because infinity is not a number.' 3. Itai wanted
to be second. He responded to 1 by % and to % by "a quarter of a half ... I'll
take a smaller and smaller grain, each time still smaller ...". Avi 7(7), 1. '"We'll
not finish playing, because if you say, for example, a number, I'll say a greater
one, and then you'll have a greater one, and then I'll say still a greater one.'"
Yechi 8(6), 1. "It is better for me to be second, because you'll reveal your num=-
ber and so I'll win, but if I am the first I reveal my number, and you win." Sigal
10(6), 1. "I want to play second because I'll know what you said first, and I'll
be able to plan which greater number to say.' 2. "I think one cannot finish this
game either, because you simply take all the nuﬁbers, as before, and transfer them
backwards behind zero." Yoram 11(11), 3. "I think we'll never reach zero, we'll
only get closer to it each time ... even though the interval looks small it inclu-
des all the numbers in the world, because each number you can turn into one divid-
ed by the number." Oren 12(0), 2. "Big deall I'll always be second and so I'll say
a smaller number than yours, because to each big number you can add a minus and it
becomes small."

Unexpected responses: Four children, aged 5(6) to 8(6), offered fractions of zero
in response to zero in the downwards game. Haim 7(1): "Half a zero ... % of a zero
is smaller than zero because it is not a whole zero but only part of it." These
children were ready with the algorithm "whatever you say I'll respond by half of
it", it was only the concept of zero that was not clear to them. Emmanuel 11(11)
wanted to be second and knew why, however, he refused to play the games, because
"it's boring'. Emmanuel had a suggestion of his own: both players will write their
numbers on notes and then we'll see which number is higher. This would be "fair'".
We followed his adviae and let a few subjects play also with notes. Then we asked
them which kind of game is "fairer'". They thought that the notes game is fairer,
like Shimrit 7(6): "In the previous game the first one always loses, and here each
one writes and doesn't know what the other one is writing, and you can lose and
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you can win.'"

Concluding comments
It was surprising to realize the importance that several children attached to

knowing the name of the numbers, as if the concept exists via its name. In cont-
rast to Irene 9(8) who said "if there is a number, then there is also a greater
number', Roi 8(4), said: "I don't know a number greater than a milliard, I don't
know how you name them ... we don't know the largest number. There is a certain
number but its name is unknown, nobody knows." Sarit 10(2) solved that difficulty
elegantly: "you can never finish such a game, you can always add more and more

numbers and invent more names for them as long as you wish.!

Children's attempts to cope with the conflict between the finiteness of every-
thing around and the awareness of the possibility of the infinite, were often
manifested by contradictory statements within an answer, or by gaps and inconsis-
téncies between answers. The intermediate stage between mastering finite number
schemas and the breakthrough to infinity is of special interest. One has to make
a discontinuousﬁeap between these two kinds of concepts, since nowhere does the
very big start to merge into the infinite. In order to find out when that unbri-

dgeable gap becomes clear to children, we started presenting paired comparisons

between finite and very large sets and the ''smallest'" possible infinite set. Noga

5(9) first decided that there are more grains of sand in the world than leaves on
all the trees, than hair on all people's heads, and than words in all the languag-
es. But when asked '"What are there more - grains of sand, or numbers?" she chose
numbers decisively '"because the numbers never end ... but the grains of sand
always stay as they are.'" This bold statement did not stop Noga from subsequently

choosing to be first in our games both upwards and downwards.

Although the spatial-geometrical context had been neglected as a formal medium of
inquiry in our research, a few children brought up geometrical images in the
course of the interviews. Rinat 11(2), 1. "One cannot finish playing, because it
is like a building where you can pile more and more bricks on top of each other
and it never stops.'' Smadar 9(10), 3. "I think that if we'll go on we could finish
the game, because there is little space between O and 1 and there are not so many
numbers there." Yifaat 10(11) also thought one could finish counting all the
numbers between 0 and 1 "because an interval is many points combined together,

and if each point is a number we could count all the points and this way we'll

count how many numbers there are in the interval.' Apparently, geometrical images

-17-




like "s n i i i
pace' and "point" interfere with the conception of the infinitesimal that

3

should be free of all physical constraints.

Paradoxically, understanding infinity, like other Piagetian concepts, can be
analysed in terms of conservation. One has to realize that infinity is unchanged
by addition/subtraction of a finite (and even infinite) number. This is the heart
of the problem and the most unintuitive characteristic of an infinite set. Some
of our subjects were apparently aware of the '"conservation of infinity" when they
objected to our suggestion to add any number to "infinity" in an attempt to get

a bigger number. Nir's 9(1) response to such a suggestion was "that is impossible}
infinity is something greater than allbumbers." When asked whether infinity is a
number, he said 'no, infinity means, for example, that you get to a million and

you 80 on counting without ever stopping.'
References

Evans, D. and Gelman, R. Understanding infinity: A beginning inquiry. Unpublished

manuscript, University of Pennsylvania, 1982.

Fischbein, E., Tirosh, D. and Hess, P. The intuition of infinity. Educational
Studies in Mathematics, 1979, 10, 3-40.

Piaget, J. and Inhelder, B. The child's conception of space, New York: Norton
1967 (Ch. 5). ,

Tirosh, D. The intuition of infinity and its relevance for mathematical education

Ph.D. thesis (in Hebrew, with English abstract). Tel-Aviv University, 1985

~-18-

First and Second Graders' Performance on Compare and Equalize Word Problems
Karen C. Fuson and Gordon B. Willis

Northwestern University

First and second-graders' performance on Equalize was superior to

that on Compare problems, due largely to children's inability to under-

stand the "more than" or "fewer than" relationships expressed in Compare

problems. Performance as a function of missing story element depended on

the child's overall preference for using addition; young children espe-

cially tended to perform well only where addition was required. Generally,

children performed better on problems in which the necessary solution

strategy agreed with the directionality ("more" or "less") implied in the

given problem.

This report describes studies in which performance of first and second graders
on Compare and Equalize word problems was examined. Difficulties with solving
Compare and Equalize problems were a particular focus of the present study because
these types are not well represented in American textbooks, while Compare problems
are very well represented in textbooks in the Soviet Union (Stigler, Fuson, Ham, &
Kim, 1986). Furthermore, many of these forms have not been well studied to date,
especially the "less" forms and the Equalize problems.

Problem Subtypes

Written tests of word problems that used sums and differences of 10 and less
and that crossed the three missing numbers (Missing Difference, Missing Small, and
Missing Large number) with problem type (Compare or Equalize) and with direction of
the question form (More Than or Less/Fewer Than) were given early in the year to
seven first- and second-grade classes in order to obtain basic information on
performance (see Table 1). Two basic dependent variables were analyzed:
correctness of strategy (answer within 3 of the correct answer, which served to
differentiate adding from subtracting) and correctness of answer.

A significant superiority of Equalize over Compare was found for strategy in 5
of the 7 classes tested (classes 2HZ, 2AZ, 2AY, 1AZ, and 1AY), all F's>5.04, p<.05.
Equalize was also superior to Compare for the answer measure in 5 classes, all
F's>4.34, p<.05 (classes 2HZ, 2AZ, 2LY, 1AZ, 1AY). Thus, a problem which states a
comparison in terms of the action required to remove the inequality was easier for
children than one which merely expresses the comparison relationship.

When all classes were combined, the effect of missing position was
significant, reflecting better performance on the Missing Big forms for both

strategy and answer. However, analyses by individual class showed this to be true

only for the first graders and the lowest level second graders. Examination of
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Different Forms of Compare and Equalize Word Problems

Compare

Missing Difference (More)
Jane has 7 dolls.
Ann has 3 dolls.

How many more dolls does Jane have
than Ann?

Missing Difference (Fewer)
Jane has 7 dolls.
Ann has 3 dolls.

How many fewer dolls does Ann have
than Jane?

Missing Small (More)

Jane has 7 dolls.
Jane has 4 more dolls than Ann.
How many dolls does Ann have?

Missing Small (Fewer)

Jane has 7 dolls.
Ann has 4 fewer dolls than Jane.
How many dolls does Ann have?

Missing Big (More)

Ann has 3 dolls.
Jane has 4 more dolls than Ann.
How many dolls does Jane have?

Missing Big (Fewer)

Ann has 3 dolls.
Ann has 4 fewer dolls than Jane.
How many dolls does Jane have?

Equalize

Missing Difference (More)

Jane has 7 dolls.

Ann has 3 dolls.

How many dolls does Ann have to get
to have as many dolls as Jane?

Missing Difference (Fewer)

Jane has 7 dolls.

Ann has 3 dolls.

How many dolls does Jane have to lose
to have as many dolls as Ann?

Missing Small (More)

Jane has 7 dolls.

If Ann gets 4 more dolls, she will
have as many dolls as Jane.

How many dolls does Ann have?

Missing Small (Fewer)

Jane has 7 dolls.

If Jane loses 4 dolls, she will
have as many dolls as Ann.

How many dolls does Ann have?

Missing Big (More)

Ann has 3 dolls.

If Ann gets 4 more dolls, she will
have as many dolls as Jane.

How many dolls does Jane have?

Missing Big (Fewer)

Ann has 3 dolls.

If Jane loses 4 dolls,
as many dolls as Ann.
How many dolls does Jane have?

she will have

Compare and Equalize problems all involve the comparison of two amounts (which
we have termed Big and Small) and the difference between these amounts (Big - Small

= Difference and Small + Difference
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individual student papers revealed that many children in these classes added on all
problems, resulting in higher performance on the one missing position form solved
by adding: the Missing Big problem. In general, as age and ability level
increased, there was a tendency for the Missing Difference form to become easier
than the other forms. Thus, as the children got more experience with subtraction,
they improved more on the Missing Difference form than on the others. No
significant main effect of varying the direction of the wording in the problem
(More or Fewer) was found, either overall or for any of the 7 classes analyzed.

Performance as a function of specific problem subtype varied markedly
according to class. The independent variables did interact with one another, but
often did so in an unstable manner; both the presence and direction of these
interactions tended to depend on class in a manner not easily explained. This
suggests that these various effects are either unstable or interact further with
ability level and prior learning. An exception was the Missing-Position X
More-Fewer interaction, which was significant for strategy and answer in 5 of the 7
classes (2HZ, 2AZ, 2AY, 2LY, lAY). 1In all 5 classes, performance on the forms
involving the "more" direction increased linearly from S to D to B, while
performance on the "fewer" forms was higher for the Missing Difference form than
for the others. Overall, the Missing Big "more'" forms produced considerably higher
performance than the Missing Big "fewer" forms, and the Missing Small "fewer" forms
were somewhat easier than the Missing Small "more" forms. Thus, performance was
better where the directionality of the problem parallelled the strategy necessary
for solution ("more" implies adding and "fewer" subtracting). Interestingly, for
classes showing this interaction, performance on the Missing Difference problems
was better for the "fewer" than for the "more" forms wherever there was no ceiling
effect. Because this form requires subtraction for the solution strategy, it
appears that the '"fewer" structure may have acted as a cue to subtract.

Interview Studies

Interviews were held with 23 first graders who had solved correctly at least
one problem on a written test. The four simplest (Missing Difference) forms of the
Compare and Equalize problems were given. Children were first required to retell
the given story (e.g., see De Corte and Verschaffel, 1985a) and then to represent
and solve the problem using physical models of people and objects that represented
people and objects in the problems. It was found that more correct retellings,
strategies, and answers were given for the two Equalize stories than for the two

Compare stories: 27 and 10, respectively, for the retellings, F(1l, 22) = 16.82,
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E<‘001; 34 and 19 for strategies, F(1, 22) = 12.50, p<.002, and 30 and 15 for
answers, F(l, 22) = 14.14, p<.001. Analysis of the retellings and modelled
solutions indicated that many beginning first graders could not solve these Compare
stories correctly because they lacked an understanding of the meaning of the
questions "How many more (less) does Susan have than Jane?" Children understood
the Equalize forms of these questions ("How many does Jane need to get (lose) to
have as many as Susan?") better. By far the most frequent error made for these
problems was to answer with one of the given numbers (this occurred 17 times) as if
the child was ignoring the comparison and was just answering the question "How
many does Susan have?"

Interviews were also collected from 31 second graders on the more difficult
Missing Big and Missing Small forms. Interviewed children were those who showed
discrepant scores on Equalize and Compare problems or who got all problems correct
on a written test. The results indicated that although children were more accurate
in retelling the Compare (19 correct) than the Equalize (10 correct) forms of these
problems, F(l, 23) = 4.97, p<.04, strategies were correct marginally more often for
Equalize (27) forms than for Compare (20) forms, F(l, 23) = 3.62, p<.07, and
answers were nonsignificantly higher for Equalize forms (24 versus 19). The
superiority in retelling of the Compare story seemed to occur mostly because of the
length and verbal complexity of the Equalize forms. Many incorrectly retold
Equalize stories were simply incomplete; the retellings often reflected the total
structure of the Equalize problem (the child retold the first two sentences) but
omitted the last question. The most common retelling error for both Compare and
Equalize stories was to give each person in the story one of the numbers in the
story, i.e., to reduce the story to the simple Missing Difference form. This
indicates that, when presented with a phrase such as '"Mary has 5 more than Jane'",
children often have difficulty in simultaneously comprehending both the inequality
(that Mary has more than Jane) and the amount of the inequality (5 more), and so
simply encode and/or remember the quantity as belonging to the person mentioned
("Mary has 5.").

Conclusions

The results of the present studies point to several conclusions related to
story problems in general and to Compare and Equalize types specifically. First,
it appears that the general assumption that semantic types of word problems are
stable in their degree of difficulty is a false one. Performance as a function of

problem semantic variables may vary markedly with such factors as ability level,

-23-



teacher, math topics just learned at the time of testing (especially addition and
subtraction), and topics already learned; time of year in school may influence the
last two variables considerably. Especially important is the finding that the
inherent "difficulty" of various problem types depends strongly on the child's
prior knowledge of addition versus subtraction and thus on his or her tendency to
favor one operation or the other. Thus, a word problem may be difficult not
because of semantic components inherent in that problem but because the required
solution strategy is inconsistent with the one preferred by the child at that time.
However, such preferences seemed to be held much more by young or by slow learners.
Older and brighter children did not routinely use one operation almost to the
exclusion of another. Second, although Compare and Equalize word problems may be
structurally similar, they are not responded to in an identical manner by children.
First graders have little trouble comprehending Equalize stories, but many do not
understand the "more than" relationship expressed in Compare stories. Even some

"more than" relationship

second graders show difficulty in comprehending the
expressed in the difficult Compare stories. Thus, the most consistent effect in
these studies was one of a superiority of performance on Equalize over that on
Compare problems. Third, as has been reported previously (De Corte & Verschaffel,
1985b; Willis & Fuson, 1985), problems in which the solution strategy conflicts
with the implied directionality of the problem action are difficult for children.
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CHOICE OF OPERATIONS: FROM 10-YEAR-OLDS TO STUDENT TEACHERS
Brian Greer and Clare Maungan

Queen's University Belfast

Fischbein, Deri, Nello and Marino (1985) have proposed a theory to account for
obgerved results when children are presented with single-operation verbal
problems involving multiplication and division and asked to specify which
operation would produce the answer. In particular, they hypothesized that the
primitive model associated with multiplication is repeated addition, in which a
number of collections of the same size are put together. In this situation, the
number of objects in each collection (the multiplicand) clearly plays a
different role from that of the number of collections (the multiplier). A
consequence of this is the distinction between partitive and quotitive division
when a collection is split up into equal subcollections. Partition and quotition

are hypothesized as the two primitive models for division.

The theory postulates that choice of operation will prove easy if the situation
can be assimilated to the appropriate primitive model. The consequent numerical
constraints are as follows:

(a) multiplication: the multiplier must be an integer (though for older pupils
it is suggested that an "absorption effect” may operate for decimals where the
whole part is clearly larger than the decimal part).

(b) partitive division: the divisor must be an integer. (Fischbein et al also
propose that the dividend must be larger than the divisor, but this is by no
means clear, and will not be assumed here).

(c) quotitive division: the dividend must be larger than the divisor.
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Greer (in press) suggests that the multiplicand/multiplier distinction may be
extended to more complex multiplicative structures such as Change of Scale, Rate
and Measure Conversion. For example, if a man walks for 3 hours at 4 miles per
hour, then the 3 plays the role of the multiplier and the 4 that of the
multiplicand. Moreover, the definitions of partition and quotition can be
generalized by defining the former as division by the multiplier and the latter

as division by the multiplicand.

The experiment to be reported here extended the empirical investigations
reported by Fischbein et al in several respects:

1. A wider developmental range was tested.

2. A more varied and systematic sampling of number combinations was used.
3. More complex contexts were used, namely Measure Conversion (specifically

currency conversion), Price (unit price/quantity/total cost) and Speed.

METHOD

Paper-and-pencil tests were administered to six groups: 10-year-olds (n = 68),
2nd form pupils (n = 82), 4th form pupils (n = 73), pupils at a College of
Further Education (n = 54), first year psychology students (n = S50) and students
training to be primary school teachers (n = 50). Three tests with 40 items in
each were given on separate occasions. Each item was a verbal problem involving
two numbers for which the subjects had to specify the operation which would
yield the correct answer, but were not required to calculate the answer. The 120
items included 8 multiplication items, 8 partitive division items, and 8
quotitive division items for each of the three contexts. Addition and

subtraction items were aiso included so that it could not be assumed that the
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correct operation was always multiplication or division. Classes of comparable
pumber combinations were constructed so that incidental features of particular
combinations of numbers would not bias the results. (For details of the matching
of items, counterbalancing of order, definitions of number classes etc., see

Mangan (1986)).

RESULTS

Multiplication: For each of the 6 groups, 3 contexts and 8 number classes the

facility (percentage of correct answers) was calculated, yielding 144 facilities
jn all. Graphical analysis made it clear that the pattern of results across
number types was remarkably consistent regardless of the subject group and
context being analyzed. A regression analysis was therefore carried out, with
the 144 facilities as the criterion variable, and groups, contexts, type of
multiplicand, and type of multiplier, as predictors. This confirmed that an
additive model provided a very good fit (accounting for 92% of the variance).
The results can therefore be summarized in terms of the overall means for each
level of each factor, averaging over all the other factors. The first column in
Table | shows that there was the sort of developmental improvement in
performance that could have been expected, and that the currency conversion

problems proved rather more difficult than the speed and price problems.

Table 2 shows a clear difference in the size of effects associated with the
multiplicand and multiplier. The type of number used as multiplicand had
virtually no effect, whereas changing the multiplier from an integer to a

decimal less than 1 lowered performance by about 46% across the board.
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Division: Additive models were found to fit the results for division equally

well (for separate regression analyses for partition and quotition, in each case
the proportion of variance accounted for was 92%). The rest of Table 1 shows
similar developmental and contextual effects as for multiplication, with only
small differences between the results for partition and quotition. The first two
columns of Table 3 show the facilities for partition and quotition for the 8
number classes used. Again the differences between partition and quotition are
rather small. A further analysis was carried out on the types of error made.
Most of the errors consisted of either choosing multiplication or of reversing
the numbers to be divided. For each number class, the number of reversal errors
was calculated as a percentage of the number of reversal and multiplication

errors combined; the results are shown in the second part of Table 3.

DISCUSSIOR

The results for multiplication vindicate the extension of the multiplicand/
multiplier distinction and are entirely consistent with Fischbein's theory since
they clearly demonstrate the crucial importance of the constraint that the

multiplier be an integer.

The results for division are less clearcut, since the differences in facility
between partition and quotition items involving the same number classes were
rather small. However, it is noticeable that there are three types for which
performance for quotition items was better by about 10% overall. These include
two types which satisfy the constraint for quotition, but not that for
partition, namely 32/5.69 and 8/0.77; moreover, a similar explanation may be
advanced for the third such type, 5.87/0.44, by invoking the absorption effect.
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Thus, there is some evidence that the subjects were sensitive to the structural
difference between partitive and quotitive items, although it seems likely that
pany of the errors were due to responding superficially to the two numbers
gtated in the problem, and the relationship between them. (Although Fischbein et
al play down the role of numerical misconceptions, there is clear evidence that

they are implicated in many errors).

Further evidence that the partitive/quotitive distinction was affecting
performance was provided by the analysis of the types of error made (Table 3).
The two types 32/5.69 and 8/0.77 are difficult to assimilate to the partitive
model, hence there is a strong tendeocy to "force" them into this model by
reversing the order of the numbers. The results confirm that most of the errors
in these cases were indeed reversals. By contrast, both types can be assimilated

to the quotitive model, and in this case oonly a small proportiom of errors were

reversals.

The remarkable consistency of the patterns of results across number types for
all age groups provides stroong support for Fischbein's belief that the primitive
operations continue to affect the interpretation of multiplicative situations
even after extensive formal training. Fischbein et al suggest that what is
needed is an attempt to “provide learpers with efficient mental strategies that
would enmable them to control the impact of these primitive models” (p.16).
Arguably, an alternmative strategy would be to introduce a wider range of
multiplicative structures as early as possible. Particular attention also needs
to be given to the critical point at which the concepts of multiplication and
division are generalized from the domain of integers to that of the ratiownals.
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Table 1. Overall means for groups and contexts
Is there a reasonatle fit between the instructional cognitive demends in

Multiplication Partition Quotition

Numeration topics for six- to eleven-year-olds and the levels of pupil cognitive
Student teachers 79 72 79
Psychology students T6 61 66 response? Pursuing one of the BME goals, to better uncerstand the psychological
F.E. students 68 55 58
4th form pupils 65 54 59 impacts (and implications) of learning and teaching mathematics, the freceding
2nd form pupils 57 43 45
Primary pupils 41 25 25 question was addressed in a two-year cognitive assessment project (Marchand, Bye,
Price i 61 63 Harrison, & Schroeder, 19€5) which was designed on principles drawn from
Speed 67 48 46
Currency conversion 56 46 56 constructivist theories about how children learn mathematics (e.g., those of

Piaget and Skemf) .

Table 2. Overall means for different types of numbers
COGNITIVE ASSESSMENT

Integer Decimal > 1 Decimal < 1
Cognitive assessment procedures were developed for principal Numeration
Multiplicand 67 64 63
Multiplier 84 il 38 torpics in each of the six elementary school grades. The assessment interviews

were drawn largely from the work of Jean Piaget and from interviews reported by

Table 3. Results for division items
Robert Davis. In all, 594 Numeration interview task assessments were made of the

Facilities 100R / (R + M)

responses from 360 Grade 1 to 2 pupils. The interviews were conducted by 23
Number class Partition Quotition Partition Quotition

Teacher-Interviewers who had participated in four day-long workshops led by the
25/8 79 80 31 18
26.85/9 85 84 32 21 investigators.
11.44/4.51 T4 15 (not enough for stable estimates)
32/5.69 50 61 85 39 Most of the items for the paper-and-pencil assessment tests were selected or
5.87/0.44 54 62 35 10
8/0.77 31 41 67 17 adapted from the Pustralian Council for Educational Research (ACER) Mathematics
7/23 22 18 92 78
0.39/0.89 19 20 68 67 Profile Series based on Collis' research findings, with additional items adapted
(R = number of reversal errors, M = number of multiplication errors) from the Chelsea Ciagnostic Mathematics Tests (Hart et al., 1985). The Grade 2 to
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6 cognitive response levels of 391 pupils were assessed by means of a Crade 3/4 or
5/6 Numeration paper-and-pencil test.

The criteria imbedded in the pupil response assessments were also used to
assess the cognitive demends made by the Numeration curriculum objectives,
textbook materials, teacher presentations, and 2lberta Education Achievement
Tests.

Samgple interview tasks, test items, and cognitive demanc criteria are given
in Harrison, Bye, & Schroeder (1985, p. 211-213) and in Marchand, Eye, Barrison, &
Schroeder (1985).

RESEARCE CUESTICNS

The information from the assessments was analyzed to provide answers to the
following questions:

1) what levels of cognitive ability are demonstrated in Numeration
torpics by 2lberta rupils in each of Crades 1 through 6 (Ages 6 through 11)?

2) What are the levels of cognitive demand made on pupils in Numeration
topics at each grade level by:

i) the objectives identified@ by the Flementary Mathematics
Curriculum Guide, Alberta Education, 1982,
ii) the rrescribed textbooks,
iii) teacher fpresentations, and
iv) echievement tests?

3) Bow well do the curricular demands (made by the curriculum
objectives, texts, teacher presentations, and tests) fit the distributions of
Fupil cognitive responses in Numeration topics at each grade level?

CCGNITIVE RESPONSE 2ND CEMANC FINCINGS: NUMERATION

Summaries of the findings relevant to (uestions 1) to 3) are presented in
Figures 1 and 2 on the following pages.

Regarding Cuestion 1), it wes found that from 74 to 90% of the Eupil
resronses were at the Concrete Crerational level. The remaining responses were
primarily at the Freoperational level in the early grades (10% to 22%) and at the
Farly Formal Operational level in the higher grades (3% to 13%).

Tabulation of the data relevaent to Question 2) showed that ¢ to 100% of the
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Figure 1

Curricular Demand and Fupil Response Contrasts: Numeration, Grades 1 to 3

Gr.1 Interview PO FC SICT K-S D
Ratings 22 41 37 Probability
60 pupils 2 2 2 Decision
Gr.1 Curric. PO EC - IC C=0. 205
Cbjectives 17 66 17 p=0.1€2
6 items % 3 2 Accept
Cr.1 Textbooks PO EG - T IC | TC=0.268
(Numeration) 22 68 | 10 p=0.028
2363 items 3 3 | 3 Reject
Cr.1 Classroom EC I] D=0.340
Cbservations Ol qdq p=0.003
64 minutes k3 3 PReject
Gr.2 Interview| FO EC I K-€ T
Ratings 13 28 £ F Probability
60 pupils 2 k3 2 2| Cecision
GE=2 Curric. EC LC D=0.145
Objectives 56 44 £>0.200
9 items 2 2 Accept
Cr.2 Textbooks [P EC IC D=0. 307
(Numeration) [0 69 28 p=0.007
2995 items 3 2 2 Reject
Cr.2 Classroom EC g E C=0.12°
Observations 38 15 p>0.200
29 minutes 3 3 Accert
Gr.3 Interview PO EC IC " EF | Inter- K-S T
Ratings 14 37 37 12| view Prob.
60 pupils % k3 2 % Cec'n
Paper & Pencil FC EC LC Paper 0.117
Tests (ACER) 10 43 47 K-S D >0.200
115 pupils % 2 % Prob. 2cc.
Cr.3 Curric. EC IC 0.142 0.096
Objectives 45 55 >0.200 >0.200
11 items 2 3 Acc. Acc.
Gr.23 Textbooks [F EC IC 0.130 0.084
(Numeration) c 46 53 >0.200 >0.200
1303 items 1 2 2 Acc. Acc.
Gr.3 Classroom LC 0.508 0.530
Observations 100 <0.001 <0.001
€ minutes % Rej. Rej.
Achievement EC IC 0.142 0.096
Test (Gr.3) 5¢ 41 >0.200 >0.200
17 items % 2 Acc. Acc.
PC-Preoperational; EC-Early Concrete; LC-Late Concrete;

EF-Early Formal; F-Formal
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Figure 2

l ‘

Curricular Cemand ané Fupil Response Contrasts: Numeration, Gredes 4 to 6

Gr.4 PP Test |P EC IC FF K-e r
Ratings C 28 59 13 | Probability
4 pugils 1 3 2 3 Decision

Gr.4 Curric. EC LC EF D=0.145
Objectives 18 £5 27 p>0.200
11 items 2 2 2 Accept
Gr.4 Textbooks EC LC EF C=0.098
(Numeration) 22 L 23 p>0. 200
2321 items 2 3 2 Pccert
Cr.4 Classroom | EC i gy EF C=0.203
Cbservations 10 47 43 F<0.001
72 minutes % 2 2 Reject
Cr.5 P&P Test PC EG g H K€D
Ratings 16 42 39 F| Frobability
92 pugils 3 2 2 3 Plecision
Cr.5 Curric. EC LC EF D=0.506
Objectives 15 31 54 p<0.C01
13 items 2 2 2 Reject
Cr.5 Textbooks | EC IC EF D=0.485 |
(Numeration) o 52 39 E<0.001
1662 items 2 2 3 Reject
Gr.5 Classroom LC EF L=0.584
Observations 3e 62 E<C.001
26 minutes 2 2 Reject )
Cr.6 PSP Test FO EC LC EF K-S T
Ratings 14 17 57 12 | Probability
S0 pupils 2 2 2 2 Cecision
Gr.6 Curric. EC LC EF D=0. 278
Objectives 14 36 50 F<0.001
14 items $ k] ] Reject
Cr.€ Textbooks |[E LC EF r=0.718
(Numeration) C 15 84 F<0.001
2591 items 1 % 2 Reject
Cr.6 Classroom | LC EF [L=0.78€9
Observations 9 91 p<0.0C1
135 minutes 2 2 Reject
Achievement EC LC EF D=0.514
Test (Cr.6) 5 27 64 p<C.001
11 items 2 $ % Reject

PC-Preorperational; EC-Early Concrete; LC-Late Concrete;
EF-Early Formel; F-Formsal
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Mumeration demands were at the Concrete Cperational level. Cf the remaining

demends, up to 91% were Farly Formal at one gracde level, with small percentages of
Freoperational and Formal Operational demands. The distributions of curriculum
objective demands showed the most consistent pattern, becoming increasingly

demanding with increasing grade level. The textbook and classroom demands were

Fredominantly Concrete Operational up to Grade 4 and predominantly Farly Formel in
Grades 5 & 6 (excepting Grade 5 textbooks). The Grade 3 & 6 achievement test
demand distributions were generally comparable to those of the textbooks.

2s for Question 3), two-sample Kolmogorov-Smirnov tests were used to
determine whether or not there were significant differences between the
distributions of puril responses an¢ those of the relevant curricular demands.
Two distributions were considered to be not significantly different if the
probability of observing the calculated K-S D was greater than 0.C5.

Mismatches attributable to disproportionately high percentages of Farly

Formal Cperational demands were found in the Mumeration curriculum objective

demands, as compared with the responses of the Crade 5 & 6 pupils (Ages 10 & 11).

In Crades 2 & 4 (Pges 8 & 9), there were reasonable matches between textbook
demand and pupil response distributions, but in the other four grades there were
significant mismatches attributable to too few Late Concrete Operational demands
for the younger children and too many Farly Formal Operational demands for the
older pupils. Except in Grade 2 (Pge 7), the classroom demands were invariably

Fitched at cognitive levels well beyond the response levels of most pupils. The

achievement-test demand distribution matched the pupil response distribution

reasonably well at the CGrade 3 (Age 8) level, but at Grade 6 (2ge 11) there were
too many demands at the Farly Formal Crerational level.
RECOQMMENDATIONS

The findings support a recommendation that the Numeration curriculum
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objectives be reviewed &nd revised where necessary to provice more adequately for
the cognitively less able, particularly in Crades £ and 6, and for the cognitively
more able, particularly in Grades 1 end 2. Also supported is a recommendation
that the textbooks be suprplemented to provide more learning experiences at the
lower demand levels, especially the Preorerational and Farly Concrete Operational
levels. Furthermore, it is recommended that learning activities promoting the
developnent of cognitive structures arising from Numeration topics be provided for
every classroom. The kinds of materiels envisaged are best exemplified by those
produced by Richard Skemp in the Primary Mathematics Froject.
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CHILDREN'S UNDERSTANDING OF RATIONAL NUMBERS — AN EMPIRICAL INVESTIGATION

Gisela Heink

A report on an empirical investigation of a current project, run by scientists of
different fields of the Freie Universitdt Berlin and of the Technische Universitdt
Berlin concerning difficulties in solving mathematical problems.

G. Ebneth; G. Heink; U. Lehnert; G. LeRner; R. Spann; R. Spyra; W. Reitberger

The problem — questions and hypotheses

It has often been observed that pupils were having enormous difficulties in under-—
standing the rational number concept. Empirical investigations by K.M. Hart (3)
and (4), K. Hasemann (5, 5a) and Th.R. Post, J. Wachsmuth, R. Lesh and M.J. Behr
(6) and (7) — based on analysis of specially elaborated tests, on interviews with
pupils and on direct observation — have shown considerable discrepancies between
the concept of rational number the teachers believed to have tought and the actual
concept the pupils had acquired.

The object of our investigation is to conceive these discrepancies in a systemati-
cal way. Our intention was to find out whether the aspects the teachers concider
as contributing mainly to structuring the concept of rational numbers will be the
same the pupils recognize as essential, and — if they are identical — whether they
are weighted in the same way by teachers and pupils.

Issues of the excellently documented (8),(9) international reports on the last few
years research led us to choose "fraction", ''quotient", "ratio'" and 'chance" as
basic concepts.

At school, these concepts are tought in connection with certain realizationms:
kilogramme, kilometre, ..., geometrical representations, and texts. The geometrical
representations are: circle, rectangle, straight line and line segment. Comparison
and equivalence are essential topics. Calculation was excluded because there are
many reports on research in addition, multiplication, etc., We are not so much
interested in difficult calculation with rational numbers, but in the understand-

ing of the concept of rational numbers.
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The result of a structural analysis of our own concept of rational numbers is

represented by the following scheme of categories:

fig. 1
part t |
. operator ? s operator
type of item of the ‘ of the P
whole |Whole ———> whole | Whole ———> ?
part
A AL whole ? A1 operator ? h of the whole ?
representation coical
of the rational geometrica iti
SEho representation quantities numbers
B B, Ria by
) : indirect question
il direct estion .
question 02" it is neccessary to
for the whole the whole is miv evaluate the whole
s ole ELVER for solving the task
£ E Ca
representation ., .
of the item text essential text not essential
T 5 T,
basic condept part - part part - whole quotient chance
= -
ratio fraction proba-
v v v bility
1, AV, ) Vg &
nunber of steps one step more than one step more than one step
necessary for and
solving the item comparison
S S
1: S‘ SJ
B, can be devided into Bla circle
B rectangle
1b G
B line segment
lc &
B4 straight line

This scheme of categories represents our hypotheses. The intention of our empiri-
cal investigation 1is to find out whether this scheme of categories corresponds to

the pupils' concept of rational numbers.
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Outline of the investigation

The test:

We first constructed a test consisting of 60 items (in the second administration:
62 items) corresponding to items of the ''CSMS Mathematics Test' by the National
Foundation for Educational Research (3), to the '"Assessment of Rational Number
Concepts' and the '"Assessment of Rational Number Relationship' developed by the
National Science Foundation (6),(7) and to items in different school-books.

These items only test the understanding of the rational number concept, not the
skill in dealing with calculations. With only a few exceptions we considered only
positive rational numbers smaller than 1 with denominators 2,4,8,3,6,5,10,(7),12.
We took care to present the problems in contextual frameworks or sketches. Items
consisting merely of numerals and operations (%—of%—), were only inserted as means
for control. Difficulties in understanding the text were minimized by a clear and
simple style. Auxiliary lines and hints were sometimes given to make the solution
definite. The items were chosen in a way that the test can be given to the grades
6-10. The test did not include decimals and percentages. For some items we used

the multiple-choice method. All the items were categorized as shown in fig. 2:

fig. 2
-
N
Mr Brummer earns 2400 DM

LB per month. He spends % of
Find the correct solution: his salary on the rent for
A is larger than B [:] his house.
A is smaller than B [:]

1 ?
A is equivalent to B [:] How much is the rent ?
AZ B1b El TZ VZ 53 A3 BZ El Tl VZ Sl
item &4 item 13

When constructing the test we took care to consider all significant combinations

of categories.

The adminitration of the test

In order to prove our hypothetical scheme of categories we tested it

a) in October 1984 with 90 pupils of the 9th grade in a comprehensive school in
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Berlin-Neukdlln
b) in April 1985 with 218 pupils also of the 9th grade in a comprehensive school
in Berlin-Spandau
c) in September 1985 with 70 pupils of the 9th grade in a Real-Schule in
Wentorf (Schleswig-Holstein).
The test was devided into two subtests, so that in each subtest there were corre-
sponding items — items of the same categories and of the same assumed difficulty.
For each subtest the pupils were given the time of one lesson (45 minutes).
The items were handed out in random order, different for each pupil — so as to
avoid any effects of learning. The subject matter (rational numbers) had deliber-
ately not been repeated in the classroom before the administration of the test.
The pupils were allowed to use a ruler with scale. Time limit and pressure on the

pupils were avoided as far as possible.

The evaluation of the test

The items were classified as correctly solved {O} or as incorrectly or not solved
{1}. For the analysis of the data we used different methods of '"cluster analysis'
(10) and "multidimensional scaling" (11).

This is the matrix of data for the second administration (3 items were not consid-

ered because too many pupils hadn't solved them):

item
1 2 3 » = 57 58 59
pupil 1{o 1 1 1 1 o
214 0F L 1 1 1
3 ’

219

By cluster analysis (Ward, Complete-Linkage) we got 3 clusters of pupils. For

each cluster there was a similarity concerning the correct or incorrect solution
of the items. We considered the solutions of the items for each cluster indepen-
dently. We compared the solution (O or 1) of all possible pairs if items for each
pupil of this cluster. If there was a correspondence (both items solved correctly

or both items solved incorrectly or unsolved) the pair got the index O, otherwise
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the index 1. This analysis was carried out for all pupils. Considering all the
pupils now we added up the non-conformity for each pair of items (aij with aij=aj9'
We thus got a symmetric matrix of '"mon-conformity' of the items. This matrix was

interpreted as a matrix of ''dissimilarities' of the item.

item
1 23 4 . : . 59 The procedure of multidimensional
item 1 0 3, 313 3, scaling (MDS, MINISSA) calculates
2 321 0 a23 324 £ the dissimilarities as distances
o b ’ .
3 aq; a32 a34 and illustrates the items as points
. in a space with n dimensions.
59 o]
Example:
~100 -0 -!0 -'1'|0 -60 -50 -4‘0 30 -0 -0 40 20 30 4o S50 60 ?‘o 80 9 4oo
100
L q0
- €0
L 30
1
+ 50
- 40
1 L 30
- 20
28
A6 H3 L 10
3 I 25 W4 _
= . RS - S Ay £, SESIpun . SR
o lutr 55 | 23 52 L 0
ﬁ 30 56 : 10 51 Lo
4o 24
Ll
E 54 5 I 20 T
3 | -
! L-50
!
| L -60
| -~30
| --80
: (‘J - -d0
- -100
|
|

Dimension o,

Results and their interpretations will be given in the presentation and will be

a good foundament for discussion.
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COUNTING PROCEDURES USED BY KINDERGARTEN CHILDREN

Nicolas Herscovics, Concordia University
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One-one errors

| Set _size No of counts Z errors Tag-duplication Partitioning Coordination
7-19 207 35.7 1.4 23.2 19.8
(a count trial could have more than one error)

Partitioning Errors Coordination Errors

Set Double Recount Omit Stop too Begin- End Over- Asyn-

size count soon ning run chrony
7-19 7.3 1.5 12.1 2.3 0 14.0 4.8 1.0

These results indicate that there are almost no tag-duplication

errors (1.47) at the age of 5 and that most errors are of the partitioning

Research funded by the Quebec Ministry of Education (F.C.A.R., EQ-2923).
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(23.2%) and coordination (19.2%) types. The majority of coordination errors
(147) occur because the child missed or double-counted the last item. It

seems to us that this type of error could easily be considered as being a par-~
tition error since whether 1t occurs at the very end or in the middle of the
count, in both cases it reflects the inability to keep track of the objects
enumerated. Thus we can consider the partition errors to be by far the predom-
inant ones.

While the above studies reveal how difficult it is for children
to master the skill of partitioning, they do not inform us about different par-
titioning procedures or the frequency with which they are used as a way of
separating the objects remaining to be counted from those already counted. In
some exploratory work, we found that kindergartners have three distinct spon-
taneous counting procedures: visual counting (0) in which the child keeps track
of the objects visually without any physical contact; touch-counting (T)
where each object is touched without any displacement; physical partitioning
(P) where the child separates the objects as they are counted by pushing them
aside one at a time. In the first two procedures, the partition is established
mentally and this can lead to many errors, especially when the objects are
displayed randomly.

The frequency of these partitioning procedures was but one of the
questions we wished to investigate. We also wondered if child;en in this age
group would perceive one of the procedures as being better, would prefer one in

particular, would choose a specific one "if they had to teach a child who does

not’yet know how to count", might remember how they themselves had learned.
Finally, we wondered if inducing this kind of reflection in them would affect
in any way their counting procedure.

To find answers to our questions we interviewed 31 kindergartners

(16 girls, 15 boys considered weak, average or strong by their teacher) in 5
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different French schools of Greater Montreal (one in upper and four in middle
class neighborhoods). The interviews were conducted by 15 prospective elemen-
tary school teachers who were in the second year of their B.Ed. program, and
as such, had enrolled in a course on the teaching of arithmetic at the primary
level. These 15 future teachers were grouped into small teams (from 2 to 5).
Their training consisted of various simulations, the study of video-interviews
and the study of the semi-standardized questionnaire to be used in the experi-
ment. Each interview was handled by two team mémbers, one interviewing, the
other one observing and audio-recording. Each recording was then totally
transcribed.

We first decided to assess the children's knowledge of the num-
ber word sequence by asking them to count out loud, and then, their ability to
enumerate, which was tested by determining how far they could count when given

a pile of 100 chips. The following table describes the counting scope of 29

subjects.

Age N No object counting Counting pile of chips
under 6* 14 38.1 36.7

S.D. 26,5 26.9

Range ( 16-119) ( 16-119)
6.0-6.6 15 54.2 43.1

S.D. 41.1 2355

Range ( 27-179) ( 15-100)

" % 4 children were between 5.2 and 5.5, and 10 between 5.6 and 5.11
Two subjects,who could only count up to 3"and 9 respectively, were eliminated
since they were judged to have too many difficulties with their number word
sequence to provide us with valuable information regarding their understand-
ing of the one-one principle. If we compare our results with those of .Fuson
et al, we notice that for their 5-year-olds, their knowledge of the number
word sequence is almost the same as that of our subjects in the under-6 age

group, while the difference in counting with objects might be attributed to
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the way in which our respective tests were designed. We have found that the
difference between the knowledge of the number word sequenc; and the counting
of objects is relatively small in this age group (38.1 vs 36.7). It is
interesting to note that with three of our subjects, their counting of objects

went beyond their initial verbal recitation of the number words.

We tested the notlion of cardinality explicitly by asking 323
many blocks were in a set of 15 cubes laid out at random in front of the child.
Everyone spontaneously set out to enumerate the given set to answer the ques-
tion, thus demonstrating their grasp of this notion. We noted that 14 subjects
used a physical partition (P), 11 used touch-counting (T) and 4 resorted to
visual counting (V). It is interesting that among the 6 children who

made a mistake, 5 used T, while only 1 had used P. The two types of errors

observed were double-counting (3) and loosiné track (5), some mistakes invol-
ving two types of error. The rate of errors we observed (20.7%) is much lower
than that found by Gelman & Gallistel (35.7Z). But it is difficult to compare

since half of our subjects were over the age of 6.

We also verified explicitly whether or not children perceived

that the result of enumerating a'given set had to be unique. Ginsburg (1977)

had shown that at an early age, some children did not find any contradiction

in obtaining different results from different counts of the same set. Only
one of our subjects thought that two different results would be acceptable.

In addition, we investigated how children understood the one~one principle by
teliing them that we were going to commit counting errors in front of them and
asking them to spot our mistakes. One mistake was counting twice the same chip
and the other mistake was to skip one chip. Everyone of our 29 subjects was
able to identify the two mistakes,except the subject mentioned above who did
not spot the double-count, in spite of the fact that he knew his number word
sequence up to 59 and- could count a pile of chips up to 49.
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As mentioned earlier, we wished to find out how.the three count-

ing procedures were perceived by the children. We provided them with photo-

grapbs of three children, each one using a distinct procedure

s

V: Visual T: Touching only P:Physical partition

and in each case, the interviewer acted out these procedures. The photographs
were presented with each question as a reminder of the three procedures. The
questions were (a) "Do you think there is a way of counting which ia best?";
(b) "When you count, which way do youprefer?"; (c) "I know a child who does
not yet know how to count. If I asked you to show him how to count, which way
would you pick to show him?"; (d) "When you learned how to count, do you re-

member which way?". The following table gives the frequency of their first

choice.
Under 6 n=14 6.0-6.6 n=15 Total. n=29
Question Bz % 3 P oI VvV 2 C I S A
(a) best 6 6 2 - 9 2 4 - 1; g g :
(b) preferred 9 2 3 - 10 3 2 - 1 > H :
(c) to teach 7 2 4 1 9 5 1 - 16 / > 5
(d) learned 5 2 1 6 10 2 1 2 15

Overall, we note that in considering what 1s the best procedure,
about half chose P while the others chose a non physical partition. This is
comparable to the ratios found in the spontaneous procedures mentioned earlier
(14P, 11+44=15 others). What seemed evident is that the questions we raised
were totally new for the children and that probably they may not have had suf-
ficient time to reflect about them. This might explain the shift we note in
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their choices for the preferred procedure. As far as preference is cencerned,
there does not seem to be any marked difference between the age groups. But
when it comes to consider teaching, while P remains the principal choice for
both groups, only one child among the older ones favors V. Fewer of the young-
er children seem to remember how they learned how to count. Perhaps the abil-
ity to answer such a question has to do with maturation.

By way of conclusion, we wish to present data regarding the last

task in which we simply asked the children to find how many blocks there were
in a given pile of cubes (10). The frequency of their spontaneous choices
(P=15, T=8 , V=6) does not seem to differ much from that found in the initial
task (P=14, T=11, V=4). But when the fourteen children who had used T or V
were asked "Would you have another way of counting to make sure that there
are ten blocks?", eleven of them answered this question by counting again
using a physical partition. These results seem to indicate that even if
there was no direct teaching involved in the experiment, the mere inducement
to reflect on various counting procedures brings to the child a greater aware-
ness of the different choices available and the relative merits of physical
partitioning.
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Children's conceptions of multiplication Neil MacCuish

Inner London Education Authority

INTRODUCTION

According to Piaget the source of mathematical structures during devel-
opment is the child's own activity., That is, mathematical kncwledge arises
through the child reflectively abstracting some principle of his/her own func-
tioning. Multiplication seems to be an intriguing area for investigation of

reflective abstraction. It involves the use of an operation en an operation..

And the higher level operation can be thought of as a copy of the lower level
operation. That is, in 5 x 3 not only is there the repeated addition of three
but also the five can be broken up and composed additively through the distrib-
utive laws.

In the present study the subjects were given a multiplication task
which could be solved by simple addition. The subjects were given a completed
sum as a éue, for example 261 x 20 = 5220, and then given a probe question de-
rived from the cue by adding or subtracting one from the multiplier, for example
262 x 20 = ?  The wgy the subjects utilize the information given in the cue is
informative of their conceptions of multiplication.

METHOD

Subjects There were thirty eight subjects. The subjects formed one third year
class and one fourth year class (age range 9.6.7 - 11.5.14).

Procedure The subjects were tested in their classroom as a group. The experi-
menter wrote up the cue as a completed sum on the blackboard so all the subjects
could see it; underneath he wrote the probe question. After the main task the
subjects were given the six control questions.

Material The cue and the probe questions are shown in table 1. There are four
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types used. The multiplier can either be increased or decreased by one, giving,
in effect addition cr subtraction. And the multiplicand is either a multiple of
ten or simply units. The control questions are addition or subtractior sums com-

parable in difficulty to the sums implicitly defined by the multiplication task.

TABLE 1 : CUE AXND FROBE UESTIONS

D

Lctual order Type of implicit Tens or
presented operation units
1 Add Tens 261 x 20 = 5220 262 x 20 =
8 30 x 322 = 9660 30 x 323 =
3 Subtract Tens 212 x 20 = 311 x 20 =
5 30 x 255 = 7650 30 x 254 =
4 Add Units 716 x 4 = 2864 717 x 4 =
7 3 x 715 = 2145 3 x 716 =
2 Gubtract Units 3 x 339 = 1017 3 x 338 =
6 564 x 4 = 225k 563 x 4 =
TLRLE 2 : CONTROL 2UESTICHS
Lctual order presented Guestion
9 7140 - 20
10 5130 + 30
17 5 + 3155
12 5118 - 4
13 8140 - 20
14 1960 + 30
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TpBLE 3 : RESPONSFS FOR EACH TYPE OF GURSTION (IN PERCENT)

SaBIacte" Guestion Type:- Luestior Requires:-
PUBIECHS Addition of | Subtraction of | Addition of | Subtraction of
Response t o

en ten units units
Correct 22.37 19.74 17.11 15.79
Add 1 22.37 3195 27.63 6.58
Add 10 13,16 1.32 2.64 1.%2
Subtract 1 3.95 19.74 5.26 26.32
Subtract 10 0 15.79 0 2.64
Other error 38.16 39.47 47.37 47.37

RESULTS

1. Thirty five percent of the error total was the addition or subtraction
of a2 unit, and eleven percent was the addition or subtraction of a ten, so that
forty six percent of the error total was of this sort.

2a) Subjects gave significantly more of the error response involving plus/
minus ten on the questions which had a multiplicand which was a multiple of ten
than on questions which had a unit multiplier (Sign test p< .002).

b) Conversely subjects gave more errors involving plus/minus one on
questions in which the multiplicand was in units than on questions in which it
was a multiple of ten (Sign test p< .08).

3a) The subjects gave significantly more plus one/ten responses on guestions
in which the multiplier was increased by one than on questions in which it was
decreased (Sign test on third years p< .001, on fourth years p £.001).

b) Conversely, the subjects gave more minus one/ten responses on questions
in which the multiplier was decreased by one than on questions in which it was
increased (Sign test on third years p<.00l, on fourth years p< .05).

4, The subjects were significantly better at the control guestions then at
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the comparable multiplication tasks (Twelve sign test all significant : eight at
the .0Cl level, two at the .0l level, and two at the .C5 level).

5. It the third year group the subjects who scored zero on the control
questions gave significantly less of the error under consideration (Mann Whitney
z = 2,22, p<..09).

TISCUS3ION

As would be expected the subjects were worse on the multiplication task
than on the comparable addition or subtraction aquestion. Although not surprising
this does indicate that the probe and cue technique did bring into play the sub-
ject's conceptions of multiplication. Over a third of the responses were the
addition or subtraction of a ten or unit. Tor comparison only approximately a
fifth of the responses were correct. Such a common error pattern must reflect
the subject's conception of multiplication.

Piaget found almost exactly this error in his study of the genesis of
proportionality (Piaget 1977). Both the subject and the experimenter had a simi-
lar stripe with a sequence of holes on it and the subject's task was to place
his/her marker twice as far as the experimenter placed his, that is to place the
marker at 2N to correspond to the experimenter's marker at n. Piaget found a
stage 1 in which the subject placed the marker at n + 1 instead of at 2n. He also
found a stage 2 in which the subjects placed the marker at n + k, where k is
bigger than 1 but less than n. He found similar responses in another task in
which the subject was shown three different length eels 2nd told to provide food
in proportion to the eel's length. The additive strategy is not only found in
these two tasks but it has been found in a variety of proportionality tasks.

In the present task in making the error under discussion subjects showed

a differential sensitivity to the operztion and the multiplicand. That is on
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questions in which the multiplicand was a multiple of ten the subjects were more
1ikelr to give a plus or minus ten response than on questions in which the multi-
plicand was in units; conversely they were more likely to give a plus or minus
one response on questions in which the multiplicand was in units. And on ques-
tions which implicitly involved addition the subjects were more likely to give a
plus response than on questions implicitly involving subtraction; conversely on
questions which implicitly involved subtractions subjects were more likely to
give 2 minus respense.

Multiplication is a multi- componented task. Obviously children making
these errors have not completely acquired the complete structure, but this dif-
ferential sensitivity shows that they have some partial knowledge of multipli-
cation. They know both that multiplication involves repetition (as either re-
peated increase or decrease) and that it involves repetition of a definite some-
thing. This partial knowledge can be described as an intuition about multipli-
cation. That is, using intuition in a sense analogous to Brown and McNeil's
(1966) tip;of—the—tongue phenomena; they showed that if subjects thought they
knew a word but were unable to recall it then the subjects possessed some accu-
rate partial knowledge, for example above chance level knowledge of the first
letter.

Piaget believed that the reason for the plus type responses in his tasks
was that the primacy of one way actions in the child's thought leads the child
to be dominated by order effects. So long as the order is preserved, which it
is by the plus type responses, the child is satisfied. Piaget is thus locating
the reason for this error in the overall organization of the child's thought.

I would like to raise the possibility that the child's difficulty has a
more circumscribed origin, namely in the child's representation of the task.
Karmiloff-Smith (1984) argues that the same three phases of development of repre-
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sentational processes can be found at all levels of develorment. A4long these
lines it is suggested thzat the additive error in the i1resert task is very akin to
the vre-concept which Piaget described in the much younger child. In the fpre-
concept a part stands for the class and can substitute for it instead of merely
representing it; it is a privileged sample to which other elements are assimi-
lated.

In the preseut task the child is dealing with what is implicitly an in-
finite set of repeated additions. Part of the formation of rultiplicative struc-
tures is the collapsing of that infinite set of procedures of =zddition to an ex-
rlicit representation. Prior to the formation of this meta-level revresentation
the child confuses the member with the set and selects one procedure tc represent
the whole set of procedures. Both the pre-concept and the present error arise
from the same cause, namely the lack of explicit meta-level representations, but
in the present case operating on a more advanced representational level, that is
on a protlem space of a set of procedures instead of a set of perceived objects,
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Why some children fail to learn the four rules of Arithmetics

professor F Marton and D Neuman

pepartment of Education, University of Gothenburg, Sweden

Earlier investigations have shown that about 15% of each age cohort in Sweden
fail to acquire sufficient mastery of elementary skills in Arithmetic. On the
assumption that this is due to the lack of the conceptual prerequisits for the
formal teaching adopted in schools 105 school beginners (7 years olds) were
interviewed in order to find out the sense in which they use counting words,

how they conceptualize numbers and how they approach simple arithmetic problems.

some of the findings were:

1. Counting words are used in a number of gualitatively different ways by
children. .They are understood as denoting
sounds,
movements,
extent,

names, etc.

2. There are two distinctly different ways in which children approach simple

addition and subtraction problems, namely

by counting, or

by structuring.
The former means that they are counting one object (e.g. a finger) at a time
while the latter refers to the fact that they see relations (part-whole
relations in particular) within and between numbers. There are several different
strategies within both approaches.
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Why some children fail to learn the four rules of Arithmetics
Professor F Marton and D Neuman

Department of Education, University of Gothenburg, Sweden

3. Understanding the fact that counting words have a number meaning is a
necessary prerequisit for the development of the second approach

(i.e. structuring).

4. "The structuring approach" is a necessary prerequisit for the development

of elementary number concepts (i.e. the mastery of all the possible relations

within and between the numbers 1-10).

5. The development of "the elementary number concepts" is a necessary prerequisit
for the acquisition of further arithmetic skills (addition and subtraction

over 10, multiplication, division).

In consequence with these findings,an experimental teaching program was set up,
primarly aimed at developing the number meaning of counting words and sub-
sequently at developing the elementary number concepts. 24 school beginners

were judged to lack the necessary prerequisits for acquiring basic skills in
Arithmetic. 12 participated in the experimental program carried out in two
different classes while 12 remained in 5 different classes with regular teaching.
All the children in the experimental group acquired all the skills in

Arithmetic they were supposed to acquire during the first two school years
according to the curriculum, while at least 6 of the 12 children in the

control group seemed to have serious difficulties in Mathematics.
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PRESERVICE TEACHERS' CHOICE OF OPERATION FOR MULTIPLICATION AND
DIVISION WORD PROBLEMS

Dina Tirosh,1 Anna O. Graeber,2 Roseanne M. Glover
University of Georgia

In recent years much has been written about children's and adolescents'
misconceptions concerning the operation needed to solve multiplication and
division word problems (e.g., Vergnaud, 1980; Hart, 1981; Bell, 1982). The
purpose of this study was to explore whether preservice elementary teachers
have the same misconceptions noted among elementary and secondary school
children.

Bell categorizes the errors eleven-year-old British students
make in choosing an operation for word problems that involve decimals. The
categories he describes are (1) misinterpretation of decimal numbers, (2)
over-generalization of rules beyond their domain of truth, (3) detachment of
meaning from symbols, and (4) misinterpretation of potentially distracting
cue words or contexts.

Fischbein, Deri, Nello, and Marino (1985) suggest that primitive models
may account for the errors adolescents make in selecting the appropriate
operation for word problems. They argue that the arithmetical operations
generally remain linked to implicit, primitive, behavioral models that
influence the learner's choice of operation even after formal algorithmic
training. The primitive models obey constraints, imposed by their

behavioral nature, that do not always match the contraints on the formal

lon 1eave from Tel Aviv University, Israel

2Current Address: University of Maryland, College Park, MD 20741, USA
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expression they did and how they would check their work. After discovering

mathematical operations. Fischbein et al.'s findings confirm that when . )
that an answer was incorrect, they were asked to verbalize what led them to

contradictions exist between the implicit roles of the primitive model and . . . . . . .
write the wrong expression. Finally the interviewer would substitute into

the multiplication or division word problem being solved, the primitive
P P g ’ P the word problem whole numbers that conform to the constraints of one of the

del low d divert block the student' lution.
TOCC IRIATS ORRr OrR RS VEE L SERCRERER 0% CUSEUCCERL 13130 TUELON primitive models and ask the student if this helped her write the correct

In the present study, an attempt was made to check the assumption that . .
expression for the original word problem.

the primitive behavioral models described in Fischbein et al.'s study also

affect adults' choice of operation for solving simple multiplication and RESULTS

division word problems. Furthermore, the authors intended to document other . . .
P ! The authors found that students in the preservice teacher population

multiplication and division misunderstandings of preservice teachers. . 4 W .
= s g are influenced by the same primitive, behavioral models for

METHOD multiplication and division as are students in Fischbein et al.'s 11-15

year-old population. For example, a primitive multiplication model is

The sUBeGES vere 42 ieulile| collegsl Stiilents cumoliied 1m gne gf e that of repeated addition. When this concept of multiplication prevails,

math content or methods courses for early childhood education majors in a
y J the operator (or number of sets) "must" be a whole number. As an example of

1 . . Ky h 3 d L . i 1
ABge Nl CuSUGy int S NUETEER S tas oo the influence of the repeated addition model, data are presented for the

The 26 multiplication and division word problems used in Fischbein . ' )
preservice teachers' success with two word problems. One word problem was

K i fi . .
Lo s e E st SRt R Tt F "For one cake you need 2.25 grams of spice. How much spice do you need for

notation more familiar to the American population. These 26 items were . . .
pop 15 cakes?" A correct expression for the solution of this problem was

distributed hetween two test forms. Each student completed oix provided by 997 of the students. A similar word problem but with a decimal

multiplication, seven division, and five addition or subtraction .
8 ’ ’ operator was "For one kilogram of meatloaf you use 15 grams of salt. How

"filler" items. The subjects were instructed to write an expression that 1 much salt do you need: fior 1.25 Rilagrans of meatleaf?” Qoly 72% of the

1d lead h luti f h bl b h ked
wou Al ol tie SDIIETON o eath prabigm, Qut Eiey were askec pot £ students wrote a correct expression. Results from two other problems show

h lution. . e - W .
compute the solution the influence of the primitive, partitive division model. This model

Thirty-three students from two of the four participating classes were "requires" that the divisor be less than the dividend. Eighty-nine percent

i rviewed. n the interview udents wer iven problems similar .
R FniaCles Lake RviCul, | SEidEaen ke stitn) PRERLERS v 2rjto of the students wrote a correct expression for the problem: "In 8 boxes

those they missed and asked to write an expression that could be used to . .
y P there are 96 cartons of milk. How many cartons are in each box?" However,

solve each problem. They were asked to explain why they wrote the
-59-
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only 34% of the same students wrote a correct expression for the problem:
"12 friends together bought 5 pounds of cookies. How many pounds did each
one get if they each got the same amount?" Furthermore, 427 of the students
wrote the incorrect expression, 12 % 5, for this problem. Thus, a
substantial portion of the preservice teachers reversed the role of the
divisor and dividend writing expressions that did not match the problem but
did match the constraints of the primitive partitive model.

One of the misconceptions noted among the preservice teachers was
an over-generalization of the procedures used with unit fractions.
Interviewees believed that since 6 x 1/2 can be computed as 6 * 2,
900 x .75 can be computed as 900 + .75! Unlike many of the other
misconceptions noted, this error does not appear to be widely discussed
in the literature on children's errors with decimal operations.

Although the overall results on the written instrument, shown in
Table 1 below, might lead the reader to conclude that the misconceptions
were held by only a small portion of the preservice teachers, our
interview data suggest otherwise. Every interviewee, including those
who had made only one error on the written work, gave evidence of
holding at least one misconception. The preservice teachers were not
able to describe their thought processes with great clarity. A large
portion of the interviewees explained their errors by saying "Word
problems confuse me," "Decimals throw me out," or "The units confuse
me." Thus, the interviews led the authors to believe that almost all of
the preservice teachers were influenced, usually unconsciously, by erroneous
beliefs about multiplication and division.

Another phenomenon observed in the interviews is of interest. A

substantial number -of those students who said that a given word problem
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involving decimals could be solved with one operation (e.g., division)
claimed that when whole numbers were substituted for the decimals in the
problem, another operation (e.g., multiplication) was needed. Furthermore,

these students did not see any contradiction between these claims.

Table 1

Number (Percent) of Respondents by Score*

Number of Items Form A Form B Total

Correct n = 64 n = 65

13 6( 9) 10(15) 16(12)
12 6( 9) 11(17) 17(13)
11 16(25) 13(20) 29(23)
10 8(13) 9(14) 17(13)
9 11(17) 11(17) 22(17)
8 5( 8) 2( 3) 7( 5)
7 6( 9) 3( 5) 9( 7)
6 3( 5) 4( 6) 7( 5)
5 or less 3( 5) 2( 3) 5( 4)

*#Only the 13 multiplication and division items are included.

IMPLICATIONS

The number of preservice teachers experiencing difficulties with the
selection of multiplication and division operations for word problems
suggests that they might have other, more basic, misunderstandings. In
fact, the interviews confirmed that some of the preservice teachers'
difficulties were related to their misunderstanding of the notation for
decimals and division. An investigation of their understanding of these and
other fundamental notions might be appropriate. Another interesting
investigation would be to determine the extent to which pupil materials
contain only problems that conform to the primitive models. Research could

also be designed to answer other questions related to the influence of the
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primitive models, for example, facility with measurement versus partitive
examples.

The results of this study indicate that efficient strategies must
be developed for training teachers to monitor and control the impact that
misconceptions and primitive models have on their own thinking and their

students' thinking.
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Early Addition Story Problem Performance: How Does It
Relate to Schooling and Conservation?
by

Robert G. Underhill
Virginia Tech

Previous researchers reported significant differences between the problem
solving achievement of first graders who conserve number and those who do not
conserve. Researchers also found that problems which involved transformations
were significantly more difficult than those which did not involve transforma-
tions (Steffe, 1967; LeBlanc, 1968). A transformation is defined as an implied
physical movement of objects, e.g., "Mary has three dolls and her mother gives
her two more." Mo transformation is a static condition, e.g., "John has two
frogs and David has three frogs."

An important question has remained unanswered. Since Steffe's addition
study was executed on a population compieting the first grade, to what extent
was the addition transformation finding related to the developmental level of
the subjects and to what extent was it due to history, particularly first grade
instruction? This is a particularly important question since most first grade
teachers model addition as a transformational process.

A Conflict. As Piaget (1965) noted, children are so bound by perception
that they believe quantitative changes occur which do not; they only appear
so; given five coins arranged in unequally dispersed arrangements, the young
child believes one set is more than the other. Because of perceptual data, in
the study conducted by Van Engen and Steffe (1966) children thought 2 + 3 > 5.
Judged on the basis of this perceptual confusion, it appears that early experi-
ences with both addition and equality would best be served if addition could be
modeled for preconservers without transformations (movement). Thus, in a given
physical experience, 2 + 3 would "look like" and, hence, be thought of as
another name for 5. Two critical questions exist: (1) Can non-transformational

addition be readily learned by non-conservers? (2) Were earlier results influenced

by first grade instruction?
To answer the first question without the influence of the second, data were

collected on kindergarten children who had received no formal addition instruction.

To answer the second question, modeling tasks were created to determine if first
graders modeled addition with transformations even when the problems were non-

transformational.
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Procedures and Materials

Thirty-six kindergarten and thirty-six first grade children were randomly
selected from one Area of a large school district which contained a good cross-
section of the city's ethnic and socio-economic groups.

In the spring, Test of Quantitative Comparisons (TQC) (Harper and Steffe,
1968) and a four item addition test were individually administered to all sub-
jects; the KR-20 reliability of the TQC is .86 (Steffe and Johnson, 1971). The
addition test consists of four items, two transformational (T) and two non-
transformational (NT). The order of the questions was determined randomly for
each subject. Modeling reliabilities were: all addition, .99; transformational,
.99; and non-transformational, .92. For accuracy they were: all addition, .86;
transformational, .60; and non-transformational, .83.

The researcher and subject sat across a table from one another. In front of
the subject was a small basket of chips and two eight inch cardboard dolls. At
the beginning of the addition test, each subject named the dolls, e.g., Michelle
and Ramos, and the chips, e.g., hamburgers. A1l four questions then used the
names and label provided by the subject. The following pairs of addends were
used in the four questions: (4,2), (2,5), (4,3), (3,5). Each question was

"chunked," i.e., presented one-sentence-at-a-time with a pause during which the
subject was required to "act out" the sentence with the manipulatives provided.
Each subject received 0 or 1 point for accuracy of each response; the criterion
was correct response +1. Each subject received 0, 1, or 2 points for the modeling
behaviors exhibited relative to each problem according to the following criteria:

Transformational Non-Transformational

1 point Count first set of Count first set of
chips and place in chips and place in
front of doll A. front of do11 A.

1 point Count second set of Count second set of

chips and place in
front of same doll, A.

chips and place in
front of dol1 B.

(No point if the two
sets were combined.)

Analyses and Results

Initial multiple linear regression analysis of the dependent variables using
sex and age (in months) as criterion variables confirmed that variance due to age
must be statistically removed from subsequent analyses. Likewise, a systematic, |
although non-significant sex bias was statistically controlled.

First, a nested analyses of covariance of the modeling scores was completed. y
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The subjects' abilities to model transformational addition was affected by their
abilities to make quantitative comparisons (p = .030) and the effect of schooling
upon their non-transformational addition modeling scores was significant at the
.057 level.

Then a nested analysis of covariance of the accuracy scores was completed.
The significance within the addition accuracy scores was found to be attribut-
able to the IQE effect on both transformational (p = .004) and non-transforma-
tional (p = .008) problems. The effect of schooling upon addition accuracy
scores was also significant on both transformational (p = .002) and nontrans-
formational (p = .006) problems.

To interpret the results of the analyses of covariance, selected data were
examined with t tests. There were no differences in performance on transforma-
tional and non-transformational accuracy among first graders at the .05 level.

A difference was found among kindergarteners only when a criterion of 2/2 was
used on each problem type. However, the difference did not hold up when a
criterion of 1/2 on each problem type was used; this criterion level is probably
more appropriate given (1) the higher incidence of counting errors among kinder-
garten children, and (2) the open-ended nature of the questions.

Modeling scores of all subjects were also examined in more detail. There
is a difference between kindergarten conservers and non-conservers when a 2/2
success level is used but not when a 1/2 success level is used, and during the
first grade, there are no differences in modeling of transformational and non-
transformational problems by non-conservers when a success level of 2/2 is
applied, but they are better at transformational when a 1/2 success level is used.
And, there is a difference between problem types among first graders who are
conservers when a success level of 2/2 is used but not when 1/2 is used.

Discussion
Question 1: Can non-transformational addition be Tearned by non-conservers?

Under the presentation conditions used, first araders' accuracy is similar
using both success levels, and kindergarteners' accuracy is similar when a 1/2
success level is used. Further, 50% of the non-conserving kindergarteners can
successfully answer non-transformational questions and 60% can successfully answer
transformational questions under the conditions used in this study, a difference
of only 10%; and 79% of the non-conserving first graders could answer non-trans-

formational questions correctly. From these data, one can argue rather forcefully
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that under these problem presentation conditions non-transformational addition
problems are not more difficult than transformational questions for non-conserv-
ers. It should be noted as well that non-conservers improved substantially in
their success on non-transformational questions whether evaluated on a 2/2
success criterion (X = .50 to X = .64) or a 1/2 success criterion (X = .50 to
X = .79). There seems to be no reason to exclude non-transformational addition
from the curriculum designed for non-conservers.
Question 2: Were earlier research results influenced by first grade instruction?
The results of this study obviously differ from those of Steffe (1967) and
LeBlanc (1968). Why? The initial concern regarding their research studies was
prompted by the realization that their data were collected late in the first
grade. The accuracy results of the present study indicate that differences
found by Steffe were not supported in the present study. This may be due to (1)
required rather than optional use of manipulatives, (2) individual rather than
group administrations, or (3) "chunking" rather than "whole" oral problem presen-
tation. However, the modeling data indicate support for the original conjecture
that differences observed by Steffe may have been magnified by the instructional
behaviors of first grade teachers. This conjecture can be explored by examining
the modeling behaviors.
There were modeling differences for
Kindergarten non-conservers under a 2/2 success criterion;
First grader conservers under a 2/2 success criterion; and
First grade non-conservers under a 1/2 success criterion.
Using a liberal criterion (1/2), only first grade non-conservers performed
differentially. During the data collection phase of this study, they frequently
joined the two sets in non-transformational problems. When using a conservative
criterion (2/2), only the most unsophisticated (kindergarten non-conservers) and
most sophisticated (first grade conservers) exhibited differential performances.
Given that counting errors at this level are highly and positively correlated
with sophistication, it seems reasonable to downplay the importance of the
kindergarten differences and to focus on the performances of first graders. Once
again, it was observed that first grade conservers joined sets inappropriately
in non-tranformational questions.
One fairly obvious interpretation of the preceding results is to confirm,
at least in part, that the Steffe results were influenced by first grade in-
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struction. By the end of grade one, children seem inclined to view addition
as a transformational activity even when problems do not involve explicit
trans formations; therefore, it seems reasonable to assume that by the end of
the year first graders perform better on transformational problems.
Conclusion
There appear to be three conclusions which can be made based on this study:

1) Using the problem conditions described in this study, transformational
addition is no easier than non-transformational addition for kinder-
garten and first grade children when controlling history (schooling).

2) Non-conservers can learn to model and accurately solve simple non-
transformational addition problems.

3) Teachers should do one of the following when teaching addition story
problems to non-conservers:

A. Use only non-transformational addition, or

B. Use physical transformational models with implied rather than
real transformations, i.e., no movement of the two sets once
they have been positioned.

Table 1 Modeling means and standard deviations on a one-point scale,
and t tests using a one of two criterion

Grade Level

Kindergarten First
Non-conserv Conserv Non-conserv Conserv
]
[ _ 1
Non-transform- | X = .85 X = .88 X=.71 X = |
ational |sD = .37 SD = .34 SD = .47 s - :§§|
| |
| -
Transform- | X=.90 X =.9 X =1.00 X =1.00 i
ational |SD = .31 SD = .45 SD = .00 SD = .00
e |
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Table 2 Modeling means and standard deviations on a one-point scale,
and t tests using a two of two criterion

Grade Level

Kindergarten First

Non-conserv Conserv Non-conserv Conserv

Non-transform- | X = .50 X=.69 I=.71 X=.73
ational sD = .51 SD = .48 SD = .47 SD = .46
Transform- X=.90 X=.75 X=.93 X =1.00
ational sD = .31 SD = .45 SD = .27 SD = .00
t = -2.99 t=-.56 t = -1.38 t= -2.81

p = .005 p=.29 p=.10 p =.005
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IS 89 LARGER THAN 917

Miriam A. Wolters
Developmental Psychology, University of Utrecht
The Netherlands

Introduction

One of the most common addition errors is the one in which no
trading (regrouping) takes place. For example, when the two
addends are 148 and 236 the sum will be either 374 or 3714 or
something like it.

A comparable error with subtraction is one in which the top digit
is subtracted from the bottom digit. In this case again no tra-
ding takes place (cf. Fuson 1985, Becker 1985).

These kind of problems are mostly presented in the third grade.
The almost wuniversal practice is doling out one more place in
addition and subtraction in each successive grade (1-digit in
first grade, 2-digits in second grade, 3-digits in third grade
etc.) As long as pupils do not understand when and how to trade
with addition and subtraction problems, these errors keep coming
up regardless of the number of digits used in the problem. This
also means that these errors do rot automatically stop after the
second or third grade. It is therefore necessary to tackle these
errors early in school and efficiently.

Fuson (1985) suggests in preventing these errors, to teach the
place value system together with the addition and subtraction
algorithm and not kefore then.

We decided it is more efficient to teach the place valme system
before introducing the algori*hm. And of course there are a
number of reasons for this decision. To understand when and how
to trade presupposes a body of knowledge that is more complex
than we usually think. In fact three abilities are involved: (a)
the ability to generate number names according to our number
system, (b) the ability to understand the number meanings repre-
sented by the number names and (c) the ability to use our place
value notation system (Carraher 1985). Children generally master
the ability menticned under (a) just before or in the course of
the first grade. It is the abilities (b) and (c) that matter when
constructing a teaching program. With respect to (c), when
studying our place value system there are two aspects to distin-
guish. Firstly, our system is a ten base systen, i.e. it is a
system with base ten in which ten ones are represented by one
ten, ten tens are represented by one hundred etc. Secondly, our
system 1is place holding, i.e. a place in a number has a given
value, known as place value. For example the one in 41 has a
different value than the one in 14. The one in 41 represents a
one and in 14 a ten, in 144 a hundred etz. Our numeration system,
to be precise, is a ten-based place holding system; it is the
Hindu-Arabic numeration system.

When we ask a second grader to write down what number comes
after 55, he often writes down 65. Or he writes 69 as an answer
to the question:"What number comes before 79?". Or he circles
the first number of the numbers 89 and 91 when asked for the
larger number. These are very well-known errors and according to
our data about 50% of second graders make these errors regular-
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ly. With some children they disappear gradually; with others they
"transform" into persistent errors as mentioned in fig. 1.

Young children very often do count very well up to a hundred or
somtimes a thousand without really 'knowing the structure behind
it . In other words they are able to generate number names accor-
ding to our number system (the above mentioned ability a) without
being aware of the number meanings and the wunderlying place
holding system (the abilities b and c¢).

Writing down the numbers and in this way confronting the
children with the notation system makes the children aware of the
properties of our number system.That is why, in our opinion, we
have to teach the properties of our number system, i.e. base ten
and place value together with the notation of the known number
names and before introducing the addition and subtraction algo-
rithm.

The development of our numeration system

As long as people can deal with number by matching a pebble or a
notch on a stick with an object, it is not necessary to have a
system of numeration. When this matching method becomes inade-
quate people must create a system of numeration. Our ancestors
discovered a well-defined way of numbering, namely by tallying or
matching. These kind of methods we call primitive systems of
numeration. It is a way of checking if there is a one-to-one
correspondence between two sets.

The systems that were developed after the primitive systems
were the additive systems. These systems had a base but no place
value. These systems of numeration usually had a base of five,
ten or twenty. The number of fingers on a hand, or both hands, or
the number of fingers and toes influenced the determination of
the base.

The last and most efficient systems are the so-called positio-
nal systems. A positional system has z base and above all place
value. Our system, the Hindu Arabic system i3 an example of a
positional =system with base ten, ten digits (0....9) and two
values for each digit: a positional value and a total value.

The experimental teaching program

The teaching program follows roughly the historical 1line of
development of our numeration system. That is, first graders are
presented first of all with a primitive system , secondly with an
additive system and thirdly with our positional system. All this
1s organised in a play which happens to take place in an animal
forest. The play in the animal forest consists of three acts. In
the first act Eelco the Squirrel (Eekhoorn) plays the leading
part. Eelco counts and represents the result like precivilised
man probabely used to do. When Eelco is gathering nuts for his
supply for the winter he breaks his paw. The squirrels of the
forest decide to have a meeting to discuss how to help Eelco.
Doctor Squirrel suggests that some of them should take Eelco a

few nuts every day. Because squirrels do not have a numeration
system, Doctor Sqguirrel will put down a few branches next to
Eelco's bed. Each day a sguirrel «ill put down as many nuts as

there are branches.
The leading player of the second act, Piet the Post-pigeon,
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happens to be in the shop when Eelco is making a transaction with
Florus the Goblin tc get him to keep charge of his nut supply.
Piet the Post-pigeon is very surprised to see Eelco's roundabout
way of dealing with his supply.

Piet counts according to an additive trading system with base

six and two symbols: a leaf (@) and a grass blade (/). These
symbols are chosen so that Piet is able to keep quite a large
number of them in his bill. Thus, Piet uses a system in which
quantities are counted with two counting units. A gquantity is
first of all treated with the tiggest unit. The number of times
this takes place is represented by the 1leaves. The remaining
number is counted with the procedure: for one blade there has to
be one object. Piet represents the counted numbers by the follo-
wing numerals:
/0010017077770 07777:9:9/.9/7.9//7.9///7.9///7/7.99., .. 09PPPP/ ., - - -
Piet's system is an additive system. It uses no order or place
value. We do not , therefore, have to represent the numbers in
the order of symbols used above.

In the third act, Ineke and Tineke the apes appear on stage.
The symbols this time are not leaves and blades but the apes's
fingers. Piet suggests that one of the apes, Ineke, counts the
smallest unit, i.e. the ones, and the other ape, Tineke, counts
the biggest unit, i.e. the tens. As soon as a unit is counted
(full) a finger is put up. A label is put on each ape, so that
nobody gets mixed up. For everybody, and especially for the apes
themselves, it is clear who is counting what.

The pupils are still using an additive system with base ten.
There is still no order of Ineke and Tineke nor place value. As
long as the labels are used no place value is necessary. Kt #Hs
shown, that when no labels are used, place value becomes necessa-

ry.

METHOD

Subjects

Four first- and second grade classes from four schools in two
towns 1in the Netherlands took part in the study. The schools
represented a reasonable cross-section of city and rural school

populations. The particular schools used were chosen because of
their willingness, especially among the teachers of the first
grade, to be involved in the study.

Procedure

The children of the four classes were given a pretest when ente-
ring the first grade. The pretest was designed to assess the
general cognitive-developmental level of the children before they
received any systematic teaching in reading and arithmetic. The

items of the pretest were of a kind ordinarily found in any sort

of 1intelligence test for 6-year olds.

There were two experimental classes - receiving the experimental

teaching program on numeration systems - and two control classes

- receiving a regular teaching program - in each town.

The experimental teaching program started in January and took

about two months, that is 40 lessons of half an hour. The teach-

ers for the two experimental classes were the class teacher.
Following these lessons at the end of the school-year, post-

tests were administered to all four classes, these consisted of
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two parts: numeraticn itemz and addition- and subtraction items
up to 20. Both parts were given as class-administered tests.

The battery of numeration items consisted of the following kind
of items: (a) what number comes after a given number, (b) what
number comeszs kefors a given number, and (c) circle the largest
number of two given numbers.

Following the post-test at the end of the first grade, a very
similar post-test was administered to the same four classez at
the end of the second grade. The main difference between the two
post-tastz was that with the numeration itens, three- and four
digit numbers were used as well as two-digit numbers; the addi-
tion and subtraction items went up to 100.

With 62 first graders post-test items were given as 1individual
tests by a member of the project staff. The pre- and post-tests
were administered by the class teacher but always with a project-
staff member present.

RESULTS

Results at the end of the first grade

The results at the end of the first grade deal with possible
difference= Dbetween the experimental and control group a few
months after the experimental teaching program on numeration
systems was given.

Because we wanted to talk with the children individually about
the items, we matched pairs of pupils {one from the control group
and one from the experimental group) on the basis of the pretest
score. This procedure resulted in 21 pair=, that is n=21 for
experimental and control group. A t-test was carried out on the
data and resulted in a significant difference between the experi-
mental and control group on numeration items and no significant
difference on sum items. One would of course expect an advantage
for the experimental group on numeration items. This, however,
does not result in a better result on sum items. With these guite
simple items one does not have to use the algorithm to get a
correct answer quickly. And that is exactly what happened. In the
individual sessions we noticed that 23% of the pupils in the
contrcl grcocup used the decompesition strategy with category 2
items and the rest (76%) used all sorts of counting strategies.
With the category 2 items (regrouping items), it is more effi-
cient to use the properties of our numeration system, that is to
use the decomposition strategy. It is in the experimental group
that this happens: 95% used the decomposition strategy with the
category 2 items and the rest a counting-on or counting-backwards
strategy.

Results at the end of the second grade

To test the existence of a difference between the experimental
and control group at the end of grade two, an analysis of cova-
riance was performed on the data with the first grade category 2
items as covariate. This analysis shows nc significant differen-
ces on numeration items except for the nuwher after items. For
the sum items an analysis of covariance is not allowed, which
means that there is an interaction between the variables. The
interaction between the category 2 items and the covariate (first
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grade category 2 items) is depicted in the following figure.

cat] 2 (2nd grade)

4 4 /,/,/fexp.

3 contr.

I 4 :

4 5 6 7 8

cat.2 (1st grade)

The regression coefficient for the experimental group is .67,
which is significant (p=.001}); fcor the control group this coeffi-
cient is .18, which is not significant (p=.175). The correlation
between category 2 items in first and second grade is therefore
significant for the experimental group and not for the control

group. This also means that if 2 pupil in the experimental group
scores high on the first grade category 2 items he will score
high on the second grade category 2 items. There 1is no <such

relation for pupils in the control group. It does not matter what
the result of a pupil in the control group is on the first grade

category 2 items, his result on the second grade category 2
items will always be between 2 and 3 correct. The same kind cf
interaction is found for the second grade category 1 items.

The interaction is depicted for the category 2 items because
for solving these kind of items the properties of our ten based

positional system have to be used. As we have seen the pupils in
the experimental group used the decomposition strategy mostly to
solve the category 2 items in the first grade post-test. So, it

could be hypothesised that there is a relation between knowing
the prcperties of our numeration system and zolving second grade
category 2 items.

The c¢ontrol group which did not follow the experimental
teaching program in the first grade did of course 1learn the
properties of the place value system. Most of the pupils learn
it eventually together with the decomposition algorithm.

The gquestion asked in the introduction of this article how-
ever, was: does it make a difference if the place value system is
taught before or together with the algorithm? This question can
be answered by performing an analysis of covariance on the second
grade category 2 items with the second grade numeration items as
ccvariate.

In this analysis the b's are homogeneous; the F-value for the
common b is 5.10 (p=.027), which means that there is a signifi-
cant correlation between second grade category 2 items and second
grade numeration items for both groups. The analysis of covarian-
ce gives a p-value of .003, which means that there is a signifi-
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cant difference between experimental and control group, where the
experimental group is the most effective.

References
Barr D.C. (1978), A comparison of three methods of 1introducing
two digit numeration. Journal for Research in Mathematics Educa-

tion, January,33-43.

Becker G. (1985), Disregarding the Hierarchy in a Behavioural
Program as an Error Type in Pupil's Computation Tasks. In,:
Streefland L. (ed.), Proceedings of the Ninth International Confe-
rence for the Psychology of Mathematics Education. Noordwijker-
hout, The Netherlands July 22nd-July 29th, p.277-283.

Carraher T.N. (1985), The Decimal System: Understand and Nota-
tion. 1In: Streefland L.(ed.), Proceedings of the Ninth Interna-
tional Conference for the Psychology of Mathematics Education.
Noordwijkerhout, The Netherlands, July 22nd- July 29th, p. 288-
304.

Fuson K. (1985), Teaching Multi-Digit Addition and Subtraction.
In: Streefland L.(ed.), Proceedings of the Ninth 1International
Conference for the Psychology of Mathematics Education. Noordwij-
kerhout, The Netherlarnds, July 22nd-July 2°th, p. 316-322.

-74-

r

2. SPATIAL REPRESENTATION AND GEOMETRICAL
UNDERSTANDING



Adolescent Girls’ and Boys’ Ability to Communicate a Description
of a 3-Dimensional Building
David Ben-Chaim

Oranim, School of Education
University of Haifa, ISRAEL

TRACT. This study presents evidence which suggests that students
in grades 6 through 8, boys and girls, have difficulties in
representing and communicating information on a 3-dimensional
building, made up of cubes. Types of representations used by the
students were classified and analyzed by grade (6,7,8), sex (boys,
girls), site (inner city, rural, urban) and time (pre-,
post-instruction). The findings were examined relative to their
psychological aspects and practical teaching implications.

BACKGROUND. The need and reasons for emphasizing various types of
representations of spatial shapes and relations are discussed in
detail by Gaulin (1985). The ability to represent and interpret
3-dimensional geometrical relations is a valuable skill for many
school subjects and technical occupations. Thus, providing all pupils
with opportunities to explore a variety of types of representations of
spatial and geometrical information, as well as to communicate such
representations should be basic educational objectives. This study
presents evidence which suggests that middle school students, boys and
girls, have difficulties in representing and communicating information

on a 3~dimensional building, made up of cubes.

PURPOSE OF THE STUDY. During a pilot study for developing spatial

visualization activities appropriate for middle school students, it
was found that students have difficulty in visualizing hidden parts of
pictorially presented objects and in describing and representing
3-dimensional objects. In order to evaluate the effectiveness of the
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instructional activities, especially the practical ones dealing with
representation schemes and drawings, "a building description task" was
created. There were three interrelated purposes in presenting this
type of task. The first was to study types of representations used by
middle-school students in attempting to perform the task. The second
was to investigate site, grade and sex-differences in kinds of
representations used by them, and to what extent they were successful.
The third purpose was to determine whether students’ performance would
be affected by instruction in spatial visualization activities.
Several other aspects of the effectiveness of the instructional
activities were measured by a spatial visualization multiple-choice
test. They have been reported elsewhere (Ben-Haim, 1983; Ben-Haim et
al., 1985).

THE BUILDING DESCRIPTION TASK. Every participant received a building

of cubes on a plan card with the following task:

You are seated on one side of a screen and your friend is seated
on the other.

Your friend cannot hear what you say, but you may pass a piece of
paper to him.

Your friend has a supply of cubes to work with.

Here is a building made of cubes. You are the only person that
can see the building.

Your task is to help your friend to know what your building looks
like.

Be as creative as you wish.

Figure 1 presents the "map plan" of the building description task (the

numbers in the squares indicate the height of the stacks of the

3
1 Figure 1

cubes). [2 [ 2 [ 2]
[1

According to Wattanawaha’s DIPT (Dimension, Internalization,

Presentation, Thought Process) classification system for non-speeded

=

spatial tasks (Clements, 1983) the "building description task" falls
into the highest values in each of the four independent
characteristics. It is identified as D-3, 1I-2, P-2 and T-1.

THE METHOD OF THE STUDY. Before and after exposure to the spatial
visualization activities, two to four students from each of
participating 6th, 7th and 8th grade classes were randomly selected to
be given the "building description task". The students in those
classes were from several schools (sites) representing a broad range
of socio—economic status (SES). Table 1 shows the distribution of the
entire sample by time (pre-, post-instruction), grade level (6th, 7th,
8th) and sex. The unit of instruction required students to create
"buildings" from small cubes and to draw representations of these
"buildings" in two ways, flat front or side views, and isometric
corner views. The spatial visualization unit called for 12-15 hours
of instruction. None of the activities set for the students during
the instruction, specifically involved tasks similar to the "building
description task".

RESULTS. Evidence obtained from the students’ attempts to perform the
task prior to the instruction indicated usage of a variety of types of
representations. These incluced verbal descriptions, graphic drawings
of side views or perspective drawings, descriptions by layers, coded
orthogonal views and mixed strategies. However, it was decided to
follow Richardson’s classification of subjects according to three

representational modes identified as Verbal (V), grahpic (G) and mixed

(M) which combines verbal and grahpic representations. The three
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modes may not be distinctive but may be points on a visual/non-visual
continuum of a type suggested by Richardson (1977). Table 2 presents
the percentages of students by modes of representations, grade (6th,
7th, 8th), time (pre-, post-instruction) and sex. Taking into account
only the cases in which the performance was sufficiently adequate to
construct the given building according to the students’ descriptions,
the results show a success rate of 23% prior to instruction compared
to 81% after instruction with almost no differences by grade or sex
and with some advantage to the mixed mode. The verbal mode was
successful only for one 7th grade girl and one 8th grade boy. The
analysis of 6th garde data prior to the instruction shows site
differences regarding the modes of representations. The rural

students used verbal and graphic modes equally, the inner city

Table 1: Distribution of entire sample by time (pre~, post-
instruction), grade, and sex

Grade Total
6th 7th 8th
No. of Classes

Pre- 7 6 4 17
Post- 3 7 5 15

No. of Subjects
Pre- 29 19 14 62
Boys 15 13 7 35
Girls 14 6 7 27
Post- 11 26 15 52
Boys 7 14 8 29
Girls 4 12 7 23
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Table 2: Percentages of students by modes of representations (Verbal,
Graphic, Mixed), by grade, time (pre-, post-instruction) and
sex

Pre- Post-
i G M v G M

Grade 6 17 48 35 0 27 73

boys 13 47 40 0 43 57
girls 21 50 29 0 0 100
Grade 7 53 37 10 4 73 23
boys 46 46 8 0 100 0
girls 66 17 17 8 42 50
Grade 8 43 7 50 0 73 23
boys 43 14 43 0 75 25
girls 43 0 57 0 71 29
Total 34 35 31 2 63 35
boys 31 40 29 0 79 21
girls 37 30 33 4 44 52

students used the graphic and mixed modes more frequently and the
urban students used only the mixed mode and were most successful in

their attempts to perform the task.

CONCLUSIONS. Prior to instructional intervention, the findings of
this study suggest that:

(i) a great variety of types of representations are used by
middle school students to respond to an identical spatial
task with minor grade and site differences but with no sex
differences.

(ii) only about 25% of the 6th through 8th grade students can
perform successfully on a task such as the "building

description task" with no grade or sex differences.
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However, after instructional intervention in spatial visualization
activities, the results demonstrate:

(iii) @ shift from the verbal representation mode to grahpic and
mixed modes in all three grade levels, with girls moving
more towards the mixed mode and boys towards the grahpic
mode.

(iv) a significant improvement in performance on the building

description task (from 23% to 81%) regardless of grade level

and sex.
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REPRESENTATIONS OF THREE-DIMENSIONAL FIGURES BY
MATHEMATiICS TEACHERS-IN-TRAINING

Leone Burton Martin Cooper Gilah Leder

Thames Polytechnic, London Uni. of N.S.W., Sydney Monash Uni., Melbourne

Background

In the classroom, two-dimensional drawings are frequently used to 'clarify' some
concept or information related to a three-dimensional frame of reference, it being
assumed that the learners can interpret the graphical material which is presented.
Examples of this abound in mathematics textbooks in common use. A comparison of
the content of older and more recently published mathematics texts led Polack to
conclude: "In the textbooks examined, students were asked...to make use of more
and more pictorial and diagrammatic material (1985:16). Ben Haim et al (1985)
demonstrated that 10-13 year olds often have difficulty relating quasi-perspective
drawings to the rectangular solids they represent. Sex differences in linking
three-dimensional shapes to their two-dimensional representation have also been
reported(Connor & Serbin, 1985: Chipman & Wilson 1985). Nethertheless, learners
themselves often represent a three-dimensional structure by means of some form of
two-dimensional drawing. We have labelled these two modes exhibited by learners

'interpretation’' and 'representation' respectively.

Gaulin (1985) invited 10-18 year old pupils in Quebec to describe simple solids
made up of small cubes glued together. The types spontaneously given by subjects
were categorized into a number of classes, including verbal descriptions, side
views, descriptions by layers, 'coded orthogonal views' and attempts at perspect—
ive drawing. Apart from the first category, all the above classes involve two-
dimensional drawings of some sort. It appears then, that children can and do use
a variety of different tjpes of paper and pencil represecntation to describe three-
dimensional structure. Howver, teachers seldom use representations outside quasi-
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perspective drawings of the 'parallel projection' or isometric types (see Fig. 1).

Figure 1

In fact, it is often easy to "recognise the section on space geometry in many text-

books by stereotyped figures ..." (Goddijn and Kindt, 1985).

Description of study

Purpose: 1. To examine the distribution and range of verbal and graphical repre-
sentations of three-dimensional figures produced by mathematics teacher-trainees
and the interpretations which they make of such representations.
2. To analyse the descriptions of three-dimensional solids produced by mathe-
matics teacher-trainees using the Krutetskii (1976) distinction between 'geometers
and 'analytics'. (Geometers 'feel a need to interpret visually an expression of
an abstract mathematical relationship" (1976:321), whereas analytics "have no need
for visual supports for visualizing objects or patterns in problem solving, even
when the mathematical relations given in the problem 'suggest' visual concepts."
(1976:317)
Proceedure: Subjects were drawn from three mathematics teacher education courses
in London (N=62), Sydney (N=21) and Melbourne (N=48). Approximately two-thirds,
(88) were females. In each course, subjects were divided into two groups which
were examined out of sight of each other. Two of the solids used by Gaulin were
employed in the study; these a;e represented isometrically in Figure 2.
Figure 2
-~

Each subject in the first group was presented with solid 'A', those in the second
group being given solid 'B'. Subjects were then given the following instructions:

You have in front of you a shape which you have seen children use in the

classroom. You would like to buy it for use during your next practice-

teaching experience, but do not know from which distributor it is avail-
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able. Write a description of the shape, which you could send to a number

of distributors. You may use words and/or diagrams.
When subjects had completed their descriptions, the solids were removed and a
written description of the other solid was provided together with a heap of small
cubes. Subjects were given the actual solid described and asked to comment on the

efficacy of the description from which they worked.

Results

Representation In producing descriptions of the solids presented to them,
subjects articulated a variety of responses. These included plans and elevations
which were usually labelled or coded, quasi-perspective drawings, and unillustrated
verbal descriptions. Many of the graphical responses were accompanied by verbal
material which ranged from scant notes to near-complete descriptions. A few
subjects gave independent graphical and verbal responses which were complete in

their own right.

In Table 1, a summary of the broad categories of response for the respective
solids is presented. A drawing "with few words' describes a response in which the
verbal part consists of labels or very scant notes. The phrase "with many words",
on the other hand, indicates a response in which the drawing(s) would serve as an
adequate description without any more of the accompanying commentary than a few
words used essentially as labels. The term "illustrated verbal description" is
used for a response in vhich a near-complete verbal description refers to graphical

material which accompanies it but which would not suffice without it.

drawing | drawing with | drawing with | illustrated verbal | words
only few words many words description only
Successful
Outcome
block A 2 11 48 5 4
block B 2 12 31 18 2
Unsuccessful
Outcome
block A 2 0 2 1 1
block B 1 1 1 2 2

Table 1 Frequencies of response types
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As can be observed, a very small proportion of subjects were soley "analytic" or
"geometric', in Krutetskii's terms. On the other hand, if responses in the first
two columns are taken as being those of geometric types and those in the last
three as representing analytic types, it can be seen that the majority of these
mathematics teachers-in-training can be typed as analytics. These are individuals
who rely heavily on verbal descriptions. Inspection of the results separately for

each sex revealed no appreciable differences.

The graphical representations varied considerably. Many were quasi-perspective
(quasi-isometric) drawings. Others were plans (views 'from the top'"), which were
usually coded or annoted. Some of the illustrations involved elevations such as
"front view'" or 'side view'", which were occas ionally coded. The different
responses are adquately described by Gaulin's (1985) categories of side views,
description by layers, coded orthogonal views, and attempts at perspective drawings
(quasi-~perspective). The distribution of graphical responses across the various

types mentioned above is given for each kind of block in Table 2.

Type of graphical representation
side | description éggﬁggggal quasi-

Note: Because some respondents used

view | by layer perspective
os—ﬁiziiim multiple graphical representations
Block A 5 4 7 53
black 1 8 ° 28 31 the entries in the Table exceed the
Unsuccessful
Outcome a
black A 2 3 number in the sample.
block B 1 1 2

Table 2 Frequencies for response for each type of drawing

It may be observed that quasi-perspective drawings were used more often for the
simpler structure (block A) than for the mnore complicated one, and that this type

of representation was by far the most popular overall.

Interpretation Most of the subjects correctly interpreted the verbal descriptions
they were given, although due to a failure in communication between thé three
researchers, the method used by two were not the same as that used by the third.
Two of the researchers asked the subjects to comment on the efficacy of descrip-
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tions written by other subjects whereas the third offered the same description to
all subjects. In this latter case, the only mistake was the production of mirror
image of the structure actually described. In the former case, when both verbal
and graphical descriptions were available, subjects typically found the latter

more helful, as can be seen from comments like: "Diagram most useful. Description
less so". A number of other subjects commented that they appreciated being able
refer to a verbal description to 'check' their interpretation of the diagram.
Conclusions

Despite the age difference and the mathematically more sophisticated nature of soue
of our sample, the findings are consistent with those of Gaulin. In particular,
these prospective teachers were mostly able to describe the three-dimensional salids
sufficiently clearly for others to construct the shape from the description provided.
They nearly all did so using words as well as drawings although, overwhelmingly,
they considered the drawings to be more useful than words when they came to use the
description. The most popularly descriptive form was the quasi-perspective drawing,
particularly in the case of the simpler block (Block A). For the more complex
structure, graphical representation was equally divided between quasi-perspective
drawings and simplified two-dimensional representations. No significant sex
differences in interpretation or representation of the graphical material or three-
dimensional solids respectively were evident in this sample.

The category which would repay further study are those classified as 'unsuccessful'
outcomes'. These were the subjects in two of the participating institutions who
were unable to construct the three-dimensional block from the description provided
from another subject. 1In one institution this comprised 10 out of 62 respondents,
equally divided between men and women and equally divided between the two blocks, A
and B. It would be useful to look at a larger sample in order to see if the
failure rate was consistant.
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Inability to represent a three-dimensional object either verbally or diagrammatic-
ally must have important implications for the future practice of these teachers.

The overwhelming preference for a diagrammatic representation which conforms with
usual educational practice only reinforces the suspicion that formality of presen-
tation is validation within the system and lack of formal technique could be tied

closely to feelings of mathematical incompetence.

Finally, it would be interesting to pursue the relationship between teachers'
preferred diagrammatic representation and those of their pupils in order to
establish whether a discontinuity is another explanation for misunderstanding or
lack of comprehension is geometry.
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THE ACQUISITION OF SOME INTUITIVE GEOMETRICAL
NOTIONS IN THE AGES OF 3-7: COGNITIVE GAINS
ACQUIRED THROUGH THE AGAM METHOD

Bat-Sheva Eylon and Micha Razel
The Weizmann Institute of Science

Rehovot, Israel.

Many of the difficulties that students encounter in the study of geometry can be
attributed to: (a) the lack of an intuitive basis of geometrical concepts - levels I
and II of development in geometrical thinking as defined by the van Hieles (1958);
(b) deficiencies in visual skills. Quite often, students complain that even when they
know what they are looking for, say in a process of designing a proof, they cannot
“find” it in the “forest” of lines. Even simple recognition of basic geometrical
shapes (e.g. a right-angled triangle) can become a difficult task for students and even
for their teachers when these shapes are rotated (Hershkowitz & Vinner, 1984).

Attainment of the various levels as defined by the van Hieles is not regarded as
a spontaneous process dependent only on biological growth and on age, but also on
content and methods of instruction (Wirzup, 1976). But within the regular school
curriculum no systematic effort is made to develop visual abilities. Common practice
limits visual instruction to art education, though many researchers and educators
agree that the processes involved are of general significance, as well as specific
importance for geometrical, mathematical and scientific thinking, and should
therefore be trained as other basic skills are, e.g., verbal skills (Freeman, 1980). In
accordance with these considerations, Yaacov Agam (Agam, van Dalen Garcia,
Gattone de Rivera, 1981) designed a general basic program in visual education for

children in the preschool and lower grades of primary school.
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The Science Teaching Department at the Weizmann Institute of Science has been
involved, since 1983, in implementing and studying the Agam Program. The
program consists of 36 units that are listed in Table 1. These units constitute a
course lasting 2 to 4 years for children between the ages of 3 and 7 years. It
teaches systematically basic geometrical concepts and their relationships, as well as
visual skills. The program employs a rather unique didactic approach which allows
children to acquire sound intuitive geometrical notions at a young age. It can,

therefore, play an important role 'm the development of the lower levels of
)

geometrical thinking.

Table 1

The units in the Agam Program

: 19. Typical Forms
; gcl;;lcziie 20. Proportions
3. Patterns %é 5230“1
4. Circle & Square, 23. Blue
5. Flash I‘%’eflltlf‘cat"on 24. Secondary Colors
?‘. Eor;_zonl a/ 25. White, Black & Gray
- Vertica . 26. Trajectory
S. Iggli_l(zl?lrétal & Vertical 27. From Eye to Hand
. iq . . 28. Numerical Intuition
i(l) I'%O'ral.?l(;lll:al’ b S R 29. Composition
. Tri . 30. First Dimension
12. Circle, Square & Triangle . .
13 Variat:ions of Forms 31. Secpnd pxmeqsxon
. 32. Third Dimension
i‘é %};r;lvrrelgtrﬁ’ine 33. Fourth Dimension
. . 34. Letters
16. La-l‘gle, Medium & Small 35. Visual Grammar
i'g Q(I)lign :S 36. Creativity
Method

During the school years 1983/84 - 1984/85 the program was implemented in 4
preschools in Israel and was subjected to extensive research. An experimental (4
preschools, 83 children) versus comparison group (4 preschools, 49 children) design
was used. The four comparison preschools received no training and were matched
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pairwise with the four experimental preschools. Tests were created to measure the
effects of the Agam Program on visual identification, memorization and reproduction
as these skills relate to the contents of each unit. These tests were administered
after each unit, or after several related units. In addition, summary tests were given
at the end of the first year and at the end of the second year. About half of the
items in these tests were based on activities similar to those in which the children
received training. The other half consisted of items that tested different measures of

transfer.

Results and Discussion

We describe results on a selected set of items illustrating some cognitive benefits,
relevant to mathematics education, that children gain tﬁrough the Agam Program.

(2) Differentiation of concepts. The results indicated that both the experimental
and the comparison children apparently developed naturally, i.e., without the special
instruction of the Agam Program, many geometrical concepts. In the experimental
group, however, these concepts served as a basis for a directed development of more
refined concepts. One example is the concept of a periodic series of geometrical
shapes. After a brief introduction of the concept to the comparison group, about
90% of the children were able to provide an example of the concept. A similar
proportion was able to do so in the experimental group after it had been given
instruction in the relevant unit, Patterns, indicating an equality between the groups
on a basic level of cognitive development. However, when the same groups were
given a debugging task, considerable differences emerged. The children were given
four different series of geometrical shapes. They were told that some of these series
were periodic while others contained an error and needed to be corrected. For
example, one of the bugged patterns was the following: oo O DDO DO 0o
On the average, 71% of the children in the experimental group (N=55) succeeded in

this task vs. 44% (n=16) in the comparison group (p<.0004, based on an analysis
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of covariance with IQ serving as a covariate). In another task the children were
asked to draw the continuation of four different periodic series. The average score
on the four tasks was 86% in the experimental group vs. 68% in the comparison
group (p<0.03). These results suggest that the Agam Program brought about
differences on a higher level of concept formation. Higher levels of concept
differentiation in the experimental group were found also in other units of the Agam
Program. Examples involve distin.ction between square and quadrilateral, circle and
closed curved line (e.g. ellipse), identical and symmetrical shapes, etc.

(b) Sensitivity to instances of geometrical concepts in one’s environment. At the
end of each unit, children were asked individually to identify in their classroom
instances embedding the concept studied in that unit. Figure 1 presents results for
the first four units. The overall difference is statistically significant with p<0.00005.

There were no differences between the groups in the number of incorrectly identified

instances.
Figure 1

o (3 excermental  tvosel
e % {0 comearison  tNars)

- }
g b i
)
5

1
ERE
w Figure 1. Average Number of Correct
2 . Examples (Corrected for Intelligence)
5 Given by Children in the Experimental
5 and Comparison Groups in Each Unit.

'

These results seem to indicate that the program “opens” the children’s eyes to
geometrical features of their environment. It is assumed by the Agam Program that
the increased visual sensitivity and ability to analyze geometrical features in the
environment will generalize and transfer, so that the trained child will have a
general advantage in identifying a certain geometrical feature when needed. Other
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results indicated, however, that the effect of the program was not restricted to an
improvement in the children’s skill of looking at their environment analytically.
They were also better than the comparison group at global perception when this was
required. One example comes from data on the children’s performance in memory
tasks.

(¢) Memory Development. In every test children were shown briefly one or more
“memory cards”. Subsequently, they had to identify the same design among nine
drawings in their test booklets. The results indicated consistent superiority of the
experimental group. For instance in the unit patterns, the average success rate in
the experimental group was 41% vs. 22% in the comparison group (p<0.005).

Another result which suggests better utilization of short term memory was the
higher complexity of the periodic series drawn by children in the experimental group.
The average number of elements per cycle of the series was 2.4 in the experimental
group vs. 1.6 elements in the comparison group (p<0.003). In addition, the average
number of shapes in one element of the series was 1.9 in the experimental group vs.
1.6 in the comparison group (p<0.002). Some children as young as 3 1/2 years old
trained in the program drew amazingly complex periodic series. Analysis of the
information that has to be kept in mind by the child to produce such a series,
highlights the great effect that mastery of the concept has on reasoning.

(d) Reproduction from memory. A related finding is illustrated in the
reproduction tasks that were given to the children. In one of these tasks, children
were shown briefly a combination of geometrical shapes such as the following:
EH] . The children subsequently had to reproduce the shape combination from
memory using transparencies on which squares of different sizes were printed, one
square to a transparency. There were no differences between the groups in correct
identification of the elements from which the shape combination was composed,

indicating no difference between the groups in the analytic part of this task. But
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there were considerable differences in favor of the experimental children in the
ability to reproduce the spatial relationships between the elements, pointing to an
experimental effect on that part of the task that requires synthesis of the disparate
elements into a whole.

The summary tests given at the end of each year examined additional issues
including: span of visual short-term memory, visual flexibility (e.g. identification of
the various triangles that are embedded in a Shield-of-David type stimulus, a task
testing the ability to see the same lines as part of different shapes), mental rotation
of shapes, visual sensitivity and accuracy, spatial orientation, verbal vs. visual
encoding, motor skills and field dependence. Results from these tasks relevant to
geometry will be discussed in the presentation. A more detailed description of the
study is given in Eylon et al. (1985).
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SIMILARITY CONCEPTS AT THE GRADE LEVELS 6, 7, 8.
Alex Eriedlander Glenda LappansgWilliam M. Fitzgerald
Weizmann Institute Michigan State University

Rehovot - Israel East Lansing, Mi - U.S.A.

INTRODUCTION

Phenomena that require familiarity with enlargement, scale factor,
Projection area growth, and indirect measurement are frequently
encountered by children in their surroundings. To understand
these phenomena children must develop a concept of similarity as
Part of the overall geometrical understanding of their
environment. Because of its visual representation, similarity may
also be a first step towards an understanding of proportional
reasoning.

The present study has two major concerns: (1) finding patterns in
children's development of the concepts of similarity and area
growth over grade levels 6—&?, and (2) describing the effects of a

specific instructional intervention over these three grade levels.

METHODOLOGY

The intervention consists of a two-three week-long instruction
with the Middle Grades Mathematics Project (MGMP) Similarity Unit.
The unit provides a carefully sequenced set of challenging and
exploratory activities designed to fit the Van Hiele levels 1
(properties of shapes), and II (relationships among properties of
shapes) , attempting thus to build a base for further advance in
the understanding of geometrical concepts in general, and of
similarity concepts in particular.
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Fifty average-ability students from two classes at each of the

grade levels six, seven, eight comprise the sample for the study.

These students underwent both before,

30-60 minute-long interview.

The interview contained five tasks
and one on the area relationship
four tasks were varied to test

handling proportions of increasing

and after instruction a

- four on rectangle similarity

of similar shapes.

the

student's

The first

facility with

numerical difficulty (see Table

1), whereas the Area Task was presented in three increasing levels

of concreteness.

Table 1: Interview questions

MERICAL TYPE by b
cbyd
TASK

1
a |
&l

b
c

i
alb
atece

1. Decide whether two drawn rectangles
are similar or not.

= [

3 by
and
9 by

6

18

2by3
and
8 by 12

3by 9
and
4 by 12

6by 8
and
9 by 12

2. Decide whether two cut-out rectangles
are similar or not

— [

2 by
and
6 by

2by 3
and
6by 9

2by 6
and
3by 9

4 by 10
and
6 by 15

3. Given the lengths of three sides of
two similar rectangles, find the
fourth side.

=

2 by
and
6 by

2by 5
and
6 by ?

4by 12,

and
7 by ?

6 by 10
and
9 by ?

4. Cut a strip to make a rectangle
similar to a given one.

= ———

2 by
and
6 by

2by3
and
8 by ?

2by 6
and
5 by ?

4 by 6
and
6 by ?

In the latter task, students were shown

small room which cost $300 to carpet.

a rectangle representing a

The interviewer asked the

student what would be the price of carpeting a larger room which

is three times as long and three times as wide.

The task was

presented first at the least level of concreteness (no additional

illustration), and the student was led through level 2

(choosing

the representation of the larger room from an assortment of given
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cut-out shapes), and level 3 ("building" the larger room from
several given cut-out copies of the smaller room). If the student
gave a correct answer at some 1level, the interviewer did not

proceed further.

MAIN RESULTS
Rectangle Similarity. The level of success of the interviewed
students on the rectangle similarity tasks increased with grade
level and depended also on the numbers (Numerical Types) involved.
A comparison of the average number of correct answers pre/post
instruction shows a considerable improvement in performance on
each of the four tasks and numerical types for all grade levels.
A strong influence of the numerical type may also be observed:
for all tasks and grade levels, there is a considerable gap (20-45
percent) between 1level of performance with numbers that are
divisible across rectangles (Types 1 and 2) and between cases in
which such comparisons do not render whole numbers (Types 3 and
4) . It should also be mentioned that after instruction, an
average mastery level of above 80 percent has been achieved for
the first two numerical types but not for the others.
Student strategies in the rectangle similarity tasks followed
roughly the classification of responses for proportionality tasks
indicated in Karplus & Karplus (1972): Vvisualization, addition,
multiplication and adjustment, whole multiplication, and
proportional reasoning.
Table 2 presents a summary of the distribution of strategies
employed in Tasks 1 and 4 for Numerical Types 3 and 4 by the whole
sample before and after instruction. In the two matrices, the
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numbers located on the main diagonal indicate no change of
strategy between the two interviews. The upper and the lower
halves, with respect to the diagonal, mark students that employed
respectively more advanced or lower strategies in the post-
interview as compared to the strategy employed in the same task in
the pre-interview. The results for both Tasks 1 and 4 indicate
that about 90 percent of the students were either stable or
advanced (with an almost equal division of 45 percent for each of
the two categories) and only about 10 percent employed in the
post-interview lower level strategies than they did in the pre-
interviews.
Table 2:
Distribution (in percent) of student strategies employed pre/post

instruction on Tasks 1 and 4 for Numerical Types 3 and 4.

x rost
::\ 1| o2 - 5 :h\ ! 2 1 | s H
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Task 1 Task 4
Area Task. The following strategies could be detected on the Area
Task: no reasoning, linear scaling, scaling and adjustment, other
scaling, peripheral counting, and area scaling.
The Area Task strategies mentioned above are hierarchically
arranged according to arguments presented by Lunzer (1973).
According to him, the use of the linear scale indicates an
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ability to operate at a concrete operational level, whereas the
dissociation of the area growth from the linear growth requires
formal thinking. Therefore, in this hierarchy, the linear scaling
strategy precedes any other multiplicative strategy. The other
strategies were ordered according to what was considered by these
investigators an increasing degree of insight into the
relationship at hand.

As in the case of the Rectangle Similarity Tasks, student progress
may be measured by the percent of students that employed at the
post-interview a more advanced strategy as compared to their pre-
instructional performance: 42 percent of the students were found
to belong to this category, 38 percent used the same strategy on
both interviews (this includes those students using a correct
strategy pre and post), and 18 percent used a lower-level strategy
after instruction.

The findings also indicate that the level of performance on the
Area Task was particularly low for the sixth graders and no
improvement could be detected for these students. The findings
are consistent with a study by Fitzgerald and Shroyer (1979) on
the effect of instruction in area and volume growth at the sixth
grade level. On the other hand, the seventh and eighth graders
showed a better performance at the initial stage than sixth
graders, and also significant gains as a result of instruction.
An analysis of strategies revealed that after the instructional
intervention above 80 percent of the interviewed students employed
the same, or a more advanced strategy at the first attempt (i.e.,
at the least concrete presentation) of the Area Task.
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CONCLUSIONS
From a pedagogical point of view, teaching similarity at grade
levels 6-8 seems to be a rewarding experience - particularly for
the 1last two grade levels. The study shows that children's
understanding of geometrical similarity may be improved through
instruction. A careful selection of the numbers involved in

proportions is obviously needed in both teaching and testing any

phenomenon that requires proportional reasoning.
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LOGO AND THE NOTION OF ANGLE AMONG FOURTH AND SIXTH GRADE CHILDREN
Carolyn Kieran®

Université du Québec & Montréal

There has never been & single definition of angle which has been widely accepted.
Ae Close (1982) points out, the earliest definitions considered angle as a form of
distance. Modern definitions tend to fall into one of two categories, static (eg,
an angle is a part of the plane included between two rays meeting in a point) or
dynamic (eg, an angle is the amount of rotation necessary to bring one of its rays
to the other ray without moving out of the plane). However, many texts which begin
initially with static angle definitions eventually refer to angles as rotations.
According to Heath (1956), this indicates the essential nature of angles -- that
of rotation.

The right angle was the first commonly used unit of angular measure, and was
applied mainly to static angles. The use of the degree evolved later. It was
congidered to be a measure of both the length of an arc and of the angle at the
centre subtending it. Measuring an angle in degrees was based on & dynamic notion,
that of the assumed circular rotation of the planets.

In the teaching of school geometry, Freudenthal (1973) stresses the need for
both static and dynamic definitions of angle., Be also suggests introducing measure-
ment of angles at the same time as angle concepts, as a means of developing under-
standing of the latter.

Logo, a computer programming environment appears to be an ideal vehicle for
experiencing a dynemic approach to angles and to their measurement. The rotation of
the Logo turtle can be considered an example of a dynamic angle; the input to the

turtle turn, as a measurement of that angle. The Logo research studies described

o J ¥
I am grateful fir 'the collaboration of Alain Taurisson in the 4th grade study and of

Joel Hillel and Stanley Erlwanger in the 6th grade study.
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in this paper had as one of their aime the investigation of the evolution of children's
concepts of angle and of angle relationships.

FOURTH GRADE STUDY
Method. This study, carried out during the school year 1984-1985 involved 19 10~ and
11-year-olds, 14 from a traditional school and 5 from a non-traditional school. In
the former, one computer occupied a corner of the classroom. Children worked at the
computer alone or in pairs while the teacher and the rest of the class worked on non-
Logo activities. In the latter environment, the children had access to computers
in a lab. They worked in pairs for an hour each week. There was considerable adult
help available whenever they wished. The children in both groups experimented with
graphice projects of their own choosing. The study also included a small control
group of 5 children from the traditionsl school. They were in another fourth grade
classroom which did not have access to a computer.

Three individual interviews were carried out with each child throughout the year ==~
in September, January, and June. The same questionnaire (with slight modifications
for the control group) was used for all groups of children. Follow-up interviews
were carried out in March 1986 with five of the children from the raditional school
who currently have a Logo-equipped computer in their grade 5 classroom.

Findings. The results are presented in three sections: A) the findings of the first
two interviews; B) the results of the third interview; C) the findings of the recent
follow-up interview.

A) By mid year, it became apparent that the children had a concept of angle which

was static (eg, a corner, a surface, or a slanted linel and another distinct concept
of rotation. Purthermore, they experienced difficulty in predicting what the turtle
would do when they typed in various inputs to RT. For example, RT 120 might result

in and RT 180 in £¥D . They were not able to perceive the relationship between
the input to ‘the angle of'rotation and the rglative size of the constructed angle

("RT 45 is smaller than RT 90, but we end up with something bigger": T/' l )-
RT 45 RT 90
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A1l of these difficulties led us to modify somewhat the Logo environment of the
class in the traditional achool. We introduced a LASER TURTLE, a turtle which illu-
wminates the screen with laser beams every 5 degrees while it slowly turns through
the angle of rotation. After the rotation is completed the beams are erased one at
a time. The classroom introduction of the LASER TURTLE to the children was accompa-
nied by examples where i) the angle of rotation & was supplementary to the comstructed

angle* (6= 180 -« ) and ii) the angle of rotation was equal to the constructed

‘? = initial heading

4 = final heading

It was hoped that this modification of the Logo environment would help the children
to a) see more clearly what happens when they provide & certain input to RT or LT
and thereby be able to predict the final heading of the turtle and b) link together
their static concept of angle and their dymamic concept of rotation.

B) The third interview held in June indicated that:

i) many children were still confused about whether the input to a turn was the size
of the constructed angle or the size of the angle of rotation.

Question: "What do you have to say to the turtle to get it from the
white starting position to the black final position?"

Responses: Laser group: 5/14 correctly used inputs for the turn which exceeded 100.
9/14 used inputs less than 60.
non-laser group: 4/5 used inputs between 130 and 140.
1/5 used input of 50.
ii) the children seemed to find it easier to draw a figure which corresponds to a
given command than to provide the command which is needed to draw a given figure.
Question: “Please draw what you think the turtle will do if you give it these commands:"

a) FD 45 RT 45 FD 45 (Correct: 9/14 laser; 3/5 non-laser. Compare with

frequencies above)
b) FD 45 RT 120 FD 45 (Correct: 10/14 Laser; 3/5 non-laser)
c) FD 45 RT 180 FD 45 (Correct: 5/14 laser; 5/5 non-laser).
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iii) most of the children continued to have & static notion of the term “angle".

Question: "What does 'angle' mean to you?"

Responses: Lager group non-laser group Control group
Line ] 2 0
Slanted eide 4 0 0
€orner 5 1 4
Triangle 1 0] 0

Turn in degrees 1 2 (0]

Two lines which meet 2 0 1

Don't know 1 0 0

iv) most children classified the size of angles according to the length of the arms.

"

Question: "Which angle is largest? 2nd largeet? ....

L) e ow

2
laser group non-laser group Control group
They're all the same 5 2 1
2457 11 314 B8 ) 4
4, 3, 1, 5, 2 1 0 0

C) The follow-up interview held in March of this year with 5 of the children from
last year's study showed little change in their views of angle and turtle turns,
despite increased experience with Logo this year. Three children continued to view
an angle as & slanted line and its measure according to the length of the line.
Of the other two children, one continued to define an angle as & corner and to
measure it according to "the opening" near the vertex. He also used as inputs to
turtle turns the size of the comstructed angle, even if it was the supplement which
was required.The last child of this group was the only one who defined angle as a
“turn", just as she had last June. However, there was an improvement in her ability
to correctly provide the input to the turtle turn. She was now able to distinguish
between the input for the angle of rotation and the input for the constructed angle.
SIXTE GRADE STUDY
Method., This study was carried out during the school year 1985-86. It involved
8ix 12-year-olds who came to the computer lab at the university once a week. Except

for the first 5 sessions when we initiated all the activities, the children worked
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on their own projects at least some of the time. The Logo environment had certain
gistinctive features, such as, the procedures Tee and Vee (state-transparent objects
which the children were to use for rotation and transletion activities), MOVE (left
no trace on the screen), TRT and TLT (slowed-down versions of RT, LT), and absence
of FD and BK for the first half of the year.

Observation notes were taken during each session. These included our interventions
whenever they took place, and the children's comments, discuesions, etc. These notes
were ueed to annotate the dribble files of each pair's work. In addition, individual
interviews were carried out with each child midway through the study.

Findings. The mid-year interview }hoved that the children of this study had a etatic
view of angle. They did not, however, all share the same view as to how angles are
meagsured. One child said that this angle : ‘5:::__ was about 120 degrees because

hs visualized: s 8lthough he claimed that the turtle would

do & TLT 30 to make this turn : {- « Be did not perceive the equality
relationship between the input to this turtle turn and the size of the angle. Another
child looked at arm length to classify angles according to size. For the remaining
children who were able to judge more or less the input to turtle turns and the eize

of static angles, there was only one who was able to coordinate the relationship
between an angle of rotation and the adjacent constructed angle. For example, one

task was, "If you go for a walk on these three roads, and you start at A, B, and C,
on which road do you have to turn the most when you turn the corner?",

Lo "% L

followed by (using the same diagram), "Which of these three angles is largest, 2nd
largest?"

Only one child said that all the oorner turns were the same and that all the angles
were the same. Another said that all the turns were the same, about 45 degrees,
but that angle C was largest (about 160°) angle B was next (about 135°). The other

two ordered the turns one way, but did not order the angles inversely.
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Throughout the second half of the study, the majority of the children continued
to rely on perceptual cues in their first attempts at determining the input to turtle
turns (see Kieran, Erlwanger, and Hillel, 1986, fcr more details). They only shifted
to an analytical approach when the initial perceptual attempts failed. The fourth
graders, on the other hand, did not indicate that they were able to carry out this
shifting. They remained bound to perceptual cues.

Discussion. Most children ars not going to acquire the powerful mathematical ideas
underlying Logo without a good nudge now and then. This was evident from the Grade
Four study where the children in the non-traditionmal school setting, who had access
to adult help whenever they nesded it, progressed much faster. It was also evident
in the Grade Six study whers we clearly had to intervene in order to draw their
attention to the supplementarity relationship inherent in many Logo situations.

The question of whether Logo helps to provide children with a dynamic concept
of angle is more difficult to answer. The fourth graders, after one year of Logo,
seemed to keep static "angles" and their measurement in one mental compartment, and
dynamic turns and their input in another. The sixth graders seemed more able to
integrate the two. However, as mentioned above, their first attempts at supplying
the input to turtle turns were usually always based on the rationale, "it looks like...".
Even when precise data were both available and known to them, they relied on percep-
tusl cues. This was the case whathsr they were talking about a turtle turn or about
the size of a given angle. Fourth graders also relied strongly on perceptual cues,
but they weren't as good at it as were the sixth graders.
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GEOMETRICAL CONSTRUCTIONS AND THE MICROCOMPUTER

Emmanuel Kramer, Nurit Hadas and Rina Hershkowitz
The Weizmann Institute of Science
Rehovot, Israel

Ix}troduction

Solving construction problems in Euclidean Geometry requires a higher level of
understanding than other topics in high school geometry because the student is expected
to actively operate on concepts and not only to use them (Thompson, 1985). To know
that the distance between two parallel lines is constant is one thing, and to use this in
order to construct the locus of all points which are at a given distance from a line is

quite a different thing, demanding a deeper understanding and mental operations.

A microworld may be defined as a closed learning environment consisting of a set of
objects, a set of operations on the objects and a set of laws governing the application of
the operations (Groen and Kieran, 1983). Geometric constructions may be considered a
microworld in which the objects are segments and angles, the operations are the “basic
constructions” and the laws are the laws of deductive Euclidean Geometry. A microworld
of this type, based on a small number of operations, is appropriate for implementation
on a computer and has considerable didactic potential (Dreyfus, 1984). The fact that the
program does not allow the use of any operations or arguments except those that belong
to the microworld is an advantage rather than a limitation. Moreover, by executing the
basic operations, the computer allows the student to focus on the main issue, the
analysis of the problem. Such a microworld for learning the rules of the game
“Geometric Constructions” has been designed for use by the upper third of the grades 9

and 10 school population.
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Stages of Solution in Construction Problems

The usual procedure for solving a construction problem includes several stages, each

with its own difficulties, conceptual or technical.

1. Analysis: The student has to analyze the use of data in the sequence of
basic constructions that is required for the solution of the given problem.
This is a deductive process which is the most important and challenging
part of the solution process.

2. Selecting suitable data: After the analysis the student needs to select
relevant and suitable segments and angles. Here, he has to consider some
mathematical limitations: For example, a triangle can not be constructed
from any three segments.

3. The construction: At this stage the student has to overcome the technical
difficulties posed by being limited to straightedge and compass only.
Moreover, the student needs to repeat the same basic constructions over
and over.

4. Description of the construction: The student must give a written account of
his construction because the end-product alone does not indicate whether
the construction was made according to a correct deductive process.

5. Validity of the construction: The student must use mathematical theorems
to prove the validity of his construction. In many respects, this stage is
complementary to the first stage, and it exhibits all the difficulties of

geometric proofs in general.
The Software

The student chooses the input data himself according to the problem which he may
have received from the teacher, the textbook, the computer or which he may have
devised himself. The software presents a list of basic commands, from which the
student chooses the operations (the basic constructions) to carry out on his chosen data
(see Figure 1).
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Ezample: In order to construct a triangle,

given a side, the altitude to this side and ﬂ Line \
R R R PO Point on line
one of the angles formed with this side, the

cs Copy line segment
student will choose two segments and an CA Copy angle

0s Bisect Tine segment
angle- BA Bisect angle

J Join two points

In the process of solving this problem, oF perpendicular

the student  has to  construct a LA faraliely)ige

M Mark intersection point

perpendicular to a line q at a point D on

A Arc
the line. He needs to enter PE (for \E Extension of 1ine segment

perpendicular) upon which the program will

Fig. 1 The basic constructions
ask “Perpendicular to which line?” The

student enters q. The program asks “At
which point?” The student enters D. The entire command now appears on the screen:

Construction of the perpendicular to the line q at the point D.

In this microworld the basic constructions are tools to be used in the deductive
process of more complex geometric constructions. Another microworld for geometric
constructions has been developed by Schwartz and Yerushalmi; the main difference
between the two is that our microworld is designed so as to allow the student to build
up constructions deductively, whereas theirs is designed to enable the student to discover

geometrical theorems inductively.
Research hypotheses

We conjecture that we have built an immediately self-correcting and self-regulating
system in the sense of Groen and Kieran (1983, p. 359, p. 372). This is achieved by the
immediate feedback property which leads to improvements in the following three levels
of the cognitive process involved in the solution of a geometric construction problem:
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1. Conflicts that arise during the interaction with the microworld improve
the student’s ability to analyze geometrical problems.

2. Using the microworld, the student learns the mathematical rules of
geometric constructions.

3. The formal syntactic structure of the solution process of geometric

construction problems is acquired through use of the microworld.
Selected Observations

This research was based on observations of student-microworld interactions. We have
used the microworld with a number of 10th graders who have learned Euclidean
Geometry but had not been taught constructions. Each of them was observed while he
used the computer program to solve five construction problems. Each student was first
presented with a computer-guided demonstration example. The focus of the observer’s

attention was the students’ behavior and their responses, mainly in conflict situations.

The description of the following problem solution (which was already mentioned
above) illustrates some typical student behaviors: Construct a triangle ABC from the

following data:

The side b=AC, &
the altitude h on b,
i )&
the angle a=3BAC.
A D (&

Some of these typical observations are the following:

a) All students started the solution by typing CS, copy segment; but a
segment can only be copied onto a line; when they were asked by the
program, onto which line and from which point on that line the segment
should be copied, they discovered their syntactic error; they cancelled the
CS command and started from scratch first requesting L, a line; some
were helped at this stage by drawing their attention to the list of
available commands.
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b) After copying the segment AC and the angle o (whose other side is called
p), one of the students, Dan, chose and marked an arbitrary point D on
the segment, built the perpendicular k to AC at D and asked the program
to copy the given altitude h onto k from the point D. At this moment,
the observer asked him where he expected
the other end of h to be; he pointed to L §
the intersection of k and p; Dan was
surprised to see that the end of the

altitude M was in fact not on but above

the line p, and reacted by saying: “I need

T

to move k.” A B c
He looked for a command to move a line but obviously couldn’t find one.
This led him to the conclusion that he needs to construct a parallel to
AC through M.

c) In contrast to Dan, Ruth started by analyzing the problem and concluded
that after copying the segment AC she needs to construct a parallel to
AC at the distance h. Thus she typed PA for parallel and learned from
the program’s requests that constructing a parallel at a given distance is
not a basic construction. A search in the list of commands helped her find

the sequence of three commands which lead to the solution.
Discussion

Reactions that were observed during the solution of construction problems with the
microworld clearly show that the program is indeed a natural corrective system. The
observations indicate that corrections occur with respect to the three levels mentioned
before.

The analytical level: An incorrect problem analysis leads to a conflict between student

expectations and the actual picture on the screen. This conflict forces the student back

-109-



to the analysis stage and thus to a correction of his plaﬁ. This behavior was observed
again and again and is exemplified in observation (b) above.

The application of the rules of geometric constructions: By not being allowed to use any
step that doesn’t belong to the microworld, the student is forced to use only basic rules
of geometric constructions. For example, see Dan's unsuccessful attempt to move the
perpendicular in observation (b), or Ruth’s trials in observation (c).

The syntactic level: The students learn the formal syntactic structure of geometric
construction because the program requests and accepts only commands which are
formulated in formally correct manner. In observation (a), for example, all students tried
constructions which were not built according to the syntactic rules; they quite easily

corrected themselves following the program’s prompts.

In conclusion, the students spent most of their time and energy on the most
important part of the solution process, the problem analysis. Our observations show
that students who neglected the analysis stage were forced to stop and plan their
solution strategy, whereas those who made an initially wrong analysis had to revise their

strategy during the solution process.
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STRUCTURES AND PROCESSES IN THE ABILITY TO COMMUNICATE

SPATIAL INFORMATION BY MEANS OF CODED ORTHOGONAL VIEWS

Gérald Noelting and Claude Gaulin, University Laval, AQuébec

Ewa Puchalska, University of Montreal

The study described here touches upon three different subjects: the
development of spatial representation (geometry), the ability to communicate
information by means of codes (semiotics), and structures and processes in the
development of such abilities (cognitive development). Accordingly, it is
clearly interdisciplinary in nature.

Levels and processes in spatial representation have been studied since
Piaget and Inhelder’s (1967) and Piaget, Inhelder & Szeminska’s (1960) pioneer-
ing work. Small- and large-scale spaces, useful in geography, for instance,
have been found to involve both establishing relationships between objects and
the construction of frames of reference (Hart & Moore, 1973; Wapner, Cirillo
and Baker, 1971).

The use of «codes forming a structured system, complying with
conventions and rules of arrangement have been studied by Laborde (1982). It
forms part of the (more general) ability called "“graphicacy", which has been
defined by Balchin (1972) as "the communication of spatial information that
cannot be conveyed adequately by verbal or numerical means". Proficiency in
graphicacy is considered by many as a fundamental goal of education for all,
along with literacy, numeracy and oracy. (Boardman, 1983).

Here the ability to code orthogonal projections of polycubical objects

was studied. The first step was to build an ordinal scale of difficulty.
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HMethod

After careful analysis, a theoretical ordinal scale was postulated,

with eight levels of difficulty, and polycubical shapes were constructed pur-

ported to correspond to each of the levels.

represented in orthogonal projection. Numbers inside the outline correspond to

positions of cubes.

The shapes were the following,

2
1 .2
Orange 1 }_L_ e T et et e Orange 2 2
(preliminary) L-L_t_L_I_L_I_L_] (preliminary) 2 2]
. 72~ . 17,2
Whit IR W [T Light green e, T8 S B
e Tt E— L ez frf
] 1 1 1 1 __L_W_L_T___]
b
Blue .2 ! ! Yellow 1L f2 i
1 1 Ll L 120 L
2.3 [ 2_
r 1
Black L2 122 2_j Red r_i__%L% 3,4
Ll EN
______ 7,21
Dark green [_L_ 1.2 __ Purple S A L S
iy [___fz_,qs_i_z__‘

The task was administered 1in group form to students of eight classes

from grades 4, 5, 6, 7, 9 and ll,

shapes, marked with a sticker to indicate the position in which it should be
placed for observation. Then the subjects were instructed to do the following

with each of the shapes successively: "(1) Keep it in front of you,

level, with the sticker placed at the bottom. (2} Draw the

shape f(on given <squared paper) as it appears from that position. (3) Add
information concerning other cubes, by means of signs placed in appropriate

places. (4) Write out an explanation for each sign used. Your finished dia-
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Each subject received a set of

outline of the

the eight

at eye

gram must give an adequate representation of the shape, so that one of your
friends could build it."

To ensure the understanding of the task, two preliminary orange items
were introduced and discussed with the whole group, before the subjects started
working individually. In order to quarantee the homogeneity of the technigque,
the same person gave the instructions in all classes, while two collaborators
distributed the material and supervised the work.

The same three people did the marking of the huge number (more than
1500) of coded orthogonal views (COVs) obtained, first independently, then
jointly. A COV was considered passed when it was possible to reconstruct the
object from the diagram, with its codes and legends. Types of errors and
coding strategies were noted on matrices representing frontal and sagittal
layers of each object. The results obtained were categorized according to
(1) which items were passed and (2) which strategy or scheme was applied to
code the objects. The quantitative results were submitted to an analysis of
variance to determine the effect of items and age on performance. This was
supplemented by scalogram analysis to investigate the hierarchic nature of
items and a factor analysis was applied, by the Common factor method followed
by varimax rotation, to determine the grouping of 1items according to common
schemes or strategies put to use for solving thenm.

Results
Categorization - Categories of behavior were first established and subjects
grouped according to the most elaborate each presented. An analysis of
variance showed the influence of age was highly significant.
Scalogram - A scalogram was applied to items passed by each subject which
showed that some items were too easy for subjects (white and light green

shapes) and one too difficult (purple). However the plus percentage ratio PPR,
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independent of item difficulty, was found to be 0.71, above the 0.70 threshold

usually accepted. Thus the scale of B items was found to be hierarchically
ordered, though with some overlap.
Factor analysis - Factor analysis was then applied to the items scored as

passed or failed, as it was surmised that common strategies in solving various

items would lead to a correlation of success and failure and grouping of these

items in

was used

consider

a same factor (Noelting & Simpson, 1983). The Common factor method
with varimax rotation (SAS, 1982) and a mineigen of .7. Factors were

ed as 1independent, as the strategies applied to solve items, even if

they are linked genetically, are different from one another.

Four factors were obtained, with loadings for each item on the factors

given in Table 1. The corresponding levels of behavior which were ultimately
established are given in the table.

Table 1. Factor analysis with varimax rotation (mineigen .7).

Shape Factor 1 Factor 2 Factor 3 Factor 4 Level
White 0.09536 0.07472 0.0170 0.98852 1
Light green 0.81726 0.03916 0.10916 0.14418 2
Blue 0.62485 0.18363 0.10142 0.01349

Yellow 0.78861 0.12551 0.19838 -0.00111

Black 0.37518 0.03062 0.73771 0.03027 3
Red 0.03556 0.31701 0.60074 0.00061

Dark green 0.14863 0.82865 0.12326 0.08794 L
Purple 0.11348 0.81879 0.16891 0.00590

The results of the factor analysis were compared to the categqories of
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pehavior previously obtained and a close fit was found. This led to a final

description of the levels of behavior found, both in terms of problem

difficulty and coding stragegy. These levels are the following, with level 0

corresponding to total failure and level S to a new strategy in coding items

which had already been passed at level 4.

tevel 0 - Contiquity between cubes in the object is respected in the diagram,
but without differentiation of the third dimension (depth). The
object is rotated during exploration and cubes in the orthogonal
axis are reproduced on paper as folded back.

Level 1 - Differentiation of the orthogonal axis and the plane of projection.
The object 1is maintained in the same position during the coding
process. Relations along the orthogonal axis are coded either in
terms of order: "in front", or in terms of set: “double

thickness". One direction only is found in the order relation,

usually "in front”. However, referent cubes in different
orthogonal axes are not located on the same frontal layer: there
is "lability" of reference. White shape only is passed.

Level 2 - Two directions are differentiated in the order relation: "“in
front" and "behind", with reference to the layer of cubes in the
obiject presenting a flat surface. Light green, blue and yellow

shapes are passed. The layer of reference, however, 1is not

recognized inside an object with an uneven surface (red shape).

Level 3 - Constitution of a frontal Jlayer of reference inside the object

(black and red shapes are passed) with transitivity of positions
along the orthogonal axes. However the layer of reference is
limited inside the solid object and does not extend in space. When
layers are ‘"staggered", columns begin in different positions
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("lability of referents").

Level 4 - An _extended layer of reference is built, which includes exterior

voids. There is thus stability of reference along the extended
frontal layer, with possible readjustments 1in position through
"mental leaps" when layers are staggered. Elements are coded both
in terms of their nature (cube or void) and position (lst, 2nd,
3rd etc.). However these two aspects are still juxtaposed, leading
to double coding of each element in terms of set and order.

Level § - A three-dimensional system of reference is built, resulting fram

its differentiation from the three-dimensional object. The two

operations corresponding to set and order are differentiated and
recombined at the level of each element, with a same symbol giving
both the nature of the element and its position in the orthogonal
axis (positional notation). However, two different coding systems
are found, one centered on order, resting on the coordinate system
built, with each position coded as filled or empty (e.q. !, ¢, O,
1, t); the other oriented on set and centered on the object, with
the positions of each cube gqiven (e.g. I, 4, 5 for the same
orthogonal axis).
These levels will be illustrated by examples.
Discussion
Halford (1978) had reinterpreted Piaget’s stages in terms of three
levels of complexity corresponding to the following mathematical structures:
binary relations, binary operations and composition of binary operations.
A revised version of this model 1is presented,consisting in the five
levels described, which lays a greater stress on process and integrates aspects
from Piagetian theory with dialectics and systems analysis.

-Llle-

A STUDY OF THE APPLICATION OF A QUALITATIVE TAXONOMIC SYNTHESIS TO

THE ANALYSIS OF GEOMETRIC REASONING IN A COMPUTER ENVIRONMENT

by
John Olive

Emory University, Atlanta, Georgia

INTRODUCTION

Recent national assessments of the mathematical ability of American high school
students have highlighted a serious problem in the development of mathematical
thinking: Students are failing in situations which require mathematical reasoning
skills and understanding beyond the level of basic skills and memorization
(Carpenter et al., 1983). The problem is particularly critical in high school
geometry, where success depends on propositional thinking and deductive reasoning

about geometric properties and relations.

The purpose of this research was to investigate the application of a taxonomic
synthesis for assessing the potential of a computer learning environment, based on

transformational geometry, for developing students' geometric reasoning skills.

A teaching experiment was designed to help ninth grade students progress through
the levels of the SOLO (Structure of Observed Learning Outcomes) taxonomy in order
to achieve a higher level of abstraction in their geometric thinking. The LOGO
computer language was used as the vehicle for teaching and learning geometric
properties and relations. The teaching methodology and curriculum ideas were
based on a theory of relational learning cycles which emerged from a synthesis of

the SOLO taxonomy and Skemp's model of mathematical understanding.
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SOLO/Skemp Synthesis

The SOLO (Structure of Observed Learning Outcomes) Taxonomy (Biggs & Collis, 1982)
was primarily designed as a tool for the evaluation of the quality of student
responses to a task. The Taxonomy consists of five levels described as follows:
1. Prestructural: the learner does not engage the task or gives completely
unassociated data.

2. Unistructural: the learner is able to use one piece of information only
in responding to the task (formation of a single datum).

3. Multistructural: the learner is able to use several pieces of
information but does not relate them together (acquisition of parallel data).

4. Relational: the learner integrates the separate pieces of information to
produce a viable solution to the task.

5. Extended Abstract: the learner is able to derive a general principle

from the integrated data which can be applied to new situations (acquisition of a

higher-order concept).

Biggs and Collis's own integration of the SOLO levels into Piagetian developmental
stage theory produced a model of learning cycles similar in many ways to Skemp's
model of mathematical understanding and to particular aspects of Skemp's model of

intelligence (1979).

Skemp (1976) proposed the existence of two types of mathematical understanding
which could be generated by mathematics learning and teaching in schools:
instrumental and relational understanding. Instrumental understanding is the
product of rote learning of rules and theorems and their specific applications.
Relational understanding is the product of a learner's personal involvement with

mathematical objects, situations, problems and ideas.
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[In order to avoid confusion at this point, between the different uses of the term
"relational"” in the two theories, the investigator has renamed the Relational
level in the SOLO taxonomy the Relating level (the level at which data are

interrelated).]

A synthesis of the SOLO and Skemp theories (Olive, 1983) suggests that learners
acquire new understanding of subject matter by going through a learning cycle
based on the SOLO Taxonomy in one of two ways: instrumentally or relationally.

At each stage in a relational learning cycle (unistructural through extended

abstract) the learner is personally involved with the available data. The data

are, in fact, products of the learner's own investigations. In contrast, the data

available in an instrumental learning cycle are given to the learner to memorize

by some external source of information (usually the teacher, textbook or
computer). The relating level of the SOLO cycle may also be force fed ("Here are

the relationships - memorize them!") or may be omitted altogether ("Here is the

general principle, or new theorem — memorize it!").
A Logo Learning Environment

Seymour Papert (1980), director of the MIT LOGO project, sets forth a thesis for
the learning of school mathematics that is similar to that of Skemp. "What an
individual can learn, and how he learns it, depends on what models he has
available" (p. vii). Papert later makes a statement which emphasizes the
importance of relational learning:
Our educational culture gives mathematics learners scarce resources
for making sense of what they are learning. As a result our children
are forced to follow the very worst model for learning mathematics.
This is the model of rote learning, where material is treated as
meaningless; it is a dissociated model. (p. 47).
Papert and his colleagues created a new area of mathematics which they termed
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"Turtle geometry,”" as part of the LOGO computer language. Papert claims that
Turtle geometry is "a better, more meaningful first area of formal mathematics for
children [than traditional geometry]" (p. 51) because it is associated with the
child's view of the world and encourages reflective thinking in order to gain

control of the world of the Turtle.,

Turtle geometry has all the necessary ingredients for generating relational
learning cycles: Being able to relate personally to a learning experience, being
able to relate the experience to existing knowledge (and previous experiences),
and reflection by the learner on what he/she knows. A review of previous LOGO
research projects, however, indicates that LOGO has not been successful in

generating relational learning for some students.
METHODOLOGY

Twenty students were randomly chosen from an intact, ninth grade class of 39
students in an urban high school. Each student worked with a micro-computer in a
lab situation for 18 days (two hours a day, three days per week for six weeks).
The investigator taught the group, introducing the students to the micro-computer

and the LOGO language through a series of "guided discovery' learning episodes.

Each student's interactions with LOGO were saved on disk files. The data files of
nine of the students were analyzed in depth in terms of the SOLO/Skemp synthesis.
This analysis provided a picture of these students' developmental growth in the
use of LOGO and helped to determine the appropriateness of the teaching
methodology and curriculum ideas for generating relational learning cycles and
helping students achieve a higher level of mathematical abstraction.
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RESULTS

The results of the analysis indicate that for several students, the instructional
sequence was too fast. There was not enough time for them to explore new
programming ideas or to investigate the various geometric relationships before new
ones were introduced. Consequently, their understanding of both the LOGO language
and the geometric concepts was generally instrumental. However, for those
students who were able to keep pace with the instruction, progression through SOLO
learning cycles was evident. These students demonstrated a shift to a more
abstract mode of functioning with the LOGO language and relational understanding

of many of the geometric concepts that were introduced.

The results also demonstrate the enormous potential for process analysis provided
by the data files. The ability to capture every move a student makes while
working on a problem and recreate its effect visually on the computer brings us
closer to observing directly the dynamic development of students' cognitive

processes.
IMPLICATIONS FOR INSTRUCTION

The analysis of the data files also enabled the investigator to identify the gaps
in the instructional sequence. These gaps highlighted the critical importance for
introducing ideas at the appropriate SOLO level for individual students, for
sequencing activities according to a SOLO cycle, and for encouraging reflection by
the students on emerging relationships. The instructional sequence has been
modified to better reflect these characteristics. An example of such a

modification will be demonstrated at the conference.
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A Clinical Investigation of the Impact of a LOGO Learning Environment on Students'

van Hiele Levels of Geometric Understanding

by Susan Paalz Scally

Emory University, Atlanta, Georgia

Problem Statement

There is a national concern in the United States for the number of students
who are failing to complete their studies of mathematics in high school
successfully. Because less than one third of American high-school students take
mathematics courses beyond tenth grade geometry (NASSP, 1983), it is clear that
high school geometry is a critical turning point for many students in their
mathematics studies. Failure in, or avoidance of, geometry results in the
termination of the study of mathematics for the majority of students.

Since the curriculum development era of the 1960's, geometry has been
introduced into the school mathematics curriculum in the elementary and middle
school grades. However, geometry instruction in the early grades usually consists
of identifying shapes and stating properties of geometric figures at a recall
level without attending to more complex concepts that require understanding of
relationships among geometric figures and their properties. The National
Assessment of Educational Progress (NAEP) indicated that:

Although most students at all age levels [9, 13, and 17 year olds were
tested] could identify common geometric shapes, relatively few demonstrated
a knowledge of basic properties of these shapes. ... Fewer than 20 percent
of the 17-year-olds could calculate the area of either a triangle or a
parallelogram. (Carpenter et al., 1983, p. 655)

Mathematics learning theorists agree that the understanding of relationships
is the key to success in formal studies of geometry. These relationships include
relationships among geometric figures, relationships among their properties, and
even relationships among their relations.

The van Hiele Model

The van Hiele model of thought development in geometry has been used by
mathematics researchers to explain why students have difficulty with more complex
concepts in geometry because it partitions the learning of geometry into five
distinct levels. The following is a description of the hierarchy:
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The first level is one of recognition of geometric figures as entities,
without any awareness of parts of figures or relationships between
components of the figure. In the second level, the components of a figure
can be discerned and the properties of a figure described but not formally
defined. Also a student at this level may recognize that two figures have
properties in common but s/he does not conclude, for instance, that a
rectangle is also a parallelogram.

In the third level, relationships among the properties of a figure are
established as are relationships among the figures themselves. The
possibility of one property following from another is known, and a logical
partial ordering of classes of figures occurs. It is only in the fourth
level, however, that the logical structures of analysis and of proof are
grasped and that deduction is understood as a means of constructing a
geometric theory. The fifth level is characterized by standards of rigor
and abstraction represented by modern geometries. A student at this level
develops a geometric theory without reference to concrete applications.
(Skypek, 1982, pp. 1-2)

Certain characteristics accompany the van Hiele levels and were described by
Usiskin (1982):

a) The levels exist in a fixed sequence; one must pass through level n to
attain level n+l;

b) Each level has its own language so that two people who are reasoning on
different levels may not understand each other;

c) The levels have the property of adjacency; That which was an object of
perception at the lower level becomes the object of thought at the next higher
level.

Since one of the qualities of the van Hiele model is that students must pass
through the levels in a fixed sequence, one must question whether students in high
school geometry courses have achieved the first, second and third levels prior to
their formal axiomatic studies.

The Curricular Gap at Relations

Evidence exists to support an assertion that relations are not being taught
adequately in American elementary and middle schools. Wirszup (1976) was the
first person to describe the van Hiele model in an American journal in which he
called for geometry curriculum reform.

-124-

As a result of unsuccessful experience and convincing evidence, the
so-called axiomatic methods of initiation into geometry have been recognized
by modern educators the world over as unpedagogical. A review of the
teaching of geometry in the United States indicates at once that only a very
small number of the elementary schools offer any organized studies in visual
geometry, and where they are done, they begin with measurements and other
concepts which correspond to Levels II and III of thought development in
geometry. Since level I is passed over, the material that is taught even in
these schools does not promote any deeper understanding and is soon
completely forgotten. Then, in the 10th grade, 15 and 16 year old
youngsters are confronted with geometry for almost the first time in their
lives. The whole unknown and complex world of plane and space is given them
in a passive axiomatic or pseudo-axiomatic treatment. The majority of our
high school students are at the first level of development in geometry,
while the course they take demands the fourth level of thought. It is no
wonder that high school graduates have hardly any knowledge of geometry, and
that this irreparable deficiency haunts them continually later on. (p. 96)

Geddes (1982) supported this finding in an analysis of elementary
mathematics textbooks in which she found that most of the textbook material
corresponds to the first van Hiele level. She notes that texts provide little
support materials for moving on to level two, even in the teacher guides. '"The
lack of extensive [2nd] level experience in grades K - 8 indicates that many
students enter high school geometry courses (which require [3rd] level thought)
with a [1st] level background" (p. 22).

Bridging the Gap

This research study is attempting to bridge the gap between the middle school
study of shapes and properties and the tenth grade treatment of formal deductive
geometry by providing ninth grade students with a better understanding of
geometric relationships. The LOGO computer language is being used as the vehicle
for providing this understanding.

LOGO, through its graphics capabilities, embodies a physical robot, called
the Turtle, which is a transitional object for the learner. The Turtle provides
specific mental models for and experiences with those geometric relationships
which cause problems in the present school curriculum, i.e. incidence,
parallelism, perpendicularity, proportion, and angular measure. Exploring Turtle

Geometry gives the student an opportunity to relate personally to angle measure,
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relationships between various geometric figures and their properties, and all
geometric transformations. This provides the opportunity for meaningful
reflection on mathematical ideas.

Design of the Study

For each of the past three semesters a LOGO course, based on Turtle

geometry, has been offered in two inner-city schools. Ninth grade students who
were tracked in an average-paced curriculum, who were enrolled in algebra, and who
were scheduled to take geometry in the tenth grade were eligible to enroll in the
LOGO course for one semester. The subject pool consisted primarily of minority
students. Comparison groups of students, who were not enrolled in LOGO, were
identified in each school each semester. The purpose of the study is to assess,
within the framework of the van Hiele model, whether students' geometric concepts
are enhanced by experience in a LOGO learning environment.

The Clinical Interview
How can these conceptions be assessed? Fuys and Geddes (1984) suggest that
"conventional tests or assessments of level of thinking may not adequately
characterize the student's ability to think at certain [van Hiele] levels,
especially when there has been little or no opportunity to experience topics ...
in school" (p. 11).

learning experience, as Dina van Hiele-Geldof did in her teaching experiment,

Furthermore, "this more dynamic form of assessment during a

enabled [us] to examine changes in a student's thinking, within a level or to a
higher level, and also difficulties which impeded progress" (p. 6).

The disinction must be made between static and dynamic assessments. In a
static assessment, a student's misconception could be labeled wrong. In a dynamic
assessment, where the interviewer has an opportunity to probe, a student's
misconception might be labeled alternative conception. These alternative
conceptions often lead to the most revealing understandings of students'’
mathematics.

This research project will involve the identification of cognitive activities
(levels, in this case). For such an undertaking the clinical interview is
structured to lead the subject's activity into particular areas of investigation.
In the case of this research the same basic script is administered to each
Ginsburg (1981) cited the contingency of questioning as the one major

The

subject.
element which sepsarated clinical interviews from standardized tests.
interviewver's questions are contingent upon the subject's previous responses to
other questions; thus the instrument incorporates branching. Another important
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feature of the clinical interview is that reflection is required on the part of
the student. One asks how the child arrived at a certain answer (process) and why
he got a particular solution (product); thus probing is an important aspect of the
interview.

Interview scripts and protocols for analyses were used for two topics:
quadrilaterals and angles. The former was adapted from an instrument developed by
Burger and his colleagues (1982) and the latter was developed by the project
staff, piloted, validated, and revised. The instruments are being used to
interview a sample of approximately 20 students before and after their LOGO
experience and a comparison group of about 20 non-LOGO students is being
interviewed likewise. The interviews are given in one-to-one sessions of 45 to 60
minutes and are audiotaped. Those audiotapes are currently being analyzed for
evidence of treatment effect.

Results

Preliminary analyses indicate that these students are at the first or second
van Hiele level on their initial interview. Angle item analyses point-to
discrepancies between student's understanding of static angle and their ability to
apply that knowledge to tasks that involve turning angle. Several students who
identified a simple drawing of a right angle as measuring 90o could not
successfully turn a spinning arrow through 90o to aim it at a target. Many
students were distracted in their ability to distinguish between a larger and a
smaller angle by the irrelevant attribute of represented length of the rays of the
angles. Activities are being designed and incorporated into the Turtle geometry
course specifically to address these problems. Analyses of the second (post)
interviews will be used to determine whether experience in the LOGO environment
has any effect on students' understanding of geometric relationships. It is
believed that the clinical interview is specific and sensitive enough to detect
both movement within van Hiele levels and between levels.

Implications

Results of final analyses should have important implications for
understanding student thought processes in geometry and could, in turn, impact on
curricula development in the U.S.A. Samples from the interviews and all analyses
completed to date will be presented at the conference. It is hoped that the

results will contribute to PME's goal of furthering a deeper and more correct

understanding of the psychological aspects of teaching and learning mathematics.
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An Audio-Visual Test for Promotion of the Thinking Ability
and Its Application to Math Classes

Shigekazu Yanagimoto, Fukui Technical College

Geshi-cho, Sabae-shi, Fukui 916, Japan

1. Introduction

In an ordinary math class, the response each student shows to the
audio-visual information given by the teacher is peculiar to the student.
However, it is very difficult for the teacher to cope with all different
responses shown by each student. Then the teaching-learning process is
too difficult for one group of students and is very easy for another
group of students., Therefore, it is rare that the math class satisfies
the following conditions,
(1.1) Every student always pay keen attention all through the class.
(1.2) The most suitable difficulty is given to each student,
(1.3) Every student ( even slow learner ) is able to develop his power

of thinking at his own pace in the teaching-learning process.

We have developed two new Audio-Visual Tests (AV-Tests ), Cloze-

Type AV-Test (TAV), Jigsaw Puzzle-Type AV-Test (TAg), and by introducing
TAS and TAd into the teaching-learning process, we were able to estab-

lish a situation which satisfies (1.1-1.3). Main purpose of this paper
is to show the situation.
({ Remark ) Cloze Test is the test used to evaluate language proficiency.

2., Intellectual Hunger Situation

It must be remembered that many of the discoveries and inventions
were made by people who were anxious to be intellectually(or materialy)
satisfied, If we emphasize this fact, the student will bring their in-
tellectual ability into full play under the condition that they are anx-
jous to be intellectually satisfied in the teaching-learning process.
Now, let us find the situation where the student’s intellectual activity
is in full activity. It is sufficient to consider the following cases:
Case 1) It seems that the student is able to understand the teaching-learn-
ing process,even though enough information is not yet given to him,
Case 2) It seems that the student is able to understand the teaching-learn-
process, since enough information is given to him,
Case 3) It seems that the student is not able to understand the teaching-
learning process on account of the insufficiency of information,
Case 4) It seems that the student is not able to understand the teaching-

learning process, even though enough information is given to him,
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In ordinary math class, when it seems that the student is not able to
understand the teaching-learning process, his learning attitude becomesto
worse, Namely, his intellectual activity is not in full activity in cases
3) and 4), Obviously, it is more difficult for the students to
understand the teaching-learning process in case 1) than in case 2), be-
cause, in case 1), the student is always anxious to obtain new informa-
tion which is usefull for him to understand the teaching-learning proc-
ess. That is to say, in case 1), the student is moderately hungry for
the information in the teaching-learning process. So we call the teach-
ing-learning process in case 1) " Intellectual Hunger Situation ",

We have developed a Intellectual Hunger Situation using TAS and
T J in order to design the math class which satisfies the conditions(1l.1-

Av
1.3) First, we will briefly state about TAS and TAg

As and Jigsaw Puzzle-Type AV-Test TAg
TAS is made and put into practice in the following way.

2., Cloze-Type AV-Test T
o C
AV

(2.1) We write down the protocol on the bases of the teaching-learning
process.

(2.2) We give the students audio-visual information in accordance with
the protocol in 2.1).

(2.3) Combining the audio-information with the visual infomation given
by the teacher the students take notes on the teaching-learning
process.

(2.4) Referring to the notes on the teaching-learning process, the
students fill in the blanks of the Cloze Test on the protocol.

J
Tav
(2.5) We illustrate the teaching-learning process with the diagram

TA% is made and put into practice in the following way.

along the protocol in (2.1).

(2.6) We make a Jigsaw Puzzle from the picture drawn in (2.5).

(2.7) We give the students audio-visual information in accordance with
the protocol in (2.1).

(2.8) Combining the audio-visual information given by the teacher, the
students take notes on the teaching-learning process.

(2.9) Referring to the notes on the teaching-learning process, the stu-
dents fill in the blanks of the Jigsaw Puzzle in (2.6).

3. An AV-Test for Promotion of the Thinking Ability

In an ordinary math class, it is necessary for the students to com-
bine the visual information obtained from the text, OHP and blackboard
with the acoustic image corresponding to the teacher’s explanation in
order to understand the teaching-learning process. Further, in order to
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combine the audio information with the visual information, translation

of the presentation-mode of the concept is requisite for the students.

(Remark) The presentation-mode of the concept: Aural-mode, Diagram-
mode . Ordinary mathematical concepts are able to be re-
presented by use of one of these two modes.

We have developed an AV-Test (TAV) aiming at the correct combina-
tion of visual information with acoustic image in mind. (See (4) of
the reference at the end of the paper.) In TAV' each student’s mem-
ory-span of audio(or visual) information given by the teacher was pe-
culiar to the student. Moreover, in traslation of the presentation-
mode, each student’s time required was also pequliar to the student.
Therefore, in many cases, the explanation of the concepts(or problem-—
solving process) given by audio-visual information set in TAV was too
difficult for one group of students and very easy for another group of
students. This means that it is very difficult for the teacher to con-
vey a large-scaled-concept one-sidedly only by audio-visual informa-

tion. However, in T we found that all students always pay keen at-

’
tention. From th:vabove—mentioned, we might conclude that the AV-
Test ( for a example TAV) aiming at the correct combination of visual
information with acoustic image in mind is very suitable for the teach-
ing-learning process where the small-scaled-concepts are treated.

In consideration of the above, by using TAS and TAg , we have de-
signed a teaching-learning process which satisfies the following:

(3.1) The teacher gives the students audio-visual information only
about the small-scaled-concepts.

(3.2) Cmbining the audio information with the visual information, the
students take notes on the concepts given in (3.1).

(3.3) Referring to the notes in (3.2) and hints given by the teacher,
the students are able to construct(or understand) a large-scaled
concept from the concepts in (3.1) at their own paces,

In order to satisfy these three conditions, we combine TAS with TAg

in the teaching-learning process.

We show an example of the teaching-learning process using TAs and

T N We call the teaching-learning process " ( TAS + TAg )-Type AV-

AV
Test". The flow diagram for (TA$¢TA3)-Type AV-Test is shown in (Fig-
3.1). In ( TAS + TAv )-Type AV-Test,we give the students the small-

scaled-concepts at random by television. Therefore, the students are
not able to consider what those concepts mean as a whole. Of course,

the students may ask the teacher about the audio-visual information
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gven by the television,

( Fig-3.1 ) Flow Piagram for (TA5+TA3)—Type AV-Test

Picture sequence given by the teacher

in the teaching-learning process

Acoustic Image Sequence tIn1

corresponding to [ Wnl

Student's Note

r—%. Visualization of Ir

and its combination

Graphically-presented
whole process of thnk-
ing(or problem-solving \\\\
process )

Cloze Test on
the protocol

A -

AV Transfomation
of picture into
word sequence

J and its inverse

Tav

transformation

Jigsaw-Puzzle

on the protocol

(Example

( Fig-3.2 )

Thinking(or problem-
/ \ solving ) process
. C) aurally-presented in

—

the word sequence[wn

Transformation of the protocol

into the spoken language

Protocol: Thinking(or problem-solving)

process given in written symbols

Proof of Pythagorean Theorem ( Part ) )

A
pl/A) /\
B H B C

wl; The angle ABH equals the angle
ABC, Therefore, AABH is similar
to ACBA. Then we have AB:BH=BC:AB.

Therefore, AB2 equals BC times BH.

w2: The point H is on the segment
BC. Then we have the following: BH
plus HC equals BC.

pz
= i C
A A
5
B (6] H (]

w3: The angle ACB equals the angle
ACH. Therefore, 8ABC is similar
to AHAC. Then we have the follo-
ing: AC : HC = BC : AC.

ac? equals BC times HC.

Therefore,
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c . 7
cevssne Tpyeooaoinoo. ((Fig - 3.3 ) cereeen e Thy el
On the right triangle( 1 ), the angle BAC (1)

is the right angle and ( 2 ) is the foot
of ( 3 )on (4 ). On the right triangles
( 5 ) and AABC, the angle ( 6 ) equals
the angle ABC. Therefore,( 7 ) is simi-
lar to ABC. Then we have AB :( 8 ) =(9) (2) (3) (4)
AB. Therefore, ( 10 )2= (11)* BH. Simi- On AABH and ( 5 ),
larly,since the right triangle ABC is sim- LAHB = (6 ) = ( 7 )

ilar to the triangle ( 12 ), we hav; AC [ LABH = ( 8 ).
( 13 ) = ( 14 ): AC. Therefore,(15)“equals

( 16 ) times HC. Thus. we have the fol-
lowing: (17)2+ Aczequals (18)times BH plus
(19)times HC. Since BH+HC equals ( 20 ),
(21)times BH plus (22) times HC equals (23)

Therefore, ( 9 ) » ( 10 ).

Hence AB/(10)=BC/(11l),that is

(12)2 = (13)-BH ......(a)

Similarly, on ( 14 ) and ( 15)
LAHC = ( 16 ) = (17)

. 2
times (BH+HC) equals (24)°. Hence we have _
2 2 2 LACH = ( 18 )
(25)” plus AC” equals (26) ... .. civevrnnnn Therefore, ( 19 ) » AABC.
T
(Ansver of T, ) 1. ABC 2.H 3.A 4.BC 5.4BH Hence AC/(20)=BC/(21),that is
6.ABH 7,MABH 8.BH 9.BC 10.AB 11.BC 12,AHC (22)2 = (23).HC , Thus we have

13.HC 14.BC 15.AC 16,BC 17.AB 18.BC 19.BC (24)2+AC2=(25)2

20.BC 21.BC 22.BC 23.BC 24,BC 25,AB 26.BC
) ) 1.A 2,B 3.H 4.C 5.0ABC 6. LBAC 7, LR 8. LABC

( Answer of TAV 9.0ABH 10.BH
11. AB 12.AB 13.BC 14,MMHC 15.MABC 16, LBAC 17, R 18, LACB 19,MHC 20.HC 21,AC

22,AC 23.BC 24.AB 25.BC e L L

(Step 1) We give the students audio-visual information as shown in ( Fig-
3.2 ).
take notes on the teaching-learning process.

*** In Fig-3.2, Wn and Pn(n=1,2,3) denote the teacher’s voice and the

Cmbining audio-information with visual-information, the students

picture on the television screen respectively.
(Step 2) Referring to the notes, the students fill in the blanks of TAS
and T,§ in (Fig-3.3).
( Remark } The students may check their answer by removing the covering

on the blank , if they want.

4. Some Consideration on the Teaching-Learning Process Using TAS
and T J
L34 c J
The teaching-learning process using TAv and TAV has the following
characteristics.
(4.1) From ( Fig-3.1 ) , it is easy to see that the teaching-learning

process using TAg and TAg is a combination of the test with learning.
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Therefore, the students always develop their thinking unconsciously in
suitable Test-Situation.
(4.2) Obviously, the student’s note in (Fig-3.1) is a kind of set of
right answers to TAS and TAg' so each studert is confident that he can
fill in the blanks of TAS and TAg with the right answers. But the stu-
dents must seek the information corresponding to the blank. Namely, the
students are hungry for the information. Therefore, we may regard (TAV+
TAi)—Type AV-Test as a Intellectual Hunger Situation. e B
(4.3) We tried to give student k his score(Xk) of (TAvﬁTAV)-Test in the
following way. Xk=(number of the right answers)-(l-N/Nk),where N is the
number of coverings, Nkis the number of coverings removed by k. Then the
students showed a tendency to arrange their thinking very carefully.
(4.4) Since the students may check their answer by removing the cover-
ing,if they want, they are always able to develop their thinking abil-
ty at their own paces in (TA$+TA3)—Type AV-Test.

‘Thus we might conclude that (TA$+TA3)—Type AV-Test satisfies the

conditions (1.1 - 1.3).
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3. DEYELOPING AND/OR USING MODELS OF MATHEMATICAL
LEARNING



Developing a Model to describe the Mathematical Progress of
Secondary School Students (11-16 years): Findings of the GRADED
ASSESSMENT IN MATHEMATICS Project.

Margaret Brown, Centre for Educational Studies,
King's College London (KQC)

Introduction
The GRADED ASSESSMENT IN MATHEMATICS (GAIM) Project is developing a method of
recording mathematical achievement for all children throughout the 11-16 age
range. The student profile covers many different aspects of mathematics; in
particular 'process' and 'content' are seen as inextricably linked.
The purpose of the record is
- to enable students to participate more effectively in determining the
direction of their own learning;
~ to motivate students by making them more aware of their own progress;
- to provide full diagnostic information for teachers which can serve as a
basis for curriculum planning;
~ to provide information, summarised to whatever degree is required for
parents, employers, training schemes, further and higher education, head
teachers, and so on.
One major problem was to determine the model of progressive achievement to be
used for the record. An overall structure for this model- was agreed during
1983-4; since then detailed sections of the structure have been proposed and
tested empirically. This paper will concentrate on this issue, although many
other important questions concern the project, such as whether the structure can
be adequately communicated to teachers, children, parents and users, whether the
proposed assessment and recording processes are both feasible and valid,
whether the four aims expressed above are being fulfilled, and so on.
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A model for assessment

The cognitive theory adopted is a constructivist one in which children
progressively assemble and modify their mathematical schemes following the ideas
of Piaget (198d), Ausubel et al. 1978), von Glasersfeld (1981). Hence each
child is likely to have a unique sequence of mathematical development.
Nevertheless it is suggested that within particular concept strands children
tend to follow a similar developmental sequence, although progress in different
concept strands is likely to be to some extent independent. It is therefore
postulated that there are enough similarities between children's developmental
patterns to assume an underlying model of a partially ordered common hierarchy.
Evidence for such a hierarchy is provided by previous research based at Chelsea
College (now part of King's College London) such as that of Denvir (Denvir and
Brown, 1986a, b) at primary level and of the Concepts in Secondary Mathematics
and Science (CSMS) project at secondary level (Hart, 1981).

In order to simplify a complex and largely hypothetical underlying learning
hierarchy for the purposes of assessment, recording and reporting, it was
decided to organise the assessment framework as a profile with two dimensions -
a number of progressive levels and six topic areas (Logic, Number, Measurement,
Statistics, Space, Algebra/Functions). Achievement at a particular level within
a particular topic will be described by a number of detailed 'topic criteria'.
The topic criteria will generally be demonstrated by performance in open-ended
work, either practical problem-solving or an investigation.

The following problems remained:

(a) to determine how many levels should be used;

(b) to determine what topic criteria would be appropriate for each level.
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How many levels?
The CSMS project referred to above identified progressive levels of attainment

(between 4 and 7) in each of 11 mathematical concept-areas (Hart,1981), The
proportion of children attaining each level in each CSMS concept-area was
plotted across the 11-16 age range as in Fig. 1. (Fig 1 also shows the

classification of the various levels into four broad stages.

100 =
°/:) Fig. 1
of .
dge %7 The percentage of children at each
Jroup . .
30 level in each CSMS topic across the 11-
16 age range (data from Hart, 1981)
04
Key A: Algebra D: Place Value &
o]
decimals F: Fractions G: Graphs
504 M: Measurement N: Number operations
vo- R: Ratio RR: Rotation and reflection
V: Vectors.
¥
A2 shows the percentage of children
20
attaining level 2 in algebra, etc.
10 &
0 T 7 T v ¥ 3
" " Y "w 5 %
AGE I Yyends

In spite of some variations between concept areas perhaps due to the different
points at which they are generally introduced into the curriculum, it is

interesting to note both the overall similarity in trends and the generally low
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gradients. 1Indeed if the curves were to be extrapolated (a procedure of
doubtful validity) it would suggest a delay of well over 10 years between the
ages at which high-attaining and low-attaining children achieve the same level,
in contrast to the 7-year difference proposed in the Cockcroft Report (Committee
of Inquiry, 1982, p342).

A possible organisation for the GAIM assessment framework was offered by the
four overall CSMS stages, but the above diagram suggests that it would then take
many years for a child to progress from one stage to another, which would be a
de-motivating factor. Hence it was decided to:

(a) adopt enough levels to on average allow students to progress through
one level per year

(b) define level 1 as that level achieved by all children in mainstream
education by the end of year 3 (age 14)

(c) further adjust the later seven levels so as to match the known
percentages of children gaining the seven grades in the present
national public examinations at 16+ (GCE O-Level or CSE).

This suggested a total of 15 levels for the GAIM assessment scheme with a

theoretical distribution as in Fig. 2, based on the CSMS graphs in Fig. 1.

100 GAIM levels 1
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v j/ — 111 7
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'g &+ // :
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W 40
. ‘/J achieving each GAIM level across the
| 3 12
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2
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What topic criteria at each level?

An outline of what was involved in each topic area was proposed, including
general processes, concepts, representations, skills and applications.
Survey results from the Assessment of Performance Unit (1985) and CSMS (Hart,
Brown et al, 1985) enabled some topic criteria to be allocated to specific
levels by using Fig. 2. (This was not straightforward since the percentage of
children who have achieved a particular criteria is clearly not identical to the
percentage who correctly answer a specific item.) For example the measurement
criterion:

Knows that when a larger unit is used the numerical value will be smaller

than if a smaller unit is used.
could be tentatively placed at level 3 using the results of item 2 on the CSMS
Measurement Test.
However very many of the suggested topic criteria still remained to be placed.
In such cases a conjecture is made using a mixture of teacher judgement and
reference to curricular schemes empirically organised into levels, such as the
Secondary Mathematics Independent Learning (SMILE) scheme and the Kent
Mathematics Project (KMP). The conjectures are then tested out empirically,
first in development trials and later in 25 pilot schools. This is a fairly
crude process since neither the assessment procedures nor the identification of
the attainment-range of classes within the overall population would meet the
requirements of rigorous research. Nevertheless this 'action research' within
the limits of what is possible in a development project with a tight schedule,
will produce a comprehensive picture of children's broad mathematical
development over the 11~16 age-range.

At present levels 1-3 are developed and piloted, and levels 4-8 are developed
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but not yet piloted. The project is due to finish in 1989.

Some examples of tentative placements of topic criteria are given below:

Level 1, Logic: Can use and understand a single system of ordering to locate or
place an item.

Level 7, Statistics: Can choose to find a representative value (mean, mode,
median or some other) to solve a problem, for example in order
to compare two populations.

Level 2, Space: Can draw and interpret 2-D representations of familiar objects

or scenes. These need not strictly be plans, nor to scale.
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An Investigation into the Sensory-motor
and Conceptual Origins of the
Basic Addition Facts
Paul Cobb
Purdue University
This study was premised on the belief that mathematical knowledge is constructed
by reorganizing sensory-motor and conceptual activity. It was hypothesized that
children”s learning of the basic addition facts is related to qualitative
conceptual change both in cases where facts are learned as a family and when
individual facts are learned separately. Steffe et al.”s (1983) counting types
model was used to infer the subjects” conceptual levels. This model identifies
five qualitatively distinct levels in counting but, for the purposes of this
paper, it suffices to consider the distinction between the first four and the
fifth level. The more sophisticated abstract stage is strongly indicated by the
ability to routinely count to solve missing addend tasks. A child might, for
example, solve the sentence 8 +__ = 12 by counting "8 - 9, 10, 11, 12 - 4." The
crucial feature of such solutions is that the child formulates the intention of
finding out how many counting acts he or she will perform when counting beyond
"eight"” to "twelve." This indicates that abstract counters can reflect on a
re-presentation of potential counting activity. Children at the lower enactive
stage find missing addend tasks difficult because they are yet to develop this
ability.

The distinction between counting from “one” and counting-on corresponds only
very roughly to that between the enactive and abstract stages in counting. Some
children within the most advanced level within the enactive stage (i.e. verbal
counters) count-on beyond a re-presentation of the activity of counting from
"one."” These children are infered to be "inside"” the re-presented counting

activity -- they can create a re-presentation but cannot reflect on the result of
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the re-presentational activity.

The specific hypotheses addressed were:
1. The learning of the plus-one fact family (e.g. 2+1, 5+1) is a consequence of
the ability to create a conceptual referent for the first addend without actually
having to count from “one." 1In other words, the child can count-on.
2. The process of learning individual facts separately involves anticipating the
conceptual results of activities that could be carried to solve the facts. These
anticipations depend on the ability to reflect on potential activity -- the child
is an abstract counter.

(A hypothesis concerning the doubles facts is omitted due to space limitations).

Method
Video-taped clinical interviews were conducted with 15 beginning first graders
who were yet to be trained to memorize the addition facts in school. Addition
and missing addend counting tasks involving visible and screened collections (cf.
Steffe et. al., 1983) were administered to infer the child”s conceptual level and
whether he or she could count-on. Basic fact tasks were presented in the
following order: 2+1, 4+1, 3+1, 5+1, 2+2, 5+5, 4+4, 3+3, 4+2, 3+2, 5+2, 5+4,
4+3. These facts were chosen because they can be solved by using the relatively
primitive method of establishing a finger pattern for each addend on separate

hands. Finally, number word tasks were presented to investigate how the child

generated the first successor and the first two successors of given number words.
The child was asked, "Which number comes right after n?" and "Which two numbers

come right after n?" for at least two trials with n less than ten.

Findings
Counting tasks. Eight of the children were classified as enactive counters and
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seven as abstract counters. One of the eight enactive counters and five of the

seven abstract counters counted-on to find sums.

Number word tasks, All 15 children generated both the first successor and the
first two successors of given number words that preceeded "ten" without reciting

starting at “one.

Plus-one facts. The children”s performance on the plus-one facts is summarized

below. The methods subsumed under "Counted from one” ranged from

Counted on at Knew all
least 3 of 4 facts four facts

Counted from one 9 0
Counted-on 0 6

counting the fingers of two finger patterns to subvocally uttering number words.
As can be seen, there is an extremely strong relationship between counting-on and
knowing the plus-one facts that were administered. All nine children who counted
from one were able to generate immediate successors of number words that preceded
"“ten" with ease. This strongly indicates that knowledge of the plus-one facts is
not derived from the child”s ability to operate on the forward number word
sequence. Instead, it is derived from counting, a process in which each number
word signifies a unit of some kind. For our subjects, to know the n+l facts is

“_n

to be able to construct a conceptual entity signified by "n" without have to

count. Consequently, they answered by uttering the immediate successor of "n",

and act that carried the significance of performing one counting-on act.

Remaining facts. The results are summarized in the table below. In general,
knowledge of these facts is related to the ability to abstractly count-on.
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However, one enactive counter who counted from one knew five facts and the

Number of Facts Known
0-1 2-3 4-5 6-7 8-9

Enactive-
Counted from one 5 1 1 0 0
Enactive -
Counted-on 0] 0 1 0 0
Abstract -
Counted from one 1 1 0 0 0
Abstract -
Counted-on 0 0 2 0 3

enactive counter who counted-on knew four facts. Significantly, both children
knew all four doubles facts. oQpe aspect of their problem solving activity
differentiates them from the other six enactive counters. Both children”s
performance on spatial pattern and spatial visualization tasks not reported in
this paper indicated that they had exceptional spatial abilities. They might
therefore have solved the doubles facts by re-presenting and figurally joining
two patterns.

It will be recalled that abstract counters are attributed the ability to
reflect on potential counting activity. Consequently, the five abstract counters
who counted-on might have learned the facts by estimating or gauging where they
would stop counting if they were to, say, perform three counting acts beyond
“"four." In other words, they could anticipate the conceptual result of counting
and so could construct the conceptual entity corresponding to the sum without
actually having to count.

It only remains to explain why the two abstract counters who counted from
"one" knew, at most, two of the facts. The most plausible explanation is that

these children could not reflect on potential counting activity unless they were
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actually counting. The had to actually count from “"one"™ to construct a
conceptual entity corresponding to the first addend but could reflect on a
continuation of that activity. 1In contrast, the five abstract children who
counted-on did not need a "running start" but could take the first addend as a
given (i.e. construct it conceptually) and thus anticipate the conceptual result

of counting.

Discussion
The findings indicate that both the learning of facts by families (e.g. the
plus-one facts) and the separate learning of individual facts are related to
conceptual development == to the meanings children give to addition tasks. With
regard to the learning of families, the findings are consistent with the view
that constructing mathematical relationships involves abstracting from and
reorganizing sensory-motor and conceptual activity. The emphasis on activity is
compatible with an analysis of children”s construction of thinking strategies to
find sums and differences (Cobb, 1983). This view can be contrasted with the
contention that constructing relationships involves internalizing increasingly
complex rules and principles that the adult observer can "see"” in the child’s
environment (cf. Baroody, 1985).

The finding that the process of separately learning individual facts is also
related to the child”s meaning-making activity challenges associationist models
proposed by Ashcraft (1983) and Siegler and Shrager (1984). In particulary, the
hypothesis that learning facts separately involves incrementallly increasing the
assoclation between the stimulus and the answer the child computes appears to be
a gross over-simplification.

The most important pedagogical implication is that enactive counters should

not be drilled on the basic facts even if learning the facts is given priority.
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Although drill-based instruction might be successful with some abstract counters,
considerable evidence indicates that it will be more profitable to encourage the
construction of thinking strategies. And these strategies have as a conceptual

prerequisite the attainment of the abstract stage in counting (Cobb, 1983).
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THE COGNITIVE DISTANCE BETWEEN MATERIAL ACTIONS AND MATHEMATICAL
OPERATIONS
W. Dorfler

University of Klagenfurt, Austria

We are concerned with the relationship between concrete manipulative
actions and (certain) mathematical operations. It is commonly accepted
and asserted that this relationship is a close one and that it could
and should be exploited for didactical purposes. For the cognitive
development of an individual the actions and manipulations are assumed
to be a primary stage out of which and based on which mathematical
operations will grow as a kind of secondary stage or level. Thereby
usually and implicitly a more or less smooth transformation or tran-
sition from the outside world (material actions) to the inside world
(mathematical operations as mental actions) is postulated. It appears
as if this transition were considered as an almost automatic process
and that it sufficed therefore to let the learner carry out the
material actions. According to such a position the mathematical opera-
tion in a way is contained in the material actions and can be iso-
lated out of it by a process of abstraction which leaves aside the
accidental, irrelevant and specific features. This cognitive process
has been termed in different ways; abstraction from the action, reflec-
tive abstraction, interiorization, schematization and others.

Contrary to that in this paper a constructivist position on the

relationship (where it exists at all) material action - mathematical
operation will be proposed. This position is based on the general
principles of constructivism, see for instance [5]. But there are other
sources of evidence from which I draw my conclusions. The first is the
cognitive and psychological status of what usually is called a

mathematical object (like numbers, geometric forms, functions and so

on). These are mental entities or constructs characterized by certain
properties, by relations among each other and by relations to the
material world; compare for this the "conceptual entities" in [61].
Usually these entities are designated by names or mathematical symbols.

What is important here is that mathematical objects in this sense
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psychologically have a great degree of independence and in fact have

an object-like character for our consciousness: we think about them,

we talk about them, we feel their cognitive existence. Of course, these
mental entities are the results of intensive learning processes and
their cognitive reality is increased by mental reflections, i.e. it is
the mental activity which constitutes mathematical objects in the

cognition of the individual.

This description is compatible with the constructivist viewpoint and
with every day experience as well. To use a term from cognitive
psychology: mathematical objects correspond to (well developed)
cognitive schemata or frames. This theoretical description gives some
plausibility to an important feature of mathematical objects: the
individual associates them with material objects as a kind of mathe-
matical property and the respective schema/frame regulates this
association. In other words: one knows which mathematical objects to
associate with which material objects. Mathematical objects then turn
out to represent systems of relations which are constituted by certain
manipulations on or with the material objects (numbers for instance
by counting or measuring), compare [2] and {3]. For the frames to
comprise all this adequate learning activities are necessary which

include the relevant manipulations of experiential objects.

To this psychological status of mathematical objects corresponds their
epistemological status as objects in mathematical theories there termed
as mathematical concepts. The use and treatment of mathematical
concepts as members of theories underlines the independence and auto-

nomy of mathematical objects.

This autonomy is further demonstrated by empirical findings on the
mathematical behavior of students, see [7]. There a clear separation
of mathematical objects from experiential objects is evidenced which
extends to a similar separation of mathematical operations from
material actions. This will partly be due to deficiencies in the
learning process but might be caused by an inherent feature which is

the central issue here and can be expressed as the following:
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Thesis: Mathematical operations (whose operands are mathematical
objects) are not simply contained as aspects or features in related
concrete actions and cannot be isolated from them by simple abstraction.
Mathematical operations have to be constructed mentally and to be
integrated with the actions; they are not obtained by disregarding
certain fearures but by adding additional features (the mathematical
ones). I call this cognitive-constructive process constructive
abstraction which results in a cognitive distance between actions and

operations. On the other hand this construction is initiated, stimu-

lated and controlled by certain aspects of the respective actions

which permits then the individual associating operations and actions
similar to associating mathematical and experiential objects. Mathe-
matical objects and mathematical operations are mentally constructed

in the context of concrete actions but with a definite independence of
and distance to them. Therefore the actions do not completely determine
the operations; different operations can be associated with the same
type of action (and vice versa); of course there are operations which

are not related to material actions at all.

In a way, mathematical objects and the operations with them constitute
for each appropriately trained individual an independent mental realm
which is connected and related to material counterparts by a rich mani-
fold of associations constructed by the individual himself. Official
mathematics is then the language for communicating on these realms

and for formulating properties of its objects and operations.

If one takes this position serious then it will be no longer feasible
to describe the relations between actions and operations as that of the
special to the general or of the concrete to the abstract or of the
external to the internal in the traditional meaning of these phrases.
All these terms have in mind an original union of actions and operations
which is broken up in the course of the (individual and social) develop-
ment. For us there is no such a priori union but a complementary
relationship which is of constructive nature and which is best termed
as that of the mathematical to the material. It appears not to be
feasible to term addition of rational numbers to be more general than
sticking together rods since numbers and rods are incomparable with
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respect to the dimension "specific-general”. Rods are not a subset
of the set of (rational) numbers nor can they be viewed as such (like
the natural numbers for instance). The example which follows will
explain in more detail the general thesis and will give some insight
in the nature of mathematical operations and how they are associated

with material actions by constructive abstraction.

Example: Multiplication. This operation usually is introduced via
actions like this: A child carries bottles from the cellar, 4 bottles
at a time, and 5 times at all. How could one abstract multiplication
5x4 from this action by just leaving aside so-called accidentals?

If you start from the action as you can observe it as an experiential
process you never will arrive at 5x4 by abstracting from irrelevant
features. Instead, one can explain the "apparent" connection of
multiplying 5x4 with this action by the following constructive
abstraction which mediates between the two qualitatively different
levels of action and (mathematical) operation. First, attention has

to be focussed on certain stages in the continuous flow of the action,
compare [3]. We could say punctuation of the process has to be guided
appropriately, compare [1]. Further with these stages and their
elements numbers (more general: mathematical objects) have to be
associated. For that to be possible, the appropriate cognitive schemata
have to be developed by the individual. Specifically, here those stages
are when the child arrives back from the cellar and the numbers of
bottles are the relevant mathematical objects. Further, the number of
visits to the cellar has to be counted. I should emphasize that this
associating of numbers according to my viewpoint is a mental-construc-
tive process which is guided or motivated by the action but which is
not inherent in it. Similarly, the action can lead the cognitive
attention to focus on the change of the numbers (i.e. exchange of
mathematical objects) in the course of the action. This gives rise to
the impression that the action changes the numbers (exchanges the
mathematical objects) which makes sense only after having carried out
mentally all the necessary associations of numbers to stages of the
action. The next step of the mental construction is the mental
establishment of relationships between the associated numbers (mathe-
matical objects in a general context). Of course, there are many
possibilities and just one of them is that between 5,4 and the total
number 20 of bottles. One can say, that the action (and certain goals
of it) via focussing attention induces the cognitive construction of
the relationship or correspondence of 5 and 4 to 20 which is one bet-
ween mathematical objects: (5,4)—»20. It is important to note here
that at this stage there is not yet any "operation" (in the form of

an algorithm) on mathematical objects but just a (static) correspondence
induced by the action and added to it in an integrative manner. The
general form of this correspondence can be described as follow: If

one carries m times k bottles then the total number of bottles
carried corresponds to m and k or to (m,k). This correspondence can be
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presented by a table for instance as it was done before the invention
of algorithms which permit the calculation of the total number out of
m and k. For this to be possible appropriate symbols for the numbers
have to be available (like place value systems). The algorithm (for
multiplication here) can then be viewed as a (material) action to be
carried out on the number symbols such that the same correspondence

on the numbers (mathematical objects) is induced as it has been
induced originally by the action. If one takes multiplication as a
paradigmatic example this can be described in general by the following
commutative diagram:

material action % material
Ob]ei:s transforms e} 2g Gle 2
constructive constructive
association association
Fh &
mathematical induced mathematical
objects ceieareacnnnn RS objects
relationship or T
T correspondence
mental F mental
association "mathematical association
operation"
mathematical . P mathematical
symbols alderithmic = symbols
action

For the developed thinking these qualitatively different levels or
layers coincide since they will be integrated by the same frame/cogni-
tive schema "multiplication". But the development of this frame needs
intensive learning activities of the individual. Especially our ana-
lysis makes clear that the actions will not automatically and by
themselves lead to the cogitive construction of the mathematical
operation (or mathematical objects). Guidance of the learner is
needed to attatin appropriate focus of attention on the relevant
mathematical objects and their changes/exchanges. We mention that for
this cognitive process the use of_prototypes (didactical materials)
is important which by their very structure and appearence enhance
focus of attention on the respective mathematical objects (and their
association with the prototypes).

Using nouns as names for mental entities is an important means for
creating the subjective and cognitive creation of the object-character
for such entities (like mathematical objects). I put forward the
thesis that the use of verbs plays a similar role with respect to
mathematical operations which as analyzed above at their genetic
origin have rather the character of static correspondences. Since

this correspondence is established constructively in the course of an
action one is lead to use phrases like: we multiply 4 times 5 to
obtain 20 even if there is no genuine operation which manipulates

any objects (like number symbols). One can not transform the mathe-
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matical objects (considered as mental entities) in any way but only
their representations by symbols. The "operation" on or with the
mathematical objects is just the putting them in relations with one
another which is induced by actions on prototypical materializations
or on symbolizations. We term this usage of verbs as verbal opera-
tionalization, the action then occurs only in the speech as a speech
act.

Example: Rotation in the plane. In the previous example I have
exhibited the features which I judge to characterize constructive
abstraction. This example will demonstrate the applicability of this
theoretical model in a geometric context. The action here can be:
rotating a wheel, the hands of a watch and the like. The relevant
mathematical objects are then circle and directions (in the euclidean
plane). The mathematical circle cannot be rotated like its materiali-
zations. Focus of the attention on directions (e.g. associated with
the wheel) will construct a correspondence between initial directions
and final directions in the course of material rotations, expressible
as a certain angle . As a speech act this is formulated e.g. as

"each direction is rotated by a certain angle". The mathematical
operation "rotation" then is the corresponding mapping of the circle
onto itself which can be operationalized by matrix multiplication
(i.e. by symbolic actions on symbols for the points of the circle).
This process perfectly fits the general schema depicted above.

Summing up the conclusion here is the following: A mathematical
operation does not schematize "corresponding" material actions (which
might not exists at all) but it is induced by changes of mathematical
objects which are associated with stages and/or elements of ‘the
actions. A mathematical operation is originally static correspondence
which is operationalized by the use of verbs (as speech acts) or by
algorithms on symbols for the mathematical objects. The meaning of
the operation comprises all actions (and algorithms) which induce
correspondences "isomorphic" to the operation.
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ON VISUAL VERSUS ANALYTICAL THINKING IN MATHEMATICS

Theodore Eisenberg Tommy Dreyfus )
Ben Gurion University and Center for Technological Education and
The Weizmann Institute of Science The Weizmann Institute of Science
Israel Israel

At recent PME conferences and in the literature in general researchers have been
strongly advocating the need for special programs to help children and students develop
their spatial visualization abilities (e.g., Ben Chaim et al., 1985; Gaulin, 1985).
Underlying this plea is the tacit assumption that spatial visualization abilities are
necessary, although perhaps not sufficient, for success in higher level mathematics.
Clement (1983) stated that “The ability to perform relevant spatial transformations, ...
(is a) crucial skill for solving non-trivial problems.” Often, statements such as this are
interpreted inversely: If one doesn’t have spatial ability, then one can't succeed in higher

level mathematics.

The Peter principle of management states that a person rises to his or her level of
incompetence. It seems as though an analogue of this principle operates in mathematics
learning: Namely, one continues to take mathematics courses until one doesn’t succeed
any more. In the United States enrollment patterns show two conspicuous drop-off points
(Stanley et al, 1974): High school geometry and multivariable calculus. Both these
courses are highly visual in nature, and both seem to have high failure rates. Is this so

because the students can’t handle the “relevant spatial transformations”?

It is certainly true that spétial visualization plays a role in mathematical thinking in
general, and in concept acquisition and problem solving in particular. But the influence
of spatial visualization abilities may well be highly overrated. In calculus, for example,
spatial visualization is commonly used for explaining the main concepts, the derivative
and the integral; also, it often provides the motivation for the development of
algorithms. But the demand placed on the student for actively applying spatial abilities
is usually minimal. How many students or experts, when faced with finding the tangent
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line to y=x2 at (1,1) or when using Newton’s method, will ‘accompany their solutions by
a drawing? More generally, spatial visualization abilities are usually important for a first
encounter with a concept. But after the concepts have been internalized by the students
and the algorithms have been practiced, the underlying spatial motivations are often

completely abandoned.

Visual thinking might be less natural than we assume (Shell Centre, 1984, p. 18).
Indeed, for many students visual thinking and analytical thinking seem to be
dichotomous modes, with the analytical mode being overwhelmingly stronger, as
measured by the frequency of use. This seems to be happening even though we fight
against it in our lessons and recent textbooks are using far more graphics than they
have in the past. Does visual thinking come naturally to us as teachers of mathematics?
Do experts themselves divorce graphical thinking from analytical thinking and tend
toward the latter if given the choice? This question is not new; mathematical reasoning
patterns have been studied for many years: Hadamard (1945) has classified types of
mathematical minds, and already Poincare (1902, 1904) has contrasted Riemann, a

completely visual thinker, and Weierstrass, a completely non-visual one.
Rationale

The hypothesis of this study is that analytical thinking overrides visual thinking,
even in experts in mathematics. This hypothesis arises from several different sources,
most of which relate to mathematically gifted students. Clements (1984) in interviewing
the mathematically precocious Terence Tao whose spatial abilit.ies are exceptionally well
developed, observed that Terence preferred to use analytical methods whenever they
occurred to him, even when this required more complicated thinking than the visual
methods which could have been used instead. In another study, Lean and Clements
(1981) concluded that “spatial ability and knowledge of spatial conventions had less
influence on mathematical performance than could have been expected from recent
relevant literature.” Similarly, Krutetskii (1976, p.351) observed that neither an ability
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for spatial concepts nor an ability to visualize abstract mathematical relationships are
obligatory in the structure of mathematical giftedness. Burden and Coulsen (1981) even
showed that persons who prefer analytical to visual methods tended to perform better on
spatial tests! Hence, several researchers are saying the same thing: The ability to
visualize may not be as crucial a requisite for success in higher mathematics as we once

thought.

According to the literature, less is known about the role of spatial visualization in
average ability students. In an introductory university level course taught by one of the
authors (T.E.) every inequality problem (more than 30) was solved both graphically and
analytically. The graphical method (Dreyfus and Eisenberg, 1985) was stressed, with its
advantages over the analytical method being pointed out in each problem. But on the

exam less than 5% of the students (n=97) opted for the graphical solution.

Experiment

To explore the above hypothesis, questions were constructed which could be solved
by both a visual and an aqalytical approach. The solution paths were equally likely in
the sense of one not being more obvious or sophisticated than the other. After a pilot
test, some questions were dropped, others revised; eight questions were retained, among
them:

1. Is there a quadratic function whose graph passes through the points (-1,2),
(1,-1), (2,3), and (5,1)?

2. Solve |2x+6| > 3.

3. Find the area enclosed between the graphs of y = x3+5x2+9x+8 and
y = 3x+8.

6. The vectors v=(1,0,-1), u=(-2,1,3) and w=(-3,2,5) are linearly dependent.
What does this mean to you?

8. Among 280 students who were accepted into the Faculty.of Science, 160
had taken mathematics in high school, 130 had taken physics and 160
chemistry. 50 had taken mathematics and physics but not chemistry, 20
had taken mathematics and chemistry but not physics, and 30 had taken
all three subjects. How many of the students had taken physics and
chemistry but not mathematics?
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These questions were given in either interview or paper and. pencil form to three groups
of “experts” in mathematics. These groups were research mathematicians (RM; n=6),
high-school mathematics teachers (MT; n=6), and third year university students (ST;
n=6). A two minute limit was placed on each problem and it was repeatedly
emphasized to the subjects that we weren't interested whether or not they solved the
problem but rather in their method of attack. They were encouraged to think aloud

where appropriate.
Findings

The response of each subject to each question was classified as being analytical (A),
visual (V) or mixed (M). The columns labelled 1 through 8 in the following table report
this classification. Bars (--) indicate that the subject didn’t or couldn’t relate to the
question. The first column in the table simply numbers the subjects within their groups
for easy reference, while the last column contains the subjects’ self-classification (S-C) in
response to the question: “Are you a visual thinker?”. The answers to this question were
classified as yes (Y), no (N) or half-and-half (H).

Classification of responses
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Even a cursory review of this table indicates several striking results:

a. Within the limits of the problems chosen for this investigation, visualizing appears to
be rather independent of the problem type - each problem provoked at least 20%
visual and at least 30% analytical answers.

b. There are visual subjects (RM3, RMS5, RM6, MT4) and analytical subjects (RM2,
MT2, MT3, ST2, ST3, ST5, ST6). Although the research mathematicians were more
visual than the students in our sample they were far from being completely visual.
In fact, RM2 was completely analytical.

c. If any conclusion may be drawn from such a small sample, it is that most research
mathematicians and teachers were somewhat more flexible than the students in
choosing their approach to a problem.

d. Self-classification was accurate among researchers and teachers (with the exception of
MT3 and possibly RM6 and MT1), while the students had a tendency to classify

themselves as visual thinkers even after consistently taking an analytical approach.

Discussion and Implications

The interviewees often made interesting side remarks. One from the RM group
claimed that a majority of women in mathematics are algebraists and therefore non-
visual thinkers. This observation is certainly valid with respect to RM2, a woman
algebraist who repeatedly commented during the interview about her inability to visualize
mathematical structures. To a lesser degree, the observation also applies to MT2, another
woman who, however, attributed her analytical way of thinking.to her education. Several
other subjects (RM6, MT3) also attributed their mode of thinking to the mathematical
education they received. Others stated they had reeducated themselves consciously and
were now thinking much more visually than they used to when they were in college.
RM3, on the other hand, explained his tendency toward visual thinking by his slowness
in thinking about mathematics in general. Several interviewees commented on the-

relation between their familiarity with the topic of a problem and the approach they
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chose; e.g., “This is not intuitive to me, so I can’t do it graphically.” or “I don't know

what to do here; therefore I would first draw.” It is interesting that these comments

s o o s THE STEP TO FORMALISATION KATHLEEN HART
went both ways, in one case even within one subject.
With respect to the curriculum, the results of this study favor a parallel The research project "Children's Mathematical Frameworks" (CMF) was financed by
t topi that i i t topics that i i t
development of topics that are visual in nature and topics that are analytical in nature, the ESRC at Chelsea College during the years 1983-85. It followed and built

as opposed to a sequential approach such as is common in the United States. They also . .
upon the research projects CSMS and SESM (previously reported at PME). In the

favor developing every topic with its analytical as well as with its visual aspects, thus
first, a description of levels of understanding in 10 topics commonly taught in

allowing each student to grasp the material in the way which is closer to his cognitive
the secondary school was formulated from the data obtained from both interviews

orientation. Possessing or not possessing visual thinking abilities should not be used as
and more formal testing. The test results showed that many pupils committed the

the acid test for barring students from studying higher level mathematics.
same error when attempting certain questions. The reasons for some of these
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ix. the transcribing of all the tape recordings;

X. the discussion and analysis of the transcripts.

British primary school teachers have been encouraged, for at least the last

20 years, to use a "concrete” approach to the teaching of mathematics. Their
training has emphasised that young children are able to work with materials when
they may be unable to appreciate abstract statements (a philosophy loosely based
on the theory of Piaget). Over time this emphasis has changed into a series of
beliefs which include (a) formal mathematical statements can be seen as
generalisations made from a series of practical experiences eg the child
recognises the formula for the area of a rectangle from a tabulation of results
obtained by building up rows of tiles to fill a number of rectangular spaces (b)
if a child moves on to a formalisation from practical experiences he can easily
move back to the use of concrete materials if need be (c) children who have
difficulty with remembering the symbolism can be told with advantage to revert
to materials eg "Use the bricks to help you". The CMF data give valuable

information on the truth of these beliefs.

The sample for CMF was composed as follows:-—
classes aged 9-10 years
Equations classes aged 11-13

Enlargement classes aged 10-12

Area Formula 3
3
4
Volume of a Cuboid 4 classes aged 10-12
2
3
4

Circumference of a Circle classes aged 11-12

Equivalent Fractions classes aged 10-12

Subtraction and Place Value classes aged 8-9 and 1 remedial group aged 12.
Each teacher decided on the content and length of time for the teaching sequence
leading up to the formalisation and then designated the lesson in which the
formalisation/generalisation or symbolic form would be introduced. It was this
lesson that was observed and tape recorded by the research team. In some cases

the teacher gave the children material and symbols to work with side by side, on
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other occasions the material was mentioned as having been used in the past (eg
last week) but the lesson itself concerned symbolisation. In one case the
teacher provided an intermediate stage between the use of bricks and an
algorithm when he made “"strokes" on the board to represent the bricks, but this

intermediate step was not positively recommended to the children.

The subtraction algorithm in each of the four research classes was based on
decomposition and part of the teaching sequence was devoted to the relationship
between tens and ones. Prior to the teaching, four out of the seventeen 8-9
year olds interviewed regarding a written subtraction question removed the tens
value first. Later, children were observed to do the same when using Dienes'
multibase and Unifix. With Unifix, 56 - 28 resulted in the removal of three
tens from five tens and then the addition of the "extra 2" to the "6". This is
a straightforward and sensible use of materials to solve the problem but it does
not mirror the algorithm which is seen as the generalisation arising from these

concrete experiences.

The formula for the volume of a cuboid, V = 1 x b x h was taught to four groups
and usually the stage before the triple multiplication was explained by the
teacher as "a layer times the number of layers”. The area formula was seldom
mentioned and children often found "the layer" by counting. In 13 of the 20
cases where a correct general method was remembered three months after the
teaching, it was recalled in the form of "layer times number of layers”. An
additional problem faced by children who remembered that they were expected to
multiply was that they had no method for multiplying three numbers. The lessons
we might learn from these examples are that (a) the method the child uses with
materials is not necessarily that which is generalised in the formula or rule
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and (b) some generalisations are more successfully assimilated than others as in

the case of "the number of layers”.

Sometimes the teachers preferred to teach a group of children whom they regarded
as being at about the same level of readiness for the idea being presented.
Figures 1 and 2 show the performances on subtraction of children aged 8-9 and
taught by the same teacher. The axis across the page is marked to represent the
four interviews and the other axis is marked with typical responses given by the
children (they are not ranked in order of worth although the incorrect methods
are placed lower). Note that it is possible for a child to have a good workable
method (such as "counting-on") prior to the teaching and to replace it with an

incorrect method like "always subtract the smaller digit".
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Figure 3 shows the performance of a group of 12 year olds who were regarded as
in need of extra help. This response pattern more closely resembles the results

expected by teachers, than those shown for the younger first time learners.

The four formalisations discussed here involve operations on numbers and for
completion addition or multiplications bonds are used. Many of the children
observed trying to use these formalisations had neither of these sets of facts
available and so were forced to count. The rules however were not
generalisations of counting and the effort expended by the children was on the

mechanics of finding the correct number rather than interpreting the rule.

Children in the two classes which were taught the formula for the circumference
of a circle retained both the symbolic form and a practical method for finding
the distance round a cylinder. One being used when the radius was given and the
other when it was difficult to find. In most other cases the practical methods
were not remembered. The 10-11 year olds who were learning the rule for
generating equivalent fractions found it particularly hard to provide a concrete
model when they forgot (or did not understand) the rule. One teacher had used
subsets of a set as well as a region model and provided evidence of the
reliability of the rule by appealing to fractions with denominators which were
factors of 12. The other two teachers had drawn (freehand) a circle, or pair of
circles, and called it "a pie” as they subdivided it. The inaccurate division
of circles does not show that 3/7 = 9/21 although if you already know that fact
it might boost your confidence. If you do not know the fact and you are trying
to find through the use of a set of discs, an equivalent fraction, then you do

not know how many discs to take as an initial set and so might reason as Terence
———
5

did:- e

foon Rimp )
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Terence: I'm breaking them up, like we did in class.

Interviewer: I see. They're supposed to be bricks.

Terence: Yes, measuring up .... tenths. How many? +...

Tnterviewer: A/10. T asked was there another name vou could eive to 6/10,
that fraction.

Terence: It's more than half. =

LATER 5) oo O 0 oo o @0

Interviewer: Now, in this list here, I've got a whole series of fractions.

Now, are there any of them worth the same? Could you write down
any which are worth the same? 3/8, 6/12, 6/11, 6/16, 10/26,

9/24.

Terence: draws (b).

Interviewer: Tell me what you are doing. You've done a whole set of little
circles there.

Terence: Yes, 12.

Interviewer: There's 12 of them, yes.

Terence: So .. er.. 12, 6. They would be up to there, see (marks halfway)
six twelfths.

Interviewer: You've drawn 12 circles.

Terence: I marked in 6/12. Three eighths, 1, 2, 3, 4, 5, 6, 7, 8. So the

whole one would be there 00000000 0000 and 3 would be in between.
These two are not the same.

Interviewer: They're not the same. Right. 3/8 and 6/12 ... we've knocked out
because ... Now what did you do? I have to tell the machine what
you did. You put your hand over the last four of those circles.

Terence: Yes, because there's 12 here, but if T put my ... hand over there

to show that was 8 and 3/8 would be there and it isn't the same
as that (pointing to 6 circles). Try 6/11, is the same (counts
from LHs of circles and gets to same point).

To expect a child to invent the concrete model of an abstraction he does not
understand is usually too difficult a task. In most cases the children do not

remember the physical embodiments after the formalistion lesson has taken place

and so cannot refer back to them.
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Meta-cognition: the Role of " Inner Teacher "

Ichiei HIRABAYASHI & Keiichi SHIGEMATSU
( NARA University of Education, Japan )

1. Fundamental Conception and Methodology of Research

Recently, meta-cognition has come to be noticed as an important function of
human cognitive activities among researchers of mathematics education as well as
among professional psychologists. But even the definition of meta-cognition is
not yet so firmly settled, and results from the vresearches have Tlittle
implication wuseful to the practice of mathematics education, only still
remaining at the psychological interest.

In our research, meta-cognition is defined 1in the teaching-learning
context so as to be applicable to the practice of mathematics education and this
is, we believe, the first point in which our research is characterized as being
different from others.

We started from a very primitive view that teaching is a scene where a
teacher teaches a pupil and a pupil learns from a teacher. But in the process
of teaching, a phenomenon which is very much remarkable from psychological point
of view will soon happen in pupil's mind; that is what we called the splitting
of ego in the pupil, or we might call it decentralization in a pupil, if we use
the Piagetian terminology.

Children, as Piaget said, are ego-centric in their nature, but perhaps as
early as in the lower grades of primary school, their egocentrism will gradually
collapse and split into two egos: the one is an acting ego and the other is an
executive ego which monitors the former and is regarded as the subject of
meta-cognition. Our original conception is that this executive ego is really a
substitute or a copy of the teacher from whom the pupil learned. The teacher,
if he/she is a good teacher, should ultimately turn over some essential parts of
his/her role to the executive ego of the pupil, and after then in a mean time
he/she should disappear before the pupil, and in this meaning we refer to the
executive ego or the subject of meta-cognition as inner teacher.

The second point that characterize our conception, is that we come into the
possession of a new methodology to study meta-cognition. Until now, intros-
pection has been almost the sole and often unreliable method of study in this

-165-



area. But in our case, if we study meta-cognition, we only analyze actual
behaviors of the teacher in his/her teaching and closely observe what part of
his/her behaviors could be transformed to a pupil as the quality of pupil's
meta-cognition.

Thus, we could study meta-cognition through analyzing the process of
lessons and could do it in close connection with the practice of mathematics

education.

2. The Aim of Research

Ego-splitting is regarded as a phenomenon in the development of a child,
but it 1is also a thinking phenomenon which can be seen in every place of
learning. Therefore, the study of meta-cognition can be approached from two
points of view: the one is development-psychological which needs a Tlongitudinal
observation, and the other is thinking-psychological and this latter view-point
is our main concern in our study.

From thinking-psychological view-point, the importance of meta-cognition
exists in its activiating function of knowledge to warrant the Tearning
mathematics in its genuine sense. Our aim is to be aware of meta-cognitions
through observing lessons and, if possible, to categolize them along with the
teaching process. And, we hope, the results of our research would be able to
answer to one of the major problems of mathematics education suggested by Dr.
Freudenthal(l): why Johnny can't learn mathematics.

3. Observation of Classroom Lesson Process and Considerations

Most classroom lesson proceeds through some stages as follows:
1) introduction, 2) development, 3) exercise and application,
4) conclusion.

In 1), teacher presents some topic in various kinds which includes
mathematics to be learned in the lesson, and talking about it he/she gradually
concentrates his/her pupils' attention to the mathematical core of the topic.

The stage 2) is the main part of the process. Refering to the introduced
topic, teacher formulates the content to be learned into a problem or elaborates
it as a concept, and ultimately he/she makes pupils learn the method that is
used and the concept that is formed as mathematics.
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Through the stage 3), teacher makes pupils get possession of the knowledge
and skill more firmly.

The stage 4) is the final confirmation of what is learned in the lesson.

Here we confine our consideration to the first two stages, because other
two seems not to have much importance to our thesis.

In general, classroom lesson can be looked from two different view-points:
one 1is as a cognitive process of an individual pupil and the other is as a
social or group process of the whole classroom. These two are dependent to each
other and we never make light of the importance of the latter which is highly
emphasized by Dr. Bishop(2) in his recent papers. But here we will be mainly
concerned about the former process, because this is the better place to observe
the traditional and even current classroom lesson and to illustrate our thesis
in this paper.

At first, we should discern two kind of contents that are treated in the
lesson: mathematical and material. For example, when we are to teach the
addition of the whole number 2+3=5, it is mathematical content, but to teach it
to the 1-st graders, we use some story or situation which includes this
mathematical content. We refer to this story or situation as material content.

In the following we will take notice of a teacher's behaviors and
utterances in each stage of a lesson and consider how they could affect on the
ways of thinking of an individual pupil. When a pupil solves a problem or use
mathematics by him/herself, he/she does not only use the mathematical contents
that he/she 1learned in school, but also needs the 'knowledge on mathematical
knowledge' that is ‘'meta-knowledge'. And it is our aim to illustrate that most
of these 'meta-knowledge' comes from his/her teacher's behaviors and utterances.

1) From Introduction-Stage
We should notice on the didactical roles of 'material content' that was
refered to in the above. Those roles will be mentioned as follows:
(1) The material contents confines the pupils' awareness to the fixed
topic which includes the mathematical contents to be learned.
(2) It will be used as the 'learning-aids' for pupils to understand the
mathematical contents.
(3) It will become a model of applying mathematics to other problems or
in other situations.
The material content is not purely mathematical, but is essential to learn
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or to use mathematics. So we may call it a kind of 'meta-knowledge'. We should
notice to the fact that it is selected and adopted by the teacher and wused by
him/her in the lesson, and that it necessarily reflects the whole personality of
the teacher more or less, and the more effective his/her lesson is, the more
strongly it will control the ways of thinking of the pupil that he/she taught.
In reality, in telling a story and presenting a situation, teacher transforms
his/her behaviors to pupils, including ways of his/her talking, writing and
thinking, and its effect will be the more if pupils are younger.

In this stage of the lesson, a teacher often says as follows:

"Let us consider ...", "Let us try to do ...", "Will you like to do ...",

"I wish you to do ...".

Perhaps these may show Mr. Brousseau's(3) 'didactical contract' but we
fear that these contracts are often made from the teacher's side exclusively,
and this would be the main reason why autonomous or voluntary behaviors of
children are scarcely expected in their future lives from mathematical points of
view.

After pupils are introduced to the situation that is proposed by the
teacher, he/she indicates the problem or conflict imbedded in the situation and
makes pupil think how to resolve the contradiction, and as a tool of solution
he/she often introduces a new mathematical concept.

For examples, in the 5-th grade, teacher begins the teaching of
multiplication by decimal fraction by presenting a verbal problem 1like this:

"What is the weight of oil 0.67 if 1Zis 875g7?".

And discussion follows, making pupil be aware of the fact that they can no
more understand multiplication as an iterated addition.

In this stage, the frame of teacher's utterances is rather narrow:

"How will you do, if ...?", "Can you do anything?"

But the point is whether the problem itself becomes the pupil's possession
or it remains as teacher's. How is it possible that the teacher's problem is
transfered to children and becomes their own? We think it depends on the
teaching ability of teacher but it rather depends on the acting ability of
teacher as Dr.Polya(4) says that teacher should be an actor or actress. This
means that the emotional impression would be one of the essential component of
meta-cognition and of 'inner teacher' who indicate pupil what to do voluntarily.
Indeed, the pleasure of curiosity, excitement of exploration and fascinating

imagination would be essential qualities of meta-cognition in Tlearning
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mathematics and these qualities should be carefully cultivated through all

stages of the lesson.

2) From Development-Stage

In most lessons, this is the stage of teacher's explanation and discussion
among pupils. We do not neglect the importance of the discussion among pupils,
but here we will concern about teacher's explanation, because it seems in our
country that teachers like explanation rather than spending much time for the
discussion among pupils.

These explanations are carried on such a way of talking as follows:

"It follows that ...", "It is because ...".

O0f course a teacher often asks some questions to pupils to confirm or
evaluate their understanding. In such a case, he says:

"That's right.", "Is it true?", "It seems not to be ..."

Clearly the teacher wants to urge pupils' reflection and make them examine
the answer by themselves, but it is important that pupils become to be able to
reflect or examine of their own accords.

In connection with the formation of meta-cognition in this stage, we
should like to mention some noticeable facts in this stage:

(1) In explanation, both teacher and pupils resort their reasoning or
justification to two things: one is logico-mathematical knowledges which are
supposed they have in their intellectual stage, and the other is the material
contents that are introduced at the beginning of the lesson. Naturally in lower
grades, the Tlatter is more often used than the other and the Tlatter often
constitute ‘'meta-knowledge' of mathematics. We often neglect the Tlatter, but
they are as essential as the pure logico-mathematical contents for pupils to
learn or use mathematics. In addition, we should also notice that these two
categories are closely connected to each other. For instance,

8769x0.6(1)=87.6g*6(AL)=87.6g+. euvs. +87.6g
is not purely mathematical understanding; pupils understand this in resorting
to the material knowledge.

(2) Psychologically interesting is that even in a personal thinking there
are two subject of thinking as are in this stage of classroom 1lesson: one
proposes a tentative answer and the other asks its justification, or one asks a
question and the other answers. In a personal thinking, both roles should be
played by a single personality, while in classroom one is played by teacher and
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the other is by an individual pupil. And which of these two takes the
precedence of this process---this is the most critical point. Of course in
classroom the teacher takes, but how is it possible for him to do so? It goes
without saying that teacher knows everything about the problem situation, but
among others the following knowledges would be most related to the questions
teacher asks:

What is the problem all about?

What is the essential point of the probilem?

What connection the problem has to the knowledge that is already in

one's own possession?

These knowledges are different from the mathematical ones to be Tlearned;
they are knowledges about the value of the mathematical knowledges and their
connection to oneself, and without these knowledges, one can't develop his/her
thinking by oneself even in the same situation where one learned. We may say
that he/she needs a teacher in him/herself who proposes an appropriate question
and properly examines the answer to it. This inner teacher would be a copy of
his/her teacher in school. This means that the ways of questions and that of
evaluations made by the real teacher will be come meta-knowledges of the pupil,

for better or worse.

4. Concluding Remarks

We are often inclined to emphasis only the pure mathematical knowledge in
its education, but in order to make them activate in pupils, we should notice
another kind of knowledge, that is 'meta-knowledge' of mathematics. We argued
that this comes from the teacher's behaviors and utterances in the classroom or
even from his/her whole personality. To collect these knowledges and arrange
them into some categories is our aim, but this aim is not completely attained in
this paper and we eagerly wish to continue this research furthermore.
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ning : & longitudinal analysis _of the pr ive growth of

competence in childrendoing Logo

Tamara Lemerise, Psychologie, Université du Québec 8 Montréal
Héléne Kayler, Mathématique, Université du Québec 8 Montréal

Since the very first of Papert's reports on Logo (Papert 1972, 1979 ) there has been a strong belief by

many educators and researchers that learning to program in Logo may greatly enhance the development of
thinking. However, a great deal of the data offered up to now to support such a belief are generally held

by hard-core researchers as anecdoctical (Krasnor, Mitterer 1984); indeed, even if anecdoctical data
can be judged interesting in themselves, being often powerfully illustrative and at times quite
convincing, they do not yet have the power to demonstrate the real cognitive effects of Logo. In an effort
to be more rigorous toward such a demonstration , Peaand Kurland 1983 borrowed from the classical
trend of assessing learning by measuring the level of generalisation of the "presumed” acquired
knowledge. But &s underlined in Papert’s criticism (Papert 1984), the presence of serious
methodological flaws in this approach leads more to an impass than to a solution. Furthermore, it
seems that until we have gathered data on what and how the child learns while working in Logo, the
generalisation appraach will be quite hazardous.

In the search for the kind of specific knowledge acquired by a child while working in a given Logo
environment, it may be interesting to investigate the different competencies manifested and developped
all along the working sessions. Competencies is mainly defined here by the "savoir-faire" dimension,
the role of own's action in the learning process ( the “how todo”, the “knowing how todo”  borrowed
from Ken Low's theory of competence ( 1983)). In the Logo context, we presume that the child's actions
while interacting with the turtle follow a logic of its own: the logic of the actions characterising the way
the actions are organised and linked one to the other. It is presumed too that, through successive
experiences , the logic underneath the child's ections will evolved with the variety and level of
sophistication of the actions made. So a rigorous and long term analysis of the observed actions of the
children in their day to day learning experience in Logo should allow revealing the epistemology of
their learning processes. In a way, this quest concerning the epistemology of the childrens’ learning
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process cuts across Papert's notion of fragmented knowledge (Papert 1984). Indeed it calls for

gathering data on how the child progressively modifies, through his work and experience, his initial
pieces of knowledge or his initial competence and how he progressively “picks up some of the pieces and
puts them together” (Papert 84, p. 12), changing at the same time the nature of his competence.

The research paradigm used by Lawler ( 1981) offers an interesting alternative for the study of how
Logo may affect the development of competencies in children. Lawler rigorously traces the progressive
construction of knowledge of a child through a long term analysis of all the competencies and skills
effectively shown while workingona specific subjet matter in various real-life microworlds. Even
if the present research context does not allow fellowing the observed children in different
microworlds, we still have a great deal of data from which we can analyse the course of development of
one, two or more competencies in the single turtle geometry microworld. It seems to us, for example,
that a long term chronological analysis of all the different uses of importent notions inherent to Logo
(procedural thinking, iteration , variable , and so on) by different target children, may allow tracing
the evolution of competencies and thereby facilitate the identification of what was effectively learned by
each child and how it was learned.

The resedrch presently underteken aims at analysing the course of development of two main
competencies in Logo: the ability to program in @ procedurel way (linked to the development of
procedural thinking) end the ability to work with the repest command (linked to the concepts of
iteration and multiplication - c.f. Kayler 86). In this paper we shall explore the various types of
progress made by different children in their use and orgsnisstion of the procedural thinking through
their year long contact with Logo. In an other paper (Lemerise 86), a similar analysis is undertaken
but in this case for the repeat command.

We are now in the second year of following a group of 21 students aged between nine and twelve years old,
who come once & week to a leboratory equiped with eight computers. Children work either in pairs or
alone for approximately an hour each week. Most of the time children work on a personnal project and,
in general, take three to four weeks to achieve what they undertook. The dribble files and the protocols of
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the observers constitute our main sources of data. Four observers systematicaly follow eight target
children during each of their working sessions; the other children are alsoobserved, but on an irregular
basis. The Logo environment provided is rich in support (the observers are participant-observers
guiding the child when need be) but low in formel instruction.

The protocol analysis (from dribble files, observational records and production’s analysis) reveals very
interesting progressive steps in the elaboration of the procedural action. We intend to present here a few
“developmental cases” each one starting with 1) a description of their bese line competency; 2) @
summary of their successive types of procedural uses -the way procedures, subprocedures and
superprocedures are each time orgenized - ; 3) the observed links between succesive types of use (what
events give birth to the new way of using subprocedures, for example); 4) the verbalisations of the
child, when available, relative to the present topic, and finally 5) the level of competency resched at the
end of the school year.

Even though slight differences may appear according to the age of the child (9,10 or 11 years), the
personnal working style or the different nature of the chosen projects, a general pattern of six
developmental steps characterizes the path usslly followed by our young boys and girls in the
progressive building up of procedural competencies.

Level 1: Charactarized by the absence of subprocedure. There is one main procedure usually with a long
string of commands. The procedure is seen as a saving device and the child's actions are planned
“de proche en proche”. At the follwing session, the procedure is called back and new commands are
added; this procsss is repeat until the project is finished.

Level 2; Subprocedures appear, but mainly because of a time constraint, the working sesion being over.
For exemple, at the end of session 1 the child saves under ROBOT what he hed time to do; in session
2 he saves under a “new” procedure ROBOTZ his first part (ROBOT)plus & series of new
commands.... and so on until completion of the project. Here the child lives a very first level of
experience with the embedding of a procedure in a superprocedure.

Level 3 : Now subprocedures correspond to parts of the child's project, but most of the time the parts
are either time defined or 1inguistically defined. As in this exemple, where the child wants to do
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asubmarine. In the first session there is only time to do the front part, so he saves it under SUB.
The rear part of the submarine is finished during the second session and saved under MARINE.
Then it is easy to think of editing a superprocedure SUBMARINE. In general children love those
"words game" and through them exercice a lot of their procedural competencies. Take another
child, who in the midst of a session defines R for a part of her robot's leg; then later RO (including
R plus other commands) for the right side of the body, and then ROB ( beginning with RO) and so on
until ROBOT is completed. Here esch procedure does not correspond to a real part of the object,
what seems to determtne the content of each one is more the number of commands involved, so they
are more eaSy to correct if their is a bug | The next project of this child is a rocket (Fusée, in
french), where the procedure F stands for the bese , U for the body, S for the head, E for an
antenna and because there's a E left amoon isdefined. It is of course very essy after that to create
asuperprocedure FUSEE. And it is thoss two successiva experiences that bring the child to level 4.

Level 4: Here subprocedures correspond to logical parts of the project and are often embedded one in
the other. in general, the main lines of the action are planned in edvance, but still a lot of
organisation of the action emerges during the process itself. A child plans a bird with a head, a
body, some feet. While constructing the contour of the head, she thinks of the parts inside ( mouth,
nose, eyes); similarly, while doing the body, she thinks of the wings. So at the end she hes a
superprocedure BIRD calling for HEAD, BODY, WiNGS and FEET; then HEAD is composed of three
subprocedures MOUTH, NOSE, EYES and WINGS for its part contains RIGHT.WING and LEFT. WING.
Of course, here the procedures are not at all exportable, being dependent on one another. Indeed,
the interface between procedures is undifferentiated from the other commands, being either at the
end or et the beginning of pert's procedure.

Level 5: The subprocedures are logical parts, nicely embedded and some of them are easily exportable
and transformable. Frederic had already defined CIRCLE in a previous session. He first exports
the procedure to define ZERO in his number project, then he uses it again for the TEN, NINE and
EIGHT. In a subsequent alphabet project CIRCLE is again called for to produce the letters b, d and
p, but it is quickly transformed in HALF.CIRCLE so the previous letters have a nicer look. Then
HALF.CIRCLE is transformed too in two new subprocedures HALF.CIRCLE 1 and HALF.CIRCLEZ for
the need of specific letters. This fith level is already quite sophisticated for our children, but
what is still missing is the ability to cope in an organized way with the interfaces. When Frederic,
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for exemple, wants to write various names with his alphabet he still has a hard time with the
interface between each successive letter.

Level 6 : Hare, planning the organisation of the interface is also view as a procedural process. As for
instance in the project WIZARD, where each part or the weird man was constucted separately and
the interface defined afterwards in a procedural mode . Six MOVE were defined going from MOVE.O
to MOVE.S. Again in a CHECK-BOARD praject where subprocedures were create to produce an
empty square, a filledsquare , a line of squares; two subprocedures were specifically made for
the trajectories of the turtle between two lines of squares | Finally a superprocedure for the
whole check-boerd was constructed. So this is the top level of sophistication we observed in our
study. It must be mentionne that our children rarely use procedure with variable and being so,
they did'nt heve the opportunity to teckle what Hillel and Samurcay ( 1985) defined as procedures
composed of generatized subprocedures.

In a way, the levels describe above heva a lot in common with what Noos (1985) observed in his
exhaustive study. But even if these levels are interesting pgr sg, they are even more so when one can see
how each child goes through them and what kind of context he/she nedds to be able to do s0. This is
precisely what the data from the "developmental cases” allow us to see. These data mey too by the same
occssion answer some of the questions posed by Hillel and Samurcay in their search of what can bring
conceptual change in the child's view of procedures.
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Introduction, This talk presents a theoretical model to help explain the vitality of
the computer for one fundamental aspect of mathematics education. I start from the
premise that in order to gain any significant and useful understanding of a
mathematical topic, the student (or professional mathematician!) needs to have both an
‘analog’ and a ‘digital’ representations of the subject, as well as the ability to shift
frequently and easily between the two. (Eg. Davis & Hersh "The Mathematical
Experience", pp. 301-318.) I shall not attempt here a definition of the ‘analog vs.
digital’ terminology. Its meaning can be gleaned from the examples, as well as from the
following list of closely related pairs of terms: intuitive vs. analytical (or formal),
global vs. local, spatial vs. sequential. (Seeing these terms, one is tempted to assign
analog and digital thinking to the right and left hemispheres of the brain, but this
would be both irresponsible and unnecessary.)

Examples: In geometry, the analog representation roughly corresponds to what
might be termed ‘geometrical (or spatial) intuition’ - the ability to see in the mind’s
eye figures and relationships, as well as the ability to mentally perform various
operations on them. Digital representations may range from simple verbal descriptions
(‘the diagonals in the parallelogram ABCD bisect each other’) to algebraic
representations of points, lines and curves in analytic geometry. In elementary
arithmetic, children are given an analog representation of the number system via
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Cuisenaire rods. In music (to take a non-mathematical example) written sheet-music is
a digital representation of the music we hear and play ‘analogically’.

The educational problem. These examples help illustrate the claim that at the end
of a successful learning process, the learner should ideally ‘own’ not only the two
types of representations, but the eqguivalence between them as well. Analog
representation is important for the creative aspects of mathematics (making
conjectures, solving problem, discovering proofs, etc.), as well as for meaningful
learning (giving intuitive meaning to the manipulation of symbols). Digital
representation is important in order to check our conjectures more objectively and
rigorously, and for certain modes of communication (eg. tex tbooks, programming).

Traditionally, maths education suffers from ‘digital chauvinism’y which results in an
impoverished mathematics (neglecting analog aspects) on top of an impoverished
learning process (neglecting students’ analog powers). But even when one comes to
recognise the importance of analog thinking, it is not easy to design learning
environments which promote this kind of thinking, especially the frequent shift
between the two modes to help establish the equivalence between them in the learner’s
mind. This is precisely where the computer steps in.

The digital{->analog cycle. Consider a child programming a HOUSE with the Logo
turtle (ory similarly, shooting arrows to pop balloons in Darts, or building logic
machines in Rockie’s Boots, etc.) The child starts with an analog representation of the
house (a mental or actual picture) and is trying to teach the turtle (ie. the computer)
how to draw it. The turtle, however, understands only ‘digital’ instructions (like FD
100, TRIANGLE, etc), so the childy on her own initiative, starts translating her analog
house into a digital one. Let us suppose she runs into the famous ‘interface’ bug,

attempting first the following procedure (Fig. 1):
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TO HOUSE
SGUARE
TRIANGLE
END
The turtle, having been instructed to draw the house via the HOUSE procedure,
translates this digital description back to an analog one, and draws the buggy picture
on the screen. The child is struck by the discrepancy between her original picture and
the one produced by her instructions to the turtle (children literally jump here with
surprise). Consequently, she becomes involved in a rich digital{-*analog comparisons
and conversions as she is trying to debug her procedure. Eventually, after many cycles,
a digital equivalent of her picture is produced:
TO HOUSE
SQUARE
FDSORT 30
TRIANGLE
END
Let us consider the foregoing interaction from a more abstract perspective. We view
. the two participants in the dialogue, the child and the computer (or the turtle), as
having complementary roles in the action-feedback cycle (Fig. 2). The child inputs
analog representations (pictures) of the house and outputs digital representations
(symbols in a programming language). The computer inputs digital representations (the
child’s typed instructions) and outputs analog ones (drawings on the screen). The
computer’s analog output is input by the child and the child’s digital output is input by
the computer. The cycle is formed by the child acting as an analog-to-digital processor
and the computer as a digital-to-analog processor. During the many cycles of
debugging and executing the HOUSE procedure, there is a constant translation between
the analog and digital representations of the house, until a perfect match is achieved -

the symbols actually produce the desired picture. The child have actually established

an equivalence between the two representations.
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Remarks: 1. In some educational activities (Teacher: "Here is a turtle-procedure.
Can you guess what it will draw?"), the flow in the cycle reverses direction: The
children are given a digital representation and are asked to ‘play turtle’ and find the
corresponding analog representation.

2. It can be demonstarted that it is really the presence of both the analog and the
digital modes, and the interaction between them, which accounts for the educational
power of most good maths-educational software (see the dotted lines in Fig. 2). To see
an interaction that is purely in the analog mode, short-circuit the analog<->digital
cycle on the analog side (eg. have the child drive the turtle with a joystick) and your
valuable software has degenerated into a space game. To see an interaction that is
purely in the digital mode, short-circuit the cycle on the digital side (ie. have the
computer answer with letters and formulas instead of pictures), and you get the sort of
interaction that is typical in standard computerised-book CAI.

1s the computer really necessary? This model accounts for the vitality of a
(graphically-equipped) computer in such processes - it really takes the full power of a
computer to process alphanumeric characters into pictures. Compared to conventional
materials aimed at the same goals (eg. rods, blocks or boards), the computer offers
both a quantitative and a qualitative leap. Quantitively, there are simply many more
opportunities to create analog representatiopns with the computer than with
traditional materials, especially when dealing with dynamic aspects of mathematical
phenomena. Consider for example Sprites, Darts and various graphical representations
of limit processes in calculus.

Qualitatively, the computer is the only medium that can do digital-to-analog
processing, thus enabling the cycle in which the child does the reverse
analog-to-digital processing. With Cuisenaire rods, for example, the interaction is

purely in the anmalog mode. The rods themselves do not in any way support the
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development of the all-important equivalence between the two modes. It requires
teacher-assigned excercises, and teacher evaluation of the performance on these
excercises, to extract the relationships between rodes and numbers. In Logo, in
contrast, the equivalence between the numbers that occur as inputs to FORWARD and
the distance traveled by the turtle, is developed naturally and spontaneously through
the interaction with the turtle. Beside being more effective, this interaction makes it
possible to transfer much of the control of the learning process from teacher to child,
and to replace teacher evaluation of the child’s work with objective, non-jdgemental

feedback from the computer.
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MASTERY LEARNING AND DIAGNOSTIC TESTING
Dr Graham Ruddock

National Foundation for Educational Research in England and wWales (NFER)

since 1983 the NFER has been undertaking a feasibility study on Graduated Tests
for Lower Attainers in Mathematics. The project, which deals with pupils in the
13 to 16 age group, is due to finish at the end of 1986. The work, sponsored by
the Department of Education and Science and the Welsh Office, derives from a
suggestion in the report of the Cockcroft committee ! (1982) that consideration
be given to investigating the feasibility of such assessments. Under
examination are the feasibility issues concerned with the development of a
series of criterion referenced graduated tests which demonstrate mastery by the
pupils by means of high success rates on mathematical activity of value. 1In
addition, it is felt to be important that the assessments considered should be
of value in the diagnostic sense. The content of the assessments is guided by
the "Foundation List" of mathematical topics proposed by the Cockcroft
committee, and a range of assessment modes, including mental, practical and oral

is involved.

A variety of issues need to be considered, and in this paper two related
concerns are focussed upon, mastery learning and diagnostic testing. In turn,
four separate issues can be derived:
(i) how can performance be described?
(ii) is performance as described by a criterion statement consistent for
different contexts and other variables?
(iii) how can 'mastery' be defined?

(iv) what is the relationship between 'mastery' and diagnostic assessment?
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(i) How can performance be described?

The identification of practicable criteria is crucial in any criterion referenced
system, and the question of practicability needs to take account of the needs of
the potential audience. On the one hand criteria need to be sufficiently
specific to define the domain accurately enough for appropriate assessments to
be constructed, while on the other hand information about a pupil's success on a
criterion needs to be useful to a range of audiences. Pupils themselves,
parents, and employers have to be considered as well as those directly involved

in the mathematical education of the pupil.

The process of analysis of the subject matter in terms of the skills, concepts and
strategies required tends to lead to a large number of specific criteria. At
this stage of the pfoject's work, it seems likely that proliferation of criteria
and high degrees of criterion specificity are features which audiences other
than assessment constructors and designers of course materials find unhelpful;
the information is at too great a level of detail. The question of breadth of
description 1is clearly one which depends in part on the consistency of

performance as well as on the manner in which criteria are derived.

(ii) 1Is performance as described by a criterion statement consistent for

different contexts and other variables?

As an example, the task of reading tabular data produces a range of facility
values and the factors shown below are associated with difficulty:

- single or double entry table (one way on two way table).

- search requirements (how easy is it to find the information)

- interpretive requirements (eg. 'When is it hottest' has to be interpreted

as 'Which month has the highest temperature’).
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- Computational requirements ('What is the cost of 2 days bed and breakfast
compared with 'How much is bed and breakfast?')
1f these factors are related to success rates the picture is as follows for a

sample composed of the lowest 40% of attainers in mathematics:

Facility Single/Double Task demands
in sample Entry Search Interpretation Computation
> 90% Single low low none
80 - 90% Single some low none
70 - 80% Double low low none
60 - 70% Double low some none
20 - 60% Double (one or more of search, interpretation
demands high or computation required)

It can be seen that a simple criterion for the task of reading tabular data
would involve considerable loss of accuracy, while a set of criteria taking into
account these findings would involve a high degree of qualification in terms of

conditional statements.

As a further example, if whole number place value is considered, a crucial
factor is whether the pupil is required to consider positive whole numbers as
complete entities or must consider the column (or place) value of each digit.
For the same sample as above, success rates for ordering whole numbers or giving
a whole number between two given whole numbers are 95%+, but items on column

values produce facilities of 50% to 80%.

The context in which a task is placed also affects success rates and errors

made. Several factors have been identified with regard to context, and a
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central feature appears to be the degree to which a context allows the pupil to
use a range of approaches which avoid difficult pieces of mathematics. Contexts
where what is mathematically a division can be conceptualised as an addition,
subtraction or multiplication are helpful, as are contexts which allow tasks

involving decimals to be successfully approached using whole numbers.
Given this rather complex situation of performance being affected, inter alia,
by complexity and context, the further question of how mastery can be defined

needs to be considered.

(iii) How can mastery be defined?

Two central themes are seen as important; mastery for what purpose and the
technical issues which need to be considered following a decision on purpose.
The question of mastery for what purpose can be seen in the light of several
examples of existing forms of assessment. In a British driving test, incorrect
performance of certain manoeuvres leads to failure, but certain faults may be
compensated for by good performance elsewhere. In training an airline pilot, no
such compensation is allowed. In education, as opposed to training, criteria
are generally not so directly applicable to future tasks and the aims are often
summarised in terms of basics on which future training might build, or general
preparation for tasks likely to be encountered in everyday life. Given this
less specific range of aims, it seems likely that in the educational context the

working definition of mastery can be, and should be, more flexible and forward

looking.

Following this view 100% success is seen as being too strict a requirement, and

the project has been iboking at the effect of setting different pass marks for
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jtems grouped by difficulty level which all test common subject matter - a
topic or process for example. The results suggest that in the topics so far
examined the pass mark, when varied between around 65% and 85%, produces
comparatively little difference in the number of non-scale types (pupils who
pass more difficult groups of item having failed easier groups) but does, of
course, alter the proportion of pupils classified as being proficient. In any
event, the number of pupils having non-scale response patterns has been very

small, less than 5%. This suggests that flexibility with regard to pass marks

is available.

Flexiblity will, anyway, be required in situations where there is no clear cut
method of deciding what a correct response is. The tasks pupils are required to
tackle include practical work, problem solving and items on both estimating and
approximating. In such cases there is often no clear cut off point for success.
The demands for accurate measurement of success will need to be moderated by the
need to produce a workable system capable of producing useful information. This
concept of useful information is seen not only as covering mastery, but also

indicating pupils' difficulties and identifying the sort of error made.

(iv) What is the relationship between 'mastery’ and diagnostic assessment?

At first glance there is a conflict between assessments for mastery and
diagnostic wuse. High success rates are implied by mastery, while diagnostic
assessment usually derives from incorrect responses. In an ideal system pupils
are only entered for a test of mastery when success is highly probable, and
failure to achieve mastery, however defined, should be uncommon. The resolution
of this potential conflict between mastery and diagnosis is seen as the use of
similar assessments during the instruction and learning processes where
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diagnostic properties can be fully exploited. The presence of the same
diagnostic properites in the final assessment to check on mastery is seen as a
back up procedure. A range of assessments with diagnostic properties has been
developed. An example is the item below which is designed to test decimal place
value by looking at the ability of the pupil to place in order decimals

representing lengths:

Sarah measured the lengths of some sticks in metres: Selected by
Stick A 0.625 metres 14%
Stick B 0.25 metres 4%
Stick C 0.375 metres 0%
Stick D 0.125 metres 4%
Stick E 0.5 metres 74%
Which stick is the smallest? Stick

The correct response (D) 1is very rare, the task is too demanding for current low
attainers. What is significant is that nearly three gquarters of the pupils
tested select (E), a response suggestive of ordering whole numbers rather than
decimals. The 14% choosing (A) give responses consistent with the "largest is
smallest" error made in such situations. The item is useful in providing
guidance as to whether a pupil may hold either of these incorrect views on the

nature of decimals.

The paper here has discussed the general aims of mastery and diagnostic testing

and more detail will be provided in the research report to be presented.

1
The Cockcroft Committee (1982) Mathematics Counts. LONDON: HMSO
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STUDENT CCGNITIVE ABILITIES AND CURRICUIAR COGNITIVE CEMANDS

IN ELFMENTAFY SCEOCL MEASUREMENT, GEOMETRY, ANC GRAPHING.

Thomas L. Schroeder, Pruce Harrison, and Marshall F. Bye

University of Calgary, Alberta, Cenada

The "2ssessing Cognitive Levels in Classrooms” (ACLIC) project was carried
out during 1982-8S to answer the guestion: Is there a reasonable fit between the
instructional demands implied by the Alberta Flementary Mathematics Curriculum and
the cognitive levels demonstrated by students in these mathematical topics? A
comPlete report of the project is available elsewhere (Marchand, Bye, Barrison, &
Schroeder, 198%), but the Project's methods and findings with respect to the
Measurement and Geometry (including CGraphing) strands of the curriculum for Crades
1 to 6 (ages 6-11) will be described in this paper.

Pupil cognitive assessment procedures including individual interviews (for
Grades 1 to 3) and paper-ané-pencil tests (for Grades 2 to 6) were developed for
key spatial concepts. The interview tasks were adapted from the Piagetian
literature, while paper-and-pencil tests were assembled mainly from items of CSMS
(Part, 19€1) and RCER (Cornish & Wines, 1978). The same criteria used in the
making assessments of student responses were applied to four components or aspects
of the curriculum: objectives, textbook materials, classroom activities, and
Alberta Education Achievement Test items. These produced the assessments of the
curricular cognitive demands. Two-sample Kolmogorov-Smirnov (K-S) tests were used
to determine whether there were significant differences between the distributions
of levels of student cognitive responses and the respective distributions of
curricular cognitive demand levels.

Figures 1 to 4 give details of the sample sizes and distributions of levels

observed and the results of the K-S tests.
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Figure 1: Pupil Response and Curricular Demand Contrasts, Measurement, Crades 1-3

Gr.1 Interview = PO EC LC K-S D#*
Ratings 64 21 15 Probability
60 pupils % ] % Decision
Gr.1 Curric. PO EC LC =0.3
Objectives 26 42 32 p<0.001
19 items % ] 1 Reject
Gr.T Textbooks [ PO EC LC =0.
{Measurement)y— | T 81 12 p<0.001
297 items % ] .3 Reject
Gr.1 Classroom EC EF D=0.651
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68 minutes % % Re ject
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24 items % % % _Reject _
Gr.2 Textbo Bks'% EC “IG =0.
43 56 p<0.001
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EC-Ferly Concrete;
*-Kolmogorov-Smirnov Two Sample Test

LC-Late Concrete;
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Figure 2: Pupil FResponse and Curricular Demand Contrasts, Measurement, Crades 4-€
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Figure 2: Pupil Response and Curricular Demand Contrasts, Ceometry, Grades 1-2 -
Figure 4: Pupil Response and Curricular Demend Contrasts, Geometry, CGrades 4-6
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Considering both the numeric and the spatial strands of the curriculur, it

was found that the cognitive demands made by the curriculum and its
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interpretations corresponded reasonably well with the distributions of student
cognitive responses. In most topics and 2t most grade levels there were some
matches, some cdemand distributions significantly lower, and some cemand
distributions significantly higher than the corresponding student response
distributions. In Geometry (including Graphing) 40% of the demend distributions
matched the relevant distribution of student responses, 45% of the cdemand
distributions were significantly higher, and 15% were significantly lower. The
best fit was found in Grade 4 Ceometry & Graphing where all three of the demand
distributions matched the response cistribution. Bowevr, the findings in the
Measurement strand were dramatically different from those of other strands. 211
of the Measurement demand distributions in all six grades were significantly
higher than the corresponding distributions of pupil resgonses.

The striking mismatch between levels of curricular cognitive demand ané
levels of students' responses in Measurement suggests a need for materials and
teaching approaches that would "bridge the gap" between demands and demonstated
cognitive abilities. Further discussion of the Project's findings ané
recommendations, as well as some recently developed classroom applications of
these and similar assessments will be given in the presentation.
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Cognitive Structures of Algoritlmic Thinking
Inge ScAwank
Farschiurgsinstitut fir Mathematikdidaktik, Qsnabrick

1. Introduction

puring the recent years we have studied how children at primary and early secondary
jevel form concepts in the field connected with camputer programming. Our interest
was to describe and understand fundamental cognitive processes which are running in
sameone while he is concerned with the invention and analysis of algorithms. Our me-
thodology is to observe single pupils when they are dealing with algoritimic problems
presented by the researcher. In this paper we will try to combine 3 aspects of recent
research in this area: the role of extermal representation of a concept, the irmer
cognitive structure and individual different cognitive strategies. We are dealing
with these 3 gquestions under the special aspect of algorithmic concept formation but

we are corvinced that our observations and hypothesis are fundamental for a broader

area of mathematical thinking.

2. Rundamental ideas

One fundamental idea concerning the understanding of concept formation processes in
the field of computer programming is the following: The invention of an algorithm
is regarded as the problem of organizing elememtary actians, which the camputer has
to execute, rather than the structuring of the given problem (OCOHORS~FRESENBORG
1982). In the beginning this idea was the basis of a course to introduce fundamen-
tal ideas of computer programming to children at early secondary level (OOHORS-
FRESENBORG/GRIEP/SCHWANK 1979,1982) .

The second idea is concerning the cognitive strategies. In some case-studies with
10 years old pupils which were inventing automata networks with the didactical mate-

rial Dynamic Mazes (OCOHORS-FRESENBORG 1978) we found out, that some of the pupils
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prefer a strategy, which we classified as sequential thinking (SCHWANK 1979).

The third idea is concerning the role of external representation of an algorithm.
Classroam-cbservations and case-studies had shown that there exist differences,
whether an algorithm was invented by playing with match-sticks for organizing acti-
ons with natural numbers, or as a camputation-network with the Dynamic Mazes, or
immediately as a camputer-program. An analysis concerning the role of different
external representations can be found in OOHORS=-FRESENBORG (1986) .

In SCHWANK (1979) we find the idea that the specific mathematical structure of the
Dynamic Mazes, namely that they are sequentially running, may support a specific
way of problem solving behaviour: sequential thinking. On the other hand we find
the idea, that the three mentioned forms of representing an algorithm form a hie-
rarchie. This was the basis for the lesson courses in the beginning (COHORS-
FRESENBORG/GRIEP/SCHWANK 1979, 1982).

The last idea deals with the difference between inventirg and analyzing an algo-
rithm. Even in the beginning of teaching algorithms with the Dynamic Mazes in 1975
we find both types of problems: Inventing a network for a given functioning of an
automaton and analyzing a given network by writing down its autcmaton table

(OCOHORS-FRESENBORG 1978) .

3. Experimemntal research

In several pilot studies there was worked out the following design (COHORS-FRESEN-
BORG 1982,1983): In a situation which may be described as a clinical interview a
set of tasks is presented to the pupil by the researcher. The different tasks be-
long to three categories: in a amstructive task the pupil has to invent an algo-
rithm, in an amalytic task it has to analyse a given algorithm and in a debugging
task it has to analyze a given algorithm which contains an error, and after finding
the mistake it has to repare it. If the pupil can not solve the given problem, it

receives several hints from the researcher, who has a cataloge of diagnostic points
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which help him to decide which hint he has to give to the pupil. The set of these
hints is the same for all investigated pupils. The number of hints, which has been

given by the researcher to a pupil, may be regarded as a measure of its success.

3.1 A first Approach

3.1.1 Pilot Studies

In a first pilot study (OOHORS-FRESENBORG 1982) there had been found out that there
exist pupils which have very different success in amstructing our analyzing algo-
rithms. A deeper analysis of the prutocols of those prablem solving sessions let to
the discovery, that same pupils choose very specific kinds of prablem solving beha-
viour. Same of these pupils started as it could be foreseen: They begin their work
on the solution by analyzing the given problem, structuring it and trying to build
up a conceptual framework in which they build in their preknowledge about previous
problems and their solutions. For this behaviour there was created the terminology
naoceptual”. Different from this behaviour is the following, so called “seguertial
which has been mentioned above: Pupils following this strategy are goal-orientated
but they start with a first solution before they have campletely structured their
ideas; they develope their ideas in a dialog with the material; they analyze partial

solutions to find the camplete solution by modifying them (OOHORS-FRESENBORG/KAUNE) .

3.2.1 Main study

After several pilot studies a systematic and sophisticated imvestigation of these
different aspects of algorithmic thinking mentioned above was done by KAUNE (1985).
She took one class grade 7 (16 girls, 7 boys, aged 12-14) in a Gymnasium (in this
school there are about the upper 25% of the German pupils). Her aim was to imvesti-
gate the relation between the abilities of the pupils in constructive and analytic
tasks, the role of the prefered form of representation of the algorithmic concepts
and the prefered cognitive strategy (sequential versus conceptual).

The important results of her studies are the following: She could proof, that there
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exist pupils with different abilities in constructing or analyzing an algorithm,
the external representation describes a world, in which a pupil is thinking, the
preference for the match-sticks or the computationel networks of the Dynamic Mazes
is for quite a lot of pupils very stable during the problem solving sessions. There
exist pupils which have a specific individual preference for one of the two cogni-
tive strategies conceptual (8 pupils) and sequential (8 pupils), but there are 5
pupils which change the strategies. There was the interesting result, that there
was no correlation between the sequential cognitive strategy and the preference for

working with the sequentially running Dynamic Mazes.

3.2 A secomd Approach

3.2.1 Special Case-studies

When I was working with a 14 years old deaf boy I saw, that the action-orientated
approach to algorithmic concept formation as it was used by COHORS-FRESENBORG/
STRUBER (1982) to teach deaf pupils was not successfull with this boy. I could not
see, that he was interested and able to organize sequences of actions, but he seemed
to me to be very sensitive in reflecting relations between different states and
their formal description. I only had success with teaching him after I had decided
to resume, that this boy preferes a cognitive structure in which the relatians
between different mathematical objects and their symbolic descriptions form the
basis of his thinking. This hypothesis seemed to me to be very strange because such
a thinking in relations is normally expressed in mathematics by the use of
predicates and this means by the use of language.

In the second case-study I had the chance to teach a very bright 7 years old boy.
Contrary to our previous experiences with primary children he did not like to
invent algorithms with Dynamic Mazes. He prefered playing with the match-sticks.
When I was analyzing his behaviour I found out, that he always tried to arrange
certain relations between f.e. the mathematical objects or between the start

situation and the goal. But he did not like and he was not successful when he had
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to think in terms of functioning of a machine.

3.2.2 Further develomment of a theoretical framework

The analysis of the above mentioned experimental research led to the following
hypothesis (SCHWANK 1985): There exist two different cognitive structures in which
the thinking processes are expressed: One structure is built up by predicates
(relations) and the other one is built up by functions (operations) . If we say,
that a person preferes predicative versus functional thinking we say that such a
person is translating the extermal given problem into his personal internal concep-
tual representation: One preferes predicates, the other one functions. The prefered
internal cognitive structure must be distinguished from the prefered cognitive
strategy in the sense of COHORS-FRESENBORG and KAUNE: Qonceptiual versus sequential.
This level of cognitive strategy is working on the cognitive structure. By distin-
guishing this, we now can explain some findings of KAUNE: Some of their pupils with
a conceptual strategy prefered the external representation of the functioning
networks. Our explaination is that this extermal representation was matching their

prefered internal cognitive structure, the functional one.

3.2.3 First Bxperimental Tests

The first experimental proof for our hypothesis that our proposed distinction
between the predicative/functional cognitive structure and the conceptual/sequential
cognitive strategy describes two indenpendent domains of thinking was given by
MARPAUNG (1986). In his case-studies with indonesian boys and girls of early secon-
dary level with an experimental design developed from KAUNE (1985) he has found
some examples for our hypothesis (see MARPAUNG 1986, p. 85/86).

Our hypothesis may also explain, why some pupils have such difficulties to repare
an error in a given network: They do not think in terms of functioning of a machine.
Our own now going on research is concerned with weaker pupils (the lowest 35%) in

early secondary level. My first impression is the following: Those pupils are more
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often able to use simple (static) predicates than to understand the functioning of
concepts; they are not able to look "into" the mathematical concepts; they prefer 5

sequential strategy.

4. Prospect

Although the theoretical framework which we have developed here is concerned with
the construction and analyzing of algorithms we are convinced, that it is relevant
for explaining other fields of (mathematical) thinking. The event, that we have
discovered this, being concerned with the explaination of algorithmic thinking,
should not only be explained by random: The mathematical field of algorithms is cne
in which a cognitive structure built up by functions (actions) is a very natural
and therefore fruitfull internal representation of the mathematical conceptual
framework. But we remind, that outside the world of algorithms there exists a
philosophy of mathematics in which description of actions and operations plays an

important role.
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The—Role of Metacognition in Children’s Mathematical Problem Solving
@ Report of Research in Progress.

Dianne E. Siemon
Faculty of Education
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L. Introduction

Metacognition or "one’s Knowledge concerning one’s own cognitive processes and
products or anything related to them®" (Flavell, 19748, p.232), was once the
exclusive domain of developmental pschologists interested in metamemory and
information-processing models of human behaviour (see reviews by Flavell and
Wellman, 1977 and Brown, 1987). Today, it is a focal point of much of the
literature on mathematical problem solving (see Garofalo and Lester, 1985).
Evidence that children and adults have access to a number of "out-of-school®
strategies for solving problems in context-rich settings (Carraher, Carraher and
Schliemann, 1985) suggests a capacity to recognise and monitor one’s own cognition
as do the expert-novice problem solving protocols described by Schoenfield (1983).
The qualitative changes in students ability to think about problems, observed as a
result of curriculum projects on mathematical problem solving (see Charles and
Lester, 1984 for example), also hint at the role played by metacognition. Although
not cited as such, most of the behaviour said to be characteristic of mathematical
thinking (Mason, Burton and Stacey, 1982) is essentially metacognitive. The rubric
generated processes of specializing, generalising, conjecturing and justifying
require cognitive awareness, in that relevant skills and knowledge need to be
retrieved, and self-regulation, in that the responsibility for task management
rests with the ‘thinker”’.

Al though recognised, the exact nature of the role of metacognition in children’s
mathematical problem solving remains somewhat of a mystery. This is largely due to
the difficulties associated with identifying and assessing metacognitive

-201-



behaviour, and the paucity of adequate models of mathematical problem solving
which accemmodate a metacognitive component.
2. Research Questions.
A cognitive - metacognitive model of problem-solving (Lester, 1983), derived from
the distinction inherent in Flavell’s definition: that metacognition consists of a
cognitive self-awareness component and a behaviour regulation component, was used
to generate the following research questions:
(i) is metacognition a "driving force® in children’s mathematical
problem-solving as suggested by Silver (1982) and Schoenfield (1983), and
(ii) to what extent can student’s cognitive awareness and ability to regulate
their actions be improved through training (Lester, 1983)?
Additional questions to be considered in the study are: the extent to which
constructs of this sort can be assessed, what, if any, is the nature of the
interaction between the cognitive awareness variables and those concerned with
regulating behaviour, and the extent to which affective factors and belief systems
interact with the training to qualify/affect performance (Silver, 1982;
Schoenfield, 1985)
3. Methodology,
Three grade four classes and one grade six were involved in a ten-week teaching
experiment between October and December, 1985. Six children from each grade were
interviewed individually after one of the two problem-solving sessions for the
week. This session was also video-taped. Before the teaching experiment began, the
children selected for interview were asked to solve a two-step problem which was
ammenable to the strategy: to work backwards. Teachers were asked to provide
information on students at the beginning and at the end of the training sequence
and to keep a diary of any noticeable changes in behaviour or reactions to the
training experience. At the end of the ten weeks, all the children were tested on
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their ability to solve a range of mathematical problems and on the extent to which
they could report on what they had done and how they had done it. An Attitude
Scale was also administered. Where possible this data was also obtained from
parallel grades who had not been exposed to the training.

The training involved the regular provision of both written and verbal models of
cognitive monitoring and required that these procedures be recognised and engaged
in by the children, either individually, in small groups or as part of a class
discussion. Different problem types and strategies were considered explicitly and
overtly in conjunction with an appropriate model of the problem solving process
(see Barry, Booker, Parry and Siemon, 1983).

4. Results

Preliminary findings tend to suggest that the particular form of training did lead
to some positive changes in most student’s ability to solve problems of a
non-routine nature, but that prior knowledge, particularly of a procedural form,
and beliefs about the object of school mathematics and oneself as an effective
problem-solver seem to play a very important role in determining performance. The
following case study illustrates this point.

Julia, a grade 4 student who sees herself as "doing as well as most® in
mathematics and whose performance on class tests is generally average, views
mathematics as a painful (but necessary) interruption to the things she likes
doing. Julia demonstrated a remarkable capacity for retaining very detailed
Knowledge about what "Mr. Hand did® and used this to solve whatever problems were
presented immediately after the teaching sequence. This seemed to be based on her
beliefs that mathema\ics was about °®doing something with the numbers to get an
answer®", that problems presented within the one teaching session were "the same"
and that "to be good at mathematics" amounted to remembering and reproducing

exactly what the teacher did. Questioned on the importance of meaning, Julia
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indicated that she did not expect mathematics to have a meaning even though she
used labels regularly with confidence.

Interviewed after a session in which a problem involving the modelling or drawing
of a fence was required in order to solve the problem, Julia was asked how she
would solve a similar problem. She immediately replied: *twelve sevens®, asked why
she had chosen these (quite inappropriate numbers) she said: "Cos’...ah..we did it
this morning®". Questioned on what she had to find (cost) and what she had used
(length of each piece of timber and the number of pieces), Julia did not show any
signs that she thought that what she had done was in any way inappropriate, nor
did she show any interest in reconsidering her answer. Asked to determine how many
days it took Incy Wincy spider to climb a wall if he managed to climb up S m per
day but slipped back 2 m every night (multiple-step problem, not enough
information), without hesitation Julia immediately said: "ten®". Asked why she
chose to do that, she said: "Cos’..I multiplied with that one and that one is like
the question you‘ve asked me just then®.

Towards the end of the training sequence Julia was given the mass, height and eye
and hair colour of a boy and his sister. Asked: °can you tell me how much older
the boy is than the girl1?®" Julia pondered for a moment and then wrote down all the
measurements, checking the accuracy of the last one only. She then subtracted the
girls mass from her height, the boys mass from his height and then found the
difference between the two results: "they are 25 years apart®. Asked if she
thought this could be right, Julia replied: "no...but that’s all you can do*.
Incidentally, every other student interviewed on this item rejected it on the
basis that the critical information was not there, although some took a long time
to make up their minds.

At the end of the ten week period, Julia’s attitude to mathematics had not changed

very much and her performance on the post test set of problems indicated that her
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primary concern was still with establishing which of the four operations were
required. It was very obvious that, with the exception of a one~step problem in
which too much information was provided, Julia had not engaged in any sort of
activity to help establish meaning. Numbers seemed to be retrieved more or less at
random and then an educated guess made as to which operation was required.

One very encouraging trend reported across all four grades was the change observed

in students previously categorised as being in ®*the slower group®". End of year
test results (quite independent of the teaching experiment) indicated that these
children did far better than on previous class tests and that this seemed to be
due to the fact that drawings, estimations and questioning techniques were being
employed effectively.

The teacher’s diaries indicated significant improvements in attitude and
confidence across all ability levels (with a few qualified exceptions as in
Julia’s case) and noted the greater participation of "quieter® students in
discussion sessions. Teachers felt that students were far more likey to check or
comment upon problem structure (number of steps and the amount and nature of
information provided) and seemed far more willing to accept open-ended problems.
One teacher commented that students *became less compulsive and more reflective
about the approach they were using®.

My observation was that the teachers behaviour also changed quite significantly
over the ten week period.

6. Conclusions.

It would seem that metacognition, as it is defined is, a force governing
children’s mathematical problem solving and that, at least for certain types of
students, enhanced metacognition can be brought about by training. However the
suggested dichotemy between cognitive awareness and and self-regulation is no

where near as simple as it first appears. Case studies such as Julia’s suggest
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that there is a complex interaction between conceptual and procedural knowledge
which is heavily influenced by systems of beliefs and values. A much longer study
is needed to determine: if these factors can be isolated and described more
accurately, the extent and nature of the interaction between cognitive awareness
and self-requlation and the extent to which this sort of behaviour can be
described by recent theoretical developments in cognitive science.
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Mathematics Teaching

A Specification in a Constructivist Frame of Reference!

Leslie P. Steffe Kurt Killion

University of Georgia, Athens, Georgia 30602, USA

In constructivism, mathematics teaching consists primarily of the
ﬂé£hggg£;ggl_iggggg££;gg§’between a teacher and children (Steffe, L. P. & von
clasersfeld, E. 1985). In the course of a mathematical interaction, the teacher
acts with an intended meaning and the children interpret the teacher's actions
using their mathematical schemes, creating actual meanings. The teacher must
infer these schemes based on the language and actions of the children and then
make decisions about what to include in possible zones of potential development
(Vygotski, 1934) of the children. This general orientation to mathematics
teaching requires detailed specification in experimental teaching before it can
be useful to the practicing teacher of mathematics. The question of what
constitutes children's mathematical schemes and possible zones of potential
development with respect to those schemes remains to be worked out in research.
If practicing teachers become knowledgeable about children's mathematical
schemes and possible zones of potential development, they could create
problematic situations that fit the children and know what learning the
situations might provoke in the children.

In the context of the first year of a two-year teaching experiment, we have
been investigating the multiplying and dividing schemes of six eight-year-old
children and how the children might modify these schemes. To demonstrate our
method, we analyze the multiplying and dividing schemes of Maya and the
decisions that we, as teacher and observer, have made concerning her zone of
potential development during the course of two teaching episodes held on 23 and

30 April 1986. We first specify her dividing and multiplying schemes that we
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observed in the 23 April 1986 teaching episode.

Dividing as double counting backward

Maya's scheme for dividing by three was to count backward by one, take each
trio of number words as a unit, and count those units of three. This operative
scheme was used independently by Maya to solve a task where we placed 21 numeral
cards in a row in front of her and then hid them.

T(Teacher): If you start from there (the beginning of the covered row) and
take three cards at a time to make a pile, I wonder how many piles of three
could you make? M(Maya): (Sits silently in deep concentration for
approximately two minutes) Seven! W(Witness): When you counted, what did you
say? M: 21, 20, 19--that would be one; 18, 17, 16--that would be two; etc.
This scheme was not suggested by her regular classroom teacher nor by us. It
was what we call a child-generated dividing algorithm (Steffe, 1983; Hatfield,
1976).

Maya's division concept can be explained as follows. "Twenty-one'

seemed to be a symbol for the number word sequence from "one" up to and

including "twenty-one" which, in turn, symbolized a number seguencez. "Three"
seemed to be a symbol for a more general unit in the sense that she could
implement it using any three number words. This rather arbitrary nature of three
served as the basis for her potentially repeatable operation of "take three out
of twenty-one''--an anticipatory operation. '"Twenty-one divided by three", then,
meant to make a unit of three--{21, 20, 19); then another; etc. In this case, we
call three repeatable. Seven, the number of times that three was repeated, was

a result of actually operating.

Lack of division as an inversion of multiplication. At this point, we made

a decision to encourage Maya to formulate the results of her dividing scheme in
terms of her multiplying scheme.

T: Can you give me a multiplication problem for that? M: Twenty-one
times three? T: What does twenty-one times three mean? M: Twenty-one, and
take three out of twenty-one. T: Is that twenty-one times three or twenty-one
divided by three? M: Twenty-one divided by three! T: Can you give me a
multiplication problem for that? M: (Sits silently for over one minute.)
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Wwhat are you doing? M: I am figuring out how many threes equal seven!

T:
M&!a's dividing scheme appeared to be unrelated to her multiplying scheme
pecause she did not take the result, seven, as a starting point--as how many
¢imes that she could repeat three--and 21 as its result. Maya did not see how
the task could be explained using multiplication and seemed to have little
awareness of the structure of her operations nor of the possibility of unpacking

the seven units of three into their constituent unit items.

iplying as double counting forward
Mu/lt;.?_l_ﬂ as 2

The teacher eventually asked Maya what "five times eight" meant in an
attempt to understand her multiplying scheme. Maya could not say, so the
teacher asked Maya what she would do to find "five times eight". Maya said that
she would count by five eight times! However, her multiplying scheme was still
or activated in what she took as dividing situations. Maya's multiplying
procedure of counting by fives, while connected to expressions like "five times
eight", did not seem to be based on the operation of combining several units of
equal numerosity into one unit nor of the operation of unpacking those units
into their constituent unit items. Her multiplying scheme was the result of her
necessity to learn the multiplication table in her regular classroom and was an
enactive scheme--it was not an object of reflection.

Lack of combining units of three. We attempted to further understand
Maya's concept of multiplication in the 30 April 1986 teaching episode. We
wondered if she could combine six units of three and five units of three when
she was asked to find how many units of one were in the result. To begin, we

asked Maya to count out eighteen blocks by three.
T: Put eighteen blocks into that container. You can count by three if you
:mﬁ.. M:) (M;ya takes three blocks at a time and places them into the

ontainer). ¢ Give me a multiplication problem for that. M:

three times six equals eighteen. ¢ (long pavse)

One essential difference in this situation and the preceding situations that
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Maya took solely as division seemed to reside in the fact that she actually
counted out eighteen blocks by three--the collection was not given as in the
previous situations. Rather than segment her number word sequence into units of
three number words that she then counted, she formed the collection of blocks by
counting by three.

To continue the exploration, the teacher asked Maya to put fifteen blocks
into another container. Maya put them in by three and said that she had five
groups of three in the container. The teacher then poured the contents of the
two containers together and asked Maya to find the number of blocks in that
combined collection of blocks using her units of three.

The only answer that Maya could give was "thirty" (she knew that "five
times six is thirty"). Her failure to combine the two lots additively is an
excellent indicator of the nature of her concept of multiplication. Maya could
make composite units of three and then re-present the process and take each
composite unit of three as one thing, forming what we call abstract composite
units of three. We also believe that she was aware of the abstract composite
units of three in the two lots of six and five. However, when she was asked to
find the number of blocks in the combined collection, a lacuna appeared in her
reasoning. She did not take her abstract units of three as material for further
operating, combining them and then somehow transforming them into units of one.
These very complex operations were beyond Maya's zone of potential development
at the particular time of the teaching episodes.

Conments;

Currently, we can only speculate on the nature of Maya's multiplication and
division concepts that will allow us, as teachers, to include division as the
inversion of multiplication, distributive reasoning, and more sophisticated

multiplying and dividing procedures (that are part and parcel of her concepts)
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i a model of her zone of potential development. One of our hypotheses is that
i
it will be necessary for Maya to develop a more sophisticated unit--an iterable
unit-‘and the corresponding iterative concept that we have observed in Tenryn,
another child of our teaching experiment. Behaviorally, iteration looks exactly
like repetition. But there is a profound difference because iteration is a
manifestation of an underlying iterable unit and a system of flexible
operations. A key to Maya's development of iterable units may be her use of
number sequences in a context similar to her application of her dividing scheme.
1. This paper is based upon work supported by the National Science Foundation
under Grant No. MDR-8550463. Any opinions, findings, and conclusions or
recommendations expressed are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

2. A number sequence is taken as the items of a composite unit of specific
numerosity that can be produced by counting (Steffe, & von Glasersfeld, In
Press).
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Euclid defined natural numbers as “multitudes of units"” and in
many arithmetical operations such "multitudes" are themselves treat-
ed az though they were units. In multiplication or in division, for
instance, when we say, "Five times three is fifteen" or "How many
times does five go into fifteen?", the items referred to by "three"
in the first and by "five" in the second question, are treated as
units but differentiated by the fact that the one is itself composed
of three units and the other of five. The ability to conceptualize a
number in these two ways, as a unit and as a composite, and to
switch from the one conception to the other, is crucial in a great
many mathematical activities. Children are not born with this
ability but have to learn it. Though there are behavioral indica-
tions that tell an observer more or less reliably when a child is
able to switch from the composite concept to the unitary one, we
have little if any idea of the actual conceptual operations that are
involved. The problem is often dismissed or not even acknowledged.
This suggests that the relevant conceptual operations are not ex-—
clusive to the realm of numbers, which is certainly interesting but
does nct get us any closer to useful inferences concerning the
operations that have to be carried out.

In earlier studies we have shown that the items children are able
to count at the beginning of their arithmetical careers are "con-
crete" perceptual objects and that it is only through the develop-
ment of visualization and the child’s growing awareness of his/her
own activities (motor acts, verbalizations, and finally conceptual
operations! that an "abstract" concept of number is attained (Stef-
fe, von Glasersfeld, Richards, % Cobb, 1983; von Glasersfeld, 1982).
More recent studies, focusing on children’s first attempts at multi-
plication, suggest that there may be yet another sequence of rela—

tively discrete steps that have to be made before arithmetical
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aperatiDnS thatinvolve both the composite unit of a number and its
CDmpDnents become easily accessible.

What makes it difficult to see a number as both a unit and a
composite of units is, in principle, not very different {rom the
difficulty encountered at the intersection of two or more classes.
To realize that one and the same bead may be considered a "red bead"
as well as a "wooden bead", requires the ability to switch Trom one
way ©f seeing to another. To know that "five" taken three times
brings one up to fifteen, one must be able to see that each of the
nfives" is treated as a unit when it is taken three times, but must
pe treated as a composite of five "ones" so that a count of all the
components will yield "fifteen".

Though we may not be aware of it, we constantly depend on this
ability to treat one and the same item in two different ways in the
area of verbal communication. Language is used to convey “meaning"”
or, as it is often called, "information". But how much of the po—
tential meaning of a linguistic expression do we actually realize?
If one of us, L, says to E: "I have to go to class now, we‘ll have
to discuss this later," E is unlikely to construct for himself a
detailed representation of what the word "class" means in this con-
text, or to visualize what L will be doing in class. He could do it,
but he is not likely to——unless there is some special reason. Under
normal circumstances, he will register the message in its verbal
form without having interpreted it experientially beyond the simple
fact that the conversation will have to be postponed. Yet, if the
need arises at some later point, E would be able to reconstruct the
scene of L going to class in considerable detail. The point is that
a word, or a linguistic expression in general, has the potential of
being interpreted in terms of actual representations, but can also
be stored without the interpretation having been carried out by the
user.

One krnows a word if and only if one is able to represent its
meaning to oneself; but knowing a word does not entail that one act-—
ually calls up the representation for which it stands, every time
the word is used. Words more often serve as place-holders, or "sym-—
bols", that have the power to call up representations. The salient

feature of this dual function of words is that they can, on the one
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hand, be used as unitary building blocks in the composition of larg-
er structures {(phrases, sentences, texts) and, on the other hand,
they can always be unpacked, in the sense that the representations
for which they stand can be built up and brought to awareness. This
dual function, however, is not acquired all in one piece. Especially
in the case of number words, the facility to switch from the unitary
function of the symbol among other symbols to the “expressive" func-
tion that involves the representation of a specific number of com-
ponent units, may take guite a long time to develop.

As with other conceptual skills, we observe the development of
their manifestation, but we have no access at all to the actual me-
chanism that may be responsible for these manifestions. This is the
case with "reflecting" and "abstracting", and it is the case with
the use of symbols. Nevertheless, we can conceive of a model that
provides at least one way of thinking about the unobservable pro-
cess. The model we want to suggest is similar to the one we origin-
ally proposed for the construction of unit and number (von Glasers-
feld, 1981; Steffe et al., 1983). Its basic feature is the recurs-—
iveness of the operation that creates units, so that the products of
this operation, i.e., units or groups of units, can themselves be
taken as material to form larger units. The neurophysiological un-
derpinnings we hypothesized for the unitizing operation was derived
from a theory of attentional frames or pulses that need not concern
us here. The aspect we do want to bring out, however, is this: when
units of any kind are taken as arithmetical units, i.e., as "ones",
and subjected to a further unitizing operation, so that a larger
compound structure, a unit-of-units, is produced, this larger unit
will be a "number" only if there is a record of how many "ones'" were
united in it. One of the main difficulties, then, in operating with
numbers is the management of these records.

In what follows, we summarize what seem to be different steps in
the development of the ability to move onme’'s attention from a com-—
ponent unit to a composite one and, at the same time, to keep track
of the numerosities involved on each level. One of the difficulties
springs from the fact that the numerosity of a collection can be

constituted in different ways depending on the counting units that

are chgsen (fifteen, for instance, can be seen as three fives, fTive
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thirees, G Ti¥fteen ones). Children first learn to count “ocnes", then
units composed of ones, and finally units that are themselves com-—
paged of composites of ones ("units—of-units").

The construction of a "number"” comprising units-of-units, while
requiring the operations that produce a "number" of component units,
s its own developmental history. This very difficult composition
i not simply achieved in one or even several experiential encount-
ers as recursion of the operation that yields "number" of component
units. Rather, the compositions are abstractions based on self-gen-—
erated activity in contexts that reguire an awareness of executing
the specific operations. It is not possible here to provide the
detail that is necessary to understand when and how these abstrac-—
tions might occur. We only want to note that the abstractions and
accompanying conceptual reorganizations have occurred not only in
the course of deliberately arranged teaching experiences but also
betweern them (Steffe, 1986; Steffe % Cobb, 1983).

The steps towards the construction of a "number" of units—of-
units start with an experience of more than one composite unit. When
a child counts out, say, twelve blocks by taking pairs, there can be
an incipient awareness of a dual experience while the child says
“one,two; three,four; five,six; seven,eight; nine,ten; eleven,twel-
ve," in synchrony with making the pairs. The child’s focus of atten-
tion, however, is predominantly on the unit items of the pairs.
Forming pairs is an organizing activity whose results may be only
fortuitously recorded through an arrangeent of pairs of blocks that
were moved together during the count.

To make records of the component pairs as they are being formed,
involves monitoring the counting activity. We find that monitoring
counting activity is made possible by the uniting operation of inte-—
gration (Steffe et al., 1983). The child takes each composite pair
as a unit and reords it by counting it or by tallying it, using a
marker such as putting up a finger (Steffe, 1986). In either case,
the records that mark the units of two created during the counting
activity will be either single number words or single finger move-
ments; these unitary items we call abstract composite urits to
distinguish them from the composite units that served as material of

the integration.
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When a child can re—present the senscry material of an abstiract
mposite unit as a pattern, or by counting, hat ability can
R

o
used in counting the blocks of, sza seven rows of blocks with

b
blocks per row, even when the blocks are hidden. In this contex
e child can perform what we have called progress:ive integratiocns,
i.e., intergations involving the results of prior integration. For
example, having counted si:x blocks of two hidden rows (of three) by
one, the child =an take that as a unit, count three mcre blocks, ang
then unite the counted blocks into a mew unit of nirne. Frogressive
integrations make possible units like "three more than ...", an ex- |
tension of three units beyond a unit of specific numerosity.

If the re—-presentation of an abstract composite unit is stable A
it can be used in a decision to, say, find out how many times that
three can be taken out of fifteen. In this sense, three is repeat-—
able. It would be iterable if the child added the unit items of each
new unit to the preceding unit items. The difference between the
iterable unit and the unit "so many more ..." resides in the child’'s
awareness of his/her ocwn operating. In the latter case, each unit of
the three is a result of operating, whereas, in the former case, the

units of three are taken as perceptual givens and are only im—

plemented and not constructed.
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INTERACTION BETWEEN GRAPHICAL AND ALGEBRAIC
REPRESENTATIONS IN THE USE OF MICROCOMPUTER SOETWARE
Nurit Zehavi

The Weizmann Institute of Science, Israel.

The interaction between arithmetical concepts, algebraic
symbols and graphical representations play a significant cognitive
role in the learning of advanced concepts at the high school
ljevel. A better understanding of the interactions between these

factors may lead to a better instructional design.

Janvier (1981) investigated difficulties which rise when the
concept of variable 1is presented graphically. Rogalski (1985)
studied the cognitive operations which are involved in the

identification of points 1in space by numbers; her research

methods consisted of educational microcomputer programs.

The computer offers a variety of representational opportunities
for mathematical ideas. It also provides coherent methods for
analysing the interactions between the mathematical representation
systems.

In this paper, I shall describe a microcomputer package called
MaxMix. It was developed to guide students to investigate
algebraically and graphically the relation between numbers and
operations. The description will be followed by a discussion of
four experiments, which were carried on as part of the formative
evaluation of the software. These experiments were designed to
gain information, on the development of interaction between the

various representation systems, by students who used the software.
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THE SOETWARE

The package MaxMix contains four main prdgrams at various
cognitive levels and a set of accompanying worksheets. The first
program (M1) randomly generates 20 tasks. In each task two

numbers are given (e.g., -2.6 and 0.4); the student is asked to
choose an operation which will give a maximal result.(In the

example one should choose multiplication, see Figure 1.)

£ ™
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Figure 1. A MaxMix item

Another version of this program allows the user to control the
range from which the numbers are selected and the number of the
tasks. This option serves as a tool for the students to perform
the investigation assignments in the worksheets. It can also be
used by the teacher to organize demonstrations and other classroom

activities. We use it as one of our research instruments.

In the second program (M2), the tasks are presented in a
graphical format. The two numbers are the coordinates of a point
in the plane. It is followed by a program which allows the user
to control the parameters and permits further exploration. In the

following program (M3), a higher 1level task in a graphical

representation is required, since the numbers are missing. (Eigure 2)

-218-

- )
l HaxMix-plane I
v -
—Choose an
i operstien to aet
_.—4_4;—|—~—¢—0—o—u maximal result
; e
i =
b EnCETETCT——T
scorexiiiiS [1ten)lun: 6]
N J
Figure 2: MaxMix on the plane

A game for two, Conquer the plane (M4), concludes the package with
even higher cognitive tasks and strategies. Only one number is
presented and the player has to insert another number and an
operation to occupy a certain position. The game requires
advanced interaction between the graphical and the algebraic
representations. The philosophy which guided the design of the
game (see also Taizi and Zehavi, 1985), is that the students will
play an active role in the setting of the tasks and consequently
it 1is expected that they will achieve the objectives of the
courseware.
THE STUDY

Along with the production of the software an exploratory study
was conducted to gather information on the learning processes
while using the material. The experiments affected the
instructional design of the package.

The four experiments which will be discussed here involved

grade 8 classes of the upper ability 1level students. The

programs, mentioned above will be referred to as M1-M4.
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The first experiment

treatment | evaluation

n=26

The subjects worked three times On program Ml (20 tasks j h
in eac
licati . i i
application) The third application served for treatment d
an

evaluation purposes. The questionnaire Ql consisted of 16

questions as the following one:

Is i .
b; ;EligsfiZii.thatfphe maximal result will be obtained
ion if the fi i
N e sm T rst number is negative and
e m i i
OSt difficult and thus challenging cases were of the t
WO
© . .
YPes which are exemplified in Figure 1 and Figure 2 We want
- anted
to s
©e how students epcounter these TYPES in three successi
ve

applications.
Eindings

The
average number of Wrong responses decreased:

1st. application - 11.3; 2nd - 8.5- 3rd 5.8
. D) ol -~ 8.
How:
ever most of students failed, even in the 3rd application
- on

items of the difficult types:

Type I -a.8 oe=[_] . -3, 0.3= [
Type II  -5.9 1= ] . -4.8 2.4= [ ]
In fact 20 (!) students failed on all four items. Moreover, 22
students gave wWrong responses to the questions in Q1, which’are
relevant to type I (see the example above) and type 1II, although

they answered correctly in the simple cases

It was clear that the treatment was not sufficient
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Tphe Second experiment

treatment; evaluation
GR I n=10 M1 M1 M2 Q1 Q2
GR II n=10 M1 M2 M2 Q1 Q2
GR III n=9 M2 M2 M2 Q1 Q2

The class was divided into three equal-ability groups. We wanted

to check the effect of the graphical representation. The naive

expectation was that GR III would perform better than the others.

The questionnaire Q2 consisted of 18 items as the following

examples:

Insert the missing number so that the given operation
will give a maximal result for the two numbers
(a) .... X 0.5 (b) 2.1 (c) 4.2 + ....

Eindings

It was found that GR I did best on M2.

It seems that students

need some numerical experience before they can gain some advantage

of the graphical format. They made mistakes only on the first

item of type I and type II and were helped by the graph to give

right answers on the items that followed. Students of GR I also

did better on the question in Ql which refers to type I but not to

the one on type II. All the groups did not do well on Q2.

The third experiment

Design ]
treatment eval. trleatment |evaluation
GR I n=16 M1 M1 M1 Q1 M2 M3 M3 Q1 Q2 Q3
GR II n=15 M1 M1 M1 Q2 M2 M2 M2 Q1 Q2 Q3
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The fourth experiment

treatment 'evaluation

n=29 M1 Ml M1 - M2 M3 M3 - M& M4|Q1 Q2 Q3

The questionnaire Q3 and the findings will be discussed in the
presentation.
SUMMARY

The findings of this series of experiments illustrates stages
of developing interaction between the algebraic and graphical
representation:
The numerical treatment of M1 was not sufficient;
The contribution of the graphical program M2 was limited;
The activities of M3 caused just a '"rote" use of the graphical
picture;
The full treatment M1-M4, at last evoked a meaningful interaction

between the representation systems.
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Intuitive Mathematics and Schooling in a Lottery Game

Nadja Maria Acioly and Analucia Dias Schliemann®

Department of Psychology, Universidade Federa! de Pernambuco, Recife, Brazil

Intuitive knowledge of mathematics, developed outside schools, has been documented among

children (Carraher, Carraher, & Schliemann, 1985; Carraher & Schliemann, 1985; Ginsburg, 1977;

digits on that number. One example of an order by a customer is:

learn the rules while betting or while working with experienced bookies.

| asked, and (c) their content.
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Groen & Resnick, 1977) as well as among adults (Carraher, in preparation; Lave,
Schliemann, 1984; Scribner, 1984). However, the limits and strengths of this knowledge and its
| relationship to school instruction are not clear. As suggested by Resnick (in press), understanding

these issues may help to deal with the divorcing of formal knowledge from
| understanding of mathematics. This study analyzes the relative contributions of practical
I experience and school experience on the development of mathematical knowledge; the knowledge
context is the process of determining bet values in a popular Brazilian lottery game.
game, five four-digit numbers are draw each day. Bets can be made on the first or on all the five
numbers and on its tens, hundreds and/or thousands. A set of bets can be ordered from a

"bookie" by stating a number and asking to bet in all the combinations of two, three or four

"1 want to bet 2 cruzesros (the Brazilian monetary unit) in the snverted thousands
and hundreds of 583492 (i.e, in all four and three-digit combinations of the digits in
583492), from the first to the fi fth (i.e, in any number to be drawn)."

A bookie who receives this order has to determine the amount of money the customer must pay.
To do this, he or she must: (a) find the total number of combinations of six digits in four digit
I numbers (360) and in three digit numbers (120); (b) add up 360 plus 120, finding 480; (c) multiply
480 by 5 (the number of drawn numbers), finding 2400, and (d) multiply 2400 by 2, finding 4800,
the number of cruzefros to be paid. An external analysis of the game suggests that a bookie
must be able to solve problems involving the operations described above and to understand the
combinatorial system and rules of probability. They often have little or no school experience and
All these aspects make
for a most interesting setting for studying intuitive knowledge of mathematics.
bookies’ knowledge of mathematics in the work setting and, later, on problems that differ from

those they usually encounter in terms of: (a) the numbers involved, (b) the way questions were

lThis paper is part of the Master's Dissertation of the first author, under the supervision of the second. We are grateful to
David Carraher and to Lauren Resnick for their suggestions and to Marcia Regina Sa for help in collecting the data



Method and Results

Subjects were 20 adult bookies; they were grouped according to school experience. Four of
them had never been to school, seven attended school between 1 and 4 years, five between 5 and
8 years, and four subjects attended between 9 and 11 years. Each was observed at work on
different days while calculating the orders of ten customers. Later each was asked to solve three

series of problems presented randomly, and was then interviewed.

Observations of subjects at work revealed that most of the bets encountered by bookies
require fairly simple calculations: 90.0% of the orders speclfied the amount to be put in each unit
and the bookies had to find the number of units and cost of the whole bet, and 60.3% of them
involved unit values of 1, 5, 10, 20, or 50 cruzesros. Bookies either memorized the number of
possible combinations for each number of digits or referred to reference tables. Memorization
accounted for 80.6% of problem solutions. Only two errors occurred in 609 orders. For 57
problems that were not solved via memorization, four calculation procedures were identified;
table 1 shows their distribution. One procedure was to simply ask the customer to solve the
problem. The second was to use school taught algorithms. The other two procedures were
iteration and decomposition (see Carraher, Carraher and Schliemann, in press). In the
decomposition procedure the bookie partitions the specified quantities into subtotals that are
easier to be calculate and then, after transformations, reunltes them. Iteratsion is a multiplicatlon
problem solution involving successive additions of the same value. Iteration also allows bookies
to avoid division problems: for the few orders in which customers stated a total amount of money
to be bet and the bookie had to determine an appropriate unit value, he successively tried out
different values through repeated additions until arriving at a result that matched the specified
amount. As a whole, no differences that could be attributed to degrees of schooling were found.
However, when asked to explain their answers, the schooled subjects provided more elaborate

explanations.

The examiner presented problem series @ and b as if she were a customer. Series a consisted
of six problems stated as they would be by customers but involving amounts that were not round
numbers. The six problems in series b involved less frequently occurring calculations in which the
total amount of money to be bet was specified and the subject was asked to determine the money
amounts to apply to each unit. Tables 2 and 3 show that the number of correct answers in each
series increases with schooling level. The correlation in both series was significant (Kendall's
tau=.30, z=1.85, p=.05 for series a, and Kendall's tau=.34, 2=2.10, p=.02 for series b).
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Degree of schooling also affected how subjects approached the problem: while schooled subjects
attempted to solve almost all problems and made mostly small computation errors, non-schooled
subjects did not even attempt to solve 41.7% of the set problems. Non-schooled subjects
consistently solved only two problems in series §. An analysis of their solution procedures on
these problems together with an examinnstion of their difficulties with other problems suggests
that these subjects have learned, through practice, a set of rules corresponding to frequently
occurring types of bets that involve round numbers or numbers whose factors are easily found. In
both series, all bookies used written procedures frequently. However, these were not used as they
would be in school. Instead, writing was a tool to support the invented procedures, such as

decomposition and steration, when numbers became too cumbersome to calculate mentally.

In series ¢, subjects solved four problems exploring understandlng of the combinatorlal system.
They elicited the same kinds of combinations of entities as found in the betting game but the
entities involved were not numbers but colors, letters, or placements in a horse run. Subjects
were asked to determine the number of possible combinations, and to state each of them. For
77.5% of the problems subjects admitted, spontaneously or with prompting, that the number of
combinations in the problem could be found in the same manner as betting problems are solved,
and were then able to determine the correct answer. Among unschooled subjects, however, this
percentage dropped to 37.5%. A second analysis classified each subjects answers to three
problems that required permutation of three and four elements, in terms of Piagetian stages.
These problems were similar but not identical to those devised by Piaget and Inhelder (1951), and
they provide a five stage classification system. As shown in table 4, degree of school experience
correlates positively to progression through the stages. This correlation was high (Kendall's

tau=.58) and significant (z=3.51, p<.001).

The interviews allowed us to determine whether constant contact with the game provided
some understanding of probability rules and of the game's structure. Responses to the interview
were coded as logical or empirical/arbitrary. Analysis showed that the mean number of logical
answers in each group, increases with school experience (see table §). Empirical or arbitrary
responses reflected the belief that successful bets were a matter of luck. Logical answers
connected the probability of occurrence of a specific number to all possible numbers. Since, most
certainly, these subjects had not learned probability rules in school, it appears that the
contribution of formal schooling is not restricted to topics taught in the classroom.
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Discussion

These results suggest that, although mathematical knowledge may develop outside of school
training, the use of this knowledge in new situations and an understanding of the relevant
mathematical relations embedded in problem-solving rules seem to benefit from school experience.
The contribution of everyday practice is evident in the invention of rules and computation
strategies as well as memorization of facts--that all provide short-cuts. Further, subjects
displayed mathematical knowledge beyond their school experience as a result of everyday
practice. However, as Resnick (in press) suggests, this knowledge seems to be restricted to the
domain of additive composition. The contribution of school instruction was not found in the use
of school algorithms but rather in a more general ability to analyze and understand relationships
between the elements in the game. This finding supports Carraher’s (in preparation) analysis of
how students deal with scale problems, and is similar to results obtained by Scribner and Cole
(1981) on the role of schooling versus literacy. Also, our subjects used informal procedures
together with modified school taught procedures in a manner similar to that observed by Saxe
(1985). This interaction seems to provide the most rapid and least cumbersome way to solve a
problem. The development of more efficient strategies in a work environment, already
documented by Scribner (1980) and by Schliemann (1984), appears to be a result of a social

situation in which many orders must be handled in a short period of time.

The development of implications for school instruction must attend to previous research
findings (Schliemann, 1984) suggesting that instruction that was not explicitly related to practice
was not used when subjects were asked to solve practical problems. In the present study we have
seen that practice without schooling generates knowledge that is limited to the situations in which
it originated. The conclusion that naturally follows is that formal instruction on mathematics
and problem solving should be presented together with applications to practical, real situations,

and these situations should be as varied as possible to avoid restricted knowledge acquisition.
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Tabie 1
Number and percentage of probiems in each group, according
to procedure used vhen the results were not memorized.

Groups School Ask Decomposi- Itera-
Algorithms Customer tion tion
None 0 (0) 4(36.4) 2(18.2)  5(45.4)
1-4ys 3(17.7) o (0) 3(17.7)  11(64 6)
5-8 ys 11(52.4) 0 (0) 2(9.5) 8(38.1)
9-11ys 3(37.5) o (o) 1(12.5)  4(50.0)



Table 2
Number of subjects in each group, according to number
of correct answers in problem series a
Groups Number of correct answers
0 1 2 3 4 5 i

Non-schooled 1 1 2

1-4 yrs sch. 2 1 3 1

5-8 yrs sch. 1 2 2

9-11 yrs sch. 1 1 1 1
Table 3

Number of subjects in each group, according to number
of correct answers in problem series b
Groups Number of correct answers
0 1 2 3 4 S 6

Non-school ed 2 1 1

1-4 yrs sch. 1 1 3 2

5-8 yrs sch. 2 1

9-11 yrs sch. 1 3
Table 4

Number of subjects in each group, according to Piagetian

Stage when solving problem series ¢

Groups Stages
1A 1B 2A 28 3A

Unschool ed 2 2 - - 5

1-4 years 4 2 - 1 _

5-8 years 1 1 1 1 1

9-11 years - - = 2 2
Table §

Percentage of logical and empirical or arbitrary
ansvers in each group.

Groups Emp/Arb Logical

Unschooled .89 I

1-4 years .84 .16

5-8 years .63 .37

9-11 years .25 .15
-228-

The notion of differential for undergraduate

Students in Sciences
Michele ARTIGUE

I.R.E.M - Université Paris 7 - France

I- Introduction

The research presented here started in 1980/81 in the framework

of an experimental teaching built with the intention of coordinating

mathematics and physics (M. Artigue [11). The difficulties in coordi-

nation which arose at that time and the first empirical analysiswhich

followed led us to some findings, that we summarize as follows :

a) The meaning of the word wdifferential™ is not the same in mathe-

matical and physical teaching :
- In mathematics, differential is primarily perceived as the
linear map which approaches best a given map at a given point.

- In physics, differential is percieved as the infinitesimal in-

crement of a physical quantity.

b) The roles played by this concept in the teaching of the two dis-

ciplines are actually very different :

- In mathematics, this notion is usually introduced while studying

functions of several variables. "lLinearity" is emphazised more than

"agpproximation" and the importance given to computation with Jacobian

matrices reinforces this fact.

- In physics the differential, rarely explicitely taught, is fre-

quently used about functions of one or several variables. This use

takes several forms approximation, estimation of errors, finding
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equations of problems.

These differences in conceptions, classically, make the notion
of differential a failure point for any attempt to harmonize the tea-
ching of the two disciplines, at least in France. It is precisely the
partial failure of our attempts which led us to develop an interdisci-
plinary research on that topic, in the framework of the GRECO : "Di~

dactique et Acquisition des connaissances scientifiques" of the CNRS.

II- Presentation of the research

The project has been developped in several directions

1- Study of the didactical transposition of this concept. (Cf. Y.
Chevallard {2]) : How did the current notion of differential take
place, historically, in the scientific knowledge ? How did the cor-
responding teaching objects take shape ? How did they develop ? Where

do the differences observed between Mathematics and Physics comefrom?

2- Study of students' and teachers'conceptions. In particular, how
do the students'conceptions integrate the obvious disparity between
Mathematics and Physics ? What are its consequences in students'prac-
tises.

3- Construction and evaluation of didactical sequences which take

into account the results obtained in parts 1 and 2.

The methodology has been adapted to the various aspects consi-

dered
- individucl interviews, paper-pencil tests, observation of pro-
blem solving by small groups in view of determining students' and

teachers'conceptions,
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- analysis of curricula, textbooks and papers published in jour-
nals such as "l'Enseignement Mathématique", in view of studying the
evolution of teaching,

- experimentation of didactical sequences in lectures and in

exercise sessions.

The research is currently in process. No questionnaire has been
passed on a great scale yet. However, the coherence of the partial
results obtained in various populations, already indicates some
streamlines. In this talk, we shall focus on point 2 above, specially

on students'conceptions.

III- Students'conceptions. Some findings

A- In France, in secondary school (up to 18), for more than a cen-
tury, the main notion has been that of derivative, classically intro-
duced in lere (17 years). It was presented, up to 1970 as a quotient
limit. Since 1971, the notion of linear approximation has become do-
minant. The word "differential" appeared here and there in curricula.
Nowadays, it occurs just in "differential notation for derivative".

In October 1984, 122 students in first year at the University
were asked the following questions, during exercise sessions in Ma-
thematics

"Do you know the notations %; , df, dx ? If yes, where did you
meet them ? With which meaning ?

Results

The notation %; , known to nearly all students (99 %) is just

synonimous  to derivative. Only seven of them refer to differentials.

The notation df is known to 52 %. Concerning its meaning, the answers
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are often unclear. Apparently, many students, though feeling the need
of making a distinction, have difficulties in finding-a meaning for
df different from that given to df/dx. Eleven students refer to dif-
ferentials, two refer to a small increment of f. The notation dx is
more familiar (68 %), essentially because it occurs in integration.
There, it is perceived as an indicator of the integration variable.
However, nine students mention an interpretation as "differential of
the variable x" and ten refer to a small quantity. A similar question-
naire was proposed to other students, at the same level, in an exer-
cise session, in Physics. A much stronger tendency to consider df and
dx as small increments was observed, especially among those who take

the class for the second time.

B- In University, in Mathematics, differential is introduced as a
linear map, first about functions of several variables. It should be
noticed that such a definition is rather recent in the context of the
scientific knowledge (Cf. Stolz [3], Frechet [4]). Even more in tea-
ching. It appeared in curricula about 1960, taking the place of the
more classical presentation in terms of first differential and total
differential.

35 students in third year at the University attending the class
of'differentiol calculus were presented with a questionnaire. Given
the question : "Which definition of a differential would you give to
a student in first year ?", they answer in large numbers by proposing
a definition as linear map. Five of them reduce the rotion to that of
Jacobian matrix. This reduction, itself, becomes strongly dominant in
exercises (show that a map is differentiable and determine its diffe-
rential at a point).
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Technically, the computation and use of partial derivatives 1s

apparently well mastered in simple cases. But, the percentage of suc-

i i i of com-
cess collapses in the computation of second order derivatives
posite functions.

This familiarity with the linear and algorithmic settings, shown

i i trasts
by the high percentage of answer to this type of questions, contra

with

: =0 s 1y five
- the deficiency of students'geometrical abilities only

of them interpret geometrically, in terms of tangent plane the appro-

. 2
ximation to first order of a function R® + R

. . s
their lack of care in dealing with the remainders in expansion

i inear algebra
So, in Mathematics, students'strategies rely on line g 5

. . . : N N .
algor ithms using par thl derivatives ar d JGCOblOII atrices, power ful
N N =1 s

derivatives.

In Physics, they rely on approximation, infintely small quanti-
’

ties, and searching for hints. Teaching in Physics does not explici-
’

tely stress the difference between procedures seemingly connected to

approximation

- leading to approximate values and error estimates,

- leading to exact values through passing to a limit (derivation
or integration).

Concerning the students'conceptions, this produces an assimila-
tion "physics = approximation" which appears in interViews. So the op-

position between the two disciplines is reinforced.
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For instance, among 45 students in preparation of contests for
"Grandes Ecoles", 21 think that the physician presentation for the
computation of the volume of a sphere (based on slicing) cannot be
made rigorous.

In this context, students elaborate some behaviour rules, close
to o naive use of non standard analysis, which allow.them to work au-
tomatically without reference to any meaning.

These rules work in relation with linguistic marks. There are
blocked, as shown in the research, by suppressing these marks in their
usual form. However, this system is pretty performant due to the fact
that problems usually given are stereotyped.

In conclusion, two conceptions of the differential coexist in
students, linked with different contexts : Mathematics and Physics.
It should be noticed that the teaching of these two disciplines fa-
vours this pacifical coexistence : the activities proposed are nearly
disconnected and each discipline allows algorithmic procedures, which
securise students as they don't need any reference to any meaning.
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QUALITATIVE PROPORTIONAL REASONING:
Description of Tasks and Development of Cognitive Structures

M. Behr, M. Reiss, G. Harel; Northern Illinois University; T. Post: University of
Minnesota; R. Lesh: WICAT Institute

Qualitative reasoning is a significant variable in problem solving performance.
Expert problem solvers are known to reason qualitatively about problem components
and relationships among them before attempting to describe these components and re-
lationships in quantitative terms (Chi & Glaser, 1982). It is not that expert prob-
lem solvers use qualitative reasoning and novice problem solvers do not, but that
novice problem solvers direct qualitative reasoning to the surface feature of a
problem, rather than structural features, and fail to anticipate relationships be-
tween problem components. For instance, when asked to explain the transformation
of 2/5 to 6/x with respect to the equality relationship, the novice problem solver
may reason the transformation to be additive, and that x = 9. Such an argument is
inadequate because this particular additive transformation has a qualitiative effect
on the ratio relationship which is not taken into consideration.

The consensus of current research is that an expert's reasoning about a problem
leads to a superior problem representation because it contains numerous qualitative
considerations about problem components and their interactions. Such a problem re-
presentation enables the expert to know when qualitative reasoning is inadequate
and quantitative reasoning is necessary.

Research about fractions, ratios, and proportions (e.g., Behr, Wachsmuth, Post
& Lesh, 1984; Hart, 1981; Karplus, Karplus & Wollman, 1974; Noelting, 1980;

Seigler & Vago, 1978) have described correct, incorrect, and inappropriate
strategies and inadequate qualitative reasoning that adolescents use for such
problems. It has been shown that adolescents frequently use additive comparisons
when multiplicative comparisons are required. The effects of qualitative change
in the magnitude of components of relationships such as a/b = c, are inadequately
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anticipated by adolescents and adults. Yet, important cause and effect relation-
ships can be deduced through qualitative reasoning alone.

The focus of earlier studies on proportional reasoning has been on whether
children have achieved quantitative proportional reasoning. Observed qualitative
strategies have been characterized as inadequate without investigation of how they
might interact with or serve as a basis for the development of quantitative
strategies. One aspect of our research is to investigate whether children have, or
can be taught, qualitative reasoning strategies to answer proportionality questions
when appropriate, and to determine circumstances where quantitative reasoning is
inadequate.

Work by deKleer and Brown (1984) responding to a need to explain the qualitative
reasoning observed by expert problem solvers in scientific domains has resulted in
a qualitative calculus based on the concept of confluence equation, or qualitative
differential equation. In this calculus an equation of the form a/b = c is

associated with the qualitative differential equation 8a - Ab = Ac (not to be con—

fused with a standard differential equation). Interest focuses on values of +, -,
and 0 assigned to Aa, Ab, or Ac, according to whether a, b, and c are increasing,
decreasing, or unchanged (deKleer & Brown, 1984). The qualitative differential
equation provides an algebraic description of the qualitative behavior among the

three components of the equation a/b = c, as shown in the following table.

The Rational Number Project has developed tasks to investi- \Esi\ + =10
gate children's qualitative proportional reasoning. Success + ? - |-
on these tasks requires ability to reason qualitatively about - + [E] o+
two ratio situations modeled by a/b = c and x/y = k. They 0 +| =10

require reasoning about how qualitative changes in a or b and

x or y affect c and k, the intensive values of the respective ratios, and of how

these qualitative changes affect the comparison of ¢ and k.
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Iesselation Tasks which we developed were based on the concept that any uniform
pattern visually expressing a comparative relationship between two or more sets of
congruent juxtaposed geometric figures, such as curves to squares, or squares to
rectangles, can be used to tesselate the plane. Proportionality problems arise
from questions about iterations, partial iterations, or partitions of the basic
tesselating pattern. Comparison of rates in terms of equality or inequality rela-
tions are embedded in a comparison of two tesselating patterms. Missing value
problems are embedded in situations when an iteration, partial iteration, or
partition of a basic tesselation pattern is shown with one set of geometric patterms
masked. Incorporation of perceptual distractors into a tesselation task serves as
a test of the strength of a child's logic for proportional judgments over percep-
tually based judgments.

The block task is strictly a non-metric proportionality task which involves two
pairs of blocks ((A,B) and (C,D)). Corresponding blocks (A,C) and (B,D)) across each
pair were constructed from the same kind of unit-blocks; blocks within a'pair differed
in the size of unit blocks used, Aand C using larger units. The number of unit
blocks in A and C differed, but remained constant across tasks. The three instan-~
tiations of each of B and D compared in number of unit blocks by one less, the same,
or one more to A and C, respectively. Subjects were asked to judge the weight re-
lationship between C and one of the instantiations of D based on one of three
weight relationships given between A and an instantiation of B.

The three within pair weight relationships crossed with the three within pair
number of unit blocks relationships resulted in 27 possible problem situations.

Nine carefully selected problems were presented to subjects. The blocks were con-
structed so that proportional reasoning was required for problem solution, carefully
avoiding the possibility of solution by transitive reasoning.

The trimngle similarity tasks assume that similarity is a primitive cognitive
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structure to proportionality. Each task involved right triangles as the pre- and
post-image of a uniform or nonuniform right-triangle preserving positive or nega-
tive dilation. Three transformations were represented such that from pre- to post-
image, the leg of the right triangle in a counter~clockwise orientation to the
right angle was stretched or shrunk by an equal, or less, or a greater multiple
than the leg in the clockwise orientation to the right angle. Thus, six types of
tasks were possible. For missing=-value proportionality problems in this context,
children were given values of two sides of the transformation pre-image and one
corresponding side of the post~image along with a picture to characterize the
transformation as one of the six possible, and asked to give the value for the
length of a corresponding side of the post-image. For ratio comparison problems,
children were given numerical data for two pairs of corresp;nding sides of the pre-
and post-images and then asked to choose from a set of pictures the one of six
possibilities which would result if the pre-image were superimposed upon the post-
image.

The concept map task 1is concerned with the conceptual representation of a topic,
in this case, proportional reasoning; not with numerical relationships or strategies
The children were given a number of concept names on cards and were asked to arrange
them so that similar concepts were near each other. They then drew and described
links between the concepts which exposed their understanding of the relationship
between the concepts. The resulting concept map gives an impression about whether
children see relationships between concepts and whether or notthey group them hier-
archically or as separated entities. The concepts given were general (proportion,
fraction) or specific (numerator, denominator). Some were mathematical (rate,
ratio) or from applications (speed, time, distance). So there were ample opportuni-
ties to find interconnections. The results from this task will be used to aid in
constructing semantic nets of the student's cognitive representations of concepts
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associated with fraction, ratio, and proportion.

These tasks have been given in one-on-one interviews given at intervals in a
15-18 week teaching experiment. Further analysis should help to characterize the
development of qualitative and quantitative proportional reasoning strategies, and
the interaction between them.

A written test was developed to study the effects of problem context from the
two perspectives of qualitative and quantitative reasoning. Quantitative tasks
were of missing value (MV) and numerical comparison (NC) types. Qualitative pro-
blems contained no numerical values, they required a decision about the directional
change of a rate when its numerator or denominator is(are) changed, or to deter=

mine the order relationship of two rates according to the variables under considera-

-tion.

Four contexts were selected -- speed, mixing, scaling, and density. For each
context, separate tests were developed for each of two settings=— more familiar and
less familiar -~ resulting in eight tests. The contexts and settings are listed:

Setting (more familiar) Setting (less familiar)

Speed Running Laps Driving Cars
Mixing Mixing Lemonade Mixing Paint
Scaling Drawing Classroom Maps Reading Road Maps

Density Standing in Movie Line Hammering Nails

Each test had eight quantitative problems (4 MV and 4 NC) with integer ratios
both within and between rate pairs. Two types of qualitative problems (4 rate
change and 4 comparison) were included in each test. A qualitative rate change
task requires determination of the direction of change in a single rate: "If Nick
drove less miles in more time than he did yesterday, his driving speed would be
a) Faster b) Slower c) Exactly the same d) There is not enough information to
tell." 1In a qualitative comparison task two rates are given and an order compar-
ison is required: "Bill drove more miles than Greg. Bill drove for less time than

Greg. Whowas the faster driver?”
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Test results from about 950 grade-7 and -8 children were analyzed in a context
X setting X problem type X grade level design. Types of student solution strate-

gles were examined for the quantitative problems.
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RECENT COGNITIVE THEDRIES APPLIFD TO SBQUENTIAL LENGTH MFASURING
KNOWLETIGE IN YOUNG CHITIREN
By GILLIAN BOULTON-LEWIS
(Brisbane College of Advanced Fducation)

SUMMARY. This research was designed to detemmine sequential length

measuring knowledge in children aged 3-7 years. Sequences were predicted in

advance logically from measurement theory; fraom a review of the literature;
and from the information processing demand of the tasks (cf. Case and

Halford). A sample of 80 children fram mixed socio—economic backgrounds was

tested on measures of capacity to process information and 15 main

measurement tasks. Analysis of the data showed that the empirical sequence
of length measuring knowledge was most like that predicted fraom analysis of
the information processing demand of the tasks. It is asserted that
mathematics curriculum content could be sequenced on the basis of similar
information processing analyses.

INTRODUCTION

Lesh and Landau (1983) maintained that cognitive research has produced
generalisations that researchers in mathematics ideas have considered to be too
crude. They asserted that mathematics educators are now focussing directly on
children’s mathematical ideas because of their interest in substantive
mathematics content and educational implications.

Part of the disillusionment with cognitive research has been caused by the
fact that the results of Piaget’s work and similar research have not been easy to
apply to mathematics education. In the 1960’s and 1970’s determined efforts were
made to apply Piaget’s theories to designing mathematics curricula. The effects
still persist in many state curricula in Australia and have caused a certain
laissez-faire approach to teaching mathematics to young children in particular.
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With the benefit of hindsight we can see that Piaget’s theory could not be
directly applied to teaching mathematics. He was concerned with the logic of
thinking and with providing a formal logical description of human knowledge as it
developed over time. Because of his structural descriptions of thought and the
tasks he designed, his data present a picture of deficits in the thinking of
pre-operational children in particular. Siegler (1981) suggested that
mathematics educators should look more closely at the knowledge that young
children do possess without feeling obliged to fit it to a preconceived Piagetian
framework. The research in mathematics education appears now to be taking up
such a challenge.

Recent cognitive research however is not such a "crude" tool for
mathematics educators as Iesh and ILandau suggested. In particular the work of
Halford and Case has much to offer to mathematics education. Each of the
theories is concerned with the notion of an increasing upper limit to children’s
capacity to process information. Case (1985) and Halford (1982) have amployed a
variety of tests to assess that capacity at approximate ages. Halford (1982) has
described sequential levels of children’s ability to relate symbols to
environmental elements and identified classes of concepts, belonging to each
level (Halford, in press). These include mathematics concepts and provide a
basis for detemmining the demand on processing capacity of content and hence
sequence in mathematics curricula. Case (1985) has described tasks that children
should be able to perform as age and M — space increase.

The research described in this paper was intended to determine children’s
sequential knowledge of length measuring. It was designed to predict the
sequence of development of knowledge of a particular mathematical idea fram

recent cognitive theories and to campare the predictions with empirical research.
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Three alternative sequences of length measuring knowledge were posited
before children were tested. The first was a logico/mathematical one based on
measurement theory. The camponent skills (variables -V) required for length
measuring were determined and ordered according to whether they were logical
prerequisites for subsequent skills. Research findings for each aspect of length
measuring, identified in the logico/mathematical analysis, were reviewed. The
second sequence of skills was based on that review. The skills were ordered
according to the approximate ages at which 50% or more of children apparently
demonstrated mastery. The third sequence was based on analysing the demand that
each of the skills, identified in the first sequence, would make on children’s
capacity to process information. The skills were then sequenced a third time
according to their hypothesised demand (cf. Case and Halford in particular), the
nomms for increase in capacity to process information, and classes of tasks
possible at each level. The three sequences are shown in Table 1 of the longer
paper provided at the session and described there on the basis of a selective
discussion of the references.

METHOD
sample

This consisted of 80 children fram kindergartens and primary schools in the
southern suburbs of Adelaide, South Australia. There were 8 boys and 8 girls at
five age levels (mean ages at each level were 3:7, 4:6, 5:6, 6:5 and 7:5). The
sample included equal numbers of children fram low, middle and high
socio-econamic backgrounds.

Procedure

Fach child was withdrawn and tested individually in two separate sessions.
The tests included an M space measure, two measures of short temm memory and
tests for variables as listed below. The tasks are described in detail in

Boulton—Iewis (1983) and briefly in the paper available at the session.
-243-



M-space was measured with the Card Counting Test used by Case (1977). The
repeating of digits test from the Stanford-Binet Intelligence Scale (adapted from
Terman and Merrill, 1964) was used to measure digit span to determine short temm
memory. A repeating of words test was devised for this study as an additional
measure of short term memory.

The other tests were as follows; V 8 Subitizing, V 11 and V 12, number names
in sequence from 5 to 10, and 10 to 100. V 14, One-to—one correspondence to
determine equivalence and cardinal number (and also V 9, enumeration, V 10,
number names to 5, V 13, a rule for counting.) V 15, Relative magnitude of small
numbers (4 > 3, 7 > 6). V 16, Recognition of equality/inequality of length.

V 17(a), Ordering of lengths pair by pair and/or V 17 (b) seriation. V 18
Construction of horizontal lines. V 19, Diagonal lines and V 20 recognition of a
straight line. V 21, Recognition of length invariance (without explanation) and
V 22 conservation of length invariance. V 23, Correct resonse to transitivity
task and V 24 transitive reasoning. V 29, Measure with a standard device
(without explanation) and V 30 (with explanation). V 34, Counting to 10 with a
rule. (Sum of V 9 Enumeration, V 11 and V 13.) V 35, ILength measuring strategy

using arbitrary units (sum of V 25, V 26, V 27 and V 28.)

The results are summarised in Figure 1 of the paper available at the
session. Figure 1 is a model of the sequence of development of length and number
knowledge in children aged 3 to 7 years. It was constructed from analyses of the
data through the SPSS Guttman and Guttman-Lingoes Multiple Scalogram scaling
procedures, cross—tabulation of the variables item by item, and phi and McNemar
chi-square statistics.
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It can be seen fraom Figure 1 that the variables form three or four clearly
identifiable groups. Variables 18, 16, 17, 9, 8 and 10 are the first concepts to
develop. There was no significant chi-square value between any of these
variables which would indicate strong directionality although the scalogram
analyses give the sequence of development for these skills.

The second group of variables includes 21, 34, 15, 22, 23 and 19. There was
a clear one way association between the last variables in the first group (17 and
8) based on the chi-square value, and the first variables in the second group (21
and 34).

The third group of variables includes 29 and 14. Variables 30, 35 and 24
could be considered to be in this group or in a further fourth group. Variable
24 certainly is learned much later than the other variables. Variable 29 occurs
much later than predicted from the literature review or from the analysis of
demand of the tasks.

The sequence of the variables in Figure 1 was most like the sequence
predicted from the analysis of the information processing demand of the tasks.
The only significant exceptions were variables 29 and 24, both of which are
apparently learned later than predicted.

The variables were also cross—tabulated with sex, measures of M-space, short
term memory span and age. The 50% success rates for age, M-space and span showed
similar groupings to those in Figure 1. Cross tabulations by sex showed no
significant difference in performance on any of the tasks between boys and

girls. Other statistical analyses are discussed in the fuller paper.
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DISCUSSION
RATED ADDITION: A CORRECT ADDITIVE SOLUTION FOR PROPORTIONS PROBLEMS
The data from this research showed quite clearly that the sequence for Terezinha Numes Carraber
acquisition of length knowledge is closely related to developing capacity to Umtiversidade) Feberal de Pernambuco
process information. Increasingly camplex knowledge of length measuring was Recife, PE, Brasil

predicted and shown to develop with increasing M space and short term memory.

The children younger than 6 years in the sample had no direct instruction in SEveRal St HoRS have documented the existence of
measurement concepts. The older children may have benefitted fram school N S thenatical abilities which rely upon problem-solving
instruction to the limit of their capacity. procedures that differ from those taught in schools. These

abilities have all been in the realm of arithmetic operations.

It can be seen from Figure 1 that there are levels of knowledge for concepts such Child-invented methods observed for dealing with more complex
as invariance of length and cardinal number. They do not develop in an all or problems like proportions have been of limited application and
none fashion. Rather levels of knowledge of those concepts appear to be closely less successful (e.g. Hart 1981) than theose reported for
related to capacity to process information. arithmetic operations.

The present study describes a successful intuitive method

Because the sequence shown in Figure 1 is most like the sequence predicted fram for solving scale problems. The participants in the study,
the analysis of the information processing demand of each task it is asserted et iict fon Horemen and students, nad different previous
that the theories of Case and Halford are potentially very useful for curriculum experience with scales. Foremen deal with blue-prints in their
planning. A suggested procedure for choice and sequence of curriculum content is daily lives. They often have to figurs out the lengti of walls
outlined in the further paper available at the session. using information obtained by measuring the target distance on

the blueprint and converting it into real-life size according to
REFERENCES the scale used. Their experience with scales is in practical

All other references are listed in the full paper available at the session. situaticns, where this numerical transformation is nseded and

they have previous knowledge of which scales are commonly used.

Boulton™lewis, G.M. (1983). ILength Measuring Knowledge, Information Foremen learn about their professions on the job; no formal
Processing Capacity in Young Children and Implications for Curriculum training is required. Their learning of scales is accomplished
Planning. University of Queensland, Unpublished doctoral thesis. on the job--a situation which strongly favors the development of

-246- intuitive strategies for solving scale problems. Students, in
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contrast, if they 1learn about scales, do so 1in the classroom.
In Brazil, students usually receive instruction on algorithms
before being asked to solve problems by applying the algorithm.
Teaching aims at the development of formal mathematical
strategies; the rule-of-three is the algorithm taught for the
solution of proportions problems.

METHOD

Subijects. Subjects were 17 foremen and 16 7th graders
from Recife, Brazil. Of the foremen, three had been in school
long enough to have learned about proportions; all had at least
five years of practice in the trade. All students had received
instruction on the rule-of-three in 7th grade.

Procedure. Subjects were shown four blueprints drawn
according co different scales. Two scales (1/100 and 1/50) were
familiar to foremen from their practical experience; the others
(1/40 and 1/33.3) were unfamiliaw. Students had not received any
specific instruction on scales; the distinction between familiar
and unfamiliar scales does not apply to them.

Subjects, tested individually accor<ing to the clinical
method, were shown that, for most of the walls, the life size
measures were indicated on the blueprint. However, for some of
the walls, there were no measures. Their task was to figure out
what those measures were by using information from the blueprint.
As a start, they obtained one measure from the blueprint and
compared it to the life-size measure of the same wall; these two
values will be termed the first pair of numbers. The first

pair was needed for the application of the rule-of-three and for
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the identification of the scale by the foremen. The second pair

of values was the pair for which there 1is an wunknown, the

real-life wvalue, and one known measure, obtained from the

blueprint. Table 1 presents a summary of the numerical problems.
Table 1

Problems presented in the Scales Study

Scale First pair Known-values in the second pair
1/100 3 cm/3 m 4 cm; 2,8 cm; 3,2 cm
1/50 6 cm/3 m 9 cm; 7,5 cm; 5,5 cm
1/40 5 cm/2 m 8 cm
1/33.3 9 cm/3 m 15 cm
RESULTS
Three types of results were analysed: accuracy of

solutions, strategies in problem solving and types of errors.

With respect to accuracy, foremen did Dbetter than
students with ©both familiar scales anc. the 1/40 scale; students
did better with the 1/33.3 scale.

With respect to strategies used in problem solving,
results showed that: (1) only one student used the rule-of-three;
(2) additive solutions (see Karplus et al, 198311 Hart, 1981;
Inhelder and Piaget, 1951), in which the difference between the
first pair is kept constant in the second pair, were observed in
only two of the 259 observations (8 problems x 33 subjects; 5
missing observations); (3'} the most common method of solution was
one which can be termed "rated addition", according to which the
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subject finds a simpler ratio (usually 1/x) and then proceeds by
adding corresponding amounts to each member of the pair of
numbers. This method must be distinguished from the additive
solutions because, contrary to those, it maintains the ratio
constant.

The methods used in finding the simpler ratio were of
two types: (1) hypothesis testing; and (2) identifying the
relation. Hypothesis testing was a strategy used by foremen
which treated the known scales as a pool of hypotheses and
proceeded by eliminating/accepting a scale by comparing
calculations for the first pair with the given values. If the
calculations according to the hypothesized scale checked with the
given values, the hypothesis was accepted; otherwise it was
rejected. This stretagy can only work for familiar scales
because unfamiliar scales are not part of the pool of hypotheses.
Hypothesis testing was not a strategy available to students
because they did not have a pool of familiar scales to draw from.
Identifying a relation was a strategy in which the ratio 1/xwas
obtained through multiplication/division within the first pair.
This strategy, which works for any scale, made foremen
"uncomfortable" with the scale 1/33.3 because of the definition
of scale used in their trade; nonetheless, none of the foremen
who were able to identify this ratio failed to solve the problem.
Students worked with this scale as 3/1 as they were not subjected
to the same type of expectations on how to name scales. The
distribution of responses according to strategies is presented in

Table 2.
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Table 2

Percentage of subjects by type of strategy

Scales
1/50 1/40 1/33.3

Foremen

Hypotheses testing 47 25 35
Identifying ratio 47 67 59
Other 6 8 6
Students

Identifying ratio 88 82 82
Other 12 18 18

Am~ng foremen, there was no relationship between 1level of
schooling and type of strategy used in identifying the scale; two
illiterate foremen solved all the problems, finding the simpler
ratio by division/multiplication, while four with more than five
years of schooling did not.

Error analysis showed that stirdents difficulties
resulted mostly from the interpretation of results; after correct
calculations, they read the results incorrectly. They also made
mistakes in working with decimals, coming up with responses such
as "three point seven point five" (calculating the life size for
7,5 cm in the 1/50 scale) or "three point seven and a half".
Foremen, 1in contrast, had almost perfect performance on the
familiar scales and displayed no errors of interpretation but,
like students, had difficulty in dealing with decimals.
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CONCLUSIONS

An intuitive strategy for dealing with scale problems was
documented, replicating previous observations (Abramowitz,
1976, and Rupley, 1981; in K/lrplus et al, 1983). This strategy
involves two steps, (1) finding a simpler ratio, and (2) applying
it additively to compute the result. It remains close to
children''s wunderstanding of the problem and does not introduce
computational rules which may seem arbitrary to children, like
those in the rule-of-three. It is suggested that children could
perhaps learn more about ratio and proportions if encouraged to
solve problems through rated addition and reflect wupon the

meaning of this way of adding.
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Concerning conceptions of area (pupils aged 9 to 11)
By Régine DOUADY et Morie-Jeanne PERRIN

I.R.E.M - Université Paris 7 - France

By the dialectic relation they establish between space and num-
bers,‘spotiol measures (length, area, volume) play a key role in the
conceptualization of these two fields. Among spatial measures, the
measure of area play a priviledged role in the building of multipli-
cative structures. This from two points of view : numbers operate on
areas and areas appear as products of lengths.

One knows the difficulties for some pupils to conceive the mea-
sure of the area of a triangle in square centimeters,

These difficulties can be related to the conception of areas associa-
ted to the existence of an actual tesselation of the surface, and to
the shape of the tiles.

The problem is then to develop learning situations which allow
confrontation and evolution of conceptions, so as to master these
difficulties.

We have built didactical sequences which satisfy hypotheses sta-
ted later, we have observed their development in two classes : a CMI
(27 pupils 9-10 years old) and a CM2 (22 pupils 10-11 years old), and
we have detected the conceptions implemented by these pupils in two
occasions

1) during individual interviews, at the end of the Second Trimester

for the CM1, ct the end of the school year for the CM2.




2) during paper-pencil tests, at the end of the school year, for the

two classes. The tests were those used by J. Rogalski in CMI, CM2 and

6%(11-12 years) [Cf.Recherches en Didactique des Mathématiques Vol3.3].

I- Qur didactical choice for constructing the learning sequences

* Theoretical framework

We resume the hypotheses stated in [R. Douady 1984, th&se and PME 9]
1) On the strictly cognitive ground, the implementation of unbalan-

ces and the possibility of reequilibration by pupils can be obtained,
for an important part of the concepts, within appropriate "interplays
between settings" by using problems to be built ad hoc.

The reequilibrations we are aiming at correspond to the acquisi-
tion of new concepts involved in "Tool/object dialectics".

On the didactical ground, we make the hypotheses that there are
some adequate problems which allow the realization of the above hypo-
theses, and which can be part of a global organization of the teaching

efficient for most pupils.

Here, for the measure of areas to play fully its role in the
construction of their knowledge, pupils have to make three settings
interact : the setting of surfaces (geometry without measure, but with
movements and transformations), that of magnitudes (lengths and are-
as), and that of numbers. This involves the necessity of distingui-
shing these three settings, and also the possibility of identifying

two of them - or the three - if needed, according to the problem.

* Presentation of the notion of area

The area is a way of accounting for the room occupied by a sur-

face in the plane. The equality is defined from 3 points of view
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The area is invariant by moving.

It is also invariant by cuting in pieces and patching themback
without loss or overlap.

On a grid, two surfaces which include the same number of squa-

res have the same area.

In the same time, comparison of areas is defined using inclusion
of surfaces, and addition of areas using juxtaposition of surfaces.

The three points of view above make it possible tec compare areas
in some cases but not all. For instance you cannot find a square with
the same area as a given disc. A way of answering this is to use the
measure. Another way is to call on another magnitude which can be
measured : mass.

A description of the didactical sequences we worked with can be
found in [Douady-Perrin 84-85, Petit x N°6-N°8 IREM Grenoble].

The main points are : comparison of areas without measuring, dif~
ferenciation area/length, approach of measure in two steps : tessela-
tion, measure of the area of a given surface with different units.

Note that the pupils concerned in this paper only have dealt with

a part of the sequences described there.

II- Conceptions of the pupils

1) daterviews:

We have interviewed the pupils by groups of 2.in order to obser-

ve, and sometime induce, conflicts of conceptions. They had to com-

pare the areas below
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The pictures were drawn on white paper.

Under request, squared paper was provided.

By S4

Strategies observed

a) reduce comparison of areas to comparison of numbers
using a grid and counting squares (on squared paper or squa-
ring the white paper, with squares or with rectangles).
Multiplying lengths to compute areas, inventing wrong formulas
for triangles or parallelograms.

b) reduce comparison of areas to that of sides (SI and 52)

c) cut and patch in an appropriate way (to compare S] and Sz,or S3

and 54 ) ; or pave (S] with S S, with 54).

37 72
d) "Straigthen" the parallelogram into a rectangle ; lean the paral-

lelogram even more.

Conflicts and changes of strategy

Strategy c on one hand, strategies b and d on the other, conflict
since they lead to opposite conclusions. This surprises the pupils,
since they expect to get the same results.

They measure the height of the parallelogram, and

are amazed to find it shorten than the side.

For some of them, this is a way out of the conflict. These use

strategy c. Others try to pave the rectangle and the parallelogram.
-256-

with the same squares. They are led to put together
1

[jthe two beaks of the parallelogram, and find 24 squa-
T

— res for both surfaces.

For other ones, the change of strategy takes place when they are
asked to "lean the parallelogram more and more", until it becomes
clear that the area has turned very small,

Our interpretation is that these pupils amalgamate three trans-
formations

- the "jointed parallelogram", which preserves the length of the

sides, but not the area.

- the sliding of a side (on the line which carries it), which

preserves areas but not lengths of sides

- The rotation around one vertex, which preserves all lengths

and areas.

Remark : In the class CM2, where more time had been devoted to the

study of area without measuring and to its invariance under cut and
patch, strategy ¢ has been chosen most, including to compare S3 and
54. Difficulties in handling have induced changes of strategy in this
case : either to calling on measures (sometimes wrong), or to refe-

ring to S] and 32

2) Paper-pencil tests

We have proposed questionnaires used by J. Rogalski [Recherches
en Didactique des Mathématiques, vol 3.3], including "S.N. without
an example of tesselation"

- How many small squares (resp. rectangles, triangles ...) in a

big one ?
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- How many paint cans are needed to paint the big square (resp.),

knowing what is needed for a small one ? (the ratios are 2or3).

J. Rogalski gets answers to these questions which are different
for the square (mastered in CM1) and for the triangle : "a long evo-
lution is needed before the representations of tesselation of the
triangle are at disposal (end of 5% .13 years). Only at the end of
4% (14 years) these representations are available for 3/4 of the pu-
pils”. For spontaneous tesselation (question 1), she gets 48% (resp.
39%) correct answers for the equilateral triangle with ratio 2 (resp.
3), all classes together (9 to 14 years). For these questions, we get
answers comparable to those of pupils in 4% (13-14 years). Note also
that correct results are in the same order of magnitude, whether squa-
res, triangles or parallelograms are concerned, whether the ratio is
2 or 3. The rate of passing from a correct answer in tesselation to
a correct answer for paint (success (paint + tess) / success tess).
ranges from 85% to 100% in CM2, from 53% to 90% in CM1, and is better
for triangles than for other surfaces. These rates are comparable to
those of J. Rogalski 2 years later.

In conclusion, the work done in didscticcl sequences has appa-
rently made cioiloble the tesselation of various surfaces, so that
the pupils become able to answer some classical questions concerning
areas.

These didactical sequences have been completed later by other
one in order to implement the dynamical point of view induced by geo-

metrical transformations.
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Children*s Ferception of Frractions
Daphne kerslake

Bristol Folytechnic

The research referred to in this paper is part of the project
gtrategies and Errors in Secondary Mathematics, based at Chelsea
College, London University from 1979-1987.
In the case of fractions, the main difficulty seemed to be a
dependance on half-remembered algorithms, and a failure to
appreciate what fractions really are. Thus the decision was made to
investigate further children's perception of fractions and, in
particular, the models they used when dealing with fractions. The
child-en who took part in the research were aged 12 to 14, and were
in middle—ability classes in a number of different schools.
Two aspects which emerged from the research are now discussed
briefly.
1. The first relates to children’s difficulty with the idea that
the fraction a/’/b can mean a-+b.
When invited to comment on a number of models of the fraction
Z/4, the only one with which all children were comfortable was
the part-whole one.It became apparent that the commonest reason
for rejecting other models was because it was seen not to fit in
with this view. For example, a set of 4 counters, of which =
were coloured was rejected because "It wouldn’t be right, it’"s
not a whole thing” or "No, it*s got no shape."
0f particular interest was the children’s response to Z<=4 . In
most cases the idea that it could have any connection with Z/4

was firmly rejected. What is more, it appeared that these
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children did not think that an answer even existed when a
smaller number is divided by a larger one. There were two
strategies frequently employed. Some who read the division the
correct way said, for example: "3 shared by 4. You can’t do
that, 4 is bigger than 3."

The other strategy was to reverse the order of the division,

but again fractions were avoided: "I's into 4. 3°s go into 4
one, and one remainder."
These children were then asked to look at the pair of divisions
12=4 and 4 =-12. Some evidently thought that it was acceptable
to treat division as commutative:

MT "4 12: that"s the wrong way round .. 12 won’t go into 4"

I. "So what do you think we should do about it?"

MT "Change it round .. 12 divided by 4."

I. "Is it all right to choose which way to do it?"

MT "Yes, because you’d get that one otherwise - 12 into 4 -

and that®'s the wrong way."

When presented with the practical task of sharing 3 cakes
between 4 people,almost all the children were able to do this
satisfactorily, and in most cases, were then able to see its
connection with the fraction Z/4, with the resulting shapes now
looking like part-of—-a-whole models for 3 quarters (e @ @ )
or 3/4 of a cake. One child, though, said: "Ah, I see what you
mean. It would be the same that way.But you said these were
cakes. But if it was 3 <=4 you couldn®t do it."
Fart of the teaching programme was designed to give the children
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experience of the interpretation of the fraction as/b as a-+b.
This made use of a range of practical tasks, and also of the
calculator. One test item asked for responses to both 12 +4 and
4 +12. The main interest in the results lies in the fact that
while the number of correct responses increases significantly
after the teaching, there remained about one third of the
children who thought that they should both have the same answer.
Forty-five of the 59 children gave responses which aveoided
fractions at the pre-test, and 26 still at the immediate
post-teat.

In a later test-item, consisting of the pair 3+4 & 4-=3, it was
not possible to avoid the use of fractions by reversing the
order of the division. Ten children thought, at the pre-test,
one of the results wwas zero, while 12 thought both answers were
the same. By the immediate post-test, these numbers were reduced
to 2 amd 10 respectively.

It seems that the perception of a fraction as part of a whole
shape, usually a circle or square, is so strongly held by some
children that they find it impossible to adapt this model even
to include the notion of 2 circles to be shared into 4 equal
parts. This restricted view of fractions emerged at several
points during the interviews, and where this model of a fraction
did not seem to help, the children appeared to abandon it
altogether in favour of trying to remember learnt rules.
Instances of the limitations of the part-whole model were found
when comparing fractions and when adding fractions:
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in comparing S/20 and 1/4, JE chose to draw a rectangle split
into twentieths to illustrate S/20, and compared this with a
previous drawing of 1/4 which was a circle divided ito guarters.
She said that $5/20 is bigger than 1/4 "because you’d draw &

diagram into 20, shade in S .. that would be more than 1/4 .,

I think 1/4 might be bigger. Hard to tell." And, indeed, it is
virtually impossible to caompare two fractions of different
shapes. This illustrates well one of the problems of the
part-whole model, in which, for any meaningful comparison, the
"wholes®™ have to congruent. In the next extract, JC was working
at 2/3 + I/4, and gave the answer 5/7.

I. "Do you think that answer®s all right?"

JC "Yes. If it was the other way round it would be top—-heavy"

I. "We have just drawn a picture for 3I/4. Could you draw one

for 2/37"

JC "(Draws @ @ b1l

I. "So we have 3/4 and then we add 2/3 on"

JC "Yes. There are seven pieces and there are five shaded in,

two and three."
Not only is the diagram unhelpful, but JC uses it to confirm her
error. What is more, there are fundamental objections to using
the part-whole model when dealing with any operations on
fractions . The notion of adding part of one shape to another
part of a second shape is parallel to the attempt to add 2

apples to 7 bananas; to make any sense,it is necessary to think

of fractions as numbers, not parts of shapes.

-262~

One section of the teaching module focussed specifically on the
idea that fractions are numbers. The teaching made extensive use
if the number-line, and of calculators. One of the test items
asked the children to find 3 numbers between 1 and 2 on a
number—-line.At the first test, ten children said there were no
such numbers, whereas only three made this response at the
immediate post-test. However, in the second part, the more
specific question was asked :'"How many numbers do you think
there are between 1 and 2", the results were less encouragiﬁg.
"Correct’ answers included those such as "as many as you like'",
or "you could go on for ever" as well as "infinitely many". The

results are shown below:

Existence of numbers between | _and 2

Answer Fre Post Del
Correct =) 9 10
None 8 S 3
3 12 1S 11
b 4 1 2
1 4 () 1
No response 18 10 9

So, in addition to those who thought that were no numbers
between 1 and 2, there was an unusually high group of children
who made no attempt, who, perhaps, also found it difficult to
accept the existence of any fractions. There wetre many other
occasions when the children failed to accept fractions as
numbers : for example, when asked to find a number such that
2x A =1, 46% children chose to reply “there is no number"
rather than to attempt an answer or make no response, while 47%
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made a similar reaction to 2 x0 = 7.

This seems to be further evidence thst it is difficult for many
children to make the major re-adjustment of thought that is
required to accept that fractions are not restricted to
geometric illustrations, but are numbers and, as such, an
extension to the set of natural numbers with which they are

already familiar.

It is the very ubiquity of this part-whole model which is of
concern. If the idea of a fraction is, to a child, synonymous with
that of a shaded part of a circle or square, then it is difficult
to see how they are in a position to make any meaning of adding or
multiplying two fractions. There is, even in the case of
equivalence or of the ordering of fractions, the underlying, but
not usually stated, assumption is that these are fractions of the
same shape. It may well be that this part-whole model inhibits the
development of any other interpretation of a fraction, and that
more thought needs to be given to the process by which a child

moves to the concept of a fraction as a number.
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ocanartional Reasoning - Some related situations
fOCLLLL :

Zvia Markovits, Rina Hershkowitz and Maxim Bruckheimer
science Teaching Department, The Weizmann Institute of Science, Rehovot, Israel.

Introduction
Introduction

The concepts of ratio and proportions, have been the object of many research
studies in the last 25 years, because of their importance ''in every day situations,
in the sciences and in educational systems'' and because ''the concept of proportion is
difficult. It is acquired late. Moreover, many adults do not exhibit mastery of the
concept'' (Tourniaire and Pulos, 1985).

Touriaire and Pulos who reviewed the research on proportional reasoning, note that

there are two kinds of problems:

1) Missing value problems - where three numbers a, b and c are presented, and the
task is to find the fourth, x, such that %-: % .

2) Comparison problems - where four numbers a, b, c, and d are presented, and the

task is to determine whether there is a proportional relation between them.
In this paper we present three situations, related to these two problems, which

can be seen as a further contribution to the research into proportional reasoning.

1. Proportional reasoning - as a stereotype

One of the reasons for students failure to solve mathematical problems is their
application of an incorrect algorithm. By presenting problems which, if solved by
routine algorithms, give rise to unreasonable answers we can create a conflict
situation, which may cause some students to question their unthinking use of the

algorithm (Markovits et al, 1984).

Example - The ''population problem'

The area of Belgium is about 30,000 km2, and its population is about

10 million. The area of Argentina is about 3,000,000 km . What do you

think is the population of Argentina?

Explain your answer.

The '"population problem' can be (wrongly) considered as a missing value propor-
tional problem, because three numbers are given and the stedent is asked about the
fourth.

The problem was given to an experimental group (sixth and seventh graders), a
comparison group (seventh graders), to a group of preservice teachers and a group of
inservice teachers. The experimental group had worked a unit on estimation and

reasonableness of results dealing, among other things, with the fact that not every
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o
problem can be solved in an algorithmic way by manipulation of the given numbers.
(The treatment did not include any problem where context was similar to the 'popula-
tion problem'). The comparison group and the groups of teachers did not receive any
treatment.

The numerical answers are not very important because they tell only a little
about what was in students' and teachers' mind. Therefore in the following table, we

summarize only the explenations given by the different groups.

TABLE I Explanations given in the “population problem'

) Experimentall Comparison| Preservice | Inservice
Explanation group group teachers teachers
(n=168) {n=76) (n=48) (n=37)
No explanation 1% 8% - 3%
Algorithmic explanation
- Same manipulation with
nunbers 5% 16% - e
- proportianal algorithm 34% 45% 31% 32%
Conflict
Use of the proportion
algorithm but with the
concept that the answer — e
is not resonable. S% = = 1%
Correct gxplanaticn
- 20 se a0 o0
- One cannot know o388 a |12e AN 113 P IR
- Self-knowledge (books
newspapers etc.) 7% 19% - J 3% |

A reasonable answer was given by only 29% of the comparison group and 50% of
the experimental group. Among the teachers about 2/3 gave correct explanations.

Many unreasonable answers were given. The most popular unreasonable answer was
caused by using proportional reasoning in a stereotyped way - about one third of the
students in the experimental group and of the preservice and inservice teachers, and

almost half of the comparison group.

Examples:

Judith, seventh grade, comparison group:

1000 (millions). Argentina's area is bigger by a 100 time.
So we multiply the population of Belgium which is 10, by 100"

-266-

Inservice teacher:

172000 10 - 30,000 E

2 x - 3,000,000 "
For the teacher groups, proportional reasoning was the only kind of wrong
explanations, and it was even expressed by using the ''rule of three'' whereas the

students also had some other stereotypes. .

The experimental group responses are better than those of the comparison, so
the treatment had some effect, but was insufficient to change student algorithmic

attitudes to problem solving. The continuation of such treatment is clearly needed.

o) | Absolute and relative error

The concepts of absolute and relative errors are very important in estimation.
One of the main difficulties in dealing with this, is to distinguish between the
two kinds and to decide which is more relevant in a given situation.

Application of these two errors to comparison problems yielded problems such
as the following:

The '"'errors problem'

Noa was asked to estimate the length of the two following segments:

a

b

(The length of segment a is 10 cm and the length of segment b
is 4 cm).

Noa's estimate is in error by 3 cm for segment a, and by 2 cm
for segment b.

Indicate the answer you consider to be relevant:

i) Noa's estimate for segment a was better than that for b.
ii) Noa's estimate for segment a was as good as that for b.
iii) Noa's estimate for segment b was better than that for a.

Explain your answer.

The problem was given to the same four groups mentioned in the previous section.
For the experimental group, who had a similar problem in the pretest, the ''errors
problem'' served as a posttest.

In order to give a correct answer the student has to understand that the error
needs to be regarded in (proportional) relation to the given length, then express
the two pairs of numbers (2,4), (3,10) as ratios, and finally to compare these two

ratios. The results are presented in Table {1I.
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Table II. Results for the "errors problem"”

Experimental| Camparison|Preservice ervice
Answer group group teachers teachers
(n=179)** (n=80) (n=47) (n=39)

i) Noa's estimate for seg-
ment a was better than | 75% (99%)* | 37% (76%)* 49% (100%)*% 77% (92%)*

for b

ii) Noa's estimate for seg-
ment a was as good as 4% 19% 25% 18%
that for b

iii) Noa's estimate for seg
ment b was better than 21% 44% 26% 5%
that for a

* The numbers in brackets indicate the percentage of correct explanations
in each group.
** In a similar problem given to the experimental group as part of a
pretest, only 28% chose the correct answer and only 57% of these gave a
= correct explanation.

Those who chose iii) as their answer regarded the errors as absolute.
For example:

Qfxig, seventh grade, comparison group:

"I chose the third answer because Noa's error in estimating b
was less than that for a. For segment a Noa's error was 3 cm,
and for b only 2 cm"

Most of those who chose ii) misunderstood the problem, and paid attention only
to the fact that the estimates and errors were given for both segments.

It can be seen from the results that such problems were difficult for the
comparison group and for the preservice teachers. The results obtained by the
experimental group is encouraging. After a short treatment (including only a couple
of problems of this type), which were given a few weeks before the test, the

percentage of correct answers and explanations jumped from 16% to 74%.

3. Absolute and relative change

In another study ninth and eleventh graders were asked about changes in peri-
meter and area as a function of the change in the sides of squares and rectangles.

The two following problems consider the idea of absolute versus relative change.

"'Rectangle - absolute change problem'

Given a rectangle with sides a and b (a= b)

b
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we add x cm to a and remove x cm from b
Indicate the correct answer:

i) The perimeter increases

ii) The perimeter decreases

iii) The perimeter does not change

iv) The change in the perimeter depends upon the
numerical values of a, b and x.

Explain your answer.

“Rectangle - relative change problem"

Given a rectangle with sides a and b (a> b)

b
R — |
4

we add x% to a and remove x% from b.

Indicate the correct answer:

i) The perimeter increases

i1) The perimeter decreases

iii) The perimeter does not change

iv) The change in the perimeter depends upon the
numerical values of a, b and x.

Explain your answer.
In the first problem the change is absolute; so by adding 2x and by subtracting

2x, the perimeter is unchanged. This was the common response among both ninth and

eleventh graders.
In the second probiem, the change is proportional to the length of the sides,
so we add to the perimeter more than we subtract. But many students gave the same

answer as in the "absolute problem".
Table III - Responses to the rectangle problem - ninth grade students (n=77)

Rectangle - relative change problem

i) ii) iii) iv)

5 Answers Perimeter Perimeter | Perimeter The chan
3 increases decreasess | does not depends upon
8 change a, b, x
%
e i) Perimeter - - - - =
—§ increases

ii) Perimeter 1% 3% - = 4%
ig! decreases
= -
_gi iii) Perimeter 8% 8% 57% 178 |90% joorrect

| does not change
tH -
%] v) The change I = - 1% 5% 6%
depends upon

5 a,b,x
;§, 9% 1% 58% 22%  |TOTAL
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Iable IIT - Responses to the rectangle problem - eleventh grade students (n-58)
Rectangle - relative change problem

5 i) ii) iii) iv)
-8 | Answers Perimeter | Perimeter| Perimeter | The change
B increases | decreases| does not | depends upon
2 change a,b,x
E 1) Parameter - - 1% - 1%
L increases
g |-
§ ii) Perimeter - 1% - - 1%
9 decreases
® ;;i) Perimeter | 27% 1% S6% 13% 97 . ,_—rec-
% i
’;} does not change = ;\
y
o - + =
Ei iv) The change [ 1% - - 1 8
8] depends upon
2 a, b, x l
l27% 3% 57% 3% ITOTAL
I correct
Lo ==

More than half the students in both grades treated the "relative problem”
similarly to the "absolute" (line no. 3 and column no. 3). For these students
percentage change is the same as change in centimetres. Consequently most of the
explanations they gave are similar to the explanations they gave in the "absolute"
case.

The percentage of students who answered both questions correctly is very low,
27% in grade eleven and 8% in grade nine.

Summary

The problems presented in this paper are a little different from the traditio-
nal tasks used in research on proporsional reasoning.

As a continuation of this study we intend to combine the tasks presented here
with the traditional tasks and give them to same groups of students and teachers.
The comparisons should provide some further contribution to the research into
proportional reasoning.
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THE CONSTRUCTION OF THE CONCEPT OF VARIABLE IN A LOGO
ENVIRONMENT: A CASE STUDY
Jodo Filipe Matos
Universidade de Lisboa

1. Introduction

Several educators share the common feeling that the structure of the
Logo language provides a concrete model not only for heuristic notions but
also for specific and powerful mathematical ideas. This pedagogical line of
thought needs to be investigated so that it can be more precisely articulated
and eventually validated.

Many educators have emphasized that, in order to understand a concept,
students need to take an active role. Papert (1972) claims that, if children
are given a suitable environment in the appropriate, dynamic technology, then
they can do real mathematics (rather a just learn about mathematics), that
is, they can become “mathematicians.”

The concept of variable is of major importance in the development of
mathematical thought. In the Portuguese mathematics curricula, as in other
countries, this concept is used in an implicit form since primary school. How-
ever, mathematics curricula often appear to consider it a "primitive" term
universally understood and instantly apprehended by mathematics learners.

Several studies have indicated remarkable weaknesses in children's
conceptions of variable (Wagner, 1983 ; Rosnick, 1982 ; Kuchemann, 1981) and
suggest that student’'s conceptual difficulties dealing with functions and
equations are related to misconceptions about the variables (Ponte, 1984 ;
Matos, 1985).

| can hypothesise that when children develop Logo activities in an
appropriate environment, they are able to construct their own mathematical
and programming concepts. My aim was to identify how is constructed a

concept of variable in a Logo environment.
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Miguel is 12 years old boy, enrolled in the 6th grade. He works almost
daily with his home computer since Spring 1983. At school he's a successful
student, reponsible for his work and clearly enjoys to study History and
Biology. He has the benefit to have a pedagogically very rich home work
environment (father and mother teachers) that allows him to have an unusual
conception of school, in a child of his age.

Working with Logo for 9 months, his interest in Logo activities has
increased surprisingly. His first encounter with Logo was trough an English
version. Four months ago he insisted to collaborate in my work, testing a Logo
implementation | was developing to allow young children to “plan in action”,
constructing procedures in “drive mode.” When developping his computer work
he enjoys especially the discussions we mantain. Teaching his young brother
(6 years old) and presenting the discoveries to his mother, he has developped
a certain sensibility to explain "what is happening” in his projects. The choice
of a Logo drawing to ilustrate the cover of a written work Miguel is carrying
out in the word processor, indicates that Logo means something very
important to him.

Psychologically, the possibility to domain of a programming language and
carry out his own projects with the computer, have clearly increased his self
concept. Knowing very well that Logo is not a common language among
Portuguese primary school teachers, he has got pride of his work with the
computer.

The activities developed with Logo were his own projects (short games,
pictures) and some work proposed by myself, as a challenge. When developing
personal projects for his own and carrying out goal-directed activities,

Miguel has been observed, several of our discussions have been audiotaped,
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and field notes and a copy of his work from the printer have been also
collected for data analysis. My role as a researcher was only to clarify my
understanding of Miguel’ s thinking during the work with Logo, when he “thinks
aloud”. | encouraged the discussion about his Logo activities in situations off
computer and usually Miguel started talking about it at dinner time
transferring the problems to solve to common real contexts.

3. Ihe concept of variable

It is difficult to study the variable concept isolately, being necessary to
take into account several mathematical and Logo programming concepts that
possibly develop in parallel with it. | will focus my attention describing Mi-
guel’ s levels of understanding of variables in the context of work with Logo.

(ntwitive concept of variable. Since the beginning of his work, the

attribution of a value as input in FD/BK and RT/LT commands was viewed by
Miguel as a "turtle need". "It does'nt work without the value... in FD... ". In the
exploration phase of his work (about three weeks) he used integers and
decimals as input to the primitives, prevailing always the idea of
placehoider.

Miguel:"FD needs always a value... but what are the bounds ?

“Try to figure them out.”

Miguel:"Oht.. The turtle doesn” t like 100 000 as input.. but why ... if it
goes out and in every time.." [referring WRAP mode].

It seems that Miguel “needs” to know how far can the turtle go, in order
to choose the value to “place in the blank". This placeholder concept was
reinforced when he began working with variables in Logo. Miguel' s first

project was to draw several squares. His proposal was:

TO SQUARE
REPEAT4[FD RT90]
END
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He was waiting that in the moment the computer was doing FD he could
give him the necessary information (the input). When he saw the error
message “FD needs more inputs” from the computer, he introduced the number
40, in order to give the computer what it was asking for. He assumed the
computer would suspend the execution of the procedure and when given the
value 40 it would continue the procedure. It seems that since that moment
there is a qualitative change in the placeholder idea:

Miguel: "Well... I" ve got it! | will write FD ? ... or FD something ... so the
computer knows I'm going to glve him a value.”

Lrocequra/ concept of variable. The requirement to declare the
variables in the naming of the procedure seems to reinforce the idea that
“these variables” were different from the inputs he used with the Logo
primitives. The names of the variables he used were strongly linked to their
referents and to the context of the problem to solve. Despite that fact the
variables were usually referred in a "quantitative” way. “:STEPS is the number
of steps ... the step is the product of my procedure .. :STEPS can’ t be the
steps”. For a long time, he never used fust a single letter to define a variable.

In this procedura/ level the variable was viewed as a "name that is
waiting for a value" from a set. Curiously the domain of the referents seems

toreflect in the name used for the variable:
TO BORN :AGEYEARS

PRINT [CONGRATULATIONS! YOU WERE BORN IN] PRINT 1986 - :AGEYEARS
END

The fact he has to declare the variable at the beginning of the procedure
seems to be taken as some kind of information to the computer also about its
domain and/or for user’ s information.

“Why do you write AGEYEARS 7°

Miguel: " Ha.. 19745 doesn 't mean anything..| have 11 years and a half
but | was not born in1974.5... So you must say it...the computer doesn't know..."
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When he used the variable-REPEAT command something happened.

(1) TOSTAIR :NUM :HIGH
(2)  REPEAT :NUM [FD :HIGH RT 90 FD :HIGH LT 90}
END

In (1) :NUM was assumed as a variable but in (2) the idea of placeholder
was reinforced again in :NUM. Miguel tryed to explain: “I must tell how many
times to repeat ... but the variable :NUM will fill the blank 1?7... no ... | must put

it there.” A simillar situation seems to occur in recursive procedures:
TO PINGPONG :ME :YOU

FD :ME BK :YOU
PINGPONG :ME :ME+:YOU
END

“YOU is now :ME+:YOU and :ME is :ME anyway... but the :ME is another :ME ...
| Yost the :YOU ... just its place is there ... and waits for :ME+:YOU ... Oh...".

Miguel tryed to explain why the variable :YOU is a variable in the
beginning of the procedure and then is "not so variable". It seems that a
concept of dependence was coming up but that this was confunding his
previous view of the variables.

Dependent and independent variables. Along the activities with the
variables, Miguel was talking about them in two different ways: "My names"

and "the computer names". As we discussed the Students and Professors Pro-
blem (Clement, 1980), Miguel tryed several procedures in order to explore
that problem. When he writes MAKE "S 6*:P, :S was a "computer name” (a
computer variable) and :P was a "my name" (my variable). The obligation to
declare the variable :P was clearly linked to a kind of independent variable.
The writting form “S and :S reinforced the difference between the name
and the referent (the value) but that wasn’ t a very important question to
Miguel. “That' s logic... the name is something but doesn ‘t make the person... |

am Miguel but | am not D. Miguel [referring a King of Portugall.”
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In this algebraic context probiem, the variables were described as
unknowns standing for "just some correct values”. implicitly there was a
concept of truth domain in Miguel’ s reasonning; as the variables were decla-
red in the procedure they were viewed as "my variables” (independent ones).

4. Conclusion

The inability to deal with the notion of variable constitutes an handicap
to functional reasoning that may prevent the students of recognizing and
exploring relationships between variables (Ponte, 1984).

It is adifficult task to improve and model the acquisition of the variable
concept by algebra beginning students. Lawler (1985) has shown that the
exploration of procedures may be a powerful environment to develop
mathematical concepts. When working with Logo, Miguel passed several non
sequential /eve/s of understanding of what a variable is. It was clear
that he passed from an /niuitive level to a procedural/ one, and these
cognitive steps were strongly modeled by Logo activities.

Miguel was really doing mathematics and having the experience of
mathematizing by himself. When mathematizing familiar processes is a
fluent, natural and enjoyable activity, that is time to talk about
mathematizing mathematical structures (Papert, 1972).
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WHAT MATHEMATICS DO CHILDREN TAKE AWAY FROM LOGO?

Richard Noss
University of London Institute of Education
20 Bedford Way, LONDON WC1H OAL

This paper reports two exploratory studies aimed at investigating Papert's
enquiry whether Logo may be a vehicle for fostering the growth of a
‘Mathematical Way of Thinking - "something other than algebra or geometry
which, once learned, will make it easy to learn algebra and geometry.”
(Papert 1972, p 250).

The two studies outlined formed part of an eighteen-month classroom-based
ethnographic observation of children's programming activities, which
supported the view that the construction of Logo programs cffers a rich
(though far from unproblematic) environment in which pupils (aged 8-11) can
explore a variety of mathematical themes (Noss 1985). The aim of the
studies reported here was to investigate the kinds of intuitive mathematical
understandings which children develop in the course of their Logo work, and
the ways in which such knowledge might provide conceptual scaffolding for
future mathematical learning.

Study 1 - (Geometr:

There is abundant evidence that many children's intuitive knowledge of
geometrical concepts is partial and fragmented, and that it does not stand
them in good stead in the context of formal geometrical problems. The
question posed in the Geometry study was, does Logo make any difference?

A set of 12 pencil-and-paper test items was designed which probed pupils’
conceptions of three primitive elements of each of the concepts i. length and
ii. angle. The items were not aimed at measuring the children's
understanding of taught geometrical ideas; rather the aim was to gain
information about the kinds of geometrical knowledge which children
constructed for themselves during their Logo work. The components for the
concept of length were: Length Conservation (L1), Length Combination (L2),
and Length Measurement (L3). For the concept of angle the components were:
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Right-angle Conservation (A1), Angle Conservation (A2), and Angle
Measurement (A3). The responses of 84 children who had studied Logo for
about one year were compared (using a linear modelling program appropriate
for exploratory data of this kind) to a comparison group of 92 pupils who had
no computing experience. Details of the data collection and analysis are
given in Noss (1985).

Study 1 - findings

The findings for the concept of length are exemplified by the responses on a
well-known CSMS item (L1), which involves understanding that the length of
a line is independent of the alignment of its end-points (Hart 1980). Here
the performance of the Logo group was almost up to the level of CSMS
(despite the 1-3 year age difference), in contrast to the comparison group
where the facility level was some 10% lower. A similar result was obtained
for the length measurement component (L3).

For the concept of angle, there were effects (significant at the 5% level) in
favour of the Logo children’'s ability to compare unequal angles in different
orientations (A2), and in their ability to identify the smallest angle in a set
(A3).

When the data is analysed by sex, some surprising results emerge. For
example in the length measurement category (L3), the Logo girls outscored
both their male colleagues and the CSMS levels (by some 11%). For the
comparison group the situation was reversed, with the boys outscoring the
girls (who scored below the CSMS level). For the angle categories, the
situation was still more marked, with the gap in favour of the boys in the
comparison groups reversed in favour of the Logo girls for angle categories
Al and A3. In the comparison of unequal angles (A2), the significant overall
effect in favour of the Logo classes was due to some 9% improvement on the
part of the boys, compared with a 20% improvement on the part of the girls.

Discussion of study 1
The comparatively strong effect for the concept of angle could be explained

if it is conjectured that most children have a richer store of intuitive
(sometimes non-generalisable) knowledge about length than they have about
angles (see Papert et al. 1979). If so, new Logo-based knowledge about
lengths would be less effective in modifying existing intuitions than that
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concerning angle.

The theory also goes some way towards explaining the broadly convergent
trend towards a differential effect in favour of the Logo girls (a similar
finding was reported by Howe et al. 1982). If we can assume (somewhat
contentiously) that the range of intuitive geometrical knowledge acquired by
girls is often restricted compared to that of boys, then it is reasonable to
suppose that the Logo activity would be more likely to displace and modify
girls’ existing geometrical schemas. Further research is needed on these
issues.

Study 2 - (Algebra)

The second study aimed at investigating whether the experience of using
algebra (embodied in Logo) could help to provide a conceptual framework for
the development of elementary algebraic concepts. There were two main
issues: i. How may children use the Logo ideas of a) naming and b) inputs to
facilitate the conceptualisation and symbolisation of the idea of algebraic
variable? ii. In what ways are children able to use their Logo-based
experience as a conceptual framework for algebraic formalisation?

Four problems from Booth's (1984) algebra study were adapted so that they
were appropriate for children who had not studied any formal algebra, and so
that they offered pupils starting points for the construction of a relevant
formalism rather than the interpretation of existing symbols. The problems
were given to eight children aged between 10 and 11 who had learned Logo
for some 18 months. Each child was told that the researcher worked with a
group of younger children who had learned Logo; their problem was to write
down solutions in the form of rules so that these younger children could
understand them. Consistent with the aim of investigating what the children
could learn rather than what they already knew, the children were prompted
according to a loosely structured schedule (details are provided in Noss
1985).

Study 2 - findings
Consider the example of Nicola, presented with the following probiem

"Peter has some marbles. Jane has some marbles. What could you write for
the number of marbles Peter and Jane have altogether?”
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Nicola: You could use the input again. (Note that despite the "again”, Nicola
has not mentioned or used inputs in the previous three problems).

Richard: Alright, show me how.

N: (writes) :Peter + :Jane = all the marbles

R: Can you read it out?

N: Peter plus Jane equals all the marbles You use those two as the inputs,
with as many marbles as you want to.

R: So what are the dots in front of Peter and Jane?

N: They're to represent that it's an intput.

R: But this isn't a Logo program is it?

N. | know, but if it was ... just to say that it's an input.

R: So what does the input actually mean there then?

N: That you can type in however size you want it or how many you want it.
How ever many they want. How many they want Peter to have, and how many
they want Jane to have.

Nicola's apparent conception of her variables as standing for a range of
numbers does at least seem to run counter to the 'natural’ tendency referred
to by Booth (1984) of children to interpret variables (in the form of letters)
as specific numbers.

One clue as to a possible mechanism for Nicola's view is provided by her
image of the variable standing for a number ‘typed in" at the keyboard
(another child referred to the computer “choosing random numbers”). Such a
conception only involves the consideration of values one at a time - albeit
from an infinite domain - a perspective which may provide a conceptual
bridge to the more generalised mathematical usage.

The rdle of Logo-based intuitions in constructing a conceptual bridge to
algebra, could similarly be discerned in the formalisation process which
evolved in some cases. Here are Stephen's consecutive written attempts at
formalising the relationship between the number of green blocks required to
‘make a bridge’ over a line of red blocks (see figure 1)

1. IF :REDS = 10 [MAKE :GREENS 14]

2. MAKE :GREENS FOUR MORE THAN REDS
3 6=R+4
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There is a progression within Stephen’'s three formulations which appears to
represent a development from a procedural/descriptive specific-number rule
(1), through a hybrid formalisation (2) in which he defines a generalised
rather than specific-number relationship, to an algebraic equation (3). Is it
too fanciful to view it as a chain of view-shifts in which his knowledge of
Logo formalism has acted as a catalyst in the process of formalisation?

Discussion of study 2

Although this study does not readily lend itself to generalisation, it may
provide pointers to ways in which using algebraic ideas in a computational
setting might provide a conceptual framework for more formal algebraic
learning.  Such learning would not be spontaneous, at least not if the
objective was conventional algebra. Nevertheless, it would be unwise to
underestimate the potential of children to call on knowledge which has been
generated in a different context, as the following extract illustrates:

Richard: Have you ever done anything like that before? (i.e. using a name to
stand for the values of avariable)

Julie: On the other page (i.e. in a previous problem)

R: What about when you've been doing Logo?

J: Yes, when we did GAME we did it like that (GAME was Julie's project from
two months earlier)

R: Can you remember what that was?

J- It did the distance round people.

Conclusion

The two studies reported here suggest that the emergence in schools of
children who have developed a rich body of intuitions derived from
programming may present mathematics educators with a challenging
opportunity. The process by which children link disparate conceptions, both
intuitive and taught, is complex and only sometimes spontaneous (see di
Sessa 1983, Lawler 1985). Whether Logo-derived knowledge will make it
‘easy to learn algebra and geometry’ is a question which is largely dependent
on further research into the conceptual linkages of which children are
capable, the design of suitable learning environments, and not least to the
training of teachers who are sensitive to the task.
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Put some red tiles [D:I:]
inaline. How many red tiles?

Make a bridge

with green tiles.

How many green tiles?

Eigure 1.

Initial problem card given as & starting point for problem 1 (see study 2 -
Stephen's for malisations)
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MENTAL REPRESENTATIONS IN PROGRAMMING, BY 15-16 YEARS OLD STUDENTS

ROGALSKI Janine
CNRS, Paris.

The question of mental representations constructed by students in
programming is a part of a more general question: what kinds of mental
representations of the informatical device (ID) interact with the
cognitive activities involved in computer use for a specific purpose.

The problem is relevant to the concern of mathematical education
from three points of view. First, informatics can be used as a medium
and a framework in teaching and learning mathematics. The specific
properties of the ID, the informatical constraints can induce specific
effects. Second, informatics as a specific field of knowledge is partly
related to mathematics: problem-solving in these two fields present
differences and also invariants (Rogalski, 1985b). Concepts like varia-
bles, iteration are involved in each field: the possible interactions
between the representations students get on these concepts are impor-
tant in learning mathematics as well as in learning informatics (Samur-
cay, 1985a, 1985b). Third, informatics can be used as an aid to solve
mathematical problems. Today, this question does not concern a wide
part of mathematical activities by students even at a high level;
nevertheless we have to anticipate the kind of psychological, cognitive
guestions issued from the development of an informatical environment in
mathematical problem-solving.

What can produce the representations on the ID when informatics is
used as a tool, as a framework, as a scientific content?

The general situation in using an informatical device can be
represent by the following schema:

-------------- en I e

oo ——feedback - == ==~~~ . -

In such a situation, the student has to lead two kinds of cogni-
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tive activities in order to control his/her production, by respect tq
the target state researched for the given problem: first, a "logicgl"
analysis of the production in terms of the content of the problem (it
can be a mathematical one, or an informatical one, in the case of
programming, for instance), second s/he must take into account (evenp
unconsciously) the properties of the ID which plaved the role of 4
medium.

In fact, the properties of this medium may play a productive as a
reductive role. We have presented this notion of productive and reduc-~
tive role from a work with A.Robert on graphical representations used
in high school (Rogalski, 1984).

The reductive features are limiting the relationships that can be
represented by the medium (as a tool and as a signifiant): for instance
infinity cannot be represented: all processes as all numbers are dis-
cretised, just as in graphical representations; more;the internal

representation of numbers in the ID introduce strong reductive specifi-
cities.

The productive features allow the student to “"see" properties s/he
has not introduced her/himself in the device. Let us take for instance
a software presenting a task :"reach the target" in order to study the
relationships between number and space used by young pupils (Rogalski,
1985a). When the child enters a number, s/he can see an immediate
effect on the screen quite different of her/his proper action: a trace
appears on a line, and the child has the possibility to appreciate the
distance between this trace and the target.

Computer-use, at all levels, introduces such productive and reduc-
tive features: knowing them appears me to be important to master the
use of informatics as a tool or an object for teaching and learning.
But there are another cognitive questions for the use of informatics:
the mediation between problem and production, schematised in the schema
above, involves a technical device, with a high level of complexity,
which has the status of a "black box". This "black box" is not a
neutral medium: hard- and software make it reactiv, in a dynamical way,
to the proper actions of the subject using it. What kind of representa-
tions may induce such a reactivity? What kind of hypothesis about the
meaning of the "reactions" of the ID? What kind of invariants concer-
ning the functional properties of this ID? In some way, the use of a
computer introduce a situation of communication between the human
subject and the informatical device: what happens when they are spea-
king maths?
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Mental representations about the informatical device and
concepts acquired in computer literay

Our work hypothesis is that programming can be taken as a model
for studying the mental representations about the ID. More precisely,
computer literacy allows to observe the beginning of a process. At this
moment the conceptual notions in the field of informatics are only the
basic schemas for sequencement, conditional structures, iterative stru-
ctures, and the simplest data structures. The domain of the problem to
be programmed are also simple domains, which can be "hand-solved" by
the students. The fonctional properties of the ID which interact
directly with the activity of programmation are only a part of the
whole system.

The analyses of the cognitive activities of beginners showed that
the acquisition of the rules on computer functioning and the progres-
sive integration of the control structures lead the beginner to use a
strategy of mental execution when writing programs (Hoc,1983). They
also showed the role of mental representations in learning a
programming language (Hoc, 1977).

At the level of computer literacy, many -and purhaps most- of the
informatical concepts have mathematical concepts as precursors; it is
the case for the notion of variable, for the conditionals, for the
algorithms themselves. The passage from the mathematical conceptual
fields in which they are organised to informatical conceptual fields is
a complex process, involving central properties of the 1ID
(Rogalski & Samurgay) .

So, the construction of mental representations of the elementary
informatical concepts implies representations of what "knows" the
system and how it "knows" and "acts". The sequencement of actions
(instructions in the program), the management of the inputs and outputs
are two primary questions in all procedural languages. In fact they are
necessary in the passage from a mental execution to a real running of
a program on the ID.

Mental representations and programming

In writing a program the student must get a representation of the
functional relationships between the written program, the computer on
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which it will be executed and the operator who will use the program ang
in particular who masters the input data.

Wrong or incomplete representations will interfer with the process
of algorithmisation. In all cases the properties of the representations
play a role in the meaning that the students attributes to the result
of a given execution.

Preliminary observations of 15-16 years old students programming
with PASCAL showed a wide variety of questions of representations and
attest the difficulty of an experimental study. Most of the
representations are unconscious and non explicitable by the students;
they interact with their productions at a very deep level.

The existence and the properties of the mental representations can
be attested essentially by analysing their spontaneous behavior, and
not by using responses to specific sollicitations on these points. This
allows to begin to constitute a set of "critical incidents" to be
researched in the programming activities of the students.

As an example, we can give the impossibility to analyse a "prompt"
on the screen as the fact that the system is waiting an input if the
student trying his/her program does not wanted an input at this point
(alghough s/he wrote an input instruction in the text of the program
corresponding at this moment of execution). Another example of the same
order is the "hand" execution of what the student wanted to obtain and
not of what s/he has written.

Nevertheless we organised "local" experiments on the
representations about the relationships between the program, the opera-
tor and the computer in class-room situations led by the teacher during
a normal curse on informatics (10th grade students, 1h30 or 2 hours
sequences each week) .

We collected individual responses of the students on three
problems presented after 15-20 hours of programmation (with the french
teaching language LSE, near of BASIC by many respects).

Problem A: at the beginning of a program students had to introduce
an if...then...else... structure just after the input of data in order

to control the validity of these data (hours, minutes and secondes).
The structure they had learned in LSE was the GOTO statement (in LSE:
aller en). The relevant points are the following: does the student use
a GOTO (instruction to the computer), does s/he write a new input
instruction if the data are incorrect, does s/he use an instruction
like WRITE" GOTO.." (order to the operator).

Problem B: the student has to write a part of a program asking to
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the operator if he/she wants to stop here or to continue (with a yes/no
response to the question "do you want the program stops here) and using
an appropriate if...then...else structure according the instructions to
be performed to the response of the operator, that is the instruction
TERMINER in one case and nothing specific or a PRINT instruction infor-
ming the operator of the pursuite of the program preceeding the rest of
the program. The relevant points are the following: does the student
write the good instruction TERMINER if the response is YES, does h/he
write the instruction PRINT "TERMINER" instead of the preceeding one,
does h/he write an instruction TERMINER after a NO response with
eventually an "informative" PRINT instruction like PRINT "we continue".

Problem C: a written program is presented to the students, in
which a question "do you want another running? yes/no", an the
instructions conditionned by the NO response; the students had to
predict what will happen if the operator enters an irrelevant response
(like: why not?).

Conclusion

This study of representations on the ID in programming shows that in
the beginning of the acquisitions two level of representations can be
distinguished: at the first level students confuse the function of
execution of the program by the computer and the execution of actions
by the operator, at the second level they attribute to the computer
some of the semantic capacities of the human operator. There is a
hierarchy between these levels: the second one seems to have a longer
life than the first one. These wrong. representations interact with an
insuffisant representation of the sequentiality of execution, and af-
fect the production of a part of the students. Others recents observa-
tions show that the confusion between the role of the operator and the
role of the computer remains for some students after 40 hours of pro-
gramming in strong interaction with the difficulty to construct an
adequate representation of the assessment instruction. More research is
needed if we want to master the development of mathematical algorit-
hmics activities in relationship to programming, and more generally
computer as an efficient tool for maths education.
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LEARNING RECURSIVE CALLS IN BUILDING UP LOGO PROCEDURES.

ROUCHTER André
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Universite d'Onléans - 45067 ORLEANS Cedex 7 - FRANCE

There is now an important literature devoted to the interest of LOGO and
LOGO based environments on mathematics learning and teaching. But apart from the fact
that we know very little about the precise conditions in which LOGO is really
interesting for the study of mathematical concepts, we also know very little about
the difficulties of conceptualisation of computer science concepts through LOGO. We
are going to give indications about some problems we have met in the study of

programming linear recursive calls in LOGO.

1. ITERATION AND RECURSION IN MATHEMATICS AND COMPUTER SCIENCE.

1.1. Iteration and recursion are basic notions in modern mathematics. They are

theoretical fields of study and practical tools for calculation and
representation in elementary analysis, arithmetic, computing algebra (Hdrner
algorithm), geometry. In former teaching of mathematics, the lack of appropriate
device to perform effective calculation, lessen the practical interest for
iteration and recursion, in spite of the fact that recursion for instance was
important in the proof by recurrence process. Now, through the means of
programming, interest increased, in the teaching of mathematics, to define new

objects and tools to work with, associated with the power of computer.

1.2. In computer science and programming, iteration and recursion play a central
role. The organisation of repetitive and iterative processes has different

aspects in various sorts of languages. In this field of interest we can define

two models :

= The pure iterative model : whife ... do in Pascal and associates: Repeat ...

untll, fon ...

to a sequential pattern.

next with this kind of loop, actions are organised according

- The recursive model of Lisp and LOGO, where the actions (or relations) are

planified (or described) according to a part-to-the-whole pattern.
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1.3. Previous work has been done about the way students understand loop ang
recursive structures. Soloway and others developed a rather deep analysis
of planification during the construction of whife ... do loop in Pascal. Pea ang
Kurland pointed out the difference, from the point of view of the student,
between tail recursion and full recursion, and the difficulty to interpret the
second one. To deepen our knowledge of conceptual difficulties it was necessary

to identify students' models through a wide variety of tasks about programming.

2. LEARNING LINEAR RECURSIVE CALLS IN LOGO.

2.1. In France, Computer Science 1is not a part of compulsory education at the
secondary level. So there are no traditions and no teaching problems ;
no more than there is any general computer literacy to interact with general
trends of teaching and general conception of pupils.
The only way to understand and analyze conceptual difficulties is the way of

teaching the content of interest for the researcher.

2.2. So, in the field of programming in LOGO, our main object of study was the
relation between a learning process and the conceptions of children. These
depend on learning, but they depend also on the proper way in which children
conceptualize the topic.
We are sure that various learning processes can be chosen and described and
we hope that it will be possible, in a while to have a good description of
invariants in children models. For the moment, the only way of access we have is

the study of effects of particular learning processes.

2.3. Formally the general structure of linear recursive call (one call in the

program) is the following in LOGO : we call it central recursive call.

T0 < name-of-procedure> ¢ listl of variables>
IF (cond-of-one-variable) [(external—procedure—&) STDP]
<external-procedure-2) (list2 of variables >
<name-of-procedure > <listl of modified variables)
¢external-procedure3) ¢list3 of variables)
END

When external-procedure? does not exist, we have the classical tail-recursion
When external-procedure3 does not exist, we have the classical full-recursion.
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Going on in the identification of levels of difficulties with recursive
calls in all these aspects implies an analysis of the way children interpret the
main features of these programs : relations between external procedures and
recursive call, evolution of variables, testing, etc ... and their correspondance

with self reference and nesting.

2.4. The wunderstanding of this structure, in general as well as in the case of
its application to a particular field has to be testified through various
kinds of behaviors :
- write a procedure to product a defined object
- predict what object to be producted by such a procedure
- explain how this procedure actually runs

- modify a given procedure to fill out additional conditions.

3. DESCRIPTION OF THE BUTTERFLY SESSION.

3.1. Our pilot study was conducted with pupils of grades K8, K9 (two last years
of french secondary school : college). The teaching period was approximatly

30 hours. Pupils worked by pair on microcomputers; one hour a week.

The general purpose of the teaching sequence was to develop the various ways
of using and building up linear recursive call structure in the field of
LOGO-graphics and schemas of monotones sequences in N. During the learning
process, exercises solved by pupils were in correspondence with the tasks listed
in 2.4.

3.2. Learning through problems has special aspects in the case of computer

science depending on the object-for-learning which is selected to be

taught. Apart from the general structure quoted above, pupils have to identify
all kinds of relations between elements of this structure and elements of the
figure, between running the program and obtaining the desired effect, between

modifying the program and special graphical conditions, etc...

For instance, if we want to focus on the place of external procedures in the
general structure and the order in which the elements of the fiqgure are drawn we

can use a strategy like the following one.
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3.3. These activities are proposed with the general objective of identifying
central recursive call as a means of solving a certain type of problems. pt

this moment, pupils have worked only with a full-recursion structure.

A. Give a program to draw the

following nested hexagons.
Fig. 1.

B. Give an equivalence of this
program in terms of the sequence
of calls to HEXAR where hexar is
the program

TO HEXAR :C
REPEAT 6 RIGHT 60 FD :C

END
C. What is the drawing product by
the following procedure QUIZZ
when N = 5
T0 QUIZZ :N
IF :N =0 STOP
HEXAR :N * 5
QUIZZ :N - 1
END

This was the meeting of the students with tail recursion.

D. What about the order of the two sequences of hexar in the first
program (A).

E. Write the same programs with HEXAL
in place of hexar :

TO HEXAL :C
REPEAT 6 LEFT 60 FD :C
END

F. Write a program to draw the following butterfly in the order

indicated below :
Fig. 2.

—_—

G. How can we put antennas to the butterfly in the same procedure.
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INVESTIGATING STUDENTS MODELS ABOUT CENTRAL RECURSIVE CALL.

4.1 As we pointed in 2.4., various tasks must be given from the point of view of
learning as well as from the point of view of investigating pupils

conceptions. For instance some important facts about the running of central

recursive calls concern :

A. The sequence of calls to external procedures, mainly their order in relation
to the law of evolution of the main variable of the program.

Two models may be indentified :

G.B. Globa? model which 4states that 4in 2zhe case of a decreasing Law of
evolution n n - 1, external-procedune-2? (which {5 before the
necunsive call) b cafled  in  decreasing  ondern,  while
extennal-procedune-3  (which s aften the necunsive calll is called in

Ancreasing onden.

A.M. Analytical wmodel which consist 4in simubating the running of the
program. Fon insfance, 4if we call forn BUTTERFLY 5, beginning of A.M. 4is
5> 0 then HEXAG 5 * 10 .....

The result 1is the same, but the representations of the pupils are

significantly different.

B. The place of call to external procedure-4 in the sequence.
C. The modifications to be made so that the main procedure obtains a different
drawing.

4.2. We don't argue that these three aspects cover all what is needed to define
the understanding of recursive call. For instance we didn't take into
account in this analysis the fundamental phenomenon of nesting which concerns the
main procedure itself. Identification of nesting was the objective of another
teaching session with the general philosophy of defining a modification of the
program for which the running leads to the displaying of the sequence of

recursive calls : trace system.

4.3. A questionnaire concerning the three aspects of 4.1. was given to the
students after the butterfly session, with the objective of indentifying

the exact models students were using. The basic figures were the following ones *
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T

Fige 3 Fig. 4.

Fig. 5.

We cannot give here a detailed analysis of the results, so we will take thep
in an indicative sense.
First question, about the production of the figure (knowing the program) and the
sequence of graphical instructions : (figure 3)

12 students out of 24 used G.B. (8 correct. 4 erroneous).

8 students out of 24 used .M. (4 correct. 4 erroneous).

4 were completely wrong.
Second question, about the effect of a SKIP procedure in the precedent program,
in terms of drawing as well as in terms of sequence of graphical instructions
(figure 4)

3 students out of 24 put SKIP at the correct place, among them

7 (out of 8) were correct with GB, 2 (owt of 4) were correct with A.
Third question : there were two options : (figure 5)

A.Given a modified program, propose the corresponding modified figure.

B.Given the figure, propose the corresponding modified program.
In the case of A, pupils who succeeded in the first question succeeded in the

third (which seems normal).
In the case of B, 6 out of 7 succeeded.

5. CONCLUSION.

The complete interpretation of running linear recursive calls suppose a
good understanding of self-reference and nesting. It seems to us that the analytical
model, which seems too formal, is not sufficient. The previous study has shown the
importance of a general rule like the Global Model. To complete this model in the
direction of understanding the effect and the running of self-reference and nesting,
it is necessary to give tasks about successive calls of the program itself for
instance in programming a trace system.
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INITIAL REPRESENTATIONS OF STUDENTS IN USING RECURSIVE
LOG0 PROCEDURES

Renan SAMURCAY
Laboratoire de Psychologie du Travail EPHE/CNRS

Abstract 26 efght graders (13 -14 yeers old) were observed as they solved two
different typee of task in which they have Lo use the notion of Hneer recursive cell
The production of students ere analyzed In termes of the representations they have
conetructed during the teeching experiment conducted with them in clessroomr

situetions

1. Introduction

The recursion is considered as an important concept that people
have to learn. The work on recursive procedures in programming activity
is seen as & possibility to understand better some mathematical
concepts, for instance, concept of recursive functions (Hausmann, 1985).

The implicit hypothesis is that the programming will constitue a
privilegied domain in which student will be able to experiment about
recursion before construct a formatl knowledge about it. 8But how do
people learn this complex concept? Which kind of cognitive difficulties
they encounter? In which kind of situations it is possible to teach the
notion of recursivity?

The study we present here is integrated in a more large didactical
research on learning recursive procedures by middleschool students. It
concerns a veryearly moment in the acquisition process and attempts to
analyse how this new knowledge is used by students in problem solving.

First we distinguish between the recursive procedures
corresponding to recursively defined objects (nested or fractal objects)
and those corresponding to iteratively structured objets ( par exemple,
embedded squeres). In this last case we'll talk about linear recursive
call. The general structure of this kind of procedures used to program
iterative drawings in LOGO is :

TO PROCEDURE : (1ist of variables)

IF (end control on 1 variable) (P1 STOP)

P2 :(list of variables)

PROCEDURE :(list of modified variables)

P3: (list of variables)

END
P1, P2 and P3 are external procedures. This present form is a central
recursion. if P2 is empty we obtain a full-recursion, if P3 is empty
we obtain a tail-recursion.

In the litterature, the studies on learning recursion concern most
often the understanding (Pea & Kurland, 1983) or the construction
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(Pirolli & Anderson 1985) of i
A the teil recursion. This form i i
. ]
more easy to learn for the student than the others. In the (ilolzzlzt:?::‘lj

2 Population and method

» mnfsﬁ eITg:t grade colllege stut_!ents are individually interviewed during
: e production task is proposed to 15 students (4 of them

recorded and students' work pa
pers are collected. The
analyzed as regard to the criterion we define in below. protacols ore

3. Task analysis
'Ir\;o kinds of task are proposed to students
Z9d0om_oroduclion 1gsk; given the figure.1 it
. 2 s ask
students to write o procedure to obtain it. If the students we:ed n;:.,

produce sponteneously a rec iti
ite 1 y ursive procedure, it is asked explicitely to

TO STICK : length
FD :length BK: length
END

TO JUMP
PURT 90 FD 10 LT 90 PD

TOFIG:n

IF :n = 0 (STOP)

FIG :n-1

JUMP STICK : n*10

END a ,

(a plausible solution) Figure.|

al itT::no:eteof:)ttlop of the ngure‘doesn't necessitate the use of recursive
o t‘ ained also by using a step by step procedure. we assume
] sponton_eouslg the students will use this kind of Procedure and try t
transforme it to a recursive one, with the aim to make it short e
types of procedures can be useg: o Three
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-SSP: step by step procedure (direct mode);

-MP: moduler procedure In which the figure is analyzed as
composed by two sub-procedures: a parametrized procedure for sticks,
and en interface procedure to move the turtle to one stick to another.

-RP: procedure with recursive call in which the figure is analyzed

in terms of inveriant relations betyeen parts and whole.
given the following LOGO

procedure, it is asked to students to draw the figure obtained when the
procedure TRUC S is called. As a second question it Is asked to write on
the list of graphical instructions in order in which they will be executed
when the TRUC 3 is called. )

TO STICK: |
FD :1 BK 11
END N 1

TOTRUC :n

IF :n =0 (STOP)

TRUC :n-1

BK S

LT 90 STICK :n* 10 RT 180 STICK :n*10 LT 90

END

(expected solution)

According to the level of conceptualization, this recursive procedure can
be read differently. We expect that many of students use or a linear
model in which the iterative aspect Is neglected, either a simple
repetitive model in which the property of embedding is neglected.

We assume that this two tasks (production and comprehension)
don't Involve the same kind of activity. In the production task, the
students have more than one possible solutions to obtain the given figure
even if they are not recursive, and the solution may progress during the
problem solving session. While in the comprehension task the number of
possible exact solutions are restricted: there is one possible draw

corresponding to the given procedure.

4. Protocol Analysis
I.Production task: Protocols are analyzed not only as regard to
thetr correctness but also in terms of evolution during the interview

session.The results may be summarized as In table.|.
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SSP MP * RC
| [
4, 4] |

| 61 sl 1

| | ] 3

table.1 (N=13)
(*ths studente who received help from the obssrver)

As seen on the table.1, 4 students start by a step by step procedures and
construct then modular procedure; 6 students start by a modular
procedure: 5 of them construct recursive procedures with observer's help,
1 only do it without help; 3 students start by recursive.procedures
without passing by intermediary steps.

The analysis of the verbal protocols allow to notice the following
points:

# The idea of recursivity is evoked by reference to the form of the
control line: "Ah, | see, the thing with if equal and stop....".
However this evocation is quite formal, because the students are not
always able to identify the variable on which they have to construct the
end-control and the particuler value of this variable has to take.

#Some of the students make reference to the line of of recursive
call. They have also big difficulties to identify the new value of the
recursive call variable, which describes a relation of embedding between
the parts forming the whole. This idea is explained by one of the
students: "1 dom't know if | have to put -1 or +1,..it
depends,...this is something which makes the same thing getting
bigger or getting smaller-.

“For some students a recursive procedure i1s @& technic to make
short & modular procedure. By using this property, the recursion is
assimilated to the repeat instruction. This interpretation creates a
difficulty in the program production, because when the sticks are
structurally identical their length is varying. Some of the students
proposed to add one more variable to change the length in each execution
of repeat instruction.

2 Comorehension._task: Two criterion are used to analyze the
students’ productions. The first one is the model used in the reading of

procedure. As we've noticed above, two kinds of interpretation are
possible:

*linear.model in which the iterative aspect is neglected. In this
interpretation the students execute each line of the procedure line by line
and stop at the end of the procedure without return back. We consider

that In this model only syntactic features are read.
#the second model corresponds to an jtgrative model .  The
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students “know" that there is more than one execution of the lines. We
consider that in this model, a semantic understanding is raising.

The second criterion concerns the interpretation of the recursive
call line. There is two different interpretations:

#this line is ignored, because the student have difficulty to assign
a meaning. Then the execution is realized by the first call-value

*the recursive call line is taken into account; the value in the first
execution is the call value -1.
By combining these two criterion, we obtain 4 different cathegories (see
table.2). As shown by table.2, the majority of the students (7/11) read
the procedure linearly, only 1/3 of students saw the idea of iteration in
the recursive form. However the full meaning is not yet constructed,
because the schema used is a tail recursion schema.

linear iterative
-1
call line ignored L_2_ R S N
call line read 2 ; 3

table.2 (N=11)

As shown by the table.2, 3 students gave & correct recursive
interpretation; 4 of them gave an iterative interpretation (without the
property of embedding); 4 gave a linear interpretation.

S.Conluding remarks
As seen by our results the production and the understanding of

recursive procedures are not an easy task. in the production task, we see
thet the modular procedures concern the majority of the observed
protocols. Students evoke the idea of iteration but they have still big
difficulties to transforme the regularities they observe between the
sub-procedures, into a recursive writing.

In the comprehension task, also the correct interpretation of the
full recursion form concerns a very restricted number of students. The
majority interprets the full recursion schema as a linear procedure or as
a "go to up® schema which corresponds to the manner that the tail
recursion cen be read. They have difficulty to represent the order of
execution and the idea of embedded recursive calls. The inverse relation
between the ordre of recursive calls and the order of execution is very
hard to understand for the students for whom the actual model is the
“familiar actions” model.

It is interesting to notice that this schema appears only in the
comprehension task. While in the production task, none of the students
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use thi; schema which is not learned.
€ conclude with the hypothesis th
at if t
:: eia'?g to understand and to construct, becays
lmrsne y :: :);ocedures of students. we argue that this schema whi h i
e mental execution of the procedures, constitu e
obstacle for the construction by ) e G

students an anglytic i
necessary to the conceptualization of the recursion as a m—wmm N

r!e tail recursion shema
e it is very close to the
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LOGO AS A CONTEXT FOR LEARNING ABOUT VAR!IABLE
Rosamund Sutherland and Celia Hoyles
University of London Institute of Education
20 Bedford Way, LONDON WC IH OAL

ntroduction

For many pupils algebra forms a barrier to the understanding and enjoyment of
secondary school mathematics. Research into children’s understanding of algebra
has highlighted the problems children have with interpreting the meaning of
letters and with formalising and symbolising a generalisable method (Kuchemann
1981, Booth 1984). Given this background of children's misconceptions, it seems
possible that using variable in a programming context could form a conceptual
framework for the use of variable in a non program- ming ‘paper and pencil’
context. If computer programming does offer this potential we believe that the
language to use for this purpose is Logo for reasons we have detailed elsewhere
(Holyes, Sutherland & Evans 1985). In an exploratory study with eight pupils (aged
10+) who had learned Logo for eighteen months Noss (1985) reports that the
“children perceived a variable as standing for a range of numbers, a finding which
contrasts with the natural tendency (Booth 1984) of children to view variables in
mathematics as standing for a specific value”. Other research suggests that the
use of variables in Logo is not likely to occur 'naturally’. Hillel working with nine
year old children reports “that aside from difficulties in defining a general
procedure there is more basically a lack of an immediate sense of the necessity
(our emphasis) to define such procedures”. (Hillel, Samurcay 1985)

As part of the Logo Maths Project, research is being carried out to:

o trace the development of understanding and use of the concept of variable in a Logo programming
context by reference to the work of four case study pairs of pupils during their first three years of
secondary schooling. ( 1114 years)

o relate the pupiis understanding of the concept of varfable in Logo programming to their understanding
of varfable in traditional ‘paper and pencfl’ algebra.

o develop and test out materials designed to aid the ‘transfer’ of the conception of variable der ived
within aLogo context to anon Logo context.

The Concept of Variable in Logo

A useful definition of variable in Logo is given by Hillel and Samurcay: “From a
cognitive psychology viewpoint, the concept of variable represents , as do the
concepts of iteration and recursion, an invariant. This invariance is character-
ised by the attribution of a name to the variable and by the control of its value.”
(Hillel, Samurcay 1985a). By carrying out both an 2 pr/or/ and an ongoing analysis
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t(:;v?ebz'::a%%?\st ‘Lr;ev;mcr}ghildren use variable in Logo categories of variable use
I ey provid
i M y pl e a framework for analysing the pupils’
o0ne variable input to a procedure (not o
perated on within th
® Variable input as scale f actor (to distance or angle). " procre)

This type of variable input s often u
example Fig 1..) 520 by puplls a5 & way of generalising a fixed procedure (se for

o?ore than one variable input to a procedure
upfls often use more than one input to avof '
-~ re. (oo o e s d expressing general a relationship between variables within
oi\rl’atzliabl(: input operated on within a procedure
S Ccategory any general relationship between varlsSles ocadul
within a
. ?/paa;'agg? on'a variable input to express an fnternal ratfo. (see for exemglrt; Fig. r;z)’ls el
€ Input to a general superprocedure which calls a general subproce
alongside. (This inciudes recursive calls), e
o;/ariable used within an assignment statement (1.e. MAKE)
6cause of the problems with global i ,
e global varfables the case study pupils have not yet been intraducad to the
o'\‘/'atr';::blet input to define a mathematical function in Logo.
category variable fs input to a pracedure, which acts I1ke a mathematical function, thet is it is

operated on within the procedure and |
function or command. (Sea £ 1y 3a) he result output from the procadure to be used by another Lago

ItT)ngéa‘ALE KITE YT HT SQUAN :NUM

Lr ;u 45 LT 135

Py D T REPEAT 4 (FD :NUM RT 90]
PD ?I; %? o i

FD MUL :SCALE 60 RT 90 o2

LT 45 FD YT END

FDMUL :SCALE 20 RT 90 F

RT 90 FD YT e

FD MUL :SCALE 20 BD YT "

RT 90 RT 90

FD MUL :SCALE 20 FD YT :

RT 90 RT 45

FDMUL :SCALE 20 FD :HT

END END . ?
F1g. 1a (see Footnote 2) Fig.1b
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in Logo variables are used as part of procedure definitions. Although not the focus
of this paper the issues of subprocedure, modularity and sequencing are related to

variable.

TIhe Need for Teacher Intervention.
It 1s obvious that pupils must be using variable in their Logo programming before

there 1s any possibility of the Logo experience enhancing their learning of variable
In ‘traditional’ algebra. Analysis of the first eighteen months of transcript data
indicates that, first, pupils rarely chose projects which 'needed the concept of
variable and, second, that even when we perceived a need for variable In a pupils’
project or in a ‘teacher-given’ task, and intervened appropriately, the pupils were
resistant to using It. This was the case for pupils with both little or no
experience of variable In ‘traditional’ algebra. It was decided therefore to
introduce the concept of variable to all the puplls within a structured task. This
structured task was aimed at provoking the pupils to USE the concept (a first
stage of the USING, DISCRIMINATING, GENERALISING and SYNTHESISING model.
(Hoyles 1986)). Analysis of the data also indicated that pupils found working on
goals which involved designs with letters to be motivating. The following task

was therefore devised:

Variable Letter 7Task
The pupils are given a fixed procedure to draw the letter L. They are then shown how to change their fixed
L procadure to a general L procedure by multiplying esch distance command by a variable. They are
encouraged to make sense of this new general pracedure for the letter L by trying out a range of inputs; to
use decimal input in the context of being asked to draw the smallest and the biggest possible L; and to
explore negative input. They are then asked to define 8 general procedure for several letters of their
choice and to use all these letters to build up a design on the screen.

The pupils found this task very motivating and extended the task to produce a
range of variable letter designs (Fig. 2.)

-y

Fig. 2. Extension of Yariable Letter Task.
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Over the next twelve months the ca

se i -
structured tasks for which variable cou ey oubiie were given s range of

; 1d be used as a tool for ion. They alsg

: or solu 0

worked on projects of their own choice during this period Cgrlme ‘ aim yoft]h
. e

resea ils'

undergign:iis t‘? rel.ate the pupils understanding of variable in Logo to thej
e wr?‘ oh vgrlable in traditional ‘paper and pencil’ algebra and to devee]r
ety ]tae iasld transfer between the two. It was decided to base the]gp
omorphism between using variab| i ;

and using variable to define a f i teaditionaT algebra. 1t canon I L0
' unction in ‘traditional’ o

e ‘ i algebra. It was h i
helping pupils to make the link between these two contexts WOLYIZOtEﬁz\]/?gg

the basis for the transfer of i
_ variable from i
brief outline of the function material: e folfowing a5

. Function Matery;
. ' ' r1al
upils are shown how to define asimple mathematical function in Logo. (Fig. 3a)
ADDFOUR :X
OUTPUT X + 4 ':? —>0L;T P
END
-2-) 2 e
1.5-> 5.5 SRR
F
1g. 3a Fig. 3b Fig. 3¢

a nputs (i C]ud' Q@Cl al and wﬁnve numbers
572 e thel encoul &Jidtoe)(pe "lel(wt a ange o p (
(eg by typ ng N ADD OUR 31 PRIN ADDI OUR i» f IN ADDI OUR 25) and tom e other

fpnctions using the operations of subtraction

OD—i—ﬁ;ngng%g—{-Ew&, Lls" Understanding of Variable ina Logo context.
Bl R, )ysf of tne' tran;crlpt data(after 60 hours of *hands on" Logo
9), structured interview data and specific tasks given to the pupi?s

during a ‘research day’ at i ton i
. y" at the Institute of Education is highlighting the following

The Significance of the Naming of the Variable.

The i i
SCAfEasg}Sl’)tEUdrYJUl;J)D”S were lntrgduced initially to meaningful variable names (e
i r . The transcript data and pupil interviews showed that puoillgs;
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were attaching undue significance to the naming of the variable. It was decided to
intervene specifically to show pupils that they could use any name and the pupils
were encouraged to make up ‘nonsense’ names. In addition the function materials
used a range of variable names including single letter names. The majority of
pupils seem to have passed through the stages of using meaningful names, to
choosing nonsense names and then returning to meaningful names (e.g. SIDE; SIDE2)
or abstract short names (e.g. X,A).

The Meaning of the Variable Name.
Discussion with the pupils about the meaning of a variable name elicits respon-

ses of the form “the size of what it is going to be", "SIDE stands for how far you
want to get it to go", "SCALE lets you know it can make it as big or as small as you
want it". The pupils however seem to bring their mathematical under- standing of
number to the Logo situation. This means that the pupils’ idea of ‘range of number’
can be restricted (e.g. to positive integers). At least half of the case study
pupils were resistant to using decimals. In order to extend the pupils’
understanding of ‘any number' structured tasks will need to be devised. (Variable
input as scale factor e.g. can provoke the use of decimal input).

The Critical Nature of the Variable Letter Task

None of the case study pupils were motivated to take on the idea of variable in
Logo before they were given the variable letter task. It is hypothesised that the
idea of changing a fixed procedure to a general procedure by scaling distance
commands is conceptually easier for pupils to use than making a general
relationship explicit by operatng on a variable input to express an internal ratio.
Pupils know that using scaling input will produce variable screen output but are
not necessarily aware of what exactly is varying. Four months after the
introduction of this variable letter task three out of eight pupils still used this
technique to draw Fig. 1. Three out of eight pupils perceived the internal ratio,
defined one variable and operated on it (see for example Fig. 1c). Two pupils
defined two separate inputs without taking into account the internal ratio (see for

example Fig. 1b).

Conclusion
Our research supports the findings of Hillel and Samurcay(1985) that without

specific teacher intervention pupils will not use variable in their Logo
programming projects. Although the variable letter task has been successful in
encouraging pupils to begin to use variable in Logo, the research highlights the
need for pupils to experience variable in many different situations before a
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synthesis can take place. Structured interviews have still to be administered in
order to probe the pupils’ understanding of variable both in Logo and in a

‘traditional’ algebra context, and to evaluate the ‘transfer' materials. The results
of these will be reported at the conference.

Footnote 1.

The Logo Maths Project which commenced in Sept. 1983 is monitoring and evaluating how Logo can be used
within mathematics classrooms. Two computers are placed in the classroom and pairs of pupils take turns
to work with Logo during their ‘normal’ mathematics lessons. The researchers act as particlpant
observers. Systematic data is being collected throughout the three years of the project for four pairs of
case study pupils (aged 11-14), one boy pair, one girl pair, and two mixed pairs. Pairs where chosen
taking into account spread of mathematical attainment and the teachers"s opinions as to constructive
working partnerships. The data includes recordings of the pupils' Logo work, all the spoken language of the
pupils while working with Logo (a video recorder is connected between the computer and the monitor), the
researchers interventions and a record of all the other mathematical work undertaken by the pupils. The
video recordings are transcribed and these together with researcher observations and teacher and pupil
Interviews provide the basis for the research results. Since 1984 the research has been extended into ten

further classrooms where the control of the Logo work is the responsibility of the teacher rather than the
researchers.

Footnote 2.

The case study pupils worked with RML Logo which does not possess inflx arithmetic operations. The

procedures in this paper are given in Apple Logo with the additional prefix arithmetic operations ADD,
SUB, MUL, DIV.
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estimation problems in a "store" setting, and on number sense problems including
comparison of numbers, use of powers of ten, and judging relative size of numbers.
The testing phase provided the groundwork for subsequent hypotheses testing. A
process-product computational estimation model which included factors involving
concepts, direct and indirect skills, and attitudes was formulated (see Figure 1),
For the second phase of the study, test items consistent with data collected
in the first phase and with Case's theory of intellectual development were designed.
These grade-appropriate items covered the factors identified in Figure 1. At each
of grades 3, 5,7 and 9, three teachers completed individual student profiles.
Twelve students at each of the three grade levels who ranked in the middle half of
their classes in mathematics, who portrayed interest in mathematics, and who were
reflective and willing to explain answers were selected to be individually

interviewed.

Procedures and results. During the 45-60 minute audio-taped interviews,
students were initially questioned on mental computation and other related skills
as delineated in Part III of Figure 1. The bulk of the interview was devoted to
items covering Parts I and II. Approximately half of these items, direct or
D-problems, consisted of a description of a situation calling for computational
estimation followed by solution-explanations of two or three hypothetical students.
Interviewees were questioned about the acceptability of the hypothetical explana-
tions and the resulting estimations and requested to contrast the explanations.

For the other half of the items, open-ended or O-problems, students were asked to
select and describe their efforts when solving a series of computational estimation
problems. Finally, attitudinal data to augment teacher profiles (Part IV of Figure
1) was gathered.

The remainder of this paper will be restricted to a limited analysis of

several D-problem tasks measuring the conceptual and skill level factors identified
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A BREAKDOWN OF FACTORS RELATED TO COMPUTATIONAL ESTIMATION

CONCEPTUAL LEVEL FACTORS

A. Process Factors

1.

Recognition that there is more than one appropriate process
of obtaining a computational estimate.

Recognition that estimation processes involve computing with

approximate numbers.
cesses are more appropriate than others,

iti e pro
e T tyge f problem and degree of accuracy demanded

depending upon the type o
by the problem.

B. Product Factors

1.

2.

i i i i ue
Recognition that an estimate is an approximation of the val

obtained through computation.

i is an
Recognition that there is a range of values each of which is

appropriate estimate of a computation.

Recognition that problem context determines whether or not a

particular estimate is appropriate.

SKILL LEVEL FACTORS

A. Process Factors

1.

2.
3.

Reformulation
a. Rounding

b. Truncation

c. Averaging

d. Changing form of number,
e.g., fraction to decimal

Compensation

Translation

B. Product Factors

1.

2.

RELATED SKILLS

Working with powers of ten.
Recognizing place value.
Comparing numbers.

Mental computation.

Basic facts.

properties of operations.
Recognizing effect on

QO EHDO®E>

i cit:
Determination of the correct order of magnitude of the produ

of a computation. o
i ation.
Determination of the range of acceptable estimates of a compu

VI. ATTITUDES
A. Confidencein ability to do.math.
B. Confidence in ability to estimate.
C. Tolerance for error.
D. Estimating seen as useful.

computation of modification
of numbers.

Figure 1. Model of Hypothesized Developmental Factors
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in Parts I and II of Figure 1. Conceptual factors Al and B2 involve recognition of
the existence of more than one appropriate process for obtaining an estimate and
that more than one estimate is appropriate. To test these factors, students were
shown illustrations where two individuals rounded addends in different ways and/or
obtained different estimates. In each situation, the rounded addends and the
estimated sums would be acceptable to individuals satisfying the parameters of the
Reys et al definition. Depending on the context, students were asked whether the
rounding processes were acceptable (Al) or whether either sum was "about right"
(B2). The majority of students at each of the four grade levels found both
processes acceptable. 4 najority of the 12 students at each grade level did not
find both sums acceptable: 1 student in grade 3 found both sums acceptable; 3,
grade 5; 5, grade 7; 6, grade 9. 1In grades 5 and 7 students finding the processes
unacceptable explained their position by referring to the rounding procedure taught
in their school and/or to whether the resulting numbers were multiples of ten. In
grade 9, students preferring one sum over the other selected the sum involving a
fraction (e.g. 10 1/2) because fractions are closer and therefore "better". These
data suggest that children are more amenable to alternate processes in estimation
than they are to alternate products and that acceptance of alternate products is
slower to develop.

Conceptual factors A2 and Bl involve recognition that computational estimation
processes involved computing with approximate numbers (A2) and that the product of
an estimation is in itself an estimation (B1). To test these factors, situations
involving hypothetical students S and V were used: Student S rounded first, then
computed an estimate; Student V computed first, then rounded to obtain the same
estimate. Interviewees were asked to compare, contrast and establish a personal

preference for the hypothetical situations involving students S and V. At all

grade levels, interviewees found it acceptable to use rounded numbers as addends or
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factors (A2) and agreed that estimated sums or products were acceptable (Bl).
However, a majority of students at the three upper grades preferred to compute with
exact numbers and to round the result to obtain an estimate. These students (5 in
grade 5; 7, grade 7; 8, grade 9) claimed such procedures were "more accurate' or
"easier because you only have to estimate once". 1t appears that by grade nine,
young adolescents do not recognize that an essential component of computational
estimation involves computing with approximate numbers or, at least, do not feel
comfortable with this procedure.

Skill level factors (Part II of Figure 1) were also investigated through the
use of D-problem and O-problem types. Only the former are discussed here. When
presented an addition problem where in one case the addends were truncated and in
the other case where addends were rounded to the closest hundred, the youngest
students found both procedures acceptable. Students in grades 5 and 7 resisted the
truncation methods in preference to rounding methods. Seventh grade students when
shown a procedure which compensated for truncation errors, agreed that truncation
with compensation was as good as, perhaps preferable to, rounding methods. This
pattern held with ninth grade students too. In other situations, with other items,
half of the third grade students and at least ten of twelve students at the higher
grade levels recognized that compensation led to closer estimates. An item given
to seventh and ninth grade described two cases involving decimal multiplication: In
one case, a hypothetical student incorrectly used a calculator to determine the
product; in the other, the decimals factors were changed to approximate fractions.
When asked whether the results were acceptable estimates, interviewees split
between the two alternatives and lacked confidence in their responses.

Some items testing skill level factors involved estimates with respect to
order of magnitude and to a range of acceptability. Results show the ability to
relate order of magnitude to the computed or estimated result is a developmental
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ability perhaps dependent upon an ability to compute mentally. Generally itemg

requiring identification of a range of acceptable estimates were unsuccessful.
Interviewees tended to do the calculations mentally before responding to questiong

concerning whether or not the computed answer was above or below a target number,

Implications. The results of the analysis indicate clear developmental trendg

on several of the factors identified in the model in figure 1, and lend support to

Cases's hypothesis that pre-adolescent children have not developed the pPrerequisite

skills and concepts necessary to be good estimators. This observation should not

be interpreted as saying that the recommendations for increased emphasis on comput-

tational estimation are inappropriate. Rather, an implication is that instruction

should be directed toward assisting children develop the prerequisite lower-level
concepts and skills which form a foundation for later learning of computational

estimation as both a process and as a product. To expect children to become

proficient at computational estimation prior to the establishment of such a

foundation is to invite failure and frustration.
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The Value of the Computer in Learning Algebra Concepts
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Background . -
= problems and difficulties which many secondary schoolchildren have wi
The

bject of much
bra (generalised arithmetic) are well known and have been the subj

" relate to the conventions of the notation and the
meaning Of the use of letters (Booth

investigation. Many of these
inability of children to interpret the

1983a). Faced with a new and daunting cognitive situation, many fall ba:kto:e;h:::

i erience and make use of a one-to-one correspondence. et w
PrEVIO:s e:zrs and the letters of the alphabet (eg Wagner 1977), feeling a ?crong
::::r:orn:mnumerical 'answer'. Booth (1983b) reported encourTging success us:::r:n
imaginary "Maths Machine" which the children had to 'program' to rro::cebe:: Show;
The value of computer programming in understanding ?lgebra has a're y peen s
(see, for example, Tall 1983) and the natural extension of Booth's wor

i i " to program.
provide the children with actual "maths machines prog

framework of the research is based on constructivist Piagetian
Ausubel's theory of

The psychological :
i i i f abstraction from experience, '

theory, with its idea o ; o
i ;ful learning, and the relational understanding of Skemp. All these theo X
meanin D . ; heonie

i the importance of the ' framework of knowledge' which the indiv

emphasise e i - e
co:s:ructs in any cognitive area, and the need to build on the existing g

eans .
structures of the child by conceptual rather than rote m

The Experiment

a) Equipment . . »
To enable the children to construct a mental model for a variable in algebra,
)

the manner in which it is manipulated, a concrete model waf provided consxsii::h::
a 'box' containing the current numerical value of the variable and anf :f‘l -
label with the variable name (figure 1). Although this model does no; ?t Lroved
the mathematical uses of the concept of variable (see e.g. Wagner 1981), it p

to be of great value to the children.
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current value

s

A
AN

variable label

Figure !

Two "Maths Machines" were devised. The first was a cardboard model consisting of
two large sheets of card (figure 2), one of which was blank (the 'screen') and the
other with six rectangular boxes to store the variables. To carry out commands
placed on the screen, the children performed individual tasks such as carrying
messages, looking after variable labels, inserting values on cards into the stores

and performing the arithmetic calculations. (See Thomas 1985 for further details.)

10 X-8

e NN
40 PRINT Y

5 0]

The Screen The Variables

The ‘Maths. Machine’

Figure 2
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A second, problem-solving tool, designed specifically for the programme was a
software 'Maths Machine' for use on the BBC computer. This program, which allows
normal algebraic input (with implicit multiplication), was also based on the
fundamental mental model of a variable discussed above. The screen consists of a
series of ‘'boxes', initially empty. Some are labelled with variable names and
contain the current value of the variable under consideration, others are for
algebraic expressions which can be calculated and compared (figure 3). The two
'Maths Machines' were designed to enable the children to develop their
understanding of the general concepts of algebra, through structured exploration
of practical examples. Each is a 'generic organiser' in the sense of Tall (1985).
Through practical experience, specific examples are seen to be generic examples
(representatives of a class of examples) from which the general concept may be

abstracted. Both turned out to be extremely popular and successful.
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b) The Experimental Method

The subjects of the main experiment were a group of 42 mixed ability 12 year olds
from the top year of a middle school, with no previous experience of algebra. The
were divided into matched Pairs using the results of an algebra pre-test based oy
the Concepts in Secondary Maths and Science (CSMS) algebra test. The teachinn
progra?me given to the experimental group consisted of about twelve hours of wor:
replacing their normal mathematics periods. The module of work consisted of a
v?r%ety of activities, using the equipment described above. The children were
divided into groups of about three and were rotated each session between the
computers available (three) and the 'Maths Machines'. The use of small groups was
found to have beneficial effects. Peer group interaction, in helping and
correcting each other, certainly seemed a valuable means of intelligent learnin
(Skemp 1985). The pupils started with an introduction to simple programming i:
BASIC and this was built into some investigations using short programs. An exam 1
of the sort of thing looked at would be a comparison of the outputs of chs:

programs for three different values of each of a and b :

10 INPUT a 10 INPUT a
20 INPUT b 10 INPUT b
30 ¢ = 2%(a + b) 30 c=2*a+2*b
40 PRINT c 40 PRINT c
50 GOTO 10 50 GOTO 10

In this way concepts such as commutativity, the use of brackets and equivalence of

expressions were all investigated unobtrusively and linked to practical experience

through everyday problems.

The fi

inal part of the programme of activity involved the use of the software
" ; :
Maths Machine” to find the 'solution' to relatively difficult inequalities h
i suc

For what value or values of x is 2x+1>5?

achieved by inputting the formula 2x+! as a function and then choosing

This was
for this

values of x to input. The 'Machine' displayed the value of the function
of x and so values giving a result greater than 5 could be recorded. It was

result such as x>2 from their lists,

value
not expected that many would obtain a

although some did.
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The set of five worksheets used in the programme will be made available at PMEIO.

A test based on the CSMS Algebra test, but different from the pre-test, was given

as both post-test and delayed post-test ten weeks later.

The Results

The main question under test was teaching programme had

whether or not the

improved the children's understanding of the use of letters in algebra, with

particular reference to their use as generalised numbers and variables.
The results (Table 1) showed that both the post-test and delayed post-test results

of the experimental group were significantly better than those of the control

group.

TEST  EXPERIMENTAL CONTROL MEAN S.D. N
ME,

MEAN DIFF.
(max.=71)

POST-TEST 32.55 19.98 12.57 10.61 21 5.30 20 <0.0005

DELAYED
3e.70 25.73  8.47 11.81 20 3.13 19 <0.005
POST-TEST
Table |

an understanding of all four of the levels of difficulty

The questions involved
significantly better

identified by Kuchemann (1981). The experimental group were

than the control group on questions requiring an understanding of the use of

letters as a specific unknown and as a generalised number or variable (Kuchemann's

levels 3 and 4). It was also encouraging to see that in some areas, where

comparison was possible, the experimental group results were comparable with or

better than those of children up to three years older on the published CSMS

results. There were also many very encouraging examples of great individual

improvements in understanding of the use of letters in algebra.

The children enthused over all the work, and were still talking about it a year

The teacher who taught it was equally enthusiastic commenting that it "was

later.
orientated. It is

a very worthwhile project which proved to be very pupil

enjoyable, interesting and thought/discussion provoking between pupils and between
pupils and the teacher."”
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It was concluded that the programme had been successful in its aim and that work
of this sort using the computer and presented to secondary school children before

they do any formal algebra could have wide ranging benefits.
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INTRODUCING ALGERRA TO "TOW-LEVEL"
8TI1 AND 9TIGRADERS

Gérard VERGHAUD and Anibal CORTES, (LNJXSf

There has been many studies on algebra during the last 10 years. Mot many
of them include experimentation and observation in the class-room, and
practically none of them is concerned with introducing algebra to "low-
level"” students ; by "low-level" we dont't mean that these students are not
intelligent, only that they are weak. The problem of raising the level in
mathematics of the whole population of young people is a problem for all

developed countries to-day. Tt is a difficult challenge.

Mot only is it interesting to teach algebra to low-level students for
political, economical and social reasons, hut also for scientific reasons :
the sort of difficulties met by this population of students is somehow an
amplified version of the difficulties met by other students. What we try to
do in this paper is to approach the problems raised by the meaning, the
function and the concepts of elementary algebra. These problems are psycho-
logical in nature, as they have to do with the cognitive and motivational
aspects of learning algebra. They are also epistemological, as a crucial
point in this business is to identify to what kind of problems algebra
brings an answer that can be made meaningful to students when they are

first introduced to algebra.

Algebra is a real epistemological shift from arithmetics : instead of
handling a natural language problem with intuitive tools (theorems-in-
action), students have to manipulate chains of symhols with explicit rules.
So there are several dimensions of the shift :

- explicit/implicit
*This research will be published more extensively in "Fecherches en Didac-
tique des Mathematiques". Pierre Favre-Artigue, Dierrcette Serrano, Raymend

Piquer, Jean Genais and Ying Tle collakorated actively in this research.
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- symbolic language/natural language .

— algorithmic/heuristic
Moreover the shift cannot te made without the introduction and the use of
power ful concepts such as : unknown and equation, variable and function,
directed, rational and real numbers, abscissa, coordinate and graph, mono-

mial and polynomial, system of equations...

tlhen one introduces algebra as a formal part of mathematics, which has to
be learned anyhow, there is undoubtedly a shift from what students have
done bLefore. But then, the commun function of algebra and arithmetics,
which is the solving of problems, is hidden.

As we have made the choice, in this experiment, to introduce algebra as a
way to solve arithmetic problems that would not be easily solvable without
algebra, the shift is different : algebra has to do with the same problems
as arithmetic, but uses different procedures and conceptual tools : it is a
big shift from arithmetic to put a situation into equations, to use algori-
thmic procedures to transform and combine these equations in order to find
a solution if there is any, or to show that there is no solution ; in the
usual arithmetic procedures one chooses a sequence of operations (some-
times one by one) to calculate intermediary unknowns, until one is able to
calculate the last one. In an arithmetic solution, intermediary unknowns
must be meaningful ; whereas in an algebraic solution, once the relation-
ships of unknowns with data have been expressed and written down (more or
less as relations between variables), one does not have to care about the

meaning of intermediary expressions until one gets to the solution.

In that sense, algebra is a "detour" : students must give up the temptation
to calculate the unknown as quickly as possible, they must accept to ope-
rate symbols without paying attention to the meaning of these operations in
the context refered to. They must also understand the equality sign cdiffe-
rently from what it meant before to them, they must operate with brackets
and do several other new things like add and subtract, multiply ancd divide
on both sides, so as to isolate the unknown on one side and the numerical
data on the other, or to eliminate one unknown.
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CONCEPTUAL PROBLEMS RATSED BY AICERRA

Different coneptual problems are raised by algebra, that are echoed in
students' cognitive difficulties.

1 - The meaning of the equality sign : does it announce a result, or

represent a numerical identity, or an equivalence between two combinations

of numbers, or an identity of functions...

2 - The autonomy of svmbols and symbolic operations : the use and

manipulation of symbols is essential in algebra. It is very rare in natural
language that students manipulate words without considering their meaning.
In algebra, it is both necessary and dangerous : examples will be given.

3 - The powerful and difficult concepts of variable and function : the

concepts of unknown and equation are not self-sufficient ; there are alge-
braic operations that cannot really be conceptualized without some explana-
tion on variables and functions. The example of formulas in geometry,
physics, or elementary economics, is a good way to show some distinctions.

4 - The meaning of negative solutions

low is it possible to get students solve (linear) equations in the set of
real numbers, if they cannot give any meaning to negative solutions. In
order to make negative solutions meaningful when expressing algebraically
concrete situations, unknowns must represent not only magnitudes and quan-
tities (they are always positive) but also relationships and transforma-
tions (they can be positive or negative).

Several authors have shown the difficulty raised by the presence of a
letter inside expressions (lack of closure : Collis), on both sides of the
equation (Filloy and Rojano, 1984 and 1985). This usually hides the fact
that there is not only one unknown but two or more. It is also in those
cases that algebra is a powerful tool, comparatively with arithmetic. So it
may be valuable to introduce rapidly systems of equations, so as to show
the power of algebra, and its difficulty...

A DIDACTIC EXPERIMENT

e worked for two years with a class of 21 students in a vocational school.

The experiment consisted of two series of Jessons that took place during
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the 8th grade (12 hours in all) and during the 9th graée (10 hours in all).
There were a pre test, an intermediary test and a post test, but the most
interesting data have been collected in the class-room, by observers with
audiotapes : there was one observer for three students working either
individually or together. The ohserver was also a participant and helped

the students when necessary.

The didactic situations were chosen so as to face the students with the
alvove-mentionned (1 to 5) conceptual problems.

First vear : 8th grade

- The equilibrium between weights was used as a physical model for some
situations

from a + % =Db (all positive)

to ax +b =cx +d (all positive)

and even a(bx +c) +d =a'(b'x + c') +d' (all positive)
- The model. of additive and subtractive transformations and the model of
change in temperature were used to introduce negative solutions, and nega-
tive data.
- The "unequal sharing" paradigm was used to introduce simple systems like

the following :

x+y=a x=ay
X=y+a or x=2z+Db
z=y-¢

- The diagrams representing the program of calculation (on a pocket

Hewlett-Packard) of the ecuations obtained were also used.

Second year : 9th grade
- Functions of two variables were systematically used to introduce two-

unknowns-and-two-equations systems, and Illewlett-Packard calculation

programs.
- Some work was done on formal expressions

L(x, y) = ax + by
f(x, c) =d find x
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or ,f(x,Y)=ax+by

fx, y) =c¢ find different solutions for x and y
- The graphic meaning of such solutions was introduced
- Matural language problems were then used again, corresponding to the
above-mentionned formal expressions, before the classical problem

ax + by =c

Ia‘x + by = ¢!

was also introduced through a natural language problem with its graphic
representation, and the algorithmic solution (linear combination).
- Iinally five natural language problems were presented, the arithmetic

solution of which would not likely be in the reach of most students.

The protocols that we collected are rich and varied. They illustrate the
points raised in the first part of this paper, and we observed many Aiffi-
culties that other authors have mentionned before ; we also find new facts
concerning the "detour" through algebra and "the didactic contract" by
which students progressively understand what is required from them by the

teacher.

Important objects to be considered are the "scripts" that students have to
learn and master. By "script" we mean a scriptural scheme which is the
symbolic expression of the solving procedure. Conceptual difficulties may
lie either in the validity of the script or in the progression to the goal.

These difficulties are distinct in nature. Examples will be given.

Iinally it is interesting to notice that the last problem in the sequence
was solved by all students. But the tests show that the overcoming of
difficulties in algebra, especially when negative numbers are involved, is

a long term learning process.
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MATHEMATICS BACKGROUND TO TECHNOLOGY : THE CASE OF NIGERIA
'Kunle Akinyemi
University of Ilorin, Nigeria; Visiting Snr. Lecturer,

BRUMATE, Brunel University, U.K.

INTRODUCTION
Nigeria recognised the importance of technology in her development a long time
ago. The National Policy on Education (1981) provides the operational framework
for her education. The importance of mathematics in technological development

is reflected in the statements of the purpose and objectives of education.

The National Science and Technology Development Agency in Nigeria has estimated
that by 2000AD the country's population may well exceed 140 million people hence
proposed a systematic approach to science and technology for a self-reliant and
endogenous development (NSTDA, 1979). It had since suggested the
intensification of education and training relevant to Nigeria's gradual build up
of her own internal scientific and technogical capacities since technological
transfer is a myth. For example, the NSTDA (1979) indicated that the
importation of ready-made technology stifles national initiative and leads to a
heavy commitment of Nigeria's foreign exchange. The mathematics background
required for developing a viable indigenous technology is enormous.
Technological problems are indeed real 1life problems which rarely match the

rigid boundaries, traditionally imposed on mathematics.

MATHEMATICS TEACHING IN NIGERIAN SCHOOLS
Nigerian educators are concerned about students' antipathy to mathematics.
Lassa (1984) devoted his inaugural lecture to 'the sorry state of mathematics
education in Nigeria'. A particular section of this lecture succinctly presents
the current state of mathematics in Nigerian schools as "The performance of
students in mathematics has been declining, the students' attitude towards
mathematics tends to be negative, most of the teaching staff in mathematics have
been inadequate and ill prepared for the teaching of mathematics and the society
had the feeling that mathematics is for those with strange things up in their
heads. All these have left mathematics teaching and learning in a deplorable

state of affairs in all institutions of learning.” (Lassa, 1984, p.1)
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There is also abundant evidence on the declining trend in students' performances

in mathematics in the West African School Certificate Examinations (Fakuade,
1973; New Nigeria, 1978; Uzoma, 1980; and Lassa, 1984). Poor performances in
mathematics have far reaching effects on other school subjects of which the
sciences are very important. Technology, briefly described means the systematic
application of scientific and other organised knowledge to practical tasks.

The impact of mathematics on science is great and when students do not develop

positive attitudes to mathematics, they find it impossible to cope with the

sciences which invariably are the base for technology. The poor attitudes of
pupils may be linked with other factors like;

a. Mathophobia in the classrooms

b. Pygmalion in the classrooms and mathematics teaching

c. Teacher qualification

d. Dearth of instructional resources

e. Context of mathematical presentations

f. Some myths in Nigeria about mathematics

a. Mathophobia in the Classroom
with information on phobia which means fear (Freud, 1909;

Literature is replete ) '
Kristel 1981; Sluckin 1979; and Lewis & Rosenblum, 1974). Mathematics is a
school subject which is feared by many Nigerian students and in which they take

avoiding actions. The older generations of Nigerians learnt mathematics under

duress (in some cases). Teachers in those days held whips in front of the class

during mathematics classes thus the learning of mathematics was more of an

ordeal than a pleasant learning experience for the child. Even today in some

schools, the practice still continues.

Bowlby (1973) indicated that the cause of fear may be linked with the presence
or absence of something that provides safety and security. A teacher with a
whip in his/her hand in front of a class does not provide safety or security.
The presence therefore of a 'whip-holding mathematics teacher' often raises the
state of anxiety of many Nigerian children. The propensity for damage of this
kind of classroom set-up is incalculable. In Akinyemi (1980) many pupils
indicated that their fear of mathematics was linked with teachers' threatening

approach to the teaching of this subject.
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b. Pygmalion in the Classroom and Mathematics Teaching

Pygmalion in the classroom is an important aspect of classroom interaction
which had been espoused by Rosenthal and Jacobson (1968). The theory holds true
especially in the teaching of mathematics in Nigeria. In a study to investigate
classroom interaction (self-fulfilling prophecy) conducted by Akinyemi (1980),
150 class II pupils, distributed in four centres of the University of Ilorin
Summer School Programme (SSP) were used. The syllabus represented a review of
class I and an introduction to class II mathematics curriculum of the Nigerian
secondary schools. All pupils in the four centres took the same pretest and
posttest. All mathematics teachers used the special syllabus for the four weeks
programme. Three centres (A,B,&C) were informed about their pupils' pretest
performances but were not shown. The fourth centre was used as the control,
Unobtrusive observations of teacher interactions were conducted during the

second and third weeks of the study.

Pretest results reflected very close averages (x = 347%) for all four centres
being homogeneous groups. A deliberate bias was introduced on the second day of
the study to investigate self-fulfilling prophecy as;

* Teacher in Centre A (Ta) was informed that he had very good pupils in
his class and that their average score on pretest was Xa = 707%.

* Teacher in Centre B (Tb) was informed that he had extremely weak pupils
in his class and that their average score on pretest was Xb = 25%.

*# Teacher in Centre C (Tc) was informed that he had average pupils in his
class with an average pretest score of Xc = 34% (being also the average
score for the entire group).

* Teacher in Centre D (Td) was not informed about his pupils’
performances and did not bother to ask. However, the average pretest

score of the group was Xd = 347%.

Posttest results showed a gain of X = 217 over the pretest with average group
scores being Xt = 55%, Xa = 57%, Xb = 50%, Xc = 537% and Xd = 56%. The results
of this study did not show any statistically significant differences. However,
in terms of numerical value, centre A was best (as expected) followed by centre
D which was the control. Centre B which was presented as the weakest class in

mathematics actually performed the poorest.

Teachers A and D were found to be enthusiastic judging from their presentations,
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reinforcements methods, class participation and the general classroom atmosphere

during the second and third weeks' unobtrusive observations. Teachers B & C did

not show any enthusiasm. Their attitudes were at best lukewarm. The feedback

m these two (Tb & Tc) after the study was that
t sufficient to make a

received fro "four weeks of

mathematics teaching along with other subjects was no

noticeable impact on pupils who are inherently weak'. One of the enthusiastic

teachers(Ta) confessed that he felt like helping the pupils because he was

delighted to learn that pupils in his class were the best of the four centres

and wanted them to maintain their superiority om the posttest.

c. Teacher Qualification

A critical look at the way mathematics is taught in the Nigerian schools reveals

many shortcomings. In many instances the teachers are either unqualified or

underqualified to teach the subject. Adesina (1980) has revealed startling

state of primary school teachers in Oyo state of Nigeria which

1ified and 50.7 per cent as marginally qualified

statistics on the

shows 34.5 per cent as unqua

(qualification below Grade II level which is required to teach in the primary

school). The situation in many secondary schools is equally bad. One can then

effects of poor teaching of mathematics (an intellectual

imagine the cumulative
hematical background and subsequent development

problem—solving skill) on the mat

of the child. Towards this end, the government has made it mandatory for all

teachers to be trained within a short time.

d. Dearth of Instructional Materials

The scarcity of materials and resources in schools had long been expressed in

several quarters (Fakuade,1973; Lassa, 1984; West Africa, 1985; and Harris &

Akinyemi, 1986). The need to provide materials which are relevant to the

Nigerian situation was the basis for the set up of the Textbook Development

s of curricula changes have occurred in schools
n tune with the new

Agency. A serie since

Independence in 1960 and the necessity to produce materials i

syllabuses had long been felt since the previous materials used (Durell

mathematics series) had become inappropriate for the Nigerian local conditions.

e. Contexts of Mathematical Presentations

The concern for presenting learning materials in meaningful contexts is one that

psychologists (Ausubel, 1968 and Bruner, 1966) had since expressed. Ervynck

(1983) said that the learning difficulties of the African student in mathematics
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may "relate to some unacquaintance with classical features, materials and

examples used to describe mathematical concepts’ . Materials and features
available in different learning settings must be used in presenting concepts
otherwilse learmners e le confused elther 1n e abstract presentations

therw ¥ ar left f d th th t t t or 1n

the use of foreign contexts which are unfamiliar to them

f. Some Myths About Mathematics

In changing the Ni i
igerian stude r i
nts' poor attitude to mathematics certain

misconceptions and myths need to be corrected in schools. It may take som
effort on the part of the teacher to change the situation. Lassa (1984) h .
presented one such myth as "mathematics is for those with strange things i:
: "
their heads'. The statement that "if you work too many mathematical problems
»

ou m o
y ay go mad" had been expressed by some young learners who had been s
o

informed by their illiter arents e u u e rm 1
ate r ts. Th th that t th
P my a you must be bo w

mathemati e oo one a pPop a amo e e

cs to b g a 1 1s 1s ular ng th Nigeri
d t t that an

secondary school students. Counting, especially for young learnmers is an early

skill in mathematics. In situations where ou count the number o hildren in
y r of childr
i

an illiterate fami i
amily in a rural area, a serious problem may arise because it is
a myth in s i
y ome tribes for anyone to count their number of children! It is
obvious that ili .
the concept of probability in statistics will suffer in such a
n

environment because i i
the issue of 'chance' is left to the 'gods'!

CONCLUSTIONS

So?e inadequacies in the educational systems have been indentified and are
being corrected. The campaign in schools is towards reviving mathematics d
the slogan is '"Mathematics is a friend and not a foe" Technology and devel .
go hand in hand and the Nigerian curricula at the secondary school levejp::ent
recently been modified to promote technology. In the continuing search :Ve
solutTons to children's antipathy towards mathematics, resources including gam::
and simulation exercises are being designed to stimulate children's interest and
to sharpen their computational abilities in the basic mathematical operati
These provide a sound foundation which is sine qua non to the developzeni :ini

receptive attit j i
ude to the subject and its application to science and technology

REFERENCES

Adesi i
sina, S. (1980) "Free Education at All Levels : Problems and Prospects."

%
eynote Address. Delivered at the 5th Annual Conference of the Oyo Stat
K t y e

2329~



Nigeria.
Conference of Principals of Secondary Schools, 27th November, Ibadan, Nig

Akinyeml A. 980 Math:)phob]a Among Nigerian Secondary School Students.
( ) g g
B
Faculty of Education, University of Ilorin, Nigeria.
oL tional P hology: A Cognitive View. Holt Rinehart
Ausubel, D P (1968) Educati 1 syc 1 Cog
B 12

and Winston, New York. . ' .
Bowlby, J (1973) Attachment and Loss: Separation, Anxiety and Ang
) . At e —_— e Al Aoh Rl o

o o]o} W YOTK.
Vol. II. Basic Books; Ne York
RS (1966) Towards a Theory of Instruction. Norton, New York.
Ervynck, G. 1983 = oncerning athematica Education 1n frica.
( ) Exgerlenc s Concernl Math tical C A
owltz ( ) n Proceedings ©O e Seve Internationa onference
Hershk tz, R. Ed. In P d f th nth t t 1 Conf

Bruner,

of the PME PME Conference Israel.
Fa . 97 , i \ 17 No.2
kuade R.A (1 3). The Case For Modern Mathematics. WAJE. ol. > 3
) Ao

P.285-294. ‘ ‘ st
Federal Republic of Nigeria, National Policy on Education. (

ede ‘ .
(Revised). Federal Ministry of Informatiom, Lagos, Nigeria.

i = . he works
Freud, S. (1909) Analysis of a Phobia in a Five-Year 01d Bo In the
S y e-Year—01ld Boy. 20 -7 Z——==

of Si mund reud. ogarth Press and Institute of Ps choanalysis. Vol. 10
g F Hog y Vi

s ives for
i D. & Akinyemi, K (1986) Series Tracks or parallel? Alternative

Harris, V- , K

Education in Nigeria. University of Bath.

i i i i Inc.,New
Kristal, L. (1981) The ABC of Psychology. Multimedia Publications In
r > -3 — | — —

York.

. . . . 0y AD

L P.N. (1984) The Sorry State of Mathematlcs Education in Nigerla
assa, P.N.

Inaugural Address. University of Jos, Nigeria-

Inaugura’ ACC-———

osenblum, oRe (1971\\). The Origin of Fear. John Wiley, New
Lewis, M. & R bl L.A

York.

ience and
National Science & Technology Development Agency (1979). Scie

Technology for Development. NSTDA, Nigeria.

EC'S Chief
New Nigeria Publication (21lst October, 1978). A report of WA
e = AmtE——

Examiner, Kaduna, Nigeria.

ose a . an aco on 968 (e} he assroome. Holt,
R nthal, R d Jacobs , L. (1 D B malion in t Classr
B g

Rinehart & Winston, Inc., New York.

Slucki . ( ) — in Animals and Man. Van Nostrand Reinhold Company
n, W 1979). Fea

Ltd., New York.

Uzoma, I.M. 1968). Students and Mathematics. Paper presented during the
( ), g
>

Mathematics Weeks. University of Ife, Nigeria.

West Africa (1985)- Ife Book Fair. West Africa, 4th November, Page 2312.

-330-

OUTCOMES OF THE DIAGNOSTIC TEACHING PROJECT
Alan Bell

Shell Centre for Mathematical Education, University of Nottingham

pifferent aspects of our research on diagnostic teaching have been reported at

PME in each of the last years (except 1985). A summary report is now available

(Bell, et al, 1986); this talk will offer a brief account of the main outcomes,

wi th more detail of some aspects which have not been discussed previously. The

aim has been to develop a way of teaching which contributes clearly to long term
learning andwhich promotes transfer. The key aspects of this method are the

identification and exposure of pupils' misconceptions and their resolution

through 'conflict-discussion'. Conceptual diagnostic tests also play a part

both in helping pupils to become aware of their misconceptions and enabling the
teacher to observe progress.

First we shall report experiments which test the effectiveness of the major
features (focus on misconceptions, conflict and discussion) of the diagnostic

teaching methodology, in comparative teachino experiments. Secondly, there are

smaller scale experiments testing other aspects, such as the use of diagrams,

substituting easy numbers, and immediate feedback. Thirdly, there are sequences

of experiments, on each of the three main curriculum topics considered, through

which the overall conceptual diagnosis, the design of the key types of task and

their mode of use have been tested and developed, and the general effectiveness

of the teaching units has been improved. Fourthly, there are experiments in the

application of the full methodology to further curriculum
probability, ratio,

topics (algebra,
measure conversion, the simplest addition and subtraction

problems, shape recognition). The outcomes of these experiments have been

developments in the methodology of

and feasibility of different types

teaching design, knowledge about the value
of pupil task, (such as Making Up Questions,
Marking Homework, Group Working), and also new information about pupils'

concepts and common misconceptions in these topics. Fifthly, two larger scale

tests of understanding have been conducted, covering (a) Multiplicative Problems
and (b) Directed Quantities and Numbers, to indicate how widespread in the
population are the misconceptions we identified inour experiments with smaller
numbers of pupils. Finally, there has been work aimed at the wider dissemination
of the teaching methodology; packages of materials with teachers' notes have

been tried with teachers having little or no previous experience of the
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methodology, and improved versions have been produced. Videotapes of pupils
interviews and of teaching episodes have been made; and a group of teachers has
been established to develop the application of the methodology to further

curriculum topics.
TESTS OF THE DIAGNOSTIC TEACHING METHODOLOGY

1. Conflict vs. Positive-only (Decimals)
2. Amount and Intensity of Discussion (Directed Quantities)

3. Diagnostic vs. Expository (Rates)

The research programme has included three comparative experiments demonstrating
the greater effectiveness of a teaching sequence containing one or more features
of the diagnostic method. The first of these showed the superiority of a
'conflict' as against a 'positive-only' approach to the teaching of decimal
place value; the positive-only approach focussed onthe areas whichwere known
to cause difficulty, and correct concepts and procedures were evolved without
explicit discussion of misconceptions, while the conflict method first led the
pupils into exposing their misconceptions before holding a discussion leading to
their resolution. The second experiment showed that, of seven classes using
similar teaching material but with varying degrees of conflict discussion, the
more vigorous and intensive discussions were associated with greater progress.
The third experiment showed greater learning in seven diagnostically taught

classes compared with two taught by 'exposition for understanding'.
TESTS OF PARTICULAR ASPECTS OF THE TEACHING METHOD

1. Using Diagrams

. Substituting Easy Numbers
Games

Making Up Questions
Marking Homework

Group Tasks

~N OV - wN

Immediate Feedback

1. USING DIAGRAMS
Drawing a diagram is a standard way of trying to solve a problems and is often

used to help to clarify problems for pupils. Our experiments have shown that
the use of diagrams is not as straightforward as is generally assumed. Broadly
speaking, those pupils who need a diagram to help them solve the problem are

those who cannot draw a correct one, because they cannot conceptualise the
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problem sufficiently clearly . Conversely, those who could draw a correct
diagram often do not need to, because they have the necessary understanding to
solve the problem mentally. Thus the notion of the diagram as a solution

method breaks down. However, teaching which used the construction of a suitable
diagram as the basis of a discussion of the concepts concerned and their
relationships did appear successful. This clarified the understanding of the
situation and pupils were then often able to solve the problem without needing
to draw any diagram. This provides some confirmation that it is the explicit

discussion of the key concepts which is essential to learning.

2. SUBSTITUTING EASY NUMBERS

We have studied the substitution of numbers such as 3, 6 in problems containing
numbers such as 28.7, 0.4. In easy number problems the choice of operation
itself is easier, apparently because of the possibility of rapid trials and
checks of consistency with expectation. We also know that the pupils do not
necessarily regard the operation as invariant under changes of number in a
problem. Pupils regard the operation as residing in the numbers rather than in
the problem structure. For example, 8 & } may be seen as essentially the
multiplication, 8 x 4, which is the calcuation which actually needs to be
performed. Difficulties also arise in making suitable choices of 'easy
number': 0 and 1, for example, are unhelpful. Our work has shown that it is
preferable not to regard substituting easy numbers as a solution algorithm, but
to vary the numbers in a problem 35 a means of developing the concept of

the invariance of the quantity relations under changes of number.

3. GAMES

Games which engage the players in choices involving the key concepts and
misconceptions have been developed and are clearly very powerful learning
situations. if well designed, they have the elements of checking (either
inbuilt or by opponent's challenge), self-adjustment to a pupil's own level, one
is essentially choosing one's own examples, and of repetition with variety.
Successful games were developed 'in most of the teaching experiments. To
achieve the potential value of a game it is necessary to follow it by a

discussion focussing on the principle to be learned or the misconception to be

overcome, and in which it is explicitly articulated, by pupils as well as by the
teacher.
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4. MAKING UP QUESTIONS

Making Up Questions includes several ways of reversing the usual teaching order
of the teacher asking the questions and the pupil providing the answer. One
type is the generation of questions by the pupils of an initial situation;
another is the giving of a calculation say '0.4 3 25' for which the pupils have

to make up a 'story' possibly in a given context, such as speed.

5. MARKING HOMEWORK
Marking Homework is another type of reversal of role where the pupils mark
another's actual or fictitious script, stating the nature of the error and

offering a possible explanation.

Both Making Up Questions and Marking Homework have proved good ways of provoking
reflection and discussion, though they are not easy tasks, and need some
perseverence for the pupils to get used to them. Examples of the development of
more successful forms of these tasks will be found in the reports of the

of the later teaching units.

6. GROUP TASKS

A development of class discussion which has been found successful with many
teachers and classes is to set the critical problems first to be tackled by
small groups of pupils. After they have arrived at group conclusions, the
class is brought together and each group explains its conclusion to the class,
using the blackboard as appropriate. This can encourage greater willingness on
the part of pupils to express views about which they are not entirely sure,
while retaining the opportunity for the teacher to be aware of wrong
conclusions and to challenge them. One particularly useful type of group task
is the completion of a table by placing small cards in the appropriate cells.
Groups discussion focuses naturally the correctness of placing and reconsideration

is easy.
7. IMMEDIATE FEEDBACK

Gelman (1969) obtained a striking level of success in
teaching number and length conservation by simple yes/no feedback of correctness.
We found that this did produce improvements, even after relatively short
experience. Boxes were provided for recording the chosen operation and calculator
answer, with additional boxes for further attempts if the first one proved
incorrect. Test results showed modest improvements, particularly on certain
test items. Pupils did appear to use the feedback intelligently, by
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recons idering the question, but learning was limited because they lacked means
of obtaining a more correct view of the problem. In conjuction with feedback,
some more positive teaching input is required.

NUMBERS AND NOTATION VERSUS PROBLEMS IN CONTEXT

This sequence of experiments pursues a research question.. The initial

question arose from the observation that choice of operation in problems was
heavily influenced by numerical misconcpetions. The questionwas whether
teaching aimed at removoing these would be more or less effective than teaching
whose purpose was to establish the general quantity relations in context, e.g.
weight x price = cost. The first experiment focused directly on this question
comparing two classes, one having each of these treatments. Neither class made
very much progress on a choice of operation test. The second experiment used
improved teaching material combining the two approaches. This produced
impvoements on price questions.(the most emphasised context in the teaching) but
little else. The third experiment used a much stronger unit of teaching material
(Numbers and Notation) (NN) aimed at the numerical misconceptions only. This
produced quite substantial gains on the numerical section of the test, but

no change on choice of operation. The fourth experiment used a new unit

entitled Problems in Context (PC) aimed at dealing with the numerical misconceptions
within the context of problems concerning price, and the fifth used Numbers and
Notation followed by Problems in Context. The results of these showed, in the
first case, good gains on choice of operationas well as on numerical questions
from the use of PC only, and in the second case, trivial gains on choice of
operation and substantial ones on numerical questions at the end of the teaching
using the NN unit, with further substantial gains on both types of question
following the PC teaching. It thus appears that treating the misconcpetions

in the desired contexts is essential, and that this effect transfers to the

numerical questions but not vice versa.

In the talk, there will be an opportunity for questions to be raised, and for

further details of these experiments to be given, as required.
REFERENCE

Bell A, Swan M, Onslow B, Pratt K, Purdy D and others (1986) Diagnostic Teaching:
Teaching for Long Term Learning. Report of an ESRC Project. University
of Nottingham, Shell Centre for Mathematical Education.

—-385-




A Study of the Socialization to Teaching of a
Beginning Secondary Mathematics Teacher

Catherine Ann Brown
Virginia Tech, Blacksburg VA

This study was designed to determine the crucial elements

involved in the socialization to teaching of one beginning mathematicg

teacher and thus to deepen our understanding of the socialization
process. Teaching is a complex activity involving not only the
teacher but also other persons with whom he or she interacts.
Although the process of socialization to teaching is unique to an
individual and his or her teaching situation, there are certainly

elements involved in this process that are common to the experiences

of many teachers.

to be crucial to the teacher participant’s socialization experience -

his perceptions of the students he taught.

The specific questions that guided the study related to the

influences of the following factors on the actions and thoughts of the

teacher in the classroom:

students, parents, administrators, and other teachers;

the teacher’s perceptions of students’ maturity and ability levels;
the teacher’s biography,

student teaching; and the teacher’s plans for the future.

Data collection began while the teacher was a preservice master’s

degree student in mathematics education and continued to the end of
his first year of teaching.
during his final year of teacher training at the university,
case study and the teacher, Fred, reacted to the case study.

Extensive interviewing and participant observation were used as

-336-

This report will focus on one element that appeared

conceptions of mathematics teaching held by

course content;

including his teacher education program and

The teacher was interviewed extensively

I wrote a

primary data sources during the eight weeks I spend with Fred during
his first year of teaching. Supplemented with questionnaire data and
artifacts such as lesson plans, tests, and school and community
newspapers, the interviews and observations provided a data base from
which I could understand the teacher’s classroom actions and how he
and his students thought about them during his first year of teaching.

Given the variety and the amount of data collected during the

study, and my desire to study those aspects of the situations that

seemed to be most critical or significant to the participants, some

analysis had to occur while the data were being collected. Field
notes and interview transcripts were analyzed for emerging patterns of
activities and ideas soon after they were generated. This information
was then used to guide future data collection. Coding categories were
developed in order to help organize the data, and hypotheses were
formed and tested concerning the significant forces in Fred’s

socialization process.

The data suggest that the way the teacher thought about his role
in the classroom and performed that role during his first year of
teaching was most significantly influenced by his university teacher

education program and by his students, that is his perceptions of his

students’ conceptions of mathematics teaching and their maturity and

ability levels.

of as consisting of three components: a conception of mathematics,

beliefs about appropriate goals and tasks for the mathematics
and beliefs about the relative responsibilities of teacher

classroom,

and students concerning motivation, discipline, and evaluations. The

-337-



conception of mathematics teaching developed during his time at the
university and his student teaching contributed to the perspective
from which Fred initially defined the situation in his classroom.
Mathematics and mathematics education courses had provided him with
reasons to express the belief that problem solving was the essence of
mathematics and heuristics were central to problem solving. He seemeq
convinced that problem solving would be the means by which he could
motivate students to learn mathematics.

Students’ conceptions of mathematics teaching interacted with the
teacher’s conception to influence his teaching actions and thoughts.
Students in general seemed to believe mathematics consisted of rules
and definitions to be memorized and used to solve assigned exercises.
They believed that the teacher should define terms and explain
procedures carefully, working examples to show students how the
exercises should be solved. stydents viewed assignments as a means of
practicing procedures and as a means of indicating what they had
learned. gsope students enjoyed solving the recreational problems that
the teacher posed occasionally in class but saw little connection
between those problems and the learning of mathematics. Fred believed
that his students had a very instrumental understanding of mathematics
and very little knowledge of fundamental mathematical concepts and
skills.

Thus, the conception of mathematics teaching he believed was held
by the majority of his students was in conflict with the teacher’s ,y,
conception. Early in the school year, Fred used problems,
particularly recreational mathematics problems, as a means of

motivating his students and presenting some of the mathematics they
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but perceived the responses of students to be negative.

learn,

were to
seemed to him that
w something was to be done for an assignment that was to

students were attentive only when he was
It
discussing ho
> graded and when that something fit their conception of school
e

mathematics.

Fred was able to give evidence to support his perceptions of the

students’ conceptions. For example, in his general mathematics class

he introduced an activity designed to show the relationship of

probability and mortality tables using dice. This was perceived by
the students as a game, indicating a lack of seriousness on the part

of the teacher. Fred cited a statement made by a student in the class
as evidence of this attitude: "Mr. Lincoln, we’re trying to learn
some mathematics here. Why are we playing this game when so many of
us are failing? You’re supposed to be teaching us."

Even his better students often disappointed him. Although these
students seemed to be motivated to learn mathematics, their conception
of mathematics seemed very limited. For example, Fred presented a
"proof" that 2 = 1 in his senior class. The students watched quite
attentively as he worked through the proof, many copiously taking
notes. When, after reaching the conclusion that two did indeed equal
one, Fred asked the class to find the flaw in the proof, a student
responded, "Is there something wrong with it?" Even more surprising
was the lack of reaction from the class to this comment. Students did
not seem to be disturbed by a "proof" of something contrary to what
they believed to be true.

The fact that the conception of mathematics teaching held by most
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of his students was conflict with Fred’s own conceptions had an
important effect on Fred in the classroom. Early in the school year
he began to perceive that his students were not, and, he believed,
perhaps could not be, interested in the same mathematics he found
interesting. In an interview he complained:

Even with the caliber of students in the senior class, there are

none in there who are that inquisitive to ask "Why does this

work?" or "How do I know this is true?" So I don’t push and try

to justify everything.
Initially, he was surprised that his students were not interested in
the way he presented mathematics. He had been told in education
classes that problems could be motivating in the classroom, and he
himself enjoyed problem solving, believing it to be the essence of
mathematics. As the school year progressed, he developed explanations
for his students’ lack of interest. He felt that students found it
"easier to open a book and learn a few sets of rules and procedures
and have the teacher explain to them those procedures that they can
then use." It seemed to him that students were not accustomed to
mathematics lessons that included developmental or problem-solving
segments, that teenagers could not be expected to appreciate
mathematics, and that they just were not that interested in the
subject matter.

Rather than seek ways in which he could change the students’
conceptions of mathematics teaching, or at least encourage them to be
open to new possibilities for mathematics , Fred seemed not to make an
effort beyond that of occasionally presenting what he considered to be
interesting problems in class. His lack of enthusiasm may be rooted

in an attitude which the following statement expresses - although Fred
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an avid mathematical problem solver, he had very little interest
s

wa
jn solving pedagogical problems.

In teaching you can’t say "Well, I’ve solved a problem." Maybe
you can say that, but it’s not the same type of problem [as in
mathematics]. I mean, you have a problem: How can I reach this

students I haven’t been able to before? I can do all these

exciting things and maybe that’s creative teaching, but that’s

not the kind of creativity that I enjoy. Maybe it’s because I

enjoy recreational math problems so much; at the end it feels so

good that I solved this problem. Personally, I don’t get that

same charge out of coming up with a dynamite less plan.
As the school year progressed, Fred used fewer problems of any kind in
class; tended to minimize the developmental portions of his lessons,
concentrating on explanations of procedures; and gave assignments and
tests requiring only an instrumental understanding of the curriculum.
He expressed the belief that it was only in this way his students
would cooperate with him and at least learn the material he presented
in this way.

There is some indication, then, that Fred’s perceptions of
students contributed to a modification of his conception of
mathematics teaching, although the extent and nature of the
modification is unclear. Even at the end of his first year of

teaching, he continued to express his enjoyment of problem-solving

activities and the belief that problem solving was the essence of

mathematics. That is, his conception of mathematics did not seem to
have changed. Perhaps other elements of his conception of mathematics
teaching also had not changed considerably. However, by the end of

his first year of teaching, his classroom actions were not consistent
with the conception of mathematics teaching he had expressed before

the beginning of the year.



Learning Environment Differences in the Mathematics Classroom
Barbara Fresko and David Ben-Chaim,

The Weizmann Institute of Science

The collective approach to formal instruction, in which children are taught in
groups of 15-40, has led to an increasing interest in classroom dynamics and the
resulting learning environment. Despite the amorphous nature of the concept
“learning environment”, many attempts have been made to identify measurable
properties related to the classroom climate. High-inference measures of this
construct have tended to take the form of a multi-facet questionnaire on which

pupils rate what happens in their class (Chavez, 1984).

Studies concerning the classroom learning climate have generally been of two
kinds: 1) those which seek to establish the determinants of the environment and
2) those which focus upon its impact on both cognitive and affective pupil
outcomes. In spite of numerous studies in these areas, much remains to be
learned about the classroom environment. More importantly, it is still unclear
how educators can influence, or manipulate, the environment to the pupils’ best

advantage.

The focus of the present paper is the mathematics classroom. Some
information already exists regarding student perceptions of learning environments
in mathematics classes. For instance, compared to classes in other school
subjects, mathematics classes have been found to be more difficult, more
cohesive, less formal, and quicker-paced (Anderson, 1973; Welch, 1979). Aspects
of the environment which have been found to correlate with pupil learning in

~342-

mathematics, as well as in most other school subjects, are difficulty, satisfaction,
cohesiveness (all positive correlations), speed, friction, and cliqueness (all negative
correlations). Competitiveness, although negatively related to learning in the

sciences, has been shown to have a positive correlation to mathematics learning

(Anderson, 1973; Hofstein & Ben-Zvi, 1980).

In general, research has shown that learning environment variables account

for a significant portion (from 13% to 46%) of the variance in pupil achievement
in various school subjects (Anderson, 1973; Hofstein & Ben-Zvi, 1980). In the
area of mathematics, O'Reilly (1975) found the learning environment to explain
67% of the variance in achievement scores! If classroom climate indeed bears
such a strong influence on pupil learning as this suggests, then it is imperative
to conduct further research in this area. Not only must the specific factors
which affect the climate in the mathematics classroom be carefully identified, but

possible ways by which desirable changes can be made must be explored.

The present study was exploratory in nature and was designed to provide

greater insight into the learning environment in the junior high school

mathematics classroom and a better understanding of factors influencing

perceptions of classroom climate. More specifically, this study was carried out in
order: 1) to identify the type of classsroom climate characteristic of the junior
high school mathematics classroom, 2) to determine differences in mathematics

classroom climates when comparing high ability and low ability classes, and when

comparing classes studying at different grade levels, 3) to determine whether boys

and girls manifest different perceptions of the same mathematics classes, and 4)

to determine the impact of an intensive in-service course for mathematics

teachers by using the classroom environment measure as an evaluation tool.
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METHOD

The Instrument

A  mathematics classroom environment measure was developed which
examined the following eight properties: competitiveness, goal-direction,
formality, speed, difficulty, satisfaction, inquiry orientation, and diversity of
instructional materials. The first 6 areas were adapted from the Learning
Environment Inventory (Anderson, 1973; Chavez, 1984), while the last 2 sub-scales
were created specifically because of their relevance to the classroom orientation in

many modern mathematics programs.

The original questionnaire contained 39 items, such that each sub-scale was
composed of at least 4 items. Items appeared in the form of general statements
referring to the whole class: for example, “In my mathematics class, there is
strong competition among pupils,” “The pupils in my mathematics class feel
dissatisfied,” or “In my mathematics class, questions are presented for
investigation in class.” A 4-point Likkert type scale was attached to each
statement on which respondents were to rate their class from 1-”it never happens
in my class” to 4-"it always happens in my class”. Individual sub-scale scores
were calculated by averaging the pupil’s responses on all relevant items after
coding in a unified direction. Class averages were computed from the individual

means.

Item-scale analysis was made for the different sub-scales which resulted in
the decision to exclude 6 items from further data analyses. Cronbach alpha
reliability coefficients for the final sub-scales ranged from 0.47 for both the

difficulty and diversity sub-scales to 0.77 for the competitiveness sub-scale.
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Procedure

This measure was tried out in 20 classes in 7 junior high schools in Israel
(N=402 pupils) in which the Rehovot Mathematics Program was being taught.
The teachers of these classes were attending an intensive mathematics in-service
course held at the Weizmann Institute of Science during the 1984-85 school year.
This course was intended to improve their teaching styles, encourage diversity
and inquiry in the classroom, and deepen their own comprehension of

mathematics.

Administration of the questionnaire took place soon after the teachers had
begun the course. Seven teachers administered the measure to the same classes

(N=155 pupils) a second time about 5-6 months later, shortly before completing

the course.

RESULTS AND CONCLUSIONS

Numerical and graphical presentations of the results will be shown at the

Conference. A summary of findings is given below.

1. The property of the learning environment which was rated highest on the
average in all classes was goal-direction, while that rated lowest was diversity of

teaching materials.

2. General patterns emerged in which certain properties of the mathematics
classroom environment tended to be highly interrelated. First of all, classes
characterized by an inquiry orientation tended to be high on goal-direction and
satisfaction, and low on speed and difficulty. Secondly, greater diversity of
teaching materials tended to exist in classes which were less formal. Thirdly,
competitiveness was characteristic of classes which were low on goal-direction.
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3. Few differences were found in the learning enviroments of high ability
classes as opposed to those in low ability classes. In the former classes, however,
pupils tended to perceive instruction as more diverse and learning was seen as

more difficult.

4. Learning environments in Grade 7 classes were perceived very differently
than in Grade 8 classes. In Grade 7 there was more goal-direction, greater
formality, more inquiry-orientation, a slower pace, less difficulty and less diversity
of instructional materials. Moreover, Grade 7 pupils perceived a greater general
sense of satisfaction in their classes than Grade 8 pupils. It is felt that these
differences can be attributed more to curricular differences rather than to pupil-

age differences.

5. Boys and girls had different perceptions of their mathematics classes:
boys saw their classes as more formal, difficult and competitive than did girls.
Since these factors have been shown in previous studies to correlate with
learning, it is suggested here that the sex differences in the perception of the
classroom environment are probably tied in with sex differences in mathematics

achievement.

6. In evaluating the effects of the teacher in-service course on classroom
climates, results were rather disappointing. On only two sub-scales
(competitiveness and formality) were there changes in the desired direction in the

majority of classes (4 out of 7).
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Disparities in the Translation
of the Cognitive Tests in the Second International Mathematics Study

Gila Hanna
The Ontario Institute for Studies in Education

Considerable caution needs to be used when interpreting test results, particularly when the test was
administered in more than one language. For valid comparisons among countries to be made, it is not
enough to know whether the students have had the opportunity to learn the material on which they are
tested and to test all students with the same items. The possibility that the meaning of an item was altered
in translation must also be examined.

Two questions must be considered. The first is: Were the students really tested with the same test?
In other words, did the translations of the test into the 10 different languages really preserve both the exact
content of each item and its language level? This question can be answered by having qualified people
check the translations for accuracy and language level.

If, in a translated item, the level of difficulty of the language in which the item is couched is judged to
differ from that of the original, then a second question must be asked: Did the difference in language level
affect the level of difficulty of the item? This question cannot be answered without empirical evidence on
how different item wordings affect performance.

This study examined the French version of the cognitive tests administered to students in Grade 8 as
part of the Second International Mathematics Study by (1) having qualified people check the accuracy of

the translation, and (2) performing statistical analyses of the achievement results.
Data Source

The data used in this study were drawn from the data pool of the Second International Mathematics
Study (SIMS). The Population A tests (Grade 8) were administered to a random sample of 130 schools in
Ontario, 115 English and 15 French. There were 180 items divided into a core form and four rotated forms.
The core form (40 items) was administered to all the students. The rotated forms (35 items each) were
ramdomly assigned to students within a classroom, with approximately equal number of students
responding to each form. Thus, each student answered 75 items. For technical reasons 6 of the 180 were
dropped from the analysis. The remaining 174 items covered five broad topics: (1) Arithmetic (58 items),
(2) Algebra (31 items), (3) Geometry (42 items), (4) Probability and Statistics (17 items), and Measurement
(26 items). All the items were five-alternative multiple choice (one correct response and four distractors).

Every response to each item was coded into one of three categories: correct, wrong, or item omitted.
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Method and Results

curacy of the Translation

ol The 174 items were examined by six bilingual mathematics educators, each working independently.
e

lated item was considered biased if at least two judges thought that it differed in some way from the
A translia

onding item in English. The differences were classified in one or more of the following six
corresp
categories:

4. differences in level of language difficulty,

b. presence of mathematical terms that are correct translations, but nevertheless different from
" the terms used in the students’ textbooks,

¢ differences in level of abstraction due to phrasing,
d_differences in the intended meaning,
e. differences in emphasis and/or in clarity of notation, and

f minors errors intranslation (e.g.. typographical errors not affecting meaning)

1.1. Examples
The item reproduced below, for example, was answered correctly by 79% of the students responding

to the English version of the test, but only by 25% of those responding to the French one. A look at the item
reveals many differences between the two versions: in the French version there is no mention of pairs of
figures; the English text makes it clear that there is one correct answer, the French does not; the English

text uses both reflection and (flip) whereas the French text refers to symmetry only.

In which diagram below is the A
second figure the image of the

first figure under a reflection

(flip) in a line?

-
A _JF

Parmi les figures suivantes,
quelles sont celles qui sonc o

symétriques par rapport i une |

droite?
The following comments on items are additional examples of the kind of disparities in the

translation:

-349-



e [tem 29 in Form 4. (error category: a, c; percent correct: English 32, French 23)

The English item includes the familiar words "turn”, "flip", and "slide", in addition to the

technical terms "rotation", "reflection”, and "translation". The French item uses technical
termsonly.

Item 7 in Form 0. (error category: c; percent correct: English 70, French 42)

The English item contains the explicit and detailed sentence "shows a cardboard cube which
has been cut along some edges and folded out flat" versus the very formal "développement d’'un
cube". Also the second sentence "which two corners will touch corner P" is much simpler than
the French "quels points seront confondus avec le point P".

Item 11 in Form 3. (error category: d; percent correct: English 31, French 16)

In this case the meaning was changed completely in the translation. "Turn left and move one
unit" is not equivalent to "On fait un pas 4 gauche" (which is more likely to mean simply "step
to the left"). The correct answer to the English version is A (1,-2) whereas the correct answer to
the Frenchone is C (0,-1).

Item 23 in Form 3. (error category: d; percent correct: English 43, French 23)

Response B in French is entirely different from the English one. B is an incorrect response in
the English version of the item, but a correct one in the French version. Thus the item has two
correct responses in French, instead of one.

Item 27 in Form 4. (error category: e; percent correct: English 26, French 14)

The variables a, b, x, and y are in italics in English but not in French. For this reason it is
difficult to understand the French item. Also in the English version the clause "including the
deposit" is underlined, whereas it is completely missing from the French version.

The above are a few of the striking examples of disparities. In addition, many items used relatively
unfamiliar words in their French version: e.g., "consommé " vs "eaten" in item 4 Form 0, "juxtaposés" vs
"put together" in item 18 Form 2, "se transforme par rotation" vs "can be rotated (turned)" in item 32
Form 3.

In sum, the examination by the six bilingual teachers revealed that in the French translation, a total

of 70 out of 174 items (about 40% of the test) differed in some way from the corresponding items in English.

2. Statistical Analyses
The achievement data of the two groups were examined in two different ways. The first was an
investigation of the rate of omitted responses while the second was the use of the transformed item

difficulty approach to detect biased items.

2.1. Differences in Rates of Omission

The mean rate of omission over the 174 items was greater for the French students than for the
English students, (7.1% vs. 2.8%). On the average, the omission ratio of French to English was 2.5:1. The
rate of omission in itself is not proof of item bias, since students omit items simply because they do not

know the answer, but it is consistent with the lack of clarity observed in many of the item translations.
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Table 1 shows the mean omission rates of the French and the English students by test form. The

tests paired comparisons indicate that with the exception of Form 2 all the differences between the two
t-tes

ps are statistically significant at the .01 level.

grov Table 1
Mean Percent of Omitted Responses and t-values
of Differences between English and French Groups
Eorm English French t-value
0 2.37 7.80 -7.19*
1 3.06 8.94 -5.89*
2 2.79 3.32 -1.13
3 2.61 6.66 -7.20*
4 3.27 8.48 -6.53*
*p<.01

2.2. Transformed Item Difficulties

[dentification of biased items is problematic, since the indices available for this purpose are
notoriously unreliable (Linn, Levine, Hastings and Wardrop, 1981). It has also been shown that these
statistical indices of bias are essentially uncorrelated with judgment of item bias (Hoover and Kolen,
1984). An attempt was nevertheless made to explore item bias in the data through statistical means, using
the technique of Transformed Item Difficulty (TID). An item is considered biased when it is comparatively
more difficult to answer correctly for one language group than for the other. The two sets of correct
p-values, one for each group, were transformed to normal deviates (z) by reference to a table of the normal
curve as suggested by Angoff and Ford (1973). and then to Delta values (13 + 4z). The bivariate graph of the
sets of Delta values then shows the degree of dispersion of the items. Clearly, the more the correlation
between the two language groups on their responses to the items deviates from a perfect correlation
(rpg=1), the greater the dissimilarity of their response patterns in each group. The measure of
group-by-item interaction, that is, the magnitude of item bias, is re presented by the perpendicular distance
of any particular item from the major axis line (the line that minimizes perpendicular distances).

Table 2 shows the means and standard deviations of item deltas for the two groups on each test form.
The means for the French students ére higher than those for the English students, indicating that the tests
were more difficult for the French students. The evidence that item-by-group interactions are present in
the data comes from an examination of the correlations between the item deltas. The correlations are well
below 1, ranging from .93 for the Core test (Form 0) to .81 for Form 1. The interaction of item-by-group
stems from at least two factors: (a) the rank order of the item difficulty for English students is not the same
as that for French students, and (b) there are relative differences in item difficulty,independent of rank

ordering. Either factor would indicate item bias.
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Table 2

Mean Delta Values, Correlations, Slopes, and Intercepts

by Test Form
Form MeanF StdF MeanE StdE Correl Slope Inter
0 14.34 2.27 12.32 2.07 .93 1.11 71
1 14.86 2.25 12.94 2.33 .81 .96 2.47
2 14.71 1.89 13.48 191 .83 .99 1.41
3 14.63 1.65 13.08 1.92 .84 .84 3.67
4 14.56 1.98 12.70 2.09 .89 .94 2.61

2.3. Identifying Biased Items
Figure 1 shows the plot of delta pairs (for English and French students) for test form 1.

q8m UBwe~ao

Foaoaan

Eesa

6.25 8.75 11.25 13.75 16.25 18.75
H 7.5 10 12.5 15 17.5

Deltas for English Data

Figure 1. Delta Plot French vs. English - Form 1.

An examination of the plot reveals that the items are more difficult for the French students. (This in

itself is not an indication of item bias; it could be due to a difference in ability or curriculum between the
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ups.) The plot also reveals that some items deviate considerably from the line of best fit, and thus
wo Broups- p ) .
t! e o great deal to the lack of internal consistency of the test. These deviant items may possibly be
co! : . .

sitive to external factors that do not influence the other items in the test. The statistical analysis
sen

e identify these external factors, of course; they could be differences in curricular emphasis,
ca

curricular content, or translation, among others.

Far fewer items appear to deviate from the line of best fit than were identified as biased items by the
judges. On the other hand, some of these deviant items are clearly not mistranslated, but rather appear not
to have been taught to the French group (e.g., item T). Others could in fact have been deviant because of
difficulties due to poor translation (e.g., item B shown on page 2)

In sum, there was a poor correspondence between the biased items detected using the TID method
and those identified as biased by the judges. This may not be surprising, in view of the known limitations
of the statistical method. Though limited in its capacity to identify specific items, the TID analysis did give

an overall indication of item heterogeneity.

Summary

A statistical analysis of the achievement data of English and French Ontario students showed that
disparity of translation might have introduced a systematic error in the measurement process, making a
valid cross-language comparison of achievement very difficult if not altogether impossible.

This study has shown differences in level of difficulty between the two versions of the SIMS Grade 8
achievement tests. These differences may have been caused in part by the discrepancies between the
English and French versions of the tests; any comparison of achievement between these two Ontario
language groups must take this into account.

It is reasonable to expect that similar differences among other SIMS countries in the wording of their
test would also lead to spurious differences in achievement, and thus any international comparisons of
achievement should be concerned with the possibility that such disparities might be found in the other nine

translations of this test.
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Celta Hoyles, Rosamund Sutherland

University of London Institute of Education
20 Bedford Way, LONDON WC IH OAL

INTRODUCTION

Mathematics educators have recently turned their attention to the role of
discussion and peer collaboration as aids to pupil learning. Although it is
reasonable to conjecture that ‘'talking’ (in both its cognitive and communicative
functions) and listening (in an active way) generate increased understanding and
facilitate integration of previously fragmented context specific knowledge, actual
research on peer collaboration effects has been sparse. Such supporting evidence
that is available tends to be within a Piagetian framework and concerned with the
notion of cognitive conflict. Another way to achieve a shared task perspective js
however to assume complementary rather than conflicting roles. It has been
suggested that the work of Vygotsky offers insights into the intellectual value of
inter-peer support particularly with regard to ‘scaffolding’ the learning task
(Wood, Bruner and Ross 1976) in order that a partner might achieve a 'level of
potential development’ rather than a level of ‘'actual development’. In any
exploration of these Ideas it is however important not to ignore the possibility
that collaborative work (especially over an extended period of time) might impede
individual acquisition of particular domains of knowledge and skills as pupils
come to rely on thelr peers to achieve particular goals.

While most educators agree that the microcomputer has the potential to promote
interaction among pupils, there has again been little systematic investigation of
the dynamics of the learning groups; that is the individual responsibilities
assumed, the kinds of interaction occurring and the effects of these interactions.
Two of the aims of the Logo Maths Project (Hoyles, Sutherland & Evans 1985,see

footnote to Sutherland & Hoyles in this proceedings) were to investigate:

1 the nature and extent of collaboration between pupil pairs learning Logo and differences in the
collaborative patterns between pupil pairs.

2 the influence of discussion between pupil pairs of on the “efficiency” of their problem solving strategies
and their understanding of programming and/or mathematical ideas.

T A PEE TERACT
1) There is no doubt that the computer provided an engaging problem solving
context. It was evident that not only were pupils provoked to talk but also that a
large proportion of the talk was task related in contrast to other research).
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2) Our observations lead us to believe that pupils tend to have a'natural’ style in
their computer work (which seems to be gender related). This varies along the

following dimensions:

Carew] planning ______________ Open ended inves“ga(ion

Fogus on global characteristics ----- Focus on local detail and on immediate graphics or text output
or on overall mental plan

Systematic ---===--==--""-="-== Not systematic

3) oespite marked variation between the patterns of interaction between pupil
pairs, instances for each pair have been recorded when collaborative exchanges
have: - pravided challenging ideas for projects

- kept the project going in the face of “obstacles”

- changed the level of representation of the work ( conceptual to concrete or vice versa)

- provoked reflection on the process within a procedure to predict its outcome.

4) We have found that pupll pairs tend to have Implicitly negotiated individual
dominance for particular aspects of the activity. This negotiation of dominance
has Impeded individual acquisition of particular understandings in some cases.

S) For all the case study pairs the amount of pupil talk has Increased markedly
over the three years of the research; there are more exchanges before decisions as
to the action are taken and the exchanges are longer. Gender related differences in
the nature of the pupii utterances are observable; in particular giris tend to more
consistently refer to their partner within the utterance rather than refer to the

task.

CODING OF PUPIL UTTERANCES

A classification system for the pupil discourse has been developed in order to
obtain an overall picture of the qualitative nature of the peer interactions, to
facilitate comparisons between the pupil pairs and to monitor changes in
Interaction patterns over time. All the verbal “on task" utterances of each pupll
during their Logo activity have been coded using the categories given in Table . A
pupll utterance was delimited by elther an utterance of a partner or a specific
action on the computer. Random extracts of transcripts were coded independently
by two researchers and a coefficient of relfabllity of between 80 and 85%
obtained.

For the purposes of this paper reference is made to the codings of one pupil pair
(Sally and Janet). The data will be presented at the conference. It shows that
most of the pupil talk was specifically action orfented; that is focussed on
‘getting the task accomplished Little attempt particularly at the Initial stages
of the Logo work, was made by the puplls to explain or convince one another of
what was meant or why a proposed course of action should be taken (a feature
observed for all the case study pairs and particularly marked for boys). A
qualitative development over time in the language of the pair was observable with
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a general move towards more elaborated argument and explanation. Despite this
overall trend it is apparent that other factors crucially influence the nature of

interaction; in particular:
- the nature of the task (real world representation or abstract)
- the extent to which the task is locally or globally planned
- the extent of assymetric negotiation and dominance of one partner
- the extent of explicit (or even implicit) agresment as to overall strategy or plan
- the extent to which puplls are ‘getting on' soctally

A _COMPARISON BETWEEN_INDIVIDUAL AND COLLABORATIVE WORK

In addition to the overview analysis as described above, description and analysis
has been undertaken of collaborative interchanges which, together with computer
feedback, have played an important role in the gradual modification or reorient-
ation of a pupil's conception of a mathematical or programming idea (as identified
in an individual setting). This analysis is ongoing. One example is given below:

1ndividyal work

Each pupil was given individually the “Lollipop” task as shown in Fig. 1. This task
was designed to investigate:

a) whether the pupils indfvidually were able to bufld a general procedure with variable input

b) how the pupil coped with the Internal relationships assigned within the task

c) \)Nhether the pupi! percelved modularity within the tesk (1.e. whether a square procedure was

used).
For the purposes of this paper we will focus on aspect b). We were interested in
whether the pupil's would ignore the internal relationship given, employ an
"additive” strategy for inputs (that is introduce a new input for each different

part of the structure that 'varied' (see Hoyles 1986) ) or make the relationship
explicit by the use of a scalar operation on one input. Sally and Janet, though
working individually, exhibited very similar programming styles; they both wrote
separate start up procedures, worked initially in direct mode recording their
commands and introduced inputs at the point of building a procedures using a
‘substitution’ strategy (that {s replacing specific inputs to commands by named
variables). Both girls using an ‘additive’ strategy for their variable inputs as can
be seen from their final programs (Fig. 1). In addition both girls experimented
with their procedures choosing inputs which did not represent the ratios in the
figure (is this yet another example of how children seem to circumvent the
situations we present to them?!)

Collaborative Responses
One week later Sally and Janet were given the “Arrow" task (Fig. 2.) to work on
together. Again we shall focus here on how the pupils working collaboratively
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coped with the internal ratios given. The discussion was recorded, coded and
transcribed. The coding of the pupil utterances indicates a high overall level of
elaborated argument and discussion. (24% of utterances at level 2 or 3). A more
detafled analysis showing three distinct phases in the pair's work is given in
Table 2. These phases exemplify the pupils preferred working style. Firstly there
is a quick 'try out’ in direct mode (Phase |). Here utterances tend to be procedural
and there is a large proportion of hands on activity. The figure produced in direct
mode by the pair did NOT reflect the ratios given, AB was equal to BE. (It is
interesting to speculate as to whether this is related to the pairs action
orientation and lack of reflective speech in this phase.). Phase 2 follows in which
there s detailed discussion of how a procedure should be built. Utterances
are more elaborated especially when there are disagreements over the plan. We
give some details below of the role of this discussion in relation to the way the
pair decide to deal with the internal ratios in their figure.
The girls spontaneously see that they can use the same input for AB and BE but want at the outset to use
another input for DE.
J Alright --- we work 1t out cas that will have to be something cslled JACK that JILL and thet JILL I you
qgel what | mesn -~~~ 8/1 the 50's then the 25's
They start to bufld a procedure:

HILL 'JACK "JILL

RT 90

BD :JACK

At this point Sally intervenes:

S Weit 8 minute you héve to db --- no 80 MUL -~ -

She wants to operate on an input and tries to elaborate why.

S --~£m you say for this one you sgy BD .JACK and for lhis one you multiply it by two cos thels hel,

Joanne does not understand and disagrees

J But you have to put in enother number---

Sally seems to become more confident in her idea in the face of Janet's conflicting perspective. She

tries to justify her proposition and in so doing provides Janet with some ‘scaffolding'

S But werre not going (o put ény old number in cas 1t won't be the ssme patlern-------- hat's

what | m ssying

Janet then begins to see the point

J / aon't know fow (o db 1t---we could gat rid of JACK ?

In Phase 3 the girls enter their procedure definition. Their utterances became
task focussed. Janet made the final decision to eliminate one input.

This episode shows how the pair achieved collaboratively a sophistication in
their use of variable that they had not thought to use Individually.

The screen output in this case did not provoke Sally and Janet to see that
their figure did not 'match’ the ARROW given. A specific Intervention was
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point to ask them to check the lengths. The way they coped collaboratively with
this new more complex situation (to make the lengths in the ratio 6:5:3) will be
discussed at the presentation.

EINAL DISCUSSION
It 1s evident from this paper that the role of peer interaction in a computer
environment involves issues which are extremely complex. The particular
episode described here does show a ‘move’ by both the pupils concerned in the
area predicted as a result of the peer and computer interaction and illustrates
how the computer environment can build ‘scaffolding’ for the learning task as
well as provoke conflict. It seems that Sally was helped forward by articulating
her thoughts, Janet by arguing with her and listening to her explanations,
Observation of screen output were also important.

It 1s by no means certain however that pupils will make learning gains in

after collaborative work or discussfon. It is

difficult therefore for a teacher (or researcher) to predict with any precision
what a pair jointly or individually will gain in any collaborative setting. We
have examples of positive and negative collaborative effects which were
completely unpredicted (and unpredictablel). Despite this we are certain that all
the puptls have gained something from their partnerships --- at the very least
independence of the teachert

Hoyles, C., Igols for Le
environment, (In press).
Hoyles, C., Sutherland, R., & Evens, J., Ihe Logo Maths Project. Interim Report, 198S.

Sally's Prograa.

STICK ‘SIDE! ‘SIDEZ

FD :SIDE1

s RY 43
REFEA! 4 FD :1SIDE2 AND LT 90
Janet's Prograa.

0

KITE ‘YT ‘HT
RT 45
FD 1YV

RT %0

FD YT

RT 90

FD avT

" RT %0

'“AM % FD svT

RT %0

! want 2 orocedure which will draw 2 ::;

this shape but | want to make it as RT %0
big or as small as ) like. Can you write FD 1vT Mars 2 Amcazete To Dore Tis Seve

me 3 procedure to do this? poid 0.!" As Gc oa Ay Smeu As You Wisw,
[

-358-

Table | CATECORIES OF DISCOURSE ANALYSIS

(11) Authoritarian
Support

(111) Support with
teacher

b) Bsaotion to the
soreen with no
explicit
interpretation

o) Simple answer to
direot closed
quastion

reference to the

level or levels
of action with
focus on grephios
or text output
{11) Support with
reference to a
specific example

b) Direotions prompte
suggestions, which
form a second
proposition

0) Dieagreemsnt vith
reference to

(1) Support at & local
level
(11) A epecifio axample
(111) An alternative
proposition
d) Directicns for a
sizple extension to
a task at local level
only
o) Reaction to soreen

axplicitly ueing
screen information

to or indication
of a gloml plan

(11) Including a second
a
proposition

(1i1) Which refer to a
gensrul rule,
theory or pattern

b) Dieagreemmnt with
refersase to or
indication of

(1) An alteroative
&lotal plan
(11) An eltermative
L]
theory or
pattem

o) Extenaion of the
task vhich takes
into aoocunt the
global overall
struotare of the
whole projeot

| CATECOHY 1 CATEGGHY 2 CATECGEY 3 CATEGQEY Q
cATIa 0
a) DMreotians, Prompts | a) Direotians, Prampts | a) Direotions, Qusstians:
pocuxee suggestians, suggestians, propositions or a) Speoifically
[ h‘:‘:‘mtm to dieagrvamnts propositions with explanatians; requesting
which 10. propositions withi siople eupport that informaticn
a0 vith the beuriet 1e:
(1) Bo Support (1) Support at local | (1) With reference

b) Asking advioce
about a future
plan or strategy

o) Requasting an
axplanaticn

for wsupport
TABLE 2. TASK ANALYSIS FOR ARROW (SALLY + JANET).
NUMEER OF NUMEER OF
UTTERANCES COMPUTER CQ@MMANDS
CATEGORY | CATEGORY| CATEGORY
1 2 3
Phase 1 Drawing Shape in
Direct Mode il 3 Z 2l
Phage 2 Planning of
Procedure Definition e ; 7 -
Phase 3 Entering Variable
Procedure E c . 24
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FACTORS AFFECTING SMALL GROUP PERFORMANCE IN PROBLEM SOLVING Sform tasks and give reasons fOF EnSln MSCHEiE.  (GENa CIS) Che nsseasment g€
1 groups of pupils are being sought to complement and enrich these findings
Lynn Joffe and Derek Foxman smal

For example, providing information on pupils' performance in groups as
by«

National Foundation for Educational Research in England and Wales, The Mere, Upton
i with performance when working alone.
compa

Park, Slough, SL1 2DQ (NFER)

the above mentioned surveys, we have assessed affective and attitudinal
In

ponents of both written and practical work on an individual basis. Now what
com

There has been considerable interest recently in students learning in groups
are seeking to assess now is the broader interface between mathematical
e

W

rather than individually. Some of this interest is due to increasing emphasis on
lem solving (with any preconceptions that that engenders) and social
prob

co-operative rather than competitive learning, but there is also a view that
jnteraction (with all that that implies).

group activities have cognitive as well as social benefits. There are, however,

issues about the efficacy and workability of such groups and how their outcomes
specific questions centre round the role of language in facilitating (or

can be assessed that have not been fully investigated.
otherwise) mathematical problem solving, the optimum size and composition of

groups which most encourage and maximise mathematical performance, the nature of

In examining these issues, the authors have attempted to bring together aspects
mathematical situations that engage pupils' interest, how preconceptions affect

of educational-, social-, developmental~ and cognitive psychology. Hopefully,
approaches to the problem and how style of questioning and teacher interaction

what will emerge will be a framework which will allow pupils freedom to develop
modify behaviour.

their ideas through discussion, negotiation and experimentation, whilst

providing teachers with an adequate structure within which to evaluate pupils'
An assessment framework is being developed which attempts to describe group

development and progress.
behaviour in a useful way. Broadly we are looking at 4 areas - social

interaction, working on the task, mathematics used and communication of

This study is being undertaken as a new initiative in an established programme -
outcomes. More specifically, these areas are broken down as follows:

the Assessment of Performance Unit (APU) Mathematics Monitoring Project - which

monitors the mathematical performance of 11- and 1S year olds respectively in
1. Social interaction - general features of group interaction,

England, Wales and Northern Ireland. From national surveys, we have fairly
- are members of the group competitive or co-operative;

comprehensive data collected using various types of written tests and from
- is there a dominant individual or do all members play

interviews, during which specially trained teachers asked individual pupils to
an equal part?
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2. Working on the task - how is the problem formulated, negotiated,
resolved, extended?

~ are pupils involved, enthusiastic, persistent, etc?

3. Mathematics used ~ processes used - conjecturing, generalizing,
systematic working, etc.

- content areas - number, measures, etc.

4. Communication ~ explaining and justifying choices to an assessor or
other children
- recording

~ constructing

At present groups of 2-4 pupils are being asked to work on a variety of
mathematical problems - some embedded in familiar contexts, some more evidently
mathematical. Different group compositions are being tried - some based on
friendship, others on teachers' assessments of pupils' ability and others on

gender.

The study is still being developed, so no conclusive evidence can be offered;
in fact, at this stage, we are raising more questions than we are answering.
what is clear though is that, for most pupils (and many teachers), this type of
approach to mathematics is unfamiliar and the conventions need to be negotiated
and learnt. Once this has been done, initial results suggest that the outcomes

can be positive and exciting for both parties.

More specific data on the issues mentioned in this synopsis will be discussed
during the presentation of this research report.
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NVCDs ARE STRUCTURING ELEMENTS

F. LOWENTHAL

University of Mons

Cognitive  psychologists in general, and psychologists interested in

i education in_particular, study the way children solve problems as well

as the influence of the way these problems are presented to the child. In order to
4o so, they try to communicate with the child. They generally use the classical ver-
5al language and ask questions such as : "Why did you do this ?" or "What do you
think about this situation ?". Unluckily, this verbal language is not appropriate for
such researches : it is too ambiguous and it is based on logical structures which
are not obvious. Some researchers use a better technique to present a problem to
a child and to get a representation of what is happening in the child's mind : they
restrict themselves to logico-mathematical formal systems which have a rigid logical
structure. By doing so, they lose some of the saddlety contained in the verbal language,
put they gain in clarity and their results can thus more easily be interpreted.
Unluckily again, the mathematical and abstract representations appear to be too
cumbersome. We thus choose to use sets of tools which can be used as "a concrete
logico-mathematical representation of (and isomorphic to) a formal system which
is sufficient to perform reasonings". Such devices are called "NVCDs". Their properties
have been described in previous papers. COHORS-FRESENBORG's "Dynamical Mazes"
(1978) can be used as an NVCD (LOWENTHAL, 1980, 1982). These mazes represent
the mechanical equivalent of the hardware of a computer. They are presented to
the children as railway-networks. Generally speaking, and NVCD is any set of tools
provided with technical constraints : these constraints make certain actions possible

and others impossible, and in turn suggest a logical structure.

Clinical observations were made while using NVﬁ)s in classroom settings.
These observations showed that NVCDs can be used by teachers and researchers to
present a logico-mathematical problem to a child in such a way that the child under-
stands it, while this would not necessarily be the case if the problem had been presen-
ted otherwise. NVCDs also enable children to build a solution which the child is
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often unable to produce otherwise. Teachers can use NVCDs to introduce new
mathematical concepts (i.e. translations, symmetry, recursion, ...) and psychologists
can use NVCDs to observe in an unambiguous way the behaviour of children confronted

to problem solving activities.

These clinical observations enabled us to formulate the following hypothesis :
"Providing children with an NVCD introduces a structuring element in the perception
of data. One might assume that the introduction of such a device into a child's
universe serves as a starter for a complex cognitive process". We assume that this
complex process consists of 6 steps 1) structuration of the perceptive field (in
function of existing pre-concepts) ; 2) discovery of the relevant elements ; 3) building
of local relations between some of these elements, implicit formulation of the
relevance of such relations and experimental verification ; 4) shift in the level of
relevance and construction of global relations between all the relevant elements,
implicit formulation of the relevance of such relations and experimental verification,
5) verbal formulation and proof of a law concerning the theoretical functioning of
the elements previously considered ; 6) transfer of the knowledge and of the structures
acquired with NVCDs in a mathematical setting to other domains where NVCDs are

not used.

We tried to prove this hypothesis in an experimental setting. As NVCDs
are mathematically oriented tools, we could not use the progresses made in mathema-
tics as a measure of the usefulness of our devices : this would introduce a systematic
bias and we would be bound to have interferences between the technique used (NVCDs)
and the topic which was taught (mathematics). Moreover, as far as our sample of
Ist graders was concerned, they had been more exposed to some mathematical instruc-

tion than to any instruction concerning reading before they started to go to school.

The use of scores concerning reading skills and their acquisition was thus bound to
introduce less bias as far as prior knowledge of the children was concerned. We thus
choose to use the scores the children obtained for a test concerning reading skills
as a measurement of a possible transfer of knowledge and structures acquired during

mathematical activities to other domains.
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EXPERIMENTAL SETTING

The Dynamical Mazes were used as NVCD with 6-year olds in a laboratory

% The children's progress was compared by measuring their progress in reading.

settin

These children belonged to two different classes (class A and class B, both Ist grades)
and they had two different teachers (teacher A and teacher B). The children were
ed pefore treatment using INIZAN's predictive test for reading (BP) : this enabled
us to divide both groups into an experimental group and a control group in such
B woy that inside a given class, the two subgroups were equivalent as far as INIZAN's
prediCtions concerning reading were concerned ; the two classes were not equivalent :
the average score of class B was significantly better than the average score of
class A (STUDENT ¢t test, p = 0.016). The two teachers did not use the same teaching
method as far as reading was concerned : teacher B asked the pupils to formulate
hypotheses, to test them and to adapt them while teacher A used a more systematical
and more conventional method. INIZAN's evaluation test of reading performances

(BL) was used as post-test.

TABLE | : PRETEST (BP) AND POST-TEST (BL) SCORES

CLASS A CLASS B CLASS A CLASS B
BP  BL BP  BL BP  BL BP BL
@ 47 24 54 23 E 50 28 55 55,
40 28 60 32 X 60 32 59 57
o 50 26 50 24 P 39 34 51 55
N 38 25 51 40 E 42 30 46 49
59 34 59 40 R 47 39 50 52
T 45 27 54 38 I 49 36 60 45
53 37 55 33 M 51 42 54 48
R 55 46 52 46 E 54 44 60 42
46 46 58 26 N 49 48 59 42
o 58 54 50 44 T 58 49 58 41
50 52 56 43 A 57 44 53 34
b, 57 53 48 46 b 57 58 57 32
5i7 43




TREATMENT

The children of the experimental groups worked by groups of 2 with the
Dynamical Mazes. During a first session, they freely manipulated the material ; during
the remaining 6 sessions they were asked first to build a maze with the given
material corresponding to a small sketch and then to discover its use : "the first
train will leave the maze through gate A, the next one through gate B, and the
101st train through gate ...". It was thus possible to establish whether these children

learned to make short, medium or long term prediction. This fact was important

since the reading method used by the teacher of class B was based on such predictions.

A child did not work constantly with the same child, but the children of the experi-

mental groups A and B never worked together.

TABLE 2 : MEANS AND STANDARD DEVIATIONS

Predictive Battery (pretest)
(o} Control Group : M = 49.83 SD = 6.59
L Experimental Group : M = 51.08 SD = 6.20
A
S Reading Battery (post-test)
e Control Group : M = 37.66 SD = 11.37
A Experimental Group : M = 40.33 SD = 8.49
Predictive Battery (pretest)
(o} Control Group : M = 54,15 SD = 3.63
L Experimental Group : M = 54.83 SD = 4.14
A
S Reading Battery (post-test)
. Control Group : M = 36.77 SD = 7.98
B Experimental Group : M = 46 SD = 7.80
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TABLE 3 : CORRELATION COEFFICIENTS
(BRAVAIS-PEARSON)

.616 (Significant)
Class A Experimental group : .430 (Not significant)
.237 (Not significant)

Class A Control group

Class B Control group
Class B Experimental group : - 0.245 (Not significant)

RESULTS

A between-means STUDENT t test was used to perform inter-classes,
inter-groups and inter-groups intra-classes comparisons.
|- Inter-classes.

Class B is significantly better (p = .016) at the pretest. There is no difference
at the post-test.

2. Inter-groups.
There is no difference at the pretest, but the experimental group performed signi-

ficantly better at the post-test (p = .015).

3. Inter-groups intra-classes.

There is no difference between control and experimental group of a given class
at the pretest. As far as the post-test is concerned, there is no difference inside
class A but there is a very significant difference in favour of the experimental

group inside class B (p = .005).

4. There is only one case where the correlation between predictive and reading

battery is significant : the control group of class A.
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DISCUSSION

1. The results concerning the correlation coefficients suggest that either the teacher
of class B is unusually good or that the use of logically structured material with
children aged 6 favours their acquisition of reading skills. The other results show

that both factors are present in this study.

2. The data shows that it is important for the pupils to have a good teacher, familiar
with a method based on the production by children of hypothesis which must be
tested and adapted. This "mathematical" attitude is clearly useful in domains very
different from mathematics, since pupils with lower prediction-scores, score as

well as others for the final reading-test.

3. The better score of the global experimental group shows that the use of NVCDs
with very young children seems to favour their cognitive development in general,

and to structure their learning activities.

CONCLUSION

The finer analysis "inter-groups intra-classes" shows that NVCDs are not
very important when a logically structured teaching method is used, whatever is
the subject of the lesson. Conversely, when such a logically structured method is
not used or is not available, or when the children are rather weak, NVCDs constitu-
te logically built structuring elements which can serve as excellent complement,

even for typically non mathematical topics.
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ining the Heuristic Processes of Nine to Twelve-Year 0ld Children

gxam
in Small Group Problem-Solving Sessions
Carolyn A. Maher, Alice Alston, John J. O'Brien
Rutgers University
studies of children's mathematical problem-solving behavior have

j1lustrated the effectiveness of student's working in small groups to
solve broblems (Alston & Maher, 1984; Maher & Alston, 1985; Noddings,
1985) - Results suggest that the processes exhibited by children
working in small groups are similar to those used by children working
jndividually. The interplay among the individuals in small groups
including the proposal of alternative ideas and their representation
often enhances the effectiveness of the problem solving. In an earlier
paper (Maher & Alston, 1985) both group and individual behavior were
the unit of analysis. The study indicated that generally group
behavior reflected the individual behavior comprising it although some

individuals never quite became part of the group.

Goldin (1984, 1985a) has described cognitive representations as
including the features of planning and executive control. For
plananing, the heuristic process is given as the unit of analysis. In
another paper (1985b) he defined categories of the subprocesses and
provided a detailed prototype script as a model for the study of the
heuristic process, "think of a simpler problem" (TSP). Maher and
Alston (1985) adapted the prototype designed for use with individual

children for use by groups in a study of seventeen very able
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twelve-year old children. This report used the adaptation to include

younger children and a broader range of mathematical ability.
PURPOSES

The study had several purposes: (1) to observe the consequence of
group work; (2) to determine whether and how homogeneous grouping
according to grade-level and ability (to the extent possible)
contribute to successful problem solving; (3) to determine whether ang
how children working in groups could (a) apply the heuristic TSP, (b)
recognize a pattern and (c) construct the solution; and (4) to

determine whether children who had successfully constructed a solutiogp

could generalize to problems of equivalent structure.
DESIGN
Subjects

The subjects were 61 children: 27 from grade 4; 21 from grade 5; and
13 from grade 6. All were members of one of four sections of a
problem-solving analysis class taught by the same instructor. The
mixed (4-6) class was part of an enrichment program for academically
talented children. Criteria for admission were: (l) scores in the
upper 5% of their class and testing in the 95th percentile in an area
of a locally administered standardized test, or (2) participation in a
school program for talented children; or (3) having a strong teacher
recommendation for the potential to achieve (1) or (2). The children
came from 52 communities in New Jersey and were divided approximately
equally between boys and girls.
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The preklem Task

e group problem-solving task used was the same as in the 1985

Th

Maher/Alston study. However, information gained from the earlier study

directed attention to the behaviors of children that fell into three
of the original five parts. These include observing children's
behaViOI as they (1) addressed the problem posed, (2) responded to the
suggestion in the script that they "make a chart showing the remain-
ders in order when 2 to some power is divided by 3", and (3) were

asked to generalize the solution to 24473, 27573, and 359/4.
PROCEDURES

Two consecutive 75 minute periods were provided for completion of the
task. Five groups of two children and 17 groups of three were formed
according to grade level and ability to the extent possible. For the
seventeen three member groups, six were comprised of 4th graders;
three of 4th/5th graders; three of 5th graders; four of 6th graders.
one was made up of 4th graders, two

For the five two member groups,

of 5th graders, and one each a mixed 4/5 and 5/6 combination.

Ability was subjectively determined by the instructor's rating of
children's performance according to five criteria: (l) participation
in class, (2) performance of homework assignments, (3) flexibility in
thinking, (4) verbal statement of ideas, and (5) persistence in
seeking solutions. Children frequently meeting most of the criteria
were classified as level A. Those sometimes meeting most were

classified as level B, and those rarely meeting them were classified

as level C.




Data came from audio and video tapes of the children's behaviors,

observers notes, and children's written work.
RESULTS

A group was designated "successful" if it arrived at a correct
strateqgy and reached a correct solution. None of the 22 groups were
successful initially or spontaneously generated the pattern in the
remainders. After responding to the suggestion that a chart be
developed for successive powers of 2, nine of the groups successfully
generated the pattern and used it to arrive at a correct solution. Of
the 9 groups, 8 were three-member and one, two-member. Of five two-
member groups, the successful two-member group had the oldest children
and the highest teacher rating. Two groups had conflicting solutions
to the problem in which one or more members recognized the pattern and
generalized the solution but at least one member disagreed. Two
groups were successful in constructing the solution by recognizing and
using the pattern of remainders; however in the effort to generalize
the mode of solution to 350/4, the children reverted to earlier
misconceptions about the structure of exponents. Nine groups were

unsuccessful in constructing the solution.

Age and grade level seemed to be related to children's success. Of
the six three member fourth grade groups, only one was successful in
constructing and generalizing the solution. The two member fourth

grade group was also unsuccessful.

The results were consistent with the instructor's rating of children's

ability. None of the four groups comprised of children with C ratings
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. successful. The five successful three-member groups included at
W

Jeast one child rated A and no children rated C.

rhe nature of interaction among group members indicated a relationship
to the success of the group effort. Observers noted that in four of
the successful groups, interaction was critical to solving the
problem- In one case, for example, two of the children assisted the
third in arriving at a solution. The children themselves reported that
working as a group was the most important element in solving the
problem. Active cooperation was particularly important in the group
analysis of their first solution of two as the remainder when 250/3
pecause 210 times 5 divided by 3 gave that remainder. Later, a second
member reached the same solution of 2 because 25 times 1@ divided oy 3
gave the same remainder. The three girls compared the two solutions
and questioned the result since the value of 250 was not the same in
both cases. Such critical questioning prepared the group to analyze

the information in the chart and conclude that the solution arrived at

by this analysis was more reliable.

Observers also noted that a principal impediment to successful group
action was the incapacity for accepting for consideration the
proposals of others. In one group of three 4th graders there was a
child intent upon his own method of direct computation of 250, He did
not respond to the effort of one of the girls to explain the pattern
and her conclusion from it that the remainder was one. He insisted on
his method rejecting the logic of the girl's proposal. During the
disagreement, the third member was silent and inactive.
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Success appeared to depend on two factors: previous experience with
exponents and the realization that direct computation of 250 involveg
a long series of multiplications by two. Of the group comprised of
younger children, all except one were unsuccessful. They had no
previous experience with exponents. The one successful group had hag
this experience. Yet of the nine successful groups all but one began 6. LOGIC AND PROOF

their solutions with attempts to compute 2586, which they later

abandoned.
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n1llegal Thinking" in Solving Geometric Proof Problews

Gerhard Becker
University of Bremen

nvestigations, concerning huwan learning and thinking, especi-

any 1

Mlly problem solving, have been restricted to deliminated problem
a

classes. Restrictions of this kind ensure a rather swall range of

suitable strategies, which can easily be overlooked, but do not ex-
clude that modifications will be necessary in order to cover all
Strategies occurring in any other special problem field.

A universal approach to describe and analyze human problem solving
within the framework of cognitive psychology is the idea to define a
class of problems as a set of possible objects and a set of oper-
ators being used to transform these objects in successive order,
starting from an initial object (the givens) and achieving the final
object (the goal) by a sequence of intermediary objects (intermedi-
ary goals).

An operator consists of a prewmise or a list of premises, and a con-
clusion, thus, allowing to preceed from the further to the latter
after having checked whether the givens or any already established
object match the premise(s) of the operator.

Heuristic strategies select the operators, assess their effective-
ness, compare tine intermediate goals already achieved with the final
goal. The model of information processing in human learning and
thinking basically assumes a well-defined set of operators, but in
so-called synthesis problems even the means, i.e. the operators,
have to be invented, at least partially (Dérner, 1979, p. 14). Thus,
it is not surprising that human subjects tend to invent new oper-
ators even in problem situations where the acquired operator reper-
toire would be sufficient.

Dorner (1973) has established a system of categories of "illegal
thinking", based on proofs of theorems in propositional calculus. He
describes the following types of "illegal thinking", illustrating
them by erroneous problem solutions taken from the wentioned topic
area:
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(NCON) Non-consideration of the conditions for the application of an
operator

(NEX) Non-consideration of the application instructions

(AN) Invention of new illegal operators by analogy transfer

(SEM) Invention of new illegal operators by "semantic" consideratj.
ons

(PAR) Invention of new illegal operators par force

(EXT) Search for external causes for the "unsolvability" of a prob-

lem.

The types (PAR) and (EXT) also seem to occur in many other topic
areas, and so does the random trial-and-error strategy, which is not
enumerated in the quoted list.

The author has systematically analyzed seventh and eighth graders:!
errors in geometric proof problems since 1981, and could ascertain
the use of the types (PAR) and (EXT), the latter being comparable tq
a haphazard trial-and-error strategy. The type (EXT) in the propos-
itional calculus problems is based on algebraic analogies prefer-
ably, in other topic areas analogies of logical propositions could

be observed.

Since in propositional calculus operators reveal a rather simple
structure - in comparison f.i. with geometry -, the types (NCON) and
(NEX) are extremely comprehensive and therefore have to be modified
and specified when being applied to other topic areas, such as
proofs in plane geometry, due to the far more complex tasks.

Solutions of proof problems performed by seventh and eighth graders
show

(1) lack of identification or erroneous matching of variables in the
premise of an operator

(2) erroneous application of an operator - which corresponds to
(NCON), above -

(3) incorrect identification of variables in the conclusion

(4) erroneous execution of an operator - which corresponds to (NEX)
in that application of (4) not only omits certain symbols which a
correct application would produce (cf. the original, Dorner 1973),
but generally has as outcome an alteration of the correct conclusion
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(5) confusion of premise and conclusion of an operator.
o the following passage one typical example for each category is

jven. The examples are translated from German, without considering
:istakes in the German text. The author's comwment is marked by [ ].
4) ILack of identification or erroneous matching of variables in the

premise of an operator
context: To prove: If in a triangle L(AC) <L(BC), then w((s)<w(q) 5

Solution:
Auxiliary line AD,
by which L(AB) = L(BD).
D Isosceles triangle theorem:
Wie?) = w(s?) .

B
[Notice that in the quoted passage

the proof is formally correct. But the premise about the equal
length of the sides AB and BD is not kept to. Thus, the correspond-
ance between the sides AB and BD in the figure and the denotation
sides of equal length in an isosceles triangle is not correct.]

(2) Erroneous application of an operator

Example: The well-known application of a congruence theorem which
actually does not exist, such as "aaa", or - before having dealt
with it - a congruence theorem running "ssa", without checking,
whether the mentioned angle is the one opposite to the longer of
both sides.

(3) Incorrect identification of variables in the conclusion

Context: To prove: The diagonals of a parallelogram bisect each

other.

o] Solution:
Since opposite angles are equal,

according to theorem 15,
the triangles ABS and DSC are con-
gruent to each other.
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For they have as corresponding parts ]
a = f3
AB = IC

and angles S .

[The quoted theorem is the following: In a parallelogram opposite
angles (!) have equal measures. Confer the notion "opposite angles
in a parallelogram” with the meaning in the present context.]

(4) Erroneous execution of an operator

Context: To prove: If in a triangle L(AC) < L(BC), then W(B)eWla),

Solution:

[The signs in the figure obviously

indicate equal length of the marked

sides.]

W(ty) = w(dy) [obviously applica-
tion of the iso-

sceles triangle th.;

lack of direct quot-
ation of applied
o theorems]
W) > W(4,)

(5) Confusion of premise and conclusion of an operator

Context: To prove: If a point has equal distances from the sides of
an angle (of measure less than 1800), then it lies on the bisector

of the angle.

L Solution:
b After having drawn a line through K
and L, we obtain two isosceles tri-
s P angles SKL and PKL,
An isosceles triangle always has
a two equal angles and two equal
K sides.
-378-
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"IF..., THEN..." STATEMENTS REVISITTED

Nitsa Movshovitz Hadar and Nabi Daher

TECHNION - Israel Institute of Technology, Dep. of science education.

Research Goal

In the previous decade the study of children's logical thinking took a
major place in educational research. In most cases syllogistic reasoning was
at the focus of these studies, examining students' ability to judge validity
of conclusions drawn from simple premises which include a conditional
statement. This 1line of research was deserted in the eighties leaving many
questions unanswered. In particular it was not clear whether non-valid
conclusions were drawn due to disability to distinguish valid from non=-valid
inferences, or due to misinterpretation of the conditional premise. The main
goal of this study was to uncover various interpretations, or rather
misinterpretations students assign to conditional statements. 160 students at
age 11, 14, and 17, participated in the study.

The Instrument

Each student was presented with two sets of 16 tasks in a written form.
The second set was taken a fortnight following the first one. Each one of the
32 tasks was of the following format: Given 4 pictures related to one verbal
statement of the form: "If p, then q", identify and cross off the picture or
pictures which disagree with the statement. The given statement was typed
verbally and communicated a reasonable content. The 4 pictures related to it
represented "p and q"; "p and not-q"; "Not-p and q"; "Not-p and not-q". The

two sets consisted of 16 corresponding tasks. In each pair of corresponding
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the same four pictures appeared, but the statements were two converse
veplaced by
stat ements, i.e. "If p, then q" in one set wasViTs q, then p" in

tasks

conditional
the corresponding task in the other set.

For example, here is a pair of two corresponding items (sec COYPEL& solM&tdh
at the end of this
'Paper):

L ra{r\s) then
Rulh has her boots on.

Tf Ruth has her boots on,
then (£ ralns .
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¢

In the rest of this paper """ designates "and"; "-" designates "not",

"emep!" designates "If ..., then ... ",

Main Research Questions

We analyzed the answers according to the following questions:

a. To what extent can students at age 11, 14, and 17 recognize the
picture representing "p and not-q" as the only one which disagrees
with: "If p, then q"? In other words, what is their ability to
interpret "p—=Pq" as logically equivalent to: "-(p”-q)" (namely,
contrary to "p and not-ﬁs or to "p”q or -p~q or -p~-q" (namely, "p
and q" or "not-p and q" or "not-p and not-q"")?

b. Is there a pattern to the wrong answers within age group? In
particular, do wrong answers tend to fall into one specific category
amongst Piaget's 16 binary operations? E.g. if students largely tend
to cross off the two pictures representing "p and not-q" and "not-p
and q" as disagreeing with "If p, then q" this would imply that they
interpret "If p, then q" as meaning the same as "p“q or -p~-q", which
would mean interpreting a conditional statement as a biconditional.

c. If there is a pattern of misinterpretations to conditional statements,
does it change through age, and how?

d. Is sex difference evident in this process?

Main Results
As expected, analysis of the results revealed a significant increase with
age of the ability to give the correct answer (mean age-group score 26.8%,
48,54 and 66.6% for age 11, 14, 17 respectively). It is, however, noteworthy
that only the oldest group exhibitted a fair control of the meaning of

conditional statements. No sex differences were found with this respect.
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The analysis of wrong answers was more surprising. For each age group,
e most frequent wrong answer was different, yielding a kind of a

;developmental path" on the road to the right meaning of conditional statement

without evidence to sex differences:

at age 11 the most frequent wrong answer was leaving "p and q" as the
one and only option which does not disagree with "If p, then q", by
crossing off as disagreeing with "If p, then q" three out of the four
given pictures. In other words this age group 1largely considered a
conditional statement as logically equivalent to a conjunctive one. (See
an example at the end).

At age 14 the two pictures describing "p and not-q" and "not-p and q"
were most frequently crossed off as disagreeing with the corresponding
conditional statement. This means attributing "If p, then q" the same
meaning as "p if and only if q", not distinguishing between a conditional
statement and its invense. (See an example at the end).

At age 17, "If p, then q " was interpreted wrongly most frequently as "p
or q". This was exhibitted by crossing off just one option (unfortunately
the wrong one): "-p and -q", leaving as equivalent to "If p, then q" the
pictures: "p“gq or -p”gq or p~-q" which is logically equivalent to "p or
q".(See an example at the end).

A Brief Discussion

This study indicates that the understanding of conditional statement
develops gradually through various levels getting "closer and closer" to the
correct one, through sort of a descending series of misinterpretations. This
may have an impact on students' performance in processing information of a
hypothetical-deductive nature such as they are expected to carry out in school
mathematics and science.
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An example of a typical wrong answer at age 11

A R

TN Y
L S \
i - \J,
N (S
\ ¢ LR
.
\ Al AN
i\ Y \
<\ N5 S b
- \
\ a\ =

If & vainsy then Rydl, has hee boots on

An example of a typical wrong answen at age 14

W \ K

\ NS N
\
\ A \
NZS)

\ ; LR
N Yo (S
W .
- O b
P O

vy i

Tf & vaire, then Ruth has her books on
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An example of wrong answer at age 17

oo

T it vans , then Ruth has her boots on

The correct s=olution

vawms | ther Quth hias her boots
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THE CONCEPT OF PROOF HELD BY PRESERVICE ELE€MENTARY TEACHERS:
Aspects of Induction and Deduction

Guershon Harel
Gary Martin
Northern Illinois University
DeKalb, IL 60115

Recent research has appeared exploring the important topic of students' con-
cepts of proof. Fischbein and Kedem (1983) focused on the question of whether hig
school students understand that a mathematical proof requires no further empirica]
verification. Vinner (1982) focused on the question: What makes a sequence of
correct mathematical arguments, a mathematical proof in the eyes of high school
studnets? We focus on a different population, the prospective elementary school
teacher. Since proof receives very limited attention in elementary school text
books, the main source of experiences with verification and proof is the classroop
teacher. It is therefore important to understand the conceptions of proof held by
elementary school teachers. We further focus on a somewhat unique aspect of proof
related to inductive and deductive reasoning.

Theoretical Framework

Anderson (1980) distinguishes between an "inductively valid argument" (IVA), a
argument whose conclusion is not necessarily true, but only probable, and a "dedue
tively valid argument" (DVA), an argument whose conclusion must be certain (if the
premises are true). One can then view the sequence of mathematical arguments used
to prove a mathematical statement as a DVA, of which the mathematical statement is
a certain conclusion.

The viewpoint that a mathematical proof must be a DVA is certainly held by
mathematically sophisticated persons. On the other hand, our experience suggests
that lower-level mathematics students often have a different point of view; namel

that an IVA can be a proof. A psychological rationale supporting our impression
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follows- People in every-day life form or evaluate hypotheses by estimating the
Probability of the hypotheses with respect to their relevant individual experiences.
(See hypothesis formation and hypothesis evaluation in Anderson, 1980.) Relevant
jndividual experience includes evidence that supports or refutes the statement
whose validity is in question. It seems likely that this behavior pattern is trans-
jated in the mathematics classroom by lower-level students to acceptance and pro-
duction of IVAs as proofs for mathematical statements; the students accept and pro-
vide examples as a legitimate process of mathematical proof. Furthermore, this
viewpoint may be reinforced by instruction at lower levels, which frequently uses
examples to verify mathematical statements.

As these students encounter higher mathematics, at the high school and univer-
sity level, instructors present DVAs as mathematical proofs and stress (at least
implicitly) that IVAs do not constitute mathematical proof. Our question, then,
is what conclusion the students draw about the role of IVAs and DVAs in mathemati-
cal proof. Do students accept the point of view that only DVAs constitute mathe-
matical proof? Do they continue to accept IVAs as proof, even of mathematical
statements?

Methods

The views of proof held by 101 students enrolled in a mathematics content
course designed for preservice elementary school students were assessed; two sec-—
tions of the course were offered, taught by two different instructors. Our assess-
ment was based on responses to a test in which seven verification-types of mathe-
matical statements were offered. Verifications of two mathematical statements were
presented in separate sections; one was discussed within the mathematics course,
while the other was unfamiliar. Here we discuss only the students' reactions to
the familiar mathematical statement, with respect to inductive and deductive rea-
The familiar statement follows:

soning.
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"If the sum of the digits of a whole number is divisible by 3, then
the number is divisible by 3."

Students were asked to rate each verification on a scale of 1 to 4, where 4 jpdi_
cated that a verification is considered a mathematical proof, and 1 indicated that
a verification is not considered a mathematical proof at all. A summary of the
presented verifications follows.

Example-type Verifications

Examples. Two particular situations, using small numbers, in which the state
ment was shown to be correct.

Pattern. A chart giving a sequence of numbers for which the statement is tp
along with determination of the truth of the condition and conclusion of the statg
ment.

Big Numbers. A big number for which the statement is shown to be correct.
Contrapositive. A specific example supporting the contrapositive of the stat
ment, and a specific example supporting the original statement.

Deductive-type Verifications

General Proof. A correct and general proof of the proposition in the case of
3-digit numbers, including statements justifying each step.

False Proof. A fallacious general proof in which none of the steps in the
inferential chain were correct.

Particular Proof. A correct proof of the proposition, including statements
justifying each step. However, the proof is presented as the verification of a
particular example, rather than as a general proof.

Results and Discussion

We now consider our original research questions.

IVA: We categorize students' views of IVA as follows. If a student rated any of

the example verifications highly (i.e., as 3 or 4) then s/he considers some form

IVA to be valid verification of the mathematical statement, and we accordingly ca
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gorize such a student as High IVA. 1If a student rated any of these IVA-based
Verifications as 4, we categorized him/her as Very High IVA. On the other hand,
e consider a student rating all of these verifications low (i.e., as 1 or 2) as
peing Low IVA; if a student rated all of these IVA-based verifications as 1, we
categoriZEd him/her as Very Low IVA. Note that Very Low IVA and Very High IVA are
subclasses of Low IVA and High IVA respectively. Note also that the classes of Low
jvA and High IVA are disjoint. The distribution of the categories is shown in
Table 1. High IVA occurred much more often than Low IVA, by a margin of 867 to 15%;
this difference is significant at the .00l level (X2 = 24.96, df = 1). The differ-
ence is also striking when considering the extreme ratings of IVA; 647 of the stu-

dents accepted some sort of IVA at a very high level, while only 4% rated all exam-

p1e-verifications very low.

Table 1. Frequencies of IVA levels
High (Very High) Low (Very Low)
Percent (N=101) 86 64 15 4

DVA: Students' views of DVA are categorized by considering their ratings of General
Proof (GP). We categorize students who rated GP as 3 or 4 High DVA; those rating
it as 4 are categorized as Very High DVA. On the other hand, those rating GP as 1
or 2 are categorized as Low DVA; those rating it as 1 are categorized as Very Low
DVA. As with IVA, Very High and Very Low DVA are subclasses of High and Low DVA,
respectively; High and Low DVA are disjoint. The distribution of categorizations
of DVA is given in Table 2. Many more students are categorized as High DVA than as
Low DVA, by a margin of 76% to 25%; this difference is significant at the .00l
level (X2 = 12.88, df = 1). 54% rated GP very high, as 4, while only 3% rated it

low, as 1.
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This 1s consistent with the findings of Fischbein and Vinner that students

Table 2. Frequencies of DVA levels. ments:

4 more than deductive proof to accept the truth of a mathematical statement;
nee

High (Very High) Low o '
eed empirical verification.

they ™

Percent (N=101) 76 54 25 i
jonal questions:

These results evoke additional questions:

Addit
1. Does the pretense of proof play a role in students' judgment of a verifi-

Relationship of IVA and DVA: In contrasting students' ratings of IVA and DVA, yq
i . . . tion? We can address this issue by considering students' responses to the False
make the following categorizations. Students who rated DVA high and IVA low, ye c
proof verification type. 2. How do students view proof presented in a particular

call Only DVA; students who rated DVA very high and IVA very low, we label Extr
ase? Students responses to the Particular Proof verification type will allow us
Only DVA. Students who rate IVA high and DVA low, we call Only IVA; students yhg <

to explore this question. 3. Do differentiations take place among the example-

rated IVA very high and DVA very low, we label Extreme Only IVA. Students who
verifications with students in the High IVA category? What differentiations occur
rated both IVA and DVA high, we label IVA+DVA; the case where both are rated very
in the "IVA + DVA" viewpoint?

high, we label Extreme IVA+DVA. The remaining case, in which both IVA and DVA
While this paper deals with verifications of a statement with which the stu-

are rated low, is not of interest in the present study. The distribution of the
dents were already acquainted, verifications of a statement with which the students
categories is given in Table 3. Note that only 14% can be categorized as Only p

were not familiar wer also presented. We thus pose: 4. How stable are these
while 62% are considered IVA+DVA, with 24% Extreme IVA+DVA.

categorizations in an unfamiliar context?

Table 3. Relationship of IVA and DVA levels. Two different instructors taught this course. While the same syllabus was

ERtreme Extrene Extl followed by each instructor and efforts were made to keep the instruction standard,

Only IVA Only IVA  IVA+DVA  IVA+DVA Only IVA Onl ) . . . L.
o i 3 y some differences in emphasis with respect to verification and proof occurred. 1In

Percent (N=101) 14 3 62 28 24 ; . . .
particular, one instructor spent more time on proof within the context of geometry.

Thus we ask, 5. Are the categorizations effected by amounts of attention to proof?

We thus summarize our answers to the original research questions as follows:
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true. This is the empirical approach.

CHILDREN'S APPRECIATION OF 'Pdi SISNIFICANCE OF PROOF i

(ii) Oue may investigate the structure of the mathenatics involveq,

K&ITH PORTEOUS
analyse the relationships with other, already known, mathematics, and

NEWLAND HIGH SCHOOL, HULL,
eventually prove the statement. This line, more mature mathematically, yi11 pe

I. The problen

What is it that really convinces a pupil of the truth of something

called the logical approach.
The purpose of the research reported delow was to investigate children's
mathematical? Of course, in practice it i3 the teacher - if sir says so then autonomous uses of these types of evidence, and so to assess their grasp of

that's that. Bu® what if she has to decide for herself, withouat the guidance the significance of proof. The research took the form of a narrative

of an established anthority? What sort of evidence is then the most convineing questlonnaire and intevviews. In the age-range 11 to 16, 390 boys and girls

This qaestion arises ou® »f a wish to come to grips with what it is to completzd the questiouanaire, and of these 50 participated in a series of three

understand mathematics. Much has been writted about understanding in our task-based interviews.

subject (see, for example, Skemp (1979)). For the purpose of this study .
II. The Questionnaire

understanding and tnowledge will be taken to be essentially the same thing
This took the form of a three part narrative with questions interposed at

(though not literally so), and knowledge will be taken %0 involve three
appropriate points. Three different mathematical topics wece used. In each

conditions (see, for example, Scheffler (1365)): for a person A to know X
part Andrew and Peter wazre arguing about the truth of a statement, like "the

(i) X must be true; ) ) o
sum of three consecutive whole numbers is always divisible by three'. (Andrew

(i1) A must belisve X to be true; . . .
was the one who was right in each case.) After empirical evidence was produced,

& (iii) A must have good reason to believe X to be true. ) )
the subject was asked whom he though* was right, and whether or not he was

\ -
Teach¥rs want pupils to come to undsrstand many general statements, of
sure about this. The reasons for the judgement were also asked for. The

the form "all P are Q'. For a mataematician criterion (iii) involves proof, X
statement was then proved by Andrew, Peter claiming that he still though’ it

and so teachers, because of this, may wish to prove results. On the other hamn . . .
might break down for some very big numbers, and the subject was again asked

criterion (ii) demands that children shoald genuinely delieve what they are
whom he though* was right. An analysis of the pre-proof and post-proof

learning, and shere is room for doubt as to how much they appreciate the
judgemants gave the following results:-

significance of a proof and now much more convincing they find other types of
(i) The pre-proof judgement. Nearly half of the responses given showed

evidence. Following Bell (1976), evidence will be tak=n to be of two kinds:
that the pupil was sure that Andrew was right. O these, though, only 21% gave

(i) One may check a variety of particular cases, anl when sufficient
logical evidence for the truth of the statement. Thus, about 40% of the

examples have been checked decome convinced that the statemant is universally ~393-
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responses indicated a complete acceptance of a proposition with nothing moie
than empirical support, and in only one case in ten did a pupil produce a
proof of her own. The proportion of judgemants based on logical grounds was
found to increase with age in a significant way (P< 0.01).

(ii) The impact of the proof. If a pupil does not succeed in providing
logical support for a statement, then the next best thing, mathematically, ig
for him to acknowledge that he is unsure, and to be convinced only after
reading the proof. Such a person appreciates the relative merits of empiricag)

and logical support. Of those pupils who did no* produce a proof of their oun

nearly one quarter fall into this category. Interestingly, while 26% of girls

judgements show this sort of appreciation of the significance of proof, the
figure for boys is only 20%. This gender difference is statistically

significant (P< 0.05).

III. The Interviews

It is widely recognised that as a tool for the investigation of the
thinking patterns of children doing mathematics, the task-based interview can
be extremely fruitful. Because it is interactive it can be flexible enough to
allow the interviewer to develop ideas mentioned by the pupil and to probe
particular points where this is helpful. For this study five boys and five
girls in each of the five year groups were given three interviews, based on a
series of related tasks in arithmetic, geometry, and '"common-sense". An
interview comprised from 8 to 10 items, each of which was a statement which
the subject was to classify as true or false; giving reasons. Tne first three
were 'dead' items (the subject did not know this) whose functioa was to
familiarise the subject with the topic of the interview and 2elp her develop

confidence in her handling of the materials. There followed two true
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Beneralisatioas’ onz fairly easy and the other hardsr. Examples of the items
R aveiT

(i) Arithmetic. "Adding 3 to a number and doubling the result always
Lives the same answer as doubling the number and adding 6."
g (ii) Geometry. A large square lattice board was used, the dead items
egsuri“g that it was to be though*t of as extending indefinitely. Difficulties
jch arose in the pilot study suggested that a games format would be most

wh
fruith1: for each item a few rounds of the relevant game were played before
tne item was presented. In "Hide and Seek" a single lattice point in the middle
of the board wis designated a tree. The interviewer chooses a lattice-point at
which to stand, and the subject tries to find another lattice-point at which
to stand where he will be hidden behind the tree. The statement to be judged
is, nThe second player will always be able to find a place to hide."”
(iii) "Common-sense". A large square "checker-board" was used (again of
injefinite extent) to represent the planning board of a landscape gardener. A
supply of rectangular pieces of card, each able to cover two of the squares on
the planning board, represented paving-stones. Tne subject was shown now the
cards could be used to make paths, where the width was always one unit, and
patios, where the width could be greater than one unit. It was explained that
paving-stoanes could not ovsrlap or be broken into two. Tne first, easier,
statement to be judged is, "Any square path can be made."”
J
Of crucial importance to the study was the usz of "particular" items

after eac rue generalisation. was importan o produce an objective tes
ft h t lisati It i tant t d bjecti test
of whether or no e subject really di elieve e true generalisation. So,
£ wheth t th bject 11y did beli the t lisati S
the arithmetic item was followed by, "Adding 3 to 16 and doudling the result

gives the same answer as doudling 16 and 2dding 6." Similar "particulars"

followed all the true generalisations. In fact, as each "particular" was
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presented the interviewer pointed out that it was a particular case - the jeves the generalisation. Does the deduction of the "particular" depend on
7

i

m

jist the same as the last ona" was usad. . degree of sureness of ths genaral, or on the type of justification for the

For each iten the subject was asked to justify her decision to classi » 17
€ d J ¥ N fy !!,_,ara Particular
M 5 . . . . Checked Deduced Proof re-enacted
s 2 2 ne z il - .
a3 trus or falss, and there was fairly full discussion designed to develop her Not suits sure To1 7 -
Sure 139 39 i

ideas as fully as possible without actually giving any leads.

Emp. support
Log. support 2 24 T

Tne following is an outline of the main results:-

(1) It was found that the justification given for *the true generalisation

was of a logical nature in about 15% of the cases. This is rather more than 1t is cleaT that being sure of the generalisation is no guarantee of the

the 1C% figure from the interview stuldy, probably because of the supportive geduction of the particular. We see, though, that 56% of logically supported

;naralisations are followed by deduced particulars, while a mere 849 of

role adopted by the interviewsr. There was again a significant (P< 0.05) g

upward trend o the proportion of logical respoases with age. empirically supported generalisations lead to deductions. If we consider,

(ii) Subjscts were asked, after they had classified the true generalisatio furthar: that the seven "proof re-enacted” responses represent a sort of

whether they were sure, or not quite sure, that they were right. It was found nalf-way stage between checking and deducing, reflecting a desire on the part

that boys were significantly more likely to claim to be sure than girls of the pupil "Jjast to make sure" that the proof is correct, then the evidence

(P< 0.03). of the above table is overwhelming. It is the proof which counts. Pupils do
(iii) There were identified three responses to the "particular" items whig BERS © @ genoral statement unless they have proved it.

followed their generalisations. They were deduced from the generalisation
1]
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deduca2d? For only in this case can it b2 claimed that the subject really ~397-
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recent research (Miller, Perlmutter & Keating, 1984) suggests that some form

SOLVING MULTIPLICATION OPEN-SENTENCE PROBLEMS:
THE INFORMAL DEVELOPMENT OF COGNITIVE J
STRATEGIES IN DIVISION SKILLS?

and
fretrieval process underlies performance of both tasks. Although this may be
o

1 for adults, it is more probable that such retrieval processes are not fully

Joseph D. Relich Martin Coope,

School of Education School of Educatigp
Macquarie University University of New South Wajeg

3 veloped among novice learners. Ashcraft and Fierman (1982) demonstrated that
e

he retrieval process is developmental and that in contrast to older children and
t

Abstract young children displayed significantly greater RTs in solving mental arith-

adults

This research explored the mediating functions of solving open-sentence multiplication
problems of the form X x U =Y (Type 1) and U x X = Y (Type 2) in learning to apply division
algorithms. The processes that individuals may use in their solution are categorised into
three models: Digital, Network, and Analog. Recent research suggests that the former two
are more accurate representations of the likely processes employed in solving open-sentence
multiplication problems. However, in terms of problem solutions by novice learners the
first, the Digital model, was found to be the more appropriate explanatory model. Two
experiments, one based on chronometric analysis the other on manipulation of concrete
materials, designed to evaluate the use of three solution modes within the Digital model
are reported. Educational implications which question the sequencing of concepts when
teaching multiplication and division, multiplication generally being taught prior to
division in contrast to simultaneous presentation, are discussed.

metic problems.

In previous studies (e.g. Parkman & Groen, 1971) chronometric analysis was
used to examine whether children solving open-sentence addition problems such as
w’i/y' (Type 1) or U + X = Y (Type 2) where X and Y stand for given non-

negative integers and U for the unknown, tend to do so by using an incrementing

or decrementing process. Of three solution modes; Z = Y - X, Z =X, and Z =

Background
min(X,Y - X), in which Z represents the number of steps required for the solution
Over the past decade several studies in Mathematics Education have generated
of the unknown U, only the last, known as the MIN mode, has been found to

a number of models which explain how children and adults solve mental addition,
produce 2 significant slope when observed RTs, T, are fitted to a linear regression
subtraction and multiplication problems. Little, however, is known about informal
function of the form T = a + bZ.

processes adopted by early primary children in solving simple mental division
The object of the experiments reported in this paper is to demonstrate that
algorithms. Of three competing models, Digital (Parkman, 1971), Network
in solving multiplication open-sentence problems, children who have not yet
(Ashcraft & Battaglia, 1978; Ashcraft & Stazyk, 1981), and analog (Moyer and
formally learned how to divide tend to employ the MIN mode as the operational
Landauer, 1967), the former two have attracted the greater support as viable
process. Use of this mode of the digital model may indicate that young children
explanatory sequences for the processes which lead to solutions of mental
have a more sophisticated awareness of division strategies than generally assumed.
arithmetic problems.
The three modes of the Digital model may be represented as: Z = Y/X (incremental
Early research studies (Parkman & Groen, 1971; Groen & Parkman, 1972;
mode); Z = X (decremental mode); and Z = min(X,Y/X) (MIN mode) where X and
Groen & Poll, 1973) with samples of subtraction naive students suggested that for
Y are the given quantities in multiplication open-sentence problems of the type

children, the digital model provided an adequate interpretation of reaction time
XxU=Y (Type 1) and U x X = Y (Type 2) and U is the unknown.

(RT) data (chronometric analysis). The internal consistency of the Digital model,
All three modes were tested for both sentence types in two separate experi-

however, was questioned when explanations for multiplication problem solutions
ments. The first experiment was based on chronometric analysis and the second

processes were being sought (Parkman, 1972; Stazyk, Ashcraft & Hamann, 1982)
-399-
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form of open-sentence problems. Analysis of the data supports the face that
involved the use of manipulative materials. For each experiment, the sample in the 17 P P 4 PP

the Structural variable defined by the MIN mode provides the best account of the

success latencies.

consisted of fifty Grade 3 children, 26 boys and 24 girls, from two Catholic schog]

in Sydney, Australia. Each school had two parallel heterogeneous streams of
familiarity of the subject with problem types may dictate whether this
students without special groupings to differentiate classes. The average age of thg ‘o v ! P P v
sample was 8 years 4 months (SD = 4.6 months). These children had formally beey linearity riEmc s A=A Bh e edbscmhent awdlyeiss AWG fect that we faund tlsis
d . b a 4o be true only for Type 2 problems was initially puzzling but further investigation
exposed to multiplication but no division.
E X - Suggested some viable explanations. Herscovics, Bergeron and Kieran (1983)
Xperimen
' . aicated that most teachers tend to perceive a problem in the form of M x N = P
In order to present the problems to each child in a random fashion an Apple IIc | P P =SS
number sentence "M sets of N" which is reinforced by a natural tendenc
microcomputer with appropriate software was used. The stimuli consisted of a tota] - =h - 4
) ) to read from left to right (Kieran, 1977). Also, past research (Gunderson, 1953;
of 48 problems, 24 each of Type 1 and Type 2 which were presented in the form
e (] Y and [ I x X = ¥ respectively. Each subject was required to solve i gweng, 1964, cited in Suydam & Weaver, 1970) has demonstrated the relative ease
X = = .

Type 2 problems compared to Type 1 problems.
the first 32 problems to appear on the screen so that each subject solved an equal Y k P P P
Experiment 2
number of Type 1 and Type 2 problems. Elapsed time was recorded.
Result A set of 24 3"x5" cards, each of which had one open-sentence clearly printed on

esults
; resented in two formats, 12 of each type; X x [ ] = Y (Type 1); and
A series of regression analysis were performed on the mean reaction times, g e P yper 2 X 1 - = P

] x X =Y (Type 2). Within each type one-half were identified as A-form
averaged over all subjects, to test the goodness of fit of each of the three 1lx2=2 5y P -
(X<Y/X), the other half as B-form (X>Y/X). A set of "play-group" cards were
proposed modes. Fit was determined by the standard F test for the significance of - BEE 4

ilable and used to illustrate problem solutions. Each card had 1, 2, 3, 4 or 5
the slope parameter b. For Type 1l problems, the fitting of regression lines to the e P
lted i P ] F(1,22) 16.33 001 £ he MIN de. 1 child-symbols" printed on it. The round smiling face symbol was used to depict a
mean resulted in a significant slope F(1, = 16.33, p<. or the mode. No
c ’ " af - - . o . - H child. To illustrate their perceived solutions to a problem, the subjects were asked
significant slopes were foun or the other two modes. For Type problems, the
to place the relevant play-group cards in the appropriate rooms of a large flat
fitting of regression lines to the mean resulted in two significant slopes. The MIN
. e . e | F(1,22) 1578 0T o B cardboard "house" containing six rooms of rectangular shape and of the same
mode once again displayed a significant slope F(1, = 13.78, p<. . Mode
(2=X) also fit the d . . = . F(1,22) 4.88 05 size as the play-group cards. As the first card was presented, the researcher

= also fit the data resulting in a significant slope F(1, = 4.88, p<.05.
Di ; delivered a short story to place the problem in context and help the children in

iscussion
. proposing solutions. For example, given the problem: 3 x [ ] = 12, the solution
Of the three modes, the MIN mode best conforms to the hypothesised pattern of —
would be the representation of the number sentence as four play-group cards,
computational processes that might be undertaken by children who have not been
each with three smiling faces, placed into four rooms or three play-group cards,
formally taught to divide but who are attempting to solve multiplication algorithms -
-401-
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each with four smiling faces, placed into three rooms. For each open-sentence, ith
number of play-group cards selected was recorded.
Results
To test the assertion that Grade 3 children tend to be MIN oriented for
multiplication-division open-sentence problems, an a priori test of the contrast of
the average proportion of X-responses for A-form sentences and that for B-forpy
sentences was performed for the.Type 1 and Type 2 sentence formats separately
using the Cochran's Q test (Cochran, 1950). Contrast estimates (w) and p-values
were as follows: for Type 1, (w)=1.72 (E .01); for Type 2, (w)=2.18 (p<.001),
This analysis indicates that the proportions of X-results for B-form sentence
tend to be much smaller than those for A-form sentences. The frequencies with
which subjects selected X play-group cards for the Type 1 open-sentences also
appear to be generally greater than for Type 2. The significance of this differene
was tested by means of Wilcoxon's matched pairs signed-ranks test (Wilcoxon,
1945). The value of the test statistic was T = 3 (p<.001).
Discussion
The choice of number of cards was crucial because it was expected that number g
cards chosen would reflect the known factor (i) for each open-sentence. The
presence of MIN mode oriented subjects in the sample, however, would disturb
this homogeneity because such individuals would tend to select X/Y play-group
cards for B-form sentences. That is, they would choose the least number of
cards. Given that the unknown was the MIN number exactly 1/2 of the time, th
the expectation would be that through chance alone they would choose the MIN
number for approximately 1/2 of the solutions. The results, however, indicated a
significant and consistent use of the MIN mode.

~402-

Conclusion
whether verified through chronometric analysis or illustrated through the use of

manipulative materials, this consistent use of the MIN mode suggests some
informal knowledge and use of division strategies by children untrained in solving
multiplication open-sentence problems through the use of a division paradigm. It
suggests that the subjects are well aware of and familiar with grouping and/or
sharing concepts. On the occasions when they implement the reduction mode (X)
they are in fact applying a division paradigm. Teachers should exploit this
understanding by formally introducing the concept of division at the same time as
they are introducing multiplication concepts. Intuitively it seems that this double
edged approach may have benefits in attempting to help children understand the

intricacies of division problems of a more complex nature.
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7. PROBLEM SOLYING STRATEGIES




Interanltaral Studies between Indanesian and German Children
on Algorithmic Thinking

Elmar Cohors-Fresenbory, Universitat Osnabriick, W. Germany
Yansen Marpaung, IKIP Sanata Dharma, Yogyakarta, Indonesia

A Itrodxctiaon

cr,‘Parative intercultural studies in mathematics education are an interesting method
- understand desper the fundamentals of learning mathematics. We report on a pilot
study as part of a research project in which the Centre for International Research
in Teacher Education at the University of Osnabnick in W.Germarry and the Department
e Mathematics at the IKIP Sanata Dharma in Yogyakarta/Indonesia are involved. As
part of a long term cooperation between our institutions the indonesian colleague
nad the opportunity for a PhD study (1982-86) at the university of Osnabriick inclu-
ded experimental studies in Yogyakarta (MARPAUNG 1986) .

The field of our camon research is the question, how children at early secondary
jevel form algorithmic concepts, which are fundamental for the understanding of
prograning carputers. Therefore the suitable methodology for our experimental stu-
dies is the use of clinical interviews with non-verbal methods in a standardized

situation. As a consequence the size of the groups is rather small.

2. Remarks to the Indanesian Requests

Indonesia is a country which makes great efforts in econamy to reach the technologi-
cal standard which is necessary to give work for its increasing population. There-
fore the educational system must grow, not only in size but in quality. Mathematics
education including the understanding of camputers plays an important role in this
Process.
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Often it is said that using modern technology needs a specific kind of thinking

which is more found in the western countries than in those of the Third World. We
were interested to understand this assumption. A long term research project on the
structure of algorithmic thinking at the university of Osnabrick was a chance for

an intercultural camparative study.

Choice of subject

Important for the choice of our theme for the intercultural study was the following:
- the importance of teaching new technologies for ocur countries in the next decade
- the design of a nearly non-verbal approach to algoritims

- the happening of a similar study in Osnabrick.

Main Questions

The main questions of our research are the following:

1. How do indonesian pupils behave, campared with german ones when they are working

on algorithmic tasks?

2. Which role play different forms of representation for the pupils while they are
working on algoritims?

3. Do there exist differences in the thinking of the pupils while they are solving
constructive or analytic tasks?

4. Which strategies and cognitive styles develope pupils in working with algoritims.

5. What is the role of strategies and cognitve styles concerning the performance of

the pupils in solving algorithmic problems?

3. German Part

First pilotstudies on algorithmic thinking began at Osnabrick in 1981. An important
aspect of the design (OCOHORS-FRESENBORG 1982,1983) was the possibility to represent
an algorithm in 3 different forms. A detailed analysis of the relation between ex-

ternal representation of the algorithmic concepts and internal concept formation

~405~

proceses can be found in COHORS-FRESENBORG (1986).

pecause of the fact, that language does not play an important role in this design,
it was very useful for our camparative intercultural study. SCHWANK (1979) had first
jndicated, that using the networks of Dynamic Mazes enables the researcher to get in
jpsight into the process of concept formation and problem solving of the pupil, be-
cause the sequential constructing of the network plays can be seen as a thinking-
aloud protocoll.

The design of the intercultural study was developed by both authors in Osnabrick in
close comnection with the pilot studies, which were done by KAUNE to prepare her
study. The indonesian colleague first paticipated in these pilotstudies with the
german pupils, then he investigated the indonesian pupils. The german colleague
yistited him in Indonesia during his main study and they both developed the final
design there. Therefore the comparison between the german and indonesian pupils is
not only based on similar tasks but also on personal experiences. The cammon design

of both studies is reported in KAUNE (1985), a short survey see also SCHWANK (1986).

4. Bperimental Stdies in Indanesia

In a first pilot study in Indonesia 1983 we have choosen 12 pupils in the age of
13,5 - 15 of several Junior Secondary Schools in Yogyakarta. To campare them with
the german pupils in one dimension we did the RAVEN-test.

The tasks of the german study had been translated to indonesian language, also the
Registermachine~language. The problem solving sessions with the researcher were
videotaped, so that the behaviour of the indonesian pupils could be analysed toge-
ther with the colleagues in Osnabrick.

An important ocutcome of this pilotstudy was, that the indonesian pupils had great
difficulties to play with the material Dynamic Mazes. They take this material in a

very "stupid" way in their hands. Therefore we invented for the main study with the
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indonesian pupils one preparatory lesson in which they could become familiar ity
the material by constructing scme automata-networks as they are described in i
FRESENBORG (1978) .
In the resulting main study in 1984 were investigated 14 pupils in the age of 13,5
14,7. The results in the RAVEN-test were between 6 and 39, mean 27,9, deviation 8,
(The group of KAUNE had the results between 15 and 39, mean 28,4, deviation 7,1,

difference is caused by the one extrem result of 6 points.)

5. Results of the Indanesian Main Stdy
After only one hour of trainig with the material Dynamic Mazes the handicap, that
indonesian children are not familiar to play with toys at home and with didactica)
material in mathematic lessons in school, even not at primary level, had no more
great relevance. In flagrant oppositon to the pilotstudy the pupils could work i
the Dynamic Mazes as it is known from the german ones and even some of them have
choosen the Dynamic Mazes as the world in which they invented and analysed the a]
rithms. This shows, that the first observed cultural differences are important,
only on a very thin surface.

Contrary to the prejudice of the indonesian colleague before the experimental s
has be done in Indonesia the indonesian pupils were as successful as the german
in solving the complex algorithmic problems. There exist indonesian pupils who
as bright as german pupils. The kind of brightness during the problem solving pr
cess is very similar between the pupils of both culturs. The difficulties which
the indonesian pupils were already known from the german ones or have been found
further studies with german pupils. Only one essential difference could be seen i
the beginning of the series of the 4 problem solving sessions: the indonesian pup:
were cbviously not as used as the german ones to solve problems by themselves

behave more in a way to wait for the comments of the researcher who must be very
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aareful to let the pupil feel its own liberty for looking for ideas and in its deci-
sions along the problem solving way. In our interpretation after long discussions
this is the result of the strong authority of the adults and the appropriate teaching
style in Indonesia.

contxary to the results of KAUNE (1985) it makes no sense to distinguish the
j:)doﬂeSian pupils by their success in constructive or analytic tasks (MARPAUNG 1986,
p.67) . But up to now the investigated group of children is to small for such a
getermination.

The cognitive styles of the indonesian pupils are as different as those of the ger-
man ones. For example the first 3 indonesian pupils in the rang scale by the RAVEN-
test choose 3 different strategies of representing their algorithms (MARPAUNG 1986,
p-55) - The form of representation describes the world in which they form their con-
cepts. This preferences for the use of represantation forms is stable: If a problem
is given in a not prefered world the pupils' first action is to translate it into a
form which is convenient for himself. Under the aspects of different cognitive stra-
tegies (COHORS-FRESENBORG/KAUNE 1984) the differences inside the group of german ard
indonesian pupils are more important than an intercultural camparison.

In the group of the indonesian pupils we could for the first time proof the hypothe-
sis of SCHWANK (1985), that there exist 2 different cognitive structures in which
algorithmic concepts are constructed: one is built by predicates (relations) the
other by functions (operations). It could also be shown that the concepts "predica-
tive/functional" in the sense of SCHWANK and "conceptual/sequential" in the sense of
(COHORS-FRESENBORG/KAUNE (1984) describe different phenomena. We have found one pupil
who is working in a conceptual way with functional concepts, one in a sequential way
using predicative concepts and of course the two other possible cambinations
(MARPAUNG 1986, p.98)

As a consequence it should be distinguished between the cognitive structure predica-
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tive/functional and the cognitive strategies conceptual/sequential (SCHWANK 1gg
7

6.Summary

In the beginning of our comparative study we believed, that there must exist oy
ral differences in algorithmic thinking. But the main result of our intercui
study is that the individual differences in the abserved categories concerning
preferences for the form of external representation, the used internal cognitye
structures and the followed cognitive strategies are of more importance insight
groups than between the both cultures.

We have recognized only one difference in the cultur of teaching, concerning the

amount of educating pupils to creative prablem solving behavicur.
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COMPARATIVE EXPERIMENTAL STUDY OF CHILDREN'S STRATEGIES
WHEN DERIVING A MATHEMATICAL "LAW"

Hizuru Sakane
Johnam Junior High School
Kyoto, Japan

Martin Cooper
University of New South Wales
Sydney, Australia

THE PROBLEM

Eighteen pairs of grade 8 students in Australia and Japan were observed while
co-vperatively searching for a mathematical "rule" in a geometrical context. The
research was designed to provide answers to the following questions:
ie. What strategies do students adopt when searching for a particular

mathematical rule?

20 How do students react when they generate an example which contradicts a
conjecture which they have advanced while searching for the rule?

3y How do Japanese and Australian grade 8 students compare on rule-search
stratpgies and response to counter-examples?

;. To what extent do grade 8 students indulge in global planning when engaged
in such activities?

A1l subjects were given the following problem:

A number of points are equally spaced around a circle. These points
may be joined, in pairs, by line segments. The number of line segments
Find a method of determining the
The method must

depends on how many points there are.
number of line segments needed to joim all points.
work for any number of points.
BACKGROUND
In Science, the justification for a proposition is generally achieved
"through the accumulation of many supporting instances (or ‘failures to
disconform')" (Kemp, 1985).
instances is not sufficient to allow the establishment of a rule.

In Mathematics, however, the accumulation of such
Instead, all
cases must be considered if an empirical justification for a proposition is
sought; survival of an empirical test of validity is not sufficient for the
proposition to be considered 'true'.

Bell (1975) suggests that generalizing and proving activity among secondary-
school children develops in four main stages. The first stage involves the
This is

followed by empirical checking or attempts at deduction, as a second stage.

recognition, extension and description of patterns or relationships.
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Awareness of the need to consider all possible cases develops during the thiyg;
stage, while recognition of the need for explicit statements of the start of
arguments and of definitions comes during the final stage. It seems that for
children to engage in the final of Bell's stages, they need to be able to Opera
at the formal level. Collis (1975) suggests that only a small proportion of
Australian children in the 13 to 15 age range display consistent formal reasopj
abilities. It follows that most such children would not be expected to operatg
at Bell's final stage. Kemp (1985) believes that it is not until children hays
reached Bell's third stage that they begin to understand what constitutes a
mathematical proof. According to Kemp, "“[. . J it is clear that there is
widespread misunderstanding about proof among adolescents and that[. . . 1 on]
a minority are able to produce mathematical proofs during their school years",

Balacheff (1985) identifies two phases which are involved when children
engage in a law-deriving procedure: "one [ that is ] quasi-independent of the
observer and one with strong observer-pupil interaction", the latter being a
"rounding-off" phase directed by the observer. This process is similar to the
classroom "elicitation pattern" described by Voigt (1985), which has three pha
a tentative phase, a phase in which the teacher focusses the students' discour:
on the "official" solution of the problem, and a teacher-directed "rounding-of
phase. The approach of Balcheff's pupils may be likened to Voigt's second pha
refutations being produced by counter-examples generated by the students
themselves rather than by the teacher. The third, "rounding-off" phase occurs
in both schemes.

An advantage of studying pairs of children is pointed out by Schoenfeld
(1983), who states that dialogue between subjects tends to encourage the
articulation of managerial decisions, whereas in single-subject protocols such
decisions are rarely overt. Balacheff and Laborde (1978) describe such subjec
as being in a situation of 'social interaction'.

Schoenfeld (1983) points out that the metacognitive, managerial skills th
experts bring to a problem-solving situation allow the entire solution process
be "watched and controlled, both at the local and global levels". Larkin,
Dermott, Simon and Simon (1980) speak of pattern recognitions that "guide the
expert in a fraction of a second to relevant parts of the knowledge store . .
[ and which] guide a problem's interpretation and solution". It therefore se
unlikely that novices would exercise any substantial amount of global control
the problem-solving activity and would therefore tend to make few strategic,
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managerial decisions.
pROCEDURE

The sample consisted of 36 grade-eight children, working in pairs. Six pairs
were from different classes in the same Australian boys' school and six were girls
in the same Australian girls' school. In these cases, the observer was unknown
to the subjects. The six remaining pairs were from the same Japanese class, the
observer being their regular mathematics teacher.

Each pair of subjects was examined independently of the other pairs. In each
case, one pencil and many sheets of paper were provided. Every word uttered and
every action taken from the time the problem was given until the students stated
that they had arrived at a final solytion was recorded. The ensuing, "rounding-
of f'stage was not recorded.

TREATMENT OF THE DATA

The observations for each pair of subjects were initially transcribed into
a protocol which was then parsed along the lines suggested by Schoenfeld (1983).
The incidence of tactical and managerial decisions was determined from the parsed
protocols. The data were then re-organized, flowcharts being constructed
indicating the bases on which conjectures and predictions were founded and the
strategies followed when a conjecture was supported or refuted as a result of
being tested with data.

DISCUSSION AND FINDINGS

The protocols considered in this study correspond to Balacheff's (1985) first
phase: that which is "quasi-independent" of the observer, which we earlier 1ikened
to Voigt's second phase. Examination of the data indicated that the protocols
generated may generally be divided into two steps corresponding to Voigt's first
two phases. Nearly every pair of subjects started with a lengthy phase in which
they searched for a reliable method of constructing all the chords joining any
given set of concyclic points. This was followed by a phase in which hypotheses

were stated and (usually) tested as in Balacheff's (1985) study. The ensuing
"rounding-off" phase, which invariably took place, was not recorded. In the
present study, therefore, there were generally three phases which are similar to
those in Voigt's classroom elicitation pattern.

Nine of the 16 pairs of subjects never encountered an example which refuted
a conjecture which they had advanced. Five of the six Japanese pairs belong in
this class. Four pairs of Australian subjects initially engaged in activities
which eventually had to abandoned in favour of fresh approaches. During this
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intial phase, two of the above pairs either modified or abandoned the relevant 7/ S - frottwihchEhefnuriber G ohards ferany ipanticulas nunbest o6 ROINES

conjecture, a third pair ignoring two refutations and abandoning the conjecture
on the third occasion. During the successful phase which followed the false
start, however, the above pairs responded to all refutations by modifying the data
which produced them. In contrast, the fourth pair which produced a false start
responded to refutations encountered in this initial phase by modifying the data
which lead to the refutation.

The remaining pairs, one Japanese and three Australian, all encountered
refutations during their rule-search procedures. The general tendency of each of
these pairs was to modify the data leading to a refutation, although one
Australian pair ignored one of its refutations and another modified the relevant

could be determine, was a sufficient rule. Others were able to arrive at a more
genera]izab]e rule. The rules offered by subjects as solutions to the problem
provided no evidence that grade-8 children operate at a formal cognitive level.
Generally, subjects reached Bell's second stage of development for generalizing
and proving activity, thereby supporting assertions made by Collis and by Kemp.
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Many of the decisions made by the subjects were of a local, tactical nature.
It seems, however, that the executive, managerial decisions made by children
engaged in rule-search prcedures of the sort examined in this study can be
divided into two categories which we label "projective" and "local". It is
probable that only the former would be categorized as true executive decisions in
Schoenfeld's scheme. Most pairs followed the initial reading stage with a
projective managerial decision to examine a number of circles. This decision was
then followed by one or more local, strategic decisions about which particular
circle to examine. Two of the Japanese pairs made no decision that could be
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decision to examine a number of circles only after a wild-goose chase and a second
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reading and assimilation of the problem. Apart from decisions to organize or

re-organize the data, all other managerial decisions were of the local kind. Some Schoenfeld, A.H.: "Episodes and executive decisions in mathematical

problem-solving" in Lesh, R. and Landau, P., Acguisition of Mathematics
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were decisions to test a conjecture or a related prediction, followed by a
tactical decision about how to do it. Others followed the refutation of a
conjecture by a counter-example, and were presumably intended to advance the

investigation in some way, sometimes by putting it back on the right track. There
was a general absence of metacognitive, global management skills which experts
use to control problem-solving procedures.

It is clear that none of the pairs of subjects was operating at a formal
cognitive level. Many engaged in "naYve empiricism" (Balacheff, 1985, p 18).
None engaged in a formal proof, nor did any explicitly recognize that all cases
must be examined if an empirical test of the validity of a proposed law is to be

established. Some pairs were content to claim that a pattern, or a sequence of _414-
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OXGNITTVE AND SOCTAL FACIORS IN PROBLEM SOLVING BEHAVIOUR.
Kathryn Crawford.
Canberra College of Advanced Education.

A mmber of researchers (Das et al.(1975); Hunt (1980); Ransley (1981)) have used Luria's (1973)
model of brain function as the theoretical tasis of factor amalytic studies of cognitive abilities apg
their relationships to educational achievement. The studies have investigated individual differences jn
cognitive abilities as defined by three factors. The first two factors have been reported as defum%
two qualitatively and functionally distinct information processing abilities (Successive gpg
Simultaneous Processing)., The third factor has been reported as defining abilities to regulate

cognitive processes (Executive abilities).

Crawford (1984) reported that initial results of a study of fifth grade students indicated
significant socio-econamic (SES) and gender differences in simultaneous proressing abilities. There
were no significant gender or SES effects associated with either swrcessive processing or  executive
abilities. The results suggest that prolonged differences in experience (sncialization) are associated
with differences in performance in the visual/spatial tasks that are used to define the similtanepus

factor.

According to ILaria (1973), the two information processing modes are qualitatively distinct and
fulfil different intellectual functions. A consideration of the functions of the two apdes of
information processing suggests some explanations for the apparent relationship between social

experience and simultaneous processing abilities.

Successive processing is used to code information when the operatiomal order is important as in
imitative learming or following verbal instructions. It is mnot usually available for conscious
introspection. Liria asserts that successive praressing is important for operatiomsl aspects of
cognition and the development of well established operational skills. Simultaneous processing is used,
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den jmediate responses are inhibited (by means of executive abilities), to allow autonomous conscious
yeﬂa3ti°n about the relationships between culturally salient attributes of the objective and sacial
Jorlds. Luria suggests that simltaneous processing is used for higher order intellectual activity and
L available for conscious introspection. Further, past experience in simultanecus praressing results

in concept development and an internalized frame of reference that guides future processing.

Research describing social interaction in the classroom (Fennem (1981); Spender (1982); Connell et
i (1982)) indicates gender and SES differences in experience. It seems possible that such differences
mmy, OVer a period of time, affect the relative strengths of the two information prorecsing abilities.
pssertive male students fram socio-econamically advantaged backgrounds, with @aximm similarity between
the cultures of hare and school, may be expected to have high abilities in simultaneous processing and
to process mathematical information in an autonamous fashion with reference to internalized frames of
reference. Low SES, femle students with least similarity between the cultures of home and school and
social expectations for less autonamus behaviour, would be expected to have low abilities in
simltaneous processing, relative to sucressive pracessing. The choice of simultanecus pracessing at an

effective level may not be available for the latter group. They may be expected to resort to help

seeking behaviour and exclusively operational interpretations of mathematical tasks.

A Wilcoxin test was used to investigate gender and SES differences in the relative strengths of
simultanecus and Successive processing abilities, as defined by factor scores. The results are shown in
Table 1 below. In each case a negative rank indicates that the factor score for simultaneous abilities
was ranked lower than the factor score for sucressive abilities. The reverse situation is indicated by

positive ranks.

The results support the notion that the qualitative and quantitative differences in experience
described by researchers investigating classroom interaction are reflected in significant trends towards
particular cognitive profiles. That is, for high SES males there is a significant tendency for higher
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abilities for similtaneous pcucessing and lower abilities for successive processing. For femles frog
i
the low SES group, there is a significant tendency for relatively high abilities in Surcessive

processing and low abilities for simltaneous grocessing.

GENDER| SES | -RANKS | +RANKS z 2 tailed prob.
GIRLS |HIGH N=13 N=10 | -1.034 301
N=23 [MEAN 13.2|MEAN 10.4
N=52 | IOW N=19 N=10 | -2.541 011
N=29 [MEAN 17.6[MEAN=10.0
BOYS  |HIGH N=9 N=25 -2.453 .014
N34 |MEAN 17.1|MEAN 17.6
N=70 | LOW N=17 N=19 -.644 .519
N=36  [MEAN 17.2|MEAN 19.6

Table 1. Wilcoxon tests of the relative ranks of factor

scores for the similtaneous and successive variables.
For high SES femles and low SES meles there were no significant trends. One might speculate that
the high SES female subjects experienced greater similarity between the cultures of hame and school but
social expectations for campliant behaviour. It is likely that low SES male subjects experienced
greater social expectations for autonamous behaviour but less similarity between the cultures of hame

and school.

Observations of classroam interaction indicated that subjects with differing cognitive profiles
interacted with classroom tasks in different ways. A more detailed analysis of problem solving
behaviowr was carried out using a subsample of 64 subjects. Multivariate analysis revealed a
significant relationship between abilities for simltanecus processing and subjects' initial cesponses
during the problem solving interview (see Table 2 below). Subjects were assessed according to their
ability to understand the problem (1), express the problem in their own words (2), estimate a solution

(3), select appropriate tactics to achieve a solution (4), and present the correct answer (5).
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The univariate F values (not shown) for the relationships between the first four dependent

;obles and levels of ability for similtaneous processing were each significant. The variables were

entered

wr&igﬁficant Stepdown F values for variables 2, 3, and 4 indicate that once demands on simultaneous

into the analysis in the order in which responses were required of subjects. The

]mﬂ'ﬁmg abilities for initial interpretation of the problem were taken into account, demands for
imul €aneous processing resulting fran responses required later during the interview procedure were not

significantly greater.

N=64

SOURCE OF |WILKS | APPROX STEPDOWN F VALUES

VARTATION MILTT |USTAND (EXPRESS|EST. |TACIICS|QRR.

F (eY) @ |3 @& | 6

Succ. .882 | 1.39 | 1.60 | 3.10 | .38]| 1.17 | .72
SIM. J797 | 2.64%(10.26%*| 1,14 |1.22( .72 | .08
EXEC. .860 | 1.69 | 2,45 | 1.12 |3.25[ 1.53 | .03
SUC X SIM |.960 | 0.43 | .05 .26 [1.01) .22 | .65
SIC X EXEC|.975 | 0.27 | .05 A3 ] 6] 73 | .0
SIM X EXEC|.955 | 0.49 [ .67 | 1.41 | .07 .28 | .10
SIM X SucC

XEXEC [.870 | 1.56 | 2.93 | 1.21 [3.38] .30 | .02
| 1 =

Table 2. Sunmry Table of Mvltivariate Analysis of the

Relationships Between Initial Respanses and Cognitive
Abilities. (¥PK.05 *#.01).
Halliday (1973) suggests that social experience and social contexts influence the role taken by
subjects and the form and function of the language used. Subjects with different cognitive profiles

discussed verbslly formulated mathemtical probless in different ways. The two cases described below

are typical examples.

Vidd had high ability for successive processing and low ability for simltaneous processing and
executive control. She read each problem acourately and without inflection. However she was unable to
acarately express mathematical probless in her own words since the relatianships between pieces of data
were uswally ignored. Simpler absolute statements were often substituted comaritive expressions. For
example, Vicdkd was asked to describe the problem:

-418-



Debbie has 26 pencils. David has 7 more pencils than Debbie. How many pencils do they

The research reported above suggests that social factors influence the development and use of
altogether?

. ltaneous pracessing abilities. Different cognitive profiles are reflected in the different ways in
She said ".....26 pencils, ...... 7 pencils .....you need to add them all up." och subjects interact with problem solving tasks. Regardless of gender, subjects with differing

jrive profiles appear to have differing perceptions of the intellectual goal of tasks. These
gifferences are evident in the form and function of the language used as well as in problem solving

pafomﬂme'

the meaning of the problem further with the experimenter. However, when asked to work out an ang References.
Vidd ignored earlier reasnning and wrote: 26 + 7 = 33.
g (MATES, K., 'Dinosawrs in the classroom: a re-eemination of same aspects of the 'hidden'
qurriculun in primary schools." Wamens Studies International Quarterly, 1978, 1 (2), 165-174.

Jotn had high ability for similtanecus pracessimg and relatively low ability for sucesg (@NELL, R.W., ASHENDEN, D.E., KESSLER, S. and DOWSEIT, D. Making the Difference: Schools, Families and

;g.d—a,.l_ division, Sydney, Allen & Umwin, 1982.

pracessing. When asked to describe a problem in his own words he, and other subjects with <simila
, K.P., "Sare cognitive abilities and problem solving behaviour: The Role of Generalised Images
and/or Similtaneous Praressing'. in Southwell et al.(eds) Prucadings of the Eighth Intemnational
M the Psychology of Mathemtics Education, Sydney Australia, August, 1984.

cognitive profiles, described the problem context but not an operational strategy. When asked t

describe the above problem he said:
mS, J.P., KIRBY, J. and JARMAN, R. "Similtaneous and successive synthesis: an altermative model for
copnitive abilities." Psychological Bulletin, 1975, 82 (1), 87-103.

fANBA E. "Girls, waren and mathemtics.”" in R.Kemnedy (Ed.) Girls Mathemtcs and Biployment.
Prcecdings fram the conference of the same name, Sydney Australia 1981.

"Debbie has 26 pecils.....David has more....7 more...How many altogether?"

When asked to estimate a solution he said pramptly:
GALLIDAY, M.A.K. Explorations in the Functions of Language. U.K. Amold, 1973.

"It'11 be two lots of 27 (gestures to indicate imaginary sets in different locations) and

HNT, D. "International - Incidental learning and simultaneous and successive processing”  Canadian
more." ——T

Journal of Behavioural Science, 1980, 12 (4), 373-33.

HRIA, A.R., The Warking Brain — An Introduction to Neuropsychology, U.K. Penguin 1973

In the interview situation, subjects with high abilities for simultaneous prucessing usually respond
NESHER, P., GREENO, J. and RIIEY, M. "The development of semmtic categories for addition and
with reference to the data presented in the problem. In contrast, subjects with low abilities subtraction." Fducational Studies in Mathematics Education. 1982, 13 (4) 373-3%.

simultanecus prucessing, and relatively high abilities in successive processing tended to interpret ti RANSLEY, W.K., "The Developwent of a Psychamtric Model of Informstion Proressing in Young Children
] Based on Luria's Theory of Brain Functioning".

problem information in temms of the respmses required by the experimenter, In Halliday's (19 Unpublished PhD. Thesis University of New England 1981.

terms, the responses of the former group were typically "object-oriented" whereas those of the latt SPENDER, D., Invisible Wamen: the Schooling Scandal, U.K., Writers and Readers Publishing

Co-operative, 1982.

group were typically "persm-ariented".
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EYE-MOVEMENTS OF FIRST GRADERS DURING
WORD PROBLEM SOLVING

E. De Corte & L. Verschaffel
Center for Instructional Psychology
University of Leuven, Belgium

1. Introduction

In our past investigations of young children's problem-solving
processes with respect to elementary arithmetic word problems we
collected empirical data mainly using individual interviews and the
analysis of error patterns on paper-and-pencil tests (for an
overview see De Corte & Verschaffel, in press). These studies have
provided a rich set of specific findings concerning the appropriate
as well as inappropriate information structures formed in
representing word problems, and the variety and the development jp
the solution strategies used to solve them. However, until now,
several other aspects of the problem-solving process, such as the
text-comprehension variables and processes contributing to the
construction of these information structures and the subject's
decision-making processes while choosing a specific solution
strategy, have received almost no attention.

Recently we have started to apply eye-movement registration as
new and complementary technique for generating and/or testing
specific hypotheses concerning these latter aspects of children's
solution processes on elementary arithmetic problems. In this
contribution we present the design and some results of an
exploratory eye-movement investigation undertaken during the last

year.

2. Method

A series of eleven verbal problems were administered individually
a group of twenty high-ability (H) and low-ability (L) first grade
near the end of the school year. The word problems represented eig
different types from the classification schema of Riley, Greeno &
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Heller (1983). with respect to each problem we collected
eye-movement data while the child read and solved the problem,
together with retrospection data in response to the gquestion how
(s)he arrived at the answer.

The eye-movement data were collected using the Cebic 80
equipment, a German system based on the corneal reflection-pupil
center principle (De Graef, Van Rensbergen & d'Ydewalle, 1985). The
child was seating in a chair and the problems were presented on
slides projected on a screen. While the child read and solved a
problem, his eye-movements were registered every 20 milliseconds and
represented in two different ways. First, the visual stimulus,
together with the point the subject is looking at, were recorded on
video; on the monitor the subject's point of regard was represented
as the intersection of a vertical and a horizontal axes superimposed
on the slide. Second, the coordinates of these subsequent
intersections were stored on computer tape.

In view of analyzing the data, we had to define the elements or
the areas of the perceptual field we were interested in. Therefore,
we made a grid for each problem consisting of five horizontal and
eight vertical zones.

The analysis was then done in two different ways. First, for each
solution process we computed the total number of measurements and
the percentage of the total solution time during which the subject
was looking at each particular area; these gaze durations per zone
were related to several task and subject variables using analysis of
variance. Second, Debic's raw data were reduced to sequences of eye
fixations on distinct parts of the problem text.

We will only discuss some main findings of the second analysis.
For a report of the results of the first analysis and of the non
eye-movement data collected during this study (problem difficulty,
typical errors, solution times), we refer to another paper (De Corte
& Verschaffel, 1986).

3. Results

The second analysis consisted of two stages. First, graphical
representations of the raw eye-movement data were made on millimeter
paper. Because we had to make these drawings by hand, the data of
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only six children have been analyzed until now (three from each
ability group). Second, the resulting raw and long diagrams were
further reduced by aggregating the measurement data in terms of tpe
following categories.
(1) Sentence reading (S1, S2 or S3) : the child reads the first,

the second or the third problem sentence. To be coded in one

of these categories, the child's eye-movements must show the

typical eye-movement pattern of reading behavior, i.e. subse-

quent fixations in the distinct zones of that particular sen-

tence from left to right.
(2) Number reading (N1, N2) : the child is looking at the first

or the second given number in the problem.
(3) Word reading (W1, W2, W3) : one or more words in the first,

the second or the third sentence respectively are viewed. A

plece of an eye-movement diagram was scored in one of these

categories, when it contained fixations that could not be

conceived as sentence or number reading.
The results of this data reduction were again graphically
represented, using whole boxes, half boxes and small lines referring
to whole sentence, word and number reading respectively. The
horizontal location of the boxes and lines refers to the distinct
sentences, words and numbers. The length of the boxes and the lines
indicates the duration of that particular category; in this case
every millimeter represents 200 milliseconds. As an illustration we
first present two of these diagrams. Afterwards some more general
findings of our analysis of these reduced eye-movement diagrams will
be presented.

Figure 1 shows the eye-movement diagrams of Joelle on the Change
1 ("Pete had S apples; Ann gave Pete 8 more apples; how many apples
does Pete have now ?") and the Change 3 problem ("First Pete had 5
apples; now Pete has 12 apples; how many apples did Pete get
more 2". This girl from the L-group solved both problems very
quickly : in 16 and 14 seconds respectively. While the former was
solved correctly, the latter was answered with a WO error, i.e. an
addition instead of a subtraction with the two given numbers.
Interestingly, the eye-movement patterns were very similar for both
problems : first there was typical reading behavior, involving,
however, only the first and the second sentence. Afterwards Joelle's
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,yes jumped 1mmediately toward the two given numbers, suggesting
;;at she was "doing something" with them. From her answers tn all
problems we know that Joelle each time added both numbers. For the
change ! and the Change 3 problem this strategy yielded the correct

answer and a WO error respectively.

Change 1 Change 3

Figure 5 Joélle's reduced eye-movement protocols for the Change 1 and the
Change 3 problem

We examined whether the eleven word problems were completely read
by the six children involved in our analysis. In 15 of the 66 cases
- almost 25 % - the problem was not fully read; each time the child
neglected to look at the question. Eleven of these incomplete
readings were coming from one child, namely Joelle (see Figure 1);
the other four cases were produced by two other children. Based on
the analysis of the gaze durations, we expect the observed frequency
to be representative of all twenty children in this study.

Elsewhere, we have argued that theoretically, very superficial as
well as deep-level processing strategies may account for incomplete
reading (De Corte & Verschaffel, 1986). The regularity in Joelle's
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eye-movement protocols on the distinct problems, together with her
error and solution time data, point toward the first hypothetical
explanation. For the other cases further probing questions and the
presentation of more problems would have been necessary to exclude
one of the two alternative interpretations.

We also analyzed what happened during and after the initial
reading of the problem text. These data suggest some interesting
hypotheses that need, of course, verification using the data of tpe
other children in our study.

First, there seems to be a relationship between problem
difficulty and children's eye-movement patterns. The two easiest
problems - Combine 1 and Change 1 - were initially read very
smoothly, and once the first reading was finished there was almost
no rereading of the words and sentences in the problem : the
children almost exclusively looked at the numbers. The more
difficult problems - Change 5 and Compare 5 - on the other hand
elicited a lot of rereading of numbers, words and whole sentences
during the initial reading of the problem. But also after having
read them for the first time, these difficult problems continued to
elicit more fixations on the words and whole sentences than the easy
ones. Taking both findings together, this suggests that, especially
when children are confronted with a real problem the solution
process does not occur as a linear sequence of sharply distinguished
stages, namely a representational and a computational stage. On the
contrary, both aspects seem to alternate and interact in real
problem solving.

Second, the eye-movement data also suggest a relationship between
children's problem-solving ability on the one hand and their readin
pattern on the other. We found not only that most rereadings during
the initial reading of the problem text came from the children of
the H-group, but there was also a qualitative difference between
both groups. While rereading of the L-children consisted almost
exclusively in jumping back and forth to the numbers in the problenm,
the children from the H-group frequently reviewed words and even
whole sentences too. Moreover, after the first reading of the
problem, non-numerical aspects (words and sentences) were reviewed
more frequently by the children in the H-group than by the L-group
children. Relating this to the hypothesis specified in the precedin
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paragraph, it seems plausible to assume that high—ability childr
en

have a more extensive representational stage consisting of semantic
processing than their low-ability counterparts,
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A STUDY OF CHILDREN'S MATHEMATICAL PROBLEM-SOLVING HEURISTICS

Gerald A. Goldin and Judith H. Landis
Graduate School of Education
Rutgers University
New Brunswick, New Jersey 08903, USA

To teach problem solving in mathematics, it is important to understand the
competencies contributing to 'problem solving ability'--how they can best be char-
acterized in detail, how they develop in children, and how they are organized into
broader cognitive systems. In studying planning and executive control in individ-
ual problem solvers, the heuristic process is often taken as a unit for analysisg.
Thus we need a psychologically sound theory of competencies associated with heu~
ristic processes which includes their measurement, their developmental sequences,
and their pedagogy. This paper reports observations made during the first part of
a study of children's heuristic process usage.

The study as a whole envisions the investigation of three major heuristic
plans: "think of a simpler problem'" (TSP), "trial and error" (TE), and "special
cases" (SC). The design of a script for conducting structured clinical problem-
solving interviews with children based on TSP has been described elsewhere (Gold-
in, 1985a). The script itself, 19 pages in length, is also available (Goldin,
1985b). Organization of the script is based in part on earlier work by Goldin and
Germain (1983). Following the script nearly verbatim, the clinician guides the
subject through a complex plan for solving the problem, 'What is the remainder
when two to the 50th power is divided by three?" The major script sections are:
(I) Explanation of prerequisites for understanding the problem; (II) Presentation
of the main problem; (III) Guided use of the heuristic process TSP, without 'cor-
recting" any prior conceptions or misconceptions; (IV) Presentation of simpler
problems in sequence, as appropriate; (V) Guided detection of the pattern in the
sequence of remainders; (VI) Guided conjectured solution to the main problem;
(VII) Depth of understanding; (VIII) Looking back. The script provides for vari-
ous response alternatives. Whenever the clinician asks a question or makes a sug-
gestion, the child is permitted to work freely until a conclusion or impasse is
reached. The next question or suggestion follows without correcting the previous
work. For each subprocess encountered, the intent is to assess competence: (i) Is
the subprocess used spontaneously, or when the child is prompted, or not at all

(ii) Is the child's spontaneous or prompted use of the subprocess successful?
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In the fall of 1984, pilot interviews with academically talented children in
gradeS 4-6 were conducted during the development of the script. In an earlier pa-
per (Goldin and Landis, 1985a), excerpts from one such interview are discussed and
the proposed scoring system described. The complete transcript of this child's
jnterview is also available (Goldin and Landis, 1985b). In the spring of 1985,
after completion of training sessions for the clinicians, 28 children were inter-
viewed. Subjects were grade 4-6 students enrolled in a Saturday morning program
for academically talented children at Montclair State College in New Jersey. As
this is written transcripts have been completed for 22 tapes, and scoring is in
progress. The goal is to create a profile of competencies for each subject, as
well as a composite profile describing the development of subprocesses.

To illustrate, Table 1 shows the competency scoring for Linda (L), age 9,
grade 4, and James (J), age 11, grade 5 (not their real names). Neither had seen
exponents before. The following are some highlights from the interviews.

L proposes (2 x 50) + 3 as a way to solve the main problem, and seems satis-
fied. When asked to think of a simpler related problem, she first tries to sim-
plify the division process, then proposes 44 + 4, and next 230 + 3, R = (when
prompted).‘she calculates (2 x 30) £ 3. After being presented with 22 + 3, R=,
she is able when prompted to think of 25 +3, R= and 26 + 3, R =, Having found
that 25 = 32, she realizes, "two fifty times ... well that would be a hundred ...
no ... wait a second ... here ... giggle, giggle ... wait ... okay ... two fifty
times wouldn't be a hundred because ... I think it would be too ... umm ... that
would be a hard problem to solve ..." ghe continues, "... two fifty times would

be a lot. T would think. Because even ... two times five [referring to 25 = 32]
7

is a lot." When presented with 2° + 3, R = , L spontaneously states, "... if you
get, if you do two six times you would get a 64, and the next time if you wanted
to do seven times, all you would have to do is times it by two one more time.'" She
spontaneously finds a pattern in the reviewed sequence of problems, and extends it
to the original problem: "... if you keep on going one two one two for like 50
times, then you would get to one ..." and "... well it seems here like if it's an
even number on the top, you get the odd remainder .,." and "... so it would seem
that when you got to 50 the remainder of 50 would be umm ... well 50 is an even
number so it would be one."

J also calculates (2 x 50) + 3. When asked to think of a simpler related
problem, he suggests 240 + 3 because 80 # 3 would be easier than 100 + 3. He does

not think this would help with the original problem, "... because you may not get
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Table 1. Competency Scoring for Linda (L), Subject #6, and James (J), Subject #25, rable 1 (continued). not when sponta- suc-—
. at promp-  neous— cess-—
Uses indicated process . . . all ted ly fully
Sizzlon ?f S;?lﬁt and proce5§ or sub; not when sponta- suc—
process in which competence is score 2€ prOmp— Tnecus— ceggd .
all ted 1y fully 111. Guided use of the heuristic process TSP L J L J L. J L J
1. Explanation of prerequisites for ] .
ungerstanding the problem L L 9 1 0) L N ad decides to think of a2 simpler related problem
first trial (1) awes v J no no
a. explains meaning of Y A second trial = (2) .... T no
b. calculates value of 34 first trial (1) .... J J no J third trial = (3) .... v v o1
second trial @) .... * J % * " p. monitors for relatedness to original problem .. Vv V
c. calculates value of 53 oleloles Jo off oloXe e o sne TN I o o v / /W c. solves simpler related problem ............ teees v v no
d. calculates value of R for 17 = 5, R = ceuvuennns J a / d. generates sequence of related problems ......... v /
e. explains meaning of 17 5, R = vevuurerunannnns J J /. e. conjectures solution to original problem ....... v oV
f. calculates 32 + 5, R= first trial Iy .... J J J no —_—
calculates 32 2) o... * * * * no 1V. Presentation of simpler problems L J T AT & U »J
explains meaning of 32 3) .... * * * * 1. 2
3 a. calculates 2° &+ 3, R = (presented) .c.ecvceceen. v / TV
calculates 3~ (4) .... * * * * A
3 b. draws inferences for original problem .......... v Vv no no
calculates 4~ (5) .... * * * J * no ) N . : ) " /oy 7y
. decides to think of another simpler problem ....
explains meaning of 43 6) «o.. * = * * 3
3 " o . d. solves simpler related problem
calculates 42 a ... * v / first trial (1) .... v, v, no no
calculates 32 @) .... * e * * no second trial  (2) .... v J J no
calculates 3 9 .... ¥ * J * * e. draws inferences for original problem .......... v J N
calculates 9 + 5, R = (10) .... * * *J * no f. decides to think of another simpler problem .... v Vv v no
: calculates 9 + 5, R = (l1) .... * * * * g. solves simpler related problem ................. * v o * * J %
g. calculates 5° + 6, R ; A S e R * * * * g h. draws inferences for original problem .......... * v o * * J %
h. explains meaning of 57 £ 6, R = ..ccvnrnnrnnnens * * * . i. calculates 23 ~ 3, R = (presented) ....... IR * * x *
. F - * *
i. calculates 6° & 5, R = teevieeeeeceinnnnnnaennee ¥ * Y / j. draws inferences for original problem .......... x * * *
. . " . - % * * *
j. explains meaning of 6~ % 5, R e A / v k. decides to think of another simpler problem .... * * * *
1. solves simpler related problem ....ccevveeerenns * * * * no
] : J L
II. Presentation of the main problem Cal L E mn. draws inferences for original problem ........ LA Y * * *
a. employs a simpler method or rule .........c...-. v /| nono . calculates 24 £ 3, R = (presented) .......... e % * * *
b. calculates (2 x S0) % 35 R = cueevecnnsrennnnnes v v J 0. draws inferences for original problem .......... * ® * *
' . monitors for corre€tness of method or rule ..... v v pP. conjectures solution to original problem ....... * * x * no |
4. decides to think of a simpler related problem .. v v _ q. monitors for correctness of conjecture ......... * * * .
i r. decides to think of another simpler problem .... * * * *
* = not applicable
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Table 1 (continued). not when sponta- suc-

at promp- Tneous— Ccess-

all ted 1y fully
VIII. Looking back L J L J L J Ny
a. identifies related problem ......cceveeeniannennn J J J
b. identifies reason for relationship as TSP or

pattern identification ......cceiiiieiiiiiiea. /% *
c. expresses interest in looking back and does so . v J J
d. gives coherent retrospective account ........... * x * * no
e. corrects own conceptual misunderstanding(s) .... * * x *
J

the same remainder and you probably won't get the same answer.'" After being pre-
sented with 22 +3,R=, 23 + 3, R=, and 24 + 3, R=, J observes, "I tried two
times 50, but I guess that's not the same, so what I have to do is 50 times 50
.--" He also realizes that 27 is 26 times 2. He spontaneously and successfully
detects the pattern in the reviewed sequence of problems: "If it's an even number
and you put divided by three the remainder is one; if it's the odd number it's 2."
In both interviews what seem to be chaotic, disorganized problem-solving pro-
cesses, based on major misconceptions, rapidly change into organized processes in
which patterns are detected and solutions to the original problem found. Certain
processes (such as the pattern recognition and extrapolation) occur spontaneously
and are used competently; while others (such as deciding to think of simpler rela-
ted problems) occur only when prompted and with but intermittent success. We hope
that such observations, if generalizable across a wider population, will provide

the beginning of a developmental theory of heuristic processes in children.

Goldin, G.A. (1985a) '"Studying Children's Use of Heuristic Processes for Mathema-
tical Problem Solving through Structured Clinical Interviews.'" 1In Procs. of the
7th Ann. Mtg. of PME-NA, ed. by S.K. Damarin and M. Shelton, Columbus, OH, 94-99.

Table 1 (continued). not when  sponta-
at promp-  neous-
all ted 1y

s. solves simpler related problem .........c.ccn... * * L

t. draws inferences for original problem .......... * * *

u. calculates 25 + 3, R = (presented) «.eeeveecanns * * * |/

v. draws inferences for original problem .......... * * *

w. calculates 26 £ 3, R = (presented)

first trial (1) .... * * *
second trial (2) .... * *

%x. draws inferences for original problem .......... * * *

y. calculates 27 £ 3, R = (presented) .ecececenennn v

z. draws inferences for original problem .......... * VA

a. conjectures solution to original problem ....... Jo* *

b. generates sequence of related problems ......... v /

c. looks for pattern in the sequence of problems .. vy Vv

V. Guided detection of pattern in remainders L J L L J

a. finds pattern in reviewed sequence of problems . v

b. monitors for correctness of pattern ............ v v

c. conjectures solution to original problem based

ON, |PATEC LT 3T \e oo ole/ Ve s 4 oo o ek alYoTeks o oo 0ai¥o s Yoot e A5 v

d. recognizes conjectured solution as conjecture,

seeks reason behind pattern .ec...eeceeececacena. VYV
VI. Guided solution of the original problem ..... L * * ok

VII. Depth of understanding L J L L J

a. applies pattern to 244 I U PP v v

b. applies pattern to 275 £ 3, R= tevneennnnnnnns v V

c. recognizes conjectured solution as conjecture . v ?

d. describes application of TSP to 350 L4, R= .. v v

‘e. seeks reason behina-pattern ........... Ea 00600 v o/

(1985b) "Script for Studying Children's Use of Heuristic Processes ...," available
from the author. Goldin, G.A. and Germain, Y. (1983) "The Analysis of a Heuristic
Process: 'Think of a Simpler Problem'." In Procs. of the S5th Ann. Mtg. of PME-NA,
ed. by J.C. Bergeron and N. Herscovics, Montreal (Vol. 2), 121-128. Goldin, G.A.
and Landis, J.H. (1985a) "A Problem Solving Interview with Stan (Age 11)." 1In
Procs. of the 7th Ann. Mtg. of PME-NA, ed. by S.K. Damarin and M. Shelton, Colum-
bus, OH, 100-105. (1985b) "Transcript of a Problem Solving Interview with Stan
(Age 11)," available from the authors.
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‘PROCEDURAL THINKING’ BY CHILDREN AGED 8 - 12 USING TURTLE-GEOMETRY

Dr. J.Hillel, Mathematics Department, Concordia University, Montreal, Quebec

INTRODUCTION

One of the attractive features of LOGO is the ease by which its basic vocabulary can be

extended. Thus, any LOGO production of a geometric or numeric object can be turned into a

procedure simply by naming it (with the prefix TO ...). The name becomes a new LOGO word ang
the production can be evoked simply by typing the name. In this paper, we shall restrict
ourselves to Turtle Geometry and to the production of geometric figures.

We can distinguish three uses of procedures:

i) as a mean of saving a production of a figure so as to be able to reproduce the figure on the
computer screen

ii) as a mean of editing (e.g. debugging,modifying,generalizing) a production

iii) as a programming technigue with its available procedural mechanisms such as calling
subprocedures, iteration, variable and recursion (Abelson and diSessa,1981)

We shall focus mainly on the latter use of procedures and, in particular, on the use of
subprocedures in the productions of complex figures.
MATHEMATICAL-PRORAMMING LINKAGES

Turtle Geometry can be considered, first of all, as a particular type of geometry with its
underlying concepts, methods and characterization of geometric shapes. Its abvious
mathematical-geometrical nature is actually independent of the use of computers. However, th
fact that it is embedded within a computer language not only provides for a very different way
of "doing mathematics” but also brings into play some interesting links between programming
concepts and geometric ones. Among these we include relations such as those of:
procedure to figure: Figures on the computer screen have particular position and orientation
viz-a-viz the (implicit) centre and the vertical-horizontal axes. On the other hand, due to the
nature of Turtle Geometry, productions of figures are intrinsic descriptions and hence the

invariants of a procedure is a class of congruent screen figures (or, possibly a larger class if
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variables are used in the procedure). It is this relation that allows for the easy use of a
procedure in the production of complex patterns of translated and rotated figures.
f£igure to procedure: Even when using only the commands FD, BX, RT, LT (hence viewing a figure
as being composed of line segments only), there are many possible productions of a figure.
These may vary greatly to the extent in which they reflect inherent mathematical properties of
the figure they describe (properties such as symmetry, proportionality relations among
different lengths, supplementarity of angles, etc.). But the availability of procedural
mechanisms suggests the possibility of quite different perceptual organisations of a figure.

For example, the figure

initially percieved as 8 line segments, may now be decoposed in terms of a triangle and é line
segments (i.e. calling a single procedure) or 6 embedded triangles (i.e, calling a procedure with
a variable). More dynamically, it may be thought of as an iterative construct (using REPEAT and
incrementing the variable) or a recursive one. Thus, different programming ideas provide for
different conceptions of the structure of geometric figures.
subprocedure to subfigure: When a figure is identified as a component of another figure, its
procedure now becomes a subprocedure in a new production. Such use of procedures brings into
play the notions of turtle state and interface, i.e. a procedure now has to be understood in
terms of changes in ‘turtle state’ and not simply identified with its output on the screen.
Some aspects of ‘state’ are, in a sense, programming artifacts which do not always relate to
any mathematical property of the figure involved. For example, in a procedure TO TRIANGLE

the initial and final ‘turtle states’ might be arranged as follows (A = initial state, A

= final state) '

] t
because one was intending to use it as a subprocedure in the prod'uction' of
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pecceptual organisation of figures: One of the prequisites for using subprocedures in a

production of a figure is to identify a relevant subfigure (whether a procedure for such

Clearly, though TRIANGLE will produce a triangle on the screen, it is in no way a ‘canonica)’

intrinsic description of a triangle since it incorporates some extraneous interface component,

subfigure exists or is still to be defined). This calls for a particular perceptual organisation
It’s utility lies in its use as a subprocedure.

of, what is often, a connected figure or one with embedded subfigures. Our evidence points to a
There are many situations in which the ‘interface problem’ bears directly on important

strong resonance between the ‘drawing schema’ and the perceptual organisation of a figure into
mathematical ideas. One example of the fruitful linkage with mathematics is the relation of

‘primary contour structures’ (Vurpillot,1972). Characteristic of such organisation is the
state transparency to the notion of total turn and the role of 360 (The Total Turn Theorem),

avoidance of overlapping line segments (i.e. no two structures share the same line segment) and
Another is the ‘angle interface’ necessary to produce n-fold rotational symmetry. '

the treatment of line segments as undivided units (i.e. no structure contains only a part of a

CHILDREN'S TURTLE GEOMETRY; THE ‘DRAWING SCHEMA’

line segment).
Our above analysis of the use of procedures in Turtle Geometry points to some rather Subtle

The children we have observed, have spontaneously organised figures as follows:

as D .4../\ rather than D +A
as +-——,— rather than D EI
Ooa

é . A’“ — rather than

even when they had procedures such as TO SQUARE :X and TO TRIANGLE :X at their disposal.

notions. We shall try to address the question of the extent to which children come to
understand these notions, based on our observations of four children for sixty hours (starteg

in January 19&4). However, in order to describe children’s ‘procedural thinking’, it is important

to describe their conception of what Turtle Geometry is about. Young children (age 8-12) are

often introduced to programming in LOGO through the use of the ‘drawing with the turtle’
metaphor, i.e. the computer screen is the drawing surface and the turtle is an object to draw
with. The success of this metaphor is attested by the evidence of a strong drawing schema

underlying the children’s choices of goals, productions and planning strategies, as well as,

It appears that a fluent use of subprocedures requires the perceptual organisation of a
their criterion for success (Mendelsohn,{985; Hillel and Samurgay,i‘?&S). Thus, children often
figure into either ‘secondary contour structures’ or ‘area structures’ (see Vurpillot). We are
set themselves ‘concrete’ projects of ‘drawing’ a figure in some specific screen location and
not suggesting here that children of such age are not capable of this kind of organisation, but
orientation and their productions resemble the sequence of actions in paper-and-pencil

only that their ‘drawing schema’ favours a simpler organisation.
drawing. Their planning is local in nature and the choices of inputs to commands are based on

awareness of ‘turtle~state’: When a procedure is used simply as a mean to reproduce a
perceptual cues rather than on inherent mathematical relations. ‘More-or-less’ solutions can

particular ‘drawing’ on the screen, it can be identified with the figure. In a sense, naming a
be perfectly acceptable (Hillel et al.,1986)

production (TO...) serves precisely as a way to supress it, by attributing something static (a
There are no conflicts within the ‘drawing schema’ if the child is engaged in ‘naive

name) to a dynamic process. It is only when procedures are used as subprocedures that the
programming mode’ (Kieren,1985) in which the use of procedures is mainly for saving and

underlying process becomes important again. Our evidence suggests that children have
editing. However, we shall give evidence below that such schema is not compatible with
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cognitive difficulties to make the necessary changes to their mental representation of
procedures. -

Many research reports on LOGO have documented the persistence of interface bugs by
children. However, a careful differentiation has not been made between bugs which are
computational in nature and those that stem out a conceptual difficulties in understanding

procedure as more than just the figure. We have already alluded to the fact that figuring oyt

the correct interface may require some mathematical knowledge not yet available to the child

For example, we have given the chidren the task of producing the figure

using TO TRI ( REPEAT 3[FD 30 RT 120J). Some of the attempted solutions were:
i) TRI FD 30 RT 45 TRI ii) TRI TRI iii) TRI FD 30 TRI
The first attempt clearly indicates awarenss of the relevant ‘states’. 1t failed either

because the child could not figure out the angleex in

were quite lengthy, were entirely ‘spaghetti style’. They neither broke up the figure into
mpdules nor did they use any of their available procedures to produce some of the abvious
parts of their castle such as windows and doors. It would be easy to explain this behaviour
simply as a lack of the concept of procedures. Yet, the same children have used, on occasion and
unprompted, some very sophistic.ated procedural mechanisms. We feel that the explanation for
this resides partially in the affective domain, and that there are several related issues at
gtake:

j) ‘drawing with the turtle’ is a way of being in control, i.e. mentally guiding the turtle around a
picture. Calling subprocedures is, in a sense, relinquishing the control to the computer.

ji) experience with subprocedures has alerted the children to the frequent difficulties with
interface and subsequent debugging. From their perspective their approach is easier and more

efficient (the length of a procedure is not a factor since the production ‘disappears’ once it is

e
1Y named).
111) children seem to behave differently with ’picture tasks’ such as the castle one mentioned

or because she assumed that it is 45 because "it looks like a 45". On the other hand, attempts above than with ‘abstract tasks’ consisting of patterns and designs. Sutherland and Hoyles

1) and iii) point to, at best, only a partial representation by the child of the actual production (1985) have made this observation when looking at the children’s use of variables and the same

of the triangle. seems to hold for the use of procedures. When a particular figure is repeated often within a

The interface bug exemplified by iii) is the type that we have observed most often. In this design, there appears to be more willingness to abandon the ‘drawing schema’ in favour of

case, direct-mode activity provides visual cues as to the final turtle state after a procedure procedures since the ‘payoff’ is more apparent.
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avoidance of the use of procedures: The children’s final project (after 55 hours of LOGO

experience) was the drawing of an elaborate castle. Their initial preplanned productions, whi
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VALIDATION OF THE HIERARCHICAL STRUCTURE OF A SYSTEM
OF SOLUTION STRATEGIES FOR SPEED PROBLEMS

Ron Hoz and Malka Gorodetsky
Ben-Gurion University of the Negev, Beer-Sheva 84120, ISRAEL

BACKGROUND AND RESEARCH PROBLEM

Israeli high school students in all grade levels are being taught to solve
speed problems algebraically. However, in a previous study (Gorodetsky, Hoz and
Vinner, in press) we have found that Israeli high school students have various
difficulties in solving speed problems. From the students' solutions a
hierarchical system consisting of 6 solution strategies was constructed. The
system incorporates two dimensions involved in the solution of speed problems.

The physical representation, is an elaboration of Paige and Simon's (1966)

"physical intuition". It 1is the semantics of the solution, i.e., the use of the
physical referents of the involved concepts, their features and their
relationships. Specifically, these concepts are speed, time, and distance, whose
relationship can include either two or three concepts. The mathematical
modeling which 1is the procedural mathematical knowledge that is necessary to
solve the problem, namely, the mathematical symbols by which the involved
concepts, their features and their relationship were represented, and the
procedures for their manipulation. The degree of coordination of these two
dimensions served to hierarchically order the six solution strategies from the
highest ("formal") to the lowest ("confusion"). The hierarchical system of
solution strategies 1is depicted in Figure 1, and a more detailed description is

given in Gorodetsky, Hoz and Vinner (in press).
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Level of Level of
golution physical mathematical
strategy representation modeling Short description
o
Formal Complete Formal Comparison of total times of the

vehicles, derived by either the
correct formulas or other.
nonstandard (original) procedures

Intuitive Complete Intuitive Comparison of total times of the
vehicles, derived by implicit
use of the formula.

Rote Intuitive Intuitive Comparison of "total times" of
the vehicles, derived from
substituition of incorrect
concept values in the formula.

Compen— Intuitive Intuitive Numerical or semi-numerical

sation comparison of "time", "distance"
or "speed" gaps between the
vehicles which were combinations
of the given speed values.

Numerical Intuitive None Comparison of "total speeds",
"average speeds", "total
distances", or "total times" of
the vehicles which were numerical
combinations of the given speed
values.

Confusion None None Comparison of "total times" which

were nonsensical combinations of
both given and not given values.

The hierarchical nature of the system of solution strategies was derived by

theoretical analysis of the obtained solutions. This presentation is an attempt

to validate empirically the hierarchical nature of the system. From the
hierarchical nature of the system, two predictions regarding expected shifts of
solution strategies were derived : Increased problem difficulty would produce
greater use of lower strategies and decreased problem difficulty would produce
greater use of higher strategies.

The research hypotheses were that students presented with two problems of

different difficulty will exhibit the following behaviors.
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1. Students will shift from the strategies used to solve a first more difficult

. X X . difficult problem (ii) was second. In form B the more difficult problem (ii) was
problem to higher strategies when attempting to solve the second easier problem,

. . . . ) the first and the easier problem was second. Therefore each test can be viewed as
2. Students will shift from the strategies used to solve a first easier problem

. being  composed of bl hich the dist itude eith s added
to lower strategies when attempting to solve the second more difficult problem. one problem to whic e distance magn e either was adde

(in form B) or was deleted from (in form A).

METHOD
RESULTS

1. The participants The participants were 563 students from 12 high schools in

The solution strategies employed by the students in each problem were
the Negev (the southern region of Israel). 270 students were from 11 ninth grade aree oy v BT pRabLen

classified according to the hierarchy of solution strategies. i
classes, 205 were from 10 tenth grade classes, and 88 were from 7 eleventh grade € Y - e sollae]

strategies employed in the first and d b tabulated in Table 1.
classes. The classes were selected by 18 mathematics teachers in these schools to = TARSE sl Second prqblgns were ESEULEESY Ju T=ule

. The cells of this table depict the persentage of solutions included under every
represent grade levels (9 to 11) and ability levels (average and up). These

combination of the 6 solution strategies and two additional solution types
students were exposed to instruction of algebra word problems (including speed B ! ol

(which are not considered strategies). Strat hift i ifi
problems) for several periods during their studies. ¢ Sl

figures in the off-diagonal cells of Table 1: shifts to lower strategies in the
2. The test The test included the two following questions.

. . . . the upper right region and to higher strategies in the lower left region. The
(i) "Two cars start at the same time from city A. They go to city B and return to

diagonal (boxed) cells indicate no strategy shift.
city A without delay. The distance between the cities is 300 km. Car 1 goes to

. To test the nature of strategic shifts we compared the strategies employed
city B at the speed of 30 km/h and back at 50 km/h, and Car 2 goes both ways at

P S e e . to solve the second problem with those used to solve the first one. The results
e speed o m/h. ch car returne r 0 city A?

. . 3 generally confirm the research hypotheses, as evidenced by the following
(ii) "Two ships start at the same time from port A. They go to port B and return

. . findings. When problem difficulty decreased (Form B--addition of distance
to port A without delay. Ship 1 goes to port B at the speed of 30 km/h and back

magnitude) it was observed that (1) the majority of shifts were made towards the
at 60 km/h, and Ship 2 goes both ways at the speed of 50 km/h. Which ship Ak RIou A

t d first t £ A2" two correct strategies, and (2) students who employed the correct strategies
returned first to port A?

. . tended to reemploy them. When problem difficulty increased (Form A--deletion of
Both problems are equivalent in every respect except for the presence or

distance magnitude) it was observed that (1) i
absence of the value for the distance. This makes problem (i) easier than problem S ! mesk StAGRERts| resmpfopied Fhelr

. . . . . incorrect strategies, and (2) relatively few strategic shifts were made, most of
(ii). Two test forms differing in the presentation order of the problems were

. them towards 1lower strategies (including shifts from correct strategies to
constructed. In form A the easier problem (i) Was the first and the more g

-441- producing no solution or to using only partial data).
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The theoretical analysis was empirically validated by our findings. It gains
additional support from its similarity to Biggs and Collis' (1982) SOLO taxonomy,

which was based on Piaget's theory.
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Consistency of Strategy Usage in
Structurally Equivalent Problems

Murad Jurdak
American University of Beirut

The purpose of the present study is fourfold. First, it attempts to
identify and classify strategies used in solving structurally equivalent
problems in as much as these strategies are indentifiable from the written
solutions of the students. Secondly, it investigates the extent to which
consistency in strategy usage is exhibited in solving structurally equivalent
problems. Thirdly, it investigates the difference in strategy consistency
between structurally equivalent problem in different and similar contexts.
Fourthly, it investigates whether reflective intelligence is related to

strategy consistency in structurally equivalent problems.

Definitions
After consulting two standard sources (Kilpatrick,1978; Goldin and
McClintoch, 1980), the following definitions were formulated and adapted to

the specific requirements of the present study:

Structurally equivalent problems. Two problems are structurally

equivalent if the algorithms for their solutions are isomorphic.
Strategy. The algorithmic approach followed by a particular student to

solve a particular problem.

Context. The embodiment of a particular mathematical problem as well as

the language in which the latter is stated.

Consistency. For a pair of problems, two solutions (or two students)

are consistent if the same strategy is used in solving each of the two problems.
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RBeflective intelligence, Reflective intelligence is the functioning of
a second order system which: a) can perceive and act on the concepts and
operations of sensori-motor system; b) can act on them in ways which take
account of these relationships and of other information from memory and from the
external environment; and, c) can perceive relationships between these concepts

and operations (Skemp, 1961, p. 49).

Procedure

Sample

A sample of 120 students from grades six (ll-year old), seven (l2-year
old), nine (14-~year old), and 10 (15-year old) was drawn from three private
schools (two for girls and one coeducational) serving a predominantly middle
class community in Beirut. Twelve responses were nonusable and consequently
were eliminated from the sample of the 108 students, 83 were girls and 25 were
boys.
Problems

Two problems T1 and T,, each in two contextual settings (mathematical and
real world), were constructed and written in English which is a second language
for the subjects and the language of instruction for mathematics in their
schools. Two equivalent problems were constructed for each of T, and T,. The
problems were the following:

A How many line segments do you have in the figure?

M

e—o—0o—0—0—0—o

A C D E F G B
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TlM How many rectangles are there in this figure?

oOoqg ooy
noad ogon

TlR In a district there are 7 towns. There is a road between each two
towns. How many such roads are in the district?

A2R There is a total of 18 girls and boys. Teams consisting of 2 girls gnq
4 boys are to be formed. How many of the 18 should be girls and how
many should be boys to form the largest number of separate teams?

T2M The figure shown is made up of 4 small segments and two large segments,
We have a total of 18 segments of both. How many of the 18 should be
small and how many should be large to construct the largest number of
figures like the given one?

= —I'——]

S ., 1

I
+

T2R The total number of tables and chairs is 18. Each table can take
exactly 4 chairs. How many of the 18 should be chairs and how many
should be tables to form the largest number of tables with 4 chairs
each?

The numerical answers for AlM and A2R were given. For all the problems,
the instructions to student were to solve the problem and write all their work.
In addition each student was given Parts I and II of Skemp Test (Skemp, 1961).

The students were divided on the basis of the total score into an upper and

lower groups.
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Analysis and Results

The written solution of each version of the two problems was analyzed in
an attempt to identify the strategy used in solving the problem. In many cases
interpretation and /or inference have to be used. The strategies which were

jdentified for T, were: (a) Writing and solving a mathematical sentence;

1
(b) non-combinatory counting; (c) unsystematic combinatory counting; and
(d) systematic combinatory counting. For T2 the strategies were: (a) focussing
on one variable; (b) approximation - verification; and, (d) construction -
verification

The distributions of strategies used in solving each of the versions of

T, and T2 were constructed. The percentage of unidentifiable strategies ranged

!

from 9.2% to 20.4% for T, and 17.9% to 20.8% for T,. It is felt that with more

1 2
strict and specific test instructions the percentage of unidentifiable
strategies could be reduced further.

The proportion of consistent students for each problem pair was compared
with a proportion of 0.5. All the z-values were not significant (p & .05)
with the exception of the pair (TZR’ TZM) for which the proportion of consistent
students was significantly higher than the proportion of nonconsistent students.

Consequently it seems that with the exception of (T T2M) students were as

2R’
likely to be consistent as not consistent in solving structurally equivalent
problems.

To investigate the relationship of context to consistency, the consistency
variable for each pair of problems having different contexts was cross-tabulated
with the consistency variable for the pair of structurally equivalent problems

having the same context. The z-test for correlated proportions was used to

compare statistically the proportion of consistent students in one pair of
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problems having different contexts to the porportion of consistent students in
one pair of structurally equivalent problems having the same context. Only two
Zz-values were significant (p & .05) indicating differences opposite to the
expected direction. Thus, the results do not provide evidence to support the
hypothesis that students tend to be more consistent in strategy usage when they
solve structurally equivalent problems with the same context than with different
contexts.

To investigate the relationship between consistency and reflective
intelligence, the two variables were cross-tabulated for each problem. k 2
was significant (p < .0l) only for the two pairs kAlM s TIM) and(A2R s T2R)'
It seems that the upper reflective intelligence group used more often consistent
strategies than the lower reflective intelligence only for pairs of problems,
which have the same context and for which the goal was well-defined i.e. the

numerical answer was given.

Discussion

The expected high degree of consistency in strategy usage in solving
structurally equivalent problems was not substantiated. There was even partial
evidence against the expectation that consistency in strategy usage was higher
for structurally equivalent problems having the same context than for
structurally equivalent problems having different contexts. Two rival
hypotheses may be presented to explain these results. One is that the expected
consistency was confounded by the way the variables were defined. In particulax
the context variable was defined to include both the embodiment of the problem
and the language in which the latter is stated. The confounding might have

masked the consistency in strategy usage for problems T2R and AZR which are
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structurally equivalent and have the same context according to the definition;
but they are syntactically different. However, this hypothesis does not explain
the lack of consistency in strategy usage for problems AlM and TlM which are
structurally, contextually, and syntactically equivalent. The second hypothesis
is that structural equivalence is not sufficient for consistency in strategy
usage and that the critical factor in this respect is the information processing
demands of the task. The second hypothesis may explain the lack of consistency
for problems AlM and TlM where TlM is judged to demand processing more chunks of
information simultaneously than AlM‘ The second hypothesis would explain the
discrepancy in the same way that the information-processing theories explain the
decalage in Piagetian tasks (Baylor et al. 1973). Further research is needed

to test both hypotheses.

The transfer of strategy for the upper reflective intelligence group,
although limited, suggests its potential as a cognitive measure in problem
solving tasks which require high-order processing.

At last, the use of written solutions to identify strategies should not
be dismissed. There is room for improving its potential not only as a research

tool but as a diagnostic tool in instruction.
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STUDENTS” STRATEGIES AND REASONING PROCESSES
IN COMPUTER EDUCATIONAL GAMES

Jo¥%o Ponte

Faculdade de Ciéncias
Universidade de Lisboa

José Manuel Matos

Escola Superior de
Educag¥o de Santarém

Children usually enjoy all kinds of games and tend to view
microcomputers as friendly gaming machines (Greenfield, 1984).
Traditionally, games were not regarded as suitable educational
activities. However, a gradual change in this respect occurred in the
last decades, mainly as a consequence of the emergence of new
societal values.

A number of quite interesting and challenging educational games
have been developed. It is necessary to assess the educational value
of these programs and to consider their cognitive, affective, and
social implications (Ponte, 1986).

The most important feature in a game is the existence of a
defined goal, which is opposed in a systematic or random way by one
or more adversaries, according to some well defined set of rules. To
be considered educational, a game must be able to make a specific or
general contribution to the process of children’s growth, either in
terms of learning, motivation, or development of self-confidence.

This study is concerned with the use of concepts by children and
their thinking strategies playing educational games. It used four |
computer games, all dealing with number concepts (factor, prime,
negative number, order relation, and approximation) but requiring
distinct strategies. These games were either developed or adapted at
the Departamento de Educag¥o da Faculdade de Ciéncias da Universidade
de Lisboa.

Pilot work was conducted with 12 elementary and middle school
children yielding minor modifications in the games and suggesting
strategies of data collection. In the formal study, subjects were 16
fifth— and sixth—graders at a school in a suburban area, not far way
from Lisbon. Most of the students had worked with computers before,
either at home or in school extra-curricular activities.

Every game was played for about 30 minutes. The students worked
in pairs or in groups of three, allowing the researchers to follow
their discussion as they went through each game. In one game, data
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was also collected by the computer, recording students’ critical
moves.

The games were played in the order in which the main
observations and results are reported below. The researchers
introduced each game with a brief demonstration, expltaining its
rules, but keeping themselves of giving any clues concerning possible
w;nnlng strategies, except in a few cases that will be specifically

commented.

Observations and Results

ll_l»JHERE 1S TRAQUINAS HIDDEN? This game is a modification of the
we known HURKLE. The character, Traquinas, Jumps around a few

places and finally hiddens in a number line marked from -10 to +10
The stgdent is asked to guess the place were Traquinas is hidden .d
following each erroneous quess a clue is given (larger number ”
smaller number). Wrong guesses yield scores that increase ’
quadractically with the number of attempts.

Since students had not been taught about negative numbers before
and some of them were not completely familiar with the computer

Keyboard, there was a brief informal i i
introduction on h
numbers on the computer. o fe get these

Observations:

' (l? All students understood the gaming situation: Traquinas is
hidden in one and just one place. They readily accepted that negative
numbers were some sort of an “extension® of the natural numbersg S
of them said to know these numbers, mostly in connection wi th o
temperatures. Others did not immediately understood that each mark i
the ?umber line corresponded to one number. However, this kind of !
difficulty seemed to be easily overcome. Scores did not attract th
attention of the students. ‘

(2) There were marked differences in the facility with which
students grasped how to extend the relationship "greater than®" to the
new number context. Some of them thought that the number immediatel
left to 0 was -9. After a few trials some students appeared to h g
understood pretty well this relationship, while even in the end a:e
the game others seemed still quite confused. °

'Sowe students interpreted the clue, "it is in a larger number®
as "it is in a positive number," and the clue "it is in a smaller
number® as “it is in a negative number.®" This is a good example of a
tendency to think about relative entities in absolute terms. In these
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cases they were helped to clarify the notion of larger and smaller,
to be able to properly interpret the clues given by the computer. I,
most instances these explanations were understood, at least as could
be observed in subsequent trials of the game.

(3) A number of strategies were identified:

(a) "Jump around." If the computer says that the number jg
larger, jump to a much larger number. In most cases only the
information conveyed by the last trial was taken into account,
leading some students to guess for more than once in the same number,

(b) "Go up or down just one number." This is a "safety
strategy,” which in general yields high scores.

(c) "Systematic division." Start with zero. Then proceed
dividing in two equal parts the intervals were Traquinas is said to
be.

(d) Search for a "smart strategy." He may be hidden in the
last place he showed up..., or, perhaps, in the place where he
glanced for the first time...

The game was useful in providing a context for the introduction
of the number line representation of integer numbers. Even when the
concepts were not immediately grasped, a brief discussion seemed to
provide enough basis for understanding.

MULTIPLICATION CONTEST. This game is a competition among two to
four players, requiring the execution of single or multidigit
multiplications. In each question each player is allowed at most
three guesses. The score is a function of the number of guesses and
the time required to give the correct answer. The player that first
reaches a predetermined score wins the game.

Students were suggested to play in a way such that all
multiplication questions involved numbers below 15. This game induced
an easy involvement of all the children and its general features and
purpose were immediately understood.

Observations:

(1) Some students consistently failed in some multiplication
facts (6x7, 9x7, 6x8, ...). Several students never used fast
strategies of multiplication by 10. Again, some students did not pay
much attention to the time counting features of the game.

(2) At least in some trials all students used some mental repre-
sentation of the multiplication algorithm. Some students accompanied
this representation with the figuration of the algorithm using their
fingers. To several students this mental representation was not
effective as they failed consistently to multiply by the second
figure ("twelve times three,... six, carry one,... sixteen"; "twelve
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times nine... two times nine is eighteen, carry one,... twenty
eight®).

(3) Some students used the commutative property to remember some
multiplication facts ("five times six... six times five is thirty").
Only two students were noted using distributivity to remember a
multiplication fact ("seven times five... six times five is thirty...
thirty five®").

With an encouraging presence of the teacher, this game appeared
to provide an enjorable setting to recall some basic arithmetic and
to practice mental computation.

BIG ESTIMATION CONTEST. In this game each player is asked an
estimation of a multidigit multiplication. As the previous game, it
is a competition among two to four plarers, with three guesses to
each question. The score is a function of the number of guesses, the
accuracy of the response, and the time required to give an acceptable

estimation.

The game was introduced with a brief demonstration in which
students were explained the concept of approximation.

Observations:

(1) Some students refused completely the concept of
approximation, and played the game as if it required precise
responses. Others, although seemingly understanding the general idea,
had no tolerance for errors and preferred to give exact answers
("more or less is not good®"), spending a lot of time in each
question.

(2) Several strategies were noted:

(a) Rounding. Just round one of the numbers to the nearest
tenth. Example: 19x13 —-> 20x13.

(b) Double rounding. Round both numbers to their nearest
tenths. Example: 19x12 --> 20x10.

(c) Rounding with compensation. Use one of the above
strategies and add or subtract a compensanting quantity. Ex. 97x72
-=-> 100x72 - something.

(3) Rounding and double rounding strategies were explained in
the beginning and were most commonly used.

(4) For some students the idea of rounding was difficult to
grasp and they preferred to truncate the numbers. Example: 17x12 -->
10x12.

(5) Most students had no idea of the size of the numbers they
were going to obtain. For example, the double rounding strategy led
one student to reason that: 4x39 --> 1x40, and 2x17 --> 17.

This game was acceptably understood by part of the students and
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poorly by others. It required a big conceptual leap from students-
previous experience. To be useful in the classroom the game needs 3
tot of teacher involvement and support and the articulation with
other estimation oriented activities.

TRINCA-ESPINHAS. This game is a Portuguese adaptation of the
popular TAXMAN. From a given list of numbers we pick up numbersg and
the computer picks its divisors. Only numbers with divisors on the
list may be picked by us and in the end the numbers left are taken o)
the computer.

The game was introduced with a demonstration trial, using 3 lish
of 12 numbers. The first number picked was 10, and that was used tq
explain the rules. Students were then encouraged to play by
themselves in a few trials with lists of 12 numbers. 1f they did ng¢
succeed in winning the computer, they were further suggested to come
down to lists of 7 or even of 5 numbers. From a winning point,
students were then encouraged to play with larger lists of numberg,

Observations:

(1> Almost all students succeeded in understanding the game. The
fifth year students who had not been formally introduced to the
mathematical notions of divisor and multiple, involved in the game,
showed easiness in using these concepts.

(2) Strategies:

(a) What is the first number to take? After several trialg
most students realized that it was the largest prime.

(b> What are the next numbers to take? Some students tried
numbers with just one factor, beginning in the smaller numbers on the

list. This is a sort of a "safety strategr® leading to poor results,
Some others seemed to follow a similar strategy, but beginning in the
higher numbers on the list. This strategy was not always strictly
applied, probably because some of the possible candidates were
overlooked, but generally conducted to good results.

(3) The largest number may conduct to two almost opposite
situations. Either the desire of taking it immediately, regardless of
its divisors, and some students took first 12 in the 12 number list,
or the desire of not taking it at all, and some students disregarded
it in the 7 number list. Also, numbers with many divisors (like 12,
8, and 6> are a temptation for an early collection, almost always
wi th very poor results.

This was the most enjored game, despite the fact that no student
was able to get better than a win with a list of 25 numbers. Fun
seems to be higher when children perceive a real challenge from the
computer but feel able to overcome it.
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Conclusions

Overall the students enjored the two-hour session in which they
p|ayed these four games. They were becoming somehow tired with the
sequence multiplication—estimation, but wellcame the last game,
TRINCA. To end the sessions it was necessary to declare them over,
since students would not leave just by themselves.

The requirement of mathematical concepts not previously studied
was not a barrier to students’ involvement in the games. They
provided a stimulating environment for the introduction of these
concepts, on which formal teaching could build. This supports Bright
et al. (1985) contention that games can be used in pre-instructional
settings. The first contact of young children with computers induces
usually lots of excitement (Malone, 1982). This early enthusiasm does
not stand for a long time, but can be used to foster an initial
positive contact with modern technology.

Besides providing a stimulating learning environment (Kraus,
1984), educational games also allow teachers to obtain a more global
view of their students’ processes and difficulties. However, one
should be remainded that the use of computer educational games should
always be well planned. To be of real educational value, games should
be components of a more general set of activities to be performed in

articulation with them.
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THE 'LEAST NUMBER WINS' GAME ON A LARGE SAMPLE trategies, even if the possibility of only one round might bias the

Lédsz16 Méro gsults. It was also a great challange for us that we had not been

Ectvos Lorénd University, Budapest able to give even a rough estimate to some of the most simple

Department of Experimental Psychology estions: how many 1l's would be entered, how many percent of the

qu
entered numbers would be below 100, etc.

The readers of the Hungarian puzzle magazine Fiiles were inviteg t Deeply influenced by the book 'The selfish gene' by OAWKINS

take part in the following game. Every player had to choose g (1976), we have supposed that many independent players might quite

integer number and enter it in the entry form cut out from ity well approximate an optimal mixed strategy in the game-theoretical

journal. The winner was the player who sent in the smallest numbe sense even if the individual players are not aware of what it is. As

which has not been chosen by any other player. we shall see, this hypothesis proved to be true at a fairly good level

The idea of this game stems from the paper of HOFSTADTER (1982 of approximation. This finding may shed some light on the nature of

which contains several game ideas in this style. However, this game j the difficulties of teaching mathematics: normative, rational aspects

much simpler than the games described in Hofstadter's paper. Befor may be incorporated in some much deeper strata of behaviour than the

the announcement of this game in Fiiles we had secondary schoo apparent, everyday thinking. In the light of the selfish gene theory

students gifted in mathematics play this game. The game proved ver the possibility arises that +this rational distribution of several

suitable to make the basic notions of mathematical game theory clea irrational behaviour strategies might be determined at a genetic

for the students. Nevertheless, the students were not able +to adop Jevel. However, instead of speculating on such vague and far-reaching

anything like an optimal mixed strategy when they were playing. Thi consequences, let us see the findings of the experiment.

finding is consistent with the well known results in the psychologica
The basic data

literature that people are usually not able to adopt random strategie

even if they intend to do so. (See TVERSKY and KAHNEMAN (1974) o There were 8192 entries to the game. Beside the numbers, sex and

DIENER and THOMPSON (1985)). dwelling place data were available from the addresses of the players.

We have definitely observed that in playing the game in fairly I(Inquiring about other data might have spoiled the game). 55% of the
small groups for several rounds the students wuse different playin players were men. In contrast, usually only about 35% of the solvers
strategies. However, the small size of the groups did not allow of other prize puzzles in this magazine (e.g. crossword puzzles) are
identify these strategies. We hoped that by having the game played by men. The dwelling place data roughly agreed with the global

a large sample we would have a chance to identify some playin statistical expectation.
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Several hundred aspects of the distribution of the entered Numbep displayed by the date of year numbers (1900 to 1985). There were 256

and their digits have been analyzed for sex and dwelling pla such entries. However, all the patterns that could be suspected as the

differences. Surprizingly, no significant difference was found excep results of magic thinking did not involve more than 8% of the players.

one. There were 275 players who wrote numbers between 600000 (Not all of the 13's were considered as the result of magic thinking,

an

650000, 60.2% of them were women. The frequent occurence of this rang as its neighbours had also several entries: e.g. 12 had 44 entries and

has a special reason. In the announcement of the game it was Pointe 14 had 42 entries. Thus only e.g. for 13 only 121 entries were

out that it might happen that the small numbers all hit each other an considered as results of magic thinking.)

so a very large number might be the winner. The number of copies 66% of the entered numbers were odd numbers. 22% of the numbers

the Fiilles was also given as 640000 and it was explained that therefg ended to 1. It is very surprizing that digit 7 was fairly frequent as

among the first 640000 numbers there must be a potential winnin a last digit (13%), but it was very rare at all other places: only

number. Choosing a number about 640000 may display either a misunde 2.8% of the non-ending digits were 7. It is possible that people feel

standing of this message or a false enchoring mechanism, in the sep digit 7 as a "hidden" digit that does not occur to them, and it really

of TVERSKY and KAHNEMAN (1974). Anyway, this trap has attract is so. But if they want to avoid the numbers of other people, they

significantly more women then men. 170 numbers were entered oy like to end up with a 7.

1000000, but in this range no significant sex difference was found. 120 turned out to be the winning number. It is interesting, that

A surprizing diversity of numbers was received: 2730 differe 119 and 121 had 16 and 15 entries, respectively. People liked to avoid

numbers were entered. There were 2068 numbers that were entered round numbers. All the numbers below 120 were covered at 1least four

only one player (25%!). The significance of this diversity will times but 94, which had only 2 entries. The first three numbers that

revisited when the game-theoretical aspects will be analyzed. The mo have not been entered at all were 165, 180 and 200.

frequent number was 1, entered by 387 players (4.7%). Number 1 was
Game-theoretical analysis

great challange and it was pointed out in the announcement of the ga

that this is a sure winning number if you choose it and no one else. The existence of an optimal mixed strategy depends on some model

The second most frequent number was the 13, chosen by 164 player assumptions on the game. However, we have proved, that if an optimal

(2%). This and some other numbers may display a kind of magi mixed strategy exists, it must consist of strictly decreasing

thinking. Furthermore, there were several numbers that sticked out probabilities.

their neighbours, such as 1111 (37 entries), 333 (17 entries), 12 We did not succeed in determining the optimal mixed strategy in an

(15 entries), etc. Another typical kind of magic thinking may analytic way. A computer simulation was done in the following manner.
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We supposed that the number of players is N and the greatest numb n meaning (e.g. 22% of the numbers had ended to 1).

that may be played is N. (This might bias the original rules of t The smoothing of the entered number distribution was done in three

game, but knowing that the probabilities are strictly decreasing th eps. First, the numbers which may be considered as results of magic

bias must be very small). If coalition is impossible game theory te] ;hinking were eliminated. Second, the numbers 1 and 600000 to 650000

us that the optimal mixed strategy for all the players is the sap Were also eliminated as results of well tangible thinking strategies

The assumption that coalition is impossible is very reasonable in ¢ ¢ clearly different kind. Third, the numbers were divided 1into 29

case of our game. ategories as follows: 2--10, 11--20, ..., 91--100, 101--200, ...,

At the first game all the players choose each number between 1 4 901--1000, 1001--2000, ..., 9001-10000, 10000--.

N at a probability of 1/N. Suppose now that in this game the winni After this a chi-square +test was performed to compare the

number is k. At the second game all the players choose all the numpe jstribution of the theoretical probabilities with the empirical

at a probablllty of l/(N*‘l), except the number k which is chosen at iStribUtiOﬂ. In the case of N=15000 and N=20000 the test did not show

probability of 2/(N+1). The choice probabilities are changed from ga significant difference between the +theoretical and the empirical

to game in a similar way: if the probability of number m was t/(Nsn- istributions at a p 0.1 significance level.

in the n-th game, then a.) if m is the winning number in the n- This result seems to justify that the sum of the thinking of many

game, then its choosing probability changes to (t+1)/(N+n) for t independent persons is quite rational in a normative, game-theoret-

next game, b.) if m is not a winning number in the n-th game, i ical sense even if separate individuals may be irrational. Is it

choosing probability changes to t/(N+n). ossible that the 'selfish gene theory' still works at such a high

We did not succeed in giving a formal convergence proof of t evel of mental performance?

above procedure, but our experiences were quite favourable: th

probability distributions after 10000 games were almost strict

monotonically decreasing for several different N-s. OFSTADTER, D. R. (1982): Metamagical Themas. Scientific American Aug.

In the next step the empirical choice frequencies were 10-14.

with the theoretical probabilities of the optimal mixed strategy IENER, D.; THOMPSON, M. D. (1985): Recognizing Randomness. Am. J. of

There were two problems with the comparison: number N of the Psychology 98, 433-447.

in the optimal mixed strategy should have been determined AWKINS, R. (1976): The Selfish Gene. Oxford University Press.

empirical distribution should have been smoothed some way. TVERSKY, A.; KAHNEMAN, D. (1974): Judgement under Uncertainity:

was necessary because the digits of the numbers were not symmetrica Heuristics and Biases. Science 185, 1124-1131.
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CHILDREN’S COGNITIVE STRATEGIES IN TWO —SPINNER TASKS
Roland W. Scholz & Riidiger Waschescio
IDM, University of Bielefeld, FRG

Abstr?c(. An experiment aimed at the.identiﬁcaﬁon of cognitive strategies and auxiliary strategies that age used
specific probability problems was run with 30 children of three age groups; S — 6, 9 — 10, and 12 — 14 Years
experiqlenml msk§ .consisled. qf roulette tasks_ Witf.l two spinners. Pair comparisons were so construct.ed that a Ser{es
strategies or decision heuristics could be identified. The results show tha} develo;.n?'nental thgones on Probabi
reasonln.g (e.g. P].A.GE"I‘, NOEL'I”[NG, SIEGLER) have to be supplemented if probability reasoning in the CODex;
geometrical probability is conceptualized. )
In two—spinner tasks, one has to choose the more favorable roulette disk from two diskg
different odds; that means, different proportions of favorable and unfavorable wedges. As odds ,.
operationalized by proportions of wedges, the geometrical probability concept may be applieq.
whereas by equal sized wedges the problem may be solved via Laplace probability.

We define the concept of cognitive strategy when referring to the game theoretical strype.
concept (for games in extensive from, cf. OWEN, 1972). A cognitive strategy is a compj
deciston plan which generates a decision through the use of knowledge elements, heuristics, goy
and evaluative operators for each state or situation within the cognitive system (cf. SCHOLZ, 19g

Two —spinner tasks with equal sized wedges may be represented by proportions. Hepce
development of cognitive abilities in two—spinner tasks is closely linked to the development
proportional reasoning. We will briefly sketch two approaches to a conceptualization of cogpifi
strategies in this domain.

The basis assumption underlying SIEGLER’s (1981) so—called rule assessment approach is g
cognitive development can be characterized as the acquisition of increasingly powerful rules f¢
solving problems. The developmental stage, and hence the repertoire of strategies that may be ygg
at a certain stage, is determined by the degree of complexity of the rules. Within an application
his approach to an urn like probability apparatus, he distinguishes between a dominant dimensio
by gambling tasks the favorable events, and a subordinate dimension, that are the unfavorab
events. The subsequent rules define strategies for two —spinner tasks within the above meaning:

1. Ounly the dominant dimension is considered, the urn or disk with a higher number of favorable events is choo
2. Rule I is applied, however by an equal number of favorable and unfavorable events the umn (disk) with

smaller number of unfavorable events is selected.
3. The difference between the number of favorable and unfavorable events is calculated for each urn (disk) a

the one with the greater diffierence is selected.
4. The ramo between favorable and unfavorable events is the choice criterion.

Another classical stage theoretical approach for proportional reasoning, which may be applied
two —spinner tasks, is provided by NOELTING (1980). In his experiments he used the so—call
orange —juice — paradigm in which the task consists of selecting the mixture with the more inten
orange taste out of two mixtures of water and orange juice concentrate. Following Piagel
terminology and denoting a mixture with J parts of juice and W parts of water by (J, W),
developmental stages are labeled as follows:

typical item

Stage Name Characteristics
0 Symbolic Identification of elements (1, 0) vs (0, 1)
I Intuitive 1A, low; comparison of first terms (4, 1) vs (1, 4)

IB, middle; equal first terms,
comparison of second terms
IC, higher; more versus less

(1, 2) vs (1, 5)
(3, 4) vs (2, 1)
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I Concrete lower; equivalence class of (1, 1) (1, 1) vs (2, 2)

operational higher; equivalence class of any ratio (2, 3) vs (4, 6)

III Formal low; ratios with one pair of (1, 3) vs (2, 5)
operational corresponding term multiples of or

one another (2, 3) vs (3, 6)

high; any ratio (4, 5) vs (5, 6)

The objective of the study. When analyzing childrens’ choice behavior in two—spinner tasks
we wish to demonstrate that the strategy space is more encompassing than the introduced theories
propose. In particular, we want to prove that even children aged between S and 10 are able to solve
tasks which according to SIEGLER and NOELTING may only be solved in the highest stage via the
application of various auxiliary strategies. By auxiliary strategies we mean strategies that are applied
instead of the formal —operational strategies which result in the normative solution in all tasks.

Perceptual auxiliary strategies. In many tasks in which the geometrical probability concept may
be applied (such as urn or spinner tasks) optical stimuli are present. In such tasks, we call a
strategy a perceptual auxiliary strategy if the choice is based on the intensity of the visual stimuli
and the direct perceptual impressions. We suppose that young children who are not able to multiply
or to calculate ratios may cope with tasks and produce a significant number of correct responses
even in NOELTINGs stage III type tasks. In particular we expect more normative responses when
the odds difference between the disks increases.

Fifty —fifty comparisons. Many definitions of probability include the equally likely concept as a
nondefined or circularily defined concept. We suppose that the equally likely or the fifty —fifty
concept is used within reasoning processes on two—spinner tasks. Disks will be denoted as
favorable (F), neutral (N), or unfavorable (U), if the chance for a gain is above, equal, or less than
.S. If the order of representation is ignored, one may construct tasks for the following five
favorability —combinations: F vs F, F vs N, F vs U, U vs U, and U vs N. We hypothesize that the
fifty —fifty concept is an element of the individual’s strategy space which is available early in the
course of development. As a consequence we presume that tasks which contain one neutral disk will
more frequently be solved correctly than a task in which both disks are of the same favorability
type. Clearly tasks of the F vs U type may also be solved by either applying the equally likely
concept as a comparison measure or by directly referring to the more vs less concept. Hence we
suppose that tasks of the latter favorability type provide the lowest error rate.

Multivariate analysis for strategy exploration. Besides testing the effects of the independent
variables as an indicator of certain strategies we will investigate the strategies which were used with
an exploratory cluster analysis.

EXPERIMENT

Subjects. — The subjects numbered 1 to 10 were preschool (M = 5, 10 years), 11 to 20 third
formers (M = 9, 4 years), and 21 to 30 seventh formers (M = 13, 10 years). For each age level,
the sex was balanced and the heterogeneity of social status, achievement and school type was
controlled as far as possible.

Design and rationale. — Twenty two—spinner tasks wers presented. On each spinner disk
there were equal —sized wedges of red and blue which were separated by lines. The winning color
was determined and fixed for each twenty trial run.

There were five introductory tasks followed by 15 tasks that were subsequently analyzed. These
disk pairs were constructed in such a way that the number of favorable and unfavorable wedges
provided conflicting decisions. For each disk, the number of favorable and unfavorable events were
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relatively prime. Thus according to the above theories, by one of the two winning colors the
could only be solved at the highest developmental stage. For each favorability combinatiop th
pairs were constructed with the odds differences d1 = .05, d2 = .10, and d3 = .20. The od
variable, the favorability combination, and the age group constitute the experimental design.
Table 1: Item matrix ordered according to odds difference and favorability type

(4, 7) vs (3, 4) (3, 7) vs (2, 3) (3, 11) vs (2, 3)

(4, 5) vs (2, 2) (5, 7) vs (2, 2) (3, 7) vs (2, 2)

(8, 9) vs (7, 6) (5, 6) vs (4, 3) (5, 7) vs (3, 2)

(6, 7) vs (2, 3) (5, 8) vs (2, 5) (7, 8) vs (2, 5)

(5, 4) vs (2, 2) (5, 5) vs (2, 2) (7, 3) vs (7, 3)

Apparatus and procedure. The data were collected in individual sessions at Bielefeld U“iVErsity
Each Subject participated in a game in which a toy figure had to climb a ladder. The Subjectg hati
to choose between a blue and a red figure the color of which determined the winning color i the
first run of a roulette —like game. In the second run, which took place on another day, the Winning
color was reversed. In each trial of a run the Experimenter displayed two disks. The Subject was
asked to choose the more favorable disk which was then inserted into a spinning wheel which was
usually spun by the Subject. If the outcome was the winning color, the toy figure was Movyeq
upwards, otherwise it remained on its place. When the fifth step was reached, the subjects receiveg
gains (i.e. a choice between sweets or money). After the five introductory tasks the above items
were presented in a random order.

RESULTS ]

As can be seen from Table 2, the age variable yielded a significant main effect upon the errqy

rate (H = 21.6, p < .01), but the odds variable also produced significant effects (d1: H = 153, p
< .01,d2: H =18.1,p < .01;d3: H = 14.7, p < .01).

Table 2: Percentages of normative correct solutions separated for age and odds

difference
Age level
Odds Difference 5 - 6 9 - 10 13 - 14 all
dl=: .05 54 64 85 67.6
d2 = .10 61 69 95 75.0
d2 = .20 66 91 97 85.6 .
all tasks 60.3 74.6 92.3 75.1

The odds difference hypothesis could also be confirmed. An appropriate test is provided by
KENDALL's tau (computed via the ranks of the individuals’ solution frequencies for the different
difference levels). Across all Subjects and all groups the effect was highly significant. In agreement
with our theoretical considerations, the preschool children’s error rate was above chance level even

for tasks of the highest stage that may only be solved via ratio comparisons or multiplication. !
Table 3: Percentage of normative solutions separated by age and favorability

combination a
Age level
Favorability combination 5 - 6 9 - 10 13 - 14 all Subjects
Avs Aor DvsD 57.5 12072 88.3 72.8
A vs Nor D vs N 60.8 76.6 95.0 77.5
GvsD 65.0 75.0 95.0 78.3

Tasks with the same favorability type for both disks show the highest error rate. Across all
Subjects KENDALL'’s tau indicated a significant trend through the different favorability
combinations ( p < .001), whereas we want to note that for the preschool children this trend was
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only of marginal significance (p < .10) and that there was no significant effect if only the third
graders are considered.

Clusteranalysis for strategy identification. Clusteranalyses are descriptive methods for grouping
multivariate attribute vectors. We supplied this method to the Subjects solution vectors. Subjects of a
certain cluster thus show similarity with respect to their response behavior. Figure 1 presents the
dendrogram of a hierarchical cluster analysis. Based on the euclidian distance measure,
WARD’s —Method was applied as an agglomeration procedure with five interpretable clusters to
extract (cf. WISHART, 1978). These clusters are labelled from the left to the right by A, B, C, D,
and E and contain the Subjects with the numbers at the base of the tree. We will introduce two
further specific strategies, first the so—called counter strategy in which the decision is based on the
absolute number of favorable events, and the denominator strategy, in which the decision is only
based on the absolute number of unfavorable events.

Figure 1:  Dendrogram of solution vector clustering, y —axis minimal values of group variance
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The identification of the cluster characteristics is based on the following parameters: (1) all
over relative error frequency (x), (2) error frequency for all items which may be solved correctly
by comparing counter (xc) or denominator (xd) strategy, (3) error frequency for tasks with odds
difference of d1 (xdl), d2 (xd2), or d3 (xd3), and (4) error frequency for tasks with favorability
combination F vs F or U vs U (tied to xFF), F vs N or U vs N (tied to xN), and F vs U (xFU).
In addition, specifities or the clusters’ solution vectors are controlled in an exploratory manner.

Cluster A: In terms of cluster analysis, this cluster in which preschoolers predominate is an extreme one which
differs strongly from other clusters shows the highest error rate x = .47, and its members clearly exclusively used the
counter strategy, as a value of xc = .04 is contrasted with a value of xd = .91.

Cluster B: This cluster shows an intriguing characteristic. For the counter tasks (i.e. tasks in which the
counterstrategy yields the correct solution), it presents an approximately equal to slightly raised error rate
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xc = .38 vs. xd = .33, showing a minor improvement with increasing odds differences, and a marked effect
favorablity combination, xFF = .50, xN = .37, xFU = .08, particularly in the cluster’s core. $
Clusters C and D are relatively heterogenous clusters in which we were unable to recognize any markeq 4
consistent structural similarities. Also, these clusters proved to be unstable, because they dissolve, if other methods 3
agglomeration (such as the group average method) are applied. Hence, we shall skip their detailed descriptio, ang
merely note that the Cluster C in which preschool kids dominate is marked by a high number of errors for COune

tasks (xc = .32) and denominator tasks (xd = .40), while Cluster D in which third formers dominate is markeq by 3

relatively high number of errors for counter tasks (xc = .32), a relatively small error rate for denominator tasks
(xd = .14), and an evident mastery of tasks with the highest odds difference (xd = .26, xd2 = .36, and xd3 = .06)
Cluster E: This cluster contains a total of 13 subjects, including all but one of the seventh grades. Thus j is IK'M
surprising that this cluster shows an error percentage of only x = .10. Its other characteristics are similar to those of
the overall population, with the exception of the performance in counter and denominator strategies. Here, this grou
commits approximately an equal number of errors for the two types of tasks (xc = .09 vs. xd = .10), while these twg
values are markedly different for the total population (xc = .18 and xd = .31).
Within Cluster E, there are three (relatively stable) subclusters that show some differences in strategy. They yijj o
briefly described, despite the fact that they lend themselves only to a restricted interpretation. i
Cluster E1 contains the best of all subjects with x = .06. These subjects made errors almost exclusively .
denominator tasks; xc = .01 vs. xd = .10, and no errors occured in tasks of the more —less type. (xFU = .00).
Cluster E2 provided x = .11 errors, whereas no errors occured in tasks with a high odds difference. O-U'iously:
enough, this cluster features by a higher error rate in tasks with an easier favorability type, xFF = .08, xN = '1°'|

and xFU = .17.
Cluster E3 with x = .14 shows performance by increasing odds difference, whereas the error rate droppeg

strongly by favorability combination; xFF = .25, xN = .08, and xFU = .00.

INTERPRETATIONS AND CONCLUSIONS -
In our opinion, the results permit the following interpretations: !

—Perceptive auxiliar strategies are obviously already applied by preschoolers, and lead to g
significant rate of normatively correct answers by two—spinner roulette tasks. Using the
terminology of FISCHBEIN, 1975, and SCHOLZ, 1986, these auxiliar strategies represent intuitive
strategies of stochastic thinking.

—By equal formal —operative difficulty and equal odds differences, tasks in which a favorable
or unfavorable roulette disk is compared to a “neutral” one, or tasks in which one disk is favorable
and the other unfavorable, are more frequently solved correctly than tasks in which both disks are
either favorable or unfavorable. This is a clear indication of an equally likely concept as a strategy
component, a phenomenon we have called fifty —fifty comparison. We should like to interpret this
result in the sense, that a conceptualization of both stochastic and proportional thinking must not
only take into account, the procedural rule —governed (cf. SIEGLER, 1981), and the operative
aspect (cf. NOELTING, 1980), but also consider the semantical —conceptual aspect (cf. SCHOLZ &
WALLER, 1983), as well as the structual, contextual of the task features.

It is well known that formally operative heuristics or analytical strategies are not generally
superior to intuitive strategies (as operationally defined by SCHOLZ, 1986). Thus, it may seem
almost trivial that the so—called counter strategy is, by certain tasks, inferior to the
visual — perceptive auxiliary strategy identified in this paper.

Cluster analysis served to identify groups of subjects who showed typical patterns of strategies.

Cluster A consisted predominantly of preschoolers who resorted to just one strategy, the
counter strategy. Another cluster which predominantly contains younger subjects is apparently not
oriented toward the number of winning wedg~s, but is marked, by the use of perceptive auxiliar)il
strategies, and the ability to solve more —less tasks. i
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For one group of subjects (Cluster D), the analysis of the solution vectors indicated that the
subjects used a variety of strategies in a more or less systematic way. This cluster contains half of
the third formers. The error rate of 22 percent reveals the partial success but also the uncertainties
connected with the change of strategy.

Cluster E, which mainly consists of seventh formers, contains those subjects who show mastery
of the tasks presented. The characteristics of visual and conceptual —numerical orientation partiaily
developed in Clusters B and C can also be found in this cluster. Thus, the high rate of success in
Cluster E2 is probably due to an elaborated, highly sensitive perceptive strategy which is almost
error —free by odds differences above either .10. Conceptual components operating with the equally
likely or the more—less concept are apparently unimportant. Cluster E3, however, seems to be
strongly dependent on conceptual —numerical patterns, as the counter tasks and denominator tasks
have been processed with noticeably different success rates and as a trend towards the favorability
combination can be identified.

These results reveal, on the one hand, that applying SIEGLER’s or NOELTING's theories to
two —disk roulette tasks seems to require the addition of a visual component of strategy, and, on the
other hand, that comparisons using the equally likely concept play a part in development.

The problem of the flexible use of auxiliary strategies or of other strategies is by no means
trivial from an educational or developmental point of view, particular as this problem is linked, in
the field of stochastic thinking, to the difficult problems of the various foundations or facettes of the
concept of probability. Geometrical probabilities and perceptual auxiliary strategies which may be
appropriate for two —spinner tasks, can be systematically misleading in other tasks.

To close, we should like to note that the strategies described can also be identified in content
analyses of thinking aloud protocols. The study of protocols, however, also yields that the list of
auxiliary strategies is by no means exhausted by those represented in this paper. A further strategy
typically used by several individuals is the strategy of preferring the disk with the larger winning
sectors; and another perceptually operative strategy is that using reasoning processes to visually
form blocks of winning and losing sectors. Our further investigations will be aimed at listing and
formulating these strategies within the terms of the framework for the structure and processing of
stochastic decision making as sketched by SCHOLZ (1986).
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STRATEGIES CHILDREN USE IN SOLVING FROBLFMS
Larry Sowder

Northern Illinois University

Results in an earlier project led to the question, How do children
choose the arithmetic operations they use in solving routine story
problems in mathematics? One would naturally hope to find
considerable evidence that choices depend on the children's having
neanings for the operations--e.g., that one can use multiplication
when several sets, each with the same nunber, are put together--and
that these meanings are used to model the settings of story problems.

Such an approach might be called a concept—driven strategy.

BACKGROUND
Results on nation-wide testings in the U.S.A. have led commentators
to note that, while performance on one-step story problems may be
acceptable, performance on multistep problems or problems involving
extraneous data is relatively poor (Carpenter, Corbitt, Kepner,
Lindquist, & Reys, 1980). Thus one might conclude that children in
the U.S.A. have meanings for the operations but have difficulty in
matching their schemata for the operations to settings more

conplicated than those of the usual one-step problem.

Several recent European studies have noted the surprisinaly weak
performance of learners on story problens using decimals and
nultiplication or division (e.g., Bell, Fischbein, & Greer, 1984;
Bell, Swan, & Taylor, 1981; Ekenstam & Creger, 1983; Fischbein, Deri,

Nello, & Marino, 1985; Greer & Mancan, ]984; Greer, to appear).
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Appareni:ly the unintended curriculum with whole nunbers establishes
so well the false-in—general "multiplication makes bigger, division
makes smaller” that a change from whole numbers to decimals less than
one often results in the learner's choosing a different operation to
answer the same question in the sane context. This "nonconservation
of operation" (to use Greer's label) is symptomatic of a failure to
use a meaning for multiplication or division in at least one of the

problens and, perhaps, in both.

Farlier paper—and-pencil testings had suggested that dearners did not
have concepts for operations (Sowder, 1984). The test of that study
has dubious validity however, depending as it does on simmle story
problens. Although the limitations of interview studies are
well-known, only interviews seemed capable of determining whether
learners co have concepts for the operations and whether these
concepts are the basis for the learners' choices of operations in

solving story problems. *

THE INTERVIEW STUDY
Group tests of story problems, most recently in grades 6 and 7 but
earlier in grades 4-8, were used to identify learners for individual
interviews., Learners with at least average group test perfornance
were selected, with teacher input, for the interviews. Selected
group-test itens, with additional problens, served as the basis for
each interview. The recent [ocus has been on multiplication and
division situations. 1In American curricula, students in grades 6 and

7 have been exposed to multiplication and division since grade 3.
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THE SIRATEGIES
Following are the strategies that have been observed. The excerpts

from selected interviews give the flavor of the dialogue judged to

signal the strategy.

Strategy 1 Find the numbers and add.

Strategy 2 Guess at the operation to be used.
Strategy 3 Look at the nunbers; they will "tell" you what operation

to use.

Example: (Grade 7 student. S = student; I = interviewer)

S: "Yeah, it looks like a division....It's the numbers, I
guess." i

I: "Oh, the numbers, huh?"

S: "3 times, 3 goes into 78, that's what it mostly is. Cause
if it's like, 78 and maybe 54, then I'd probably either add
or multiply. But 3, it looks like a division. Because of
the size of the nunbers."

Strategy 4 Try all, +,

reasonable.

-, X, T, and choose the answer that is most

Exanple 1: (Grade 6 student, about a problem involving x)
I: (After S discusses rejecting + for the problem) "Did you
even think about adding, a couple of weeks ago (during a group

test)?"
S: "Yeah. I go through every one to see if it would work."

I: "Oh, you do?..."

S: "And I went through addinyg, and I saw that that wasn't a
good choice, and then I went into subtraction..."

Exanple 2: (Grade 6 student)

I: "...what made you think you should divide?"

S: "Well, the addition, subtracting, and nultiplying didn't

look right."

Strategy 5 Look for isolated "key" words to tell what operation to
use. (E.g., "all together" would mean add, "left" would mean
subtract, "of" would mean multiply.)

Strategy 6 Decide whether the answer should be larger or swaller
than the given nunbers. If larger, try both + and x, and choose

the more reasonable answer. If sweller, try both - and +, and
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choose the nore reasonable,

Example 1: (Grade 7 student)
S: "...that (problem) was adding, multiplying. I didn't even
bother with them, subtracting or dividing."

Example 2: (Grade 6 student)

S:  "Well, I would think that you have to subtract, because,
er, it'd either be a subtract or, um, division, and tlen thLe
one that sounds right would be the subtraction..."

gtrategy 7 Choose the operation whose neaning fits the story.

Exanple 1: (Grade 6 student)

S: "...There's 24 in each row, and there's 12 rows. And you

want to know how many there were, so you'd times."

Exanple 2: (Grade 7 student)

S: "...I'd probably multiply it...I would multiply it but you
could also add it. But it would take you, you would have to
add 2.46 three tines."

The last strategy is the desired strategy, of course, but it was
rarely evident. Even apparently capable Jearners had difficulty
articulating their reasons for choosing a particular operation.
7weng (1979) has pointed out that curricula in the U.S.A. typically
do not provide the learners with vocabulary with which to link

operations and story problem situations.

IMPLICATIONS
It should be noted that many of the immature strategies do give
correct choices of operation for many one-step story problems.
Hence, the apparently satisfactory performance on one-step problems
in such testings as the National Assessment of Fducational Progress
in the U.S.A. is put under a cloud. If students are succeeding
primerily by use of the imature strategies, the results are tainted,
Indeed, an imdirect confirmation of this possibility is the far worse
perfornance on nultistep story problems, for which the imnature
strategies are likely to bresk down.

-472~



Use of Strategy 6 may complement the incomplete "multiplication makes
bigger, division makes smaller™ as the approach used by many
nonconservers of operation. Multiplication might be correctly chosen
for a whole number problem not because it models the situation but
because it gives an answer of the correct magnitude, and
multiplication might be rejected for a similar problem with a decimal
less than orie because the anticipated product would not be small
enough, The anticipated size of the answer, not any meaning for an

operation, may drive the choice of operation in each.problem,

If the immature strategies are indeed in common use, the
instructional implications are clear: They must be discouraged,
perhaps by more freguent use of multistep problems or problems with
extraneous infornation, or better yet, supplanted with concept—iriven

strategies.
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Calculators and Realistic Arithmetic Instruction
Developing the calculating automaton

Jan van den Brink

\. Three kinds of knowleXp sround cslculstors

a. Arithmeticsl knowledpe is neesssry for anexploration of the calculator that eventually

leads to knowledge on calculators.

b. Anowledpe sbout (verious) colculstors is necessry for acquiring a mental object of
calculator _ & mental object which (such as that of number) even increases with the
variety of calculators available.

This knowledge of calculators includes general and specific ways of operating.
Know ledge about aoplying calculators in context situations is the next step.
Besides knowledge about operating it includes a kind of ‘action algebra’, for instance
knowing how to figure out 3% of f 27.- while using the calculator _ there ere several
ways todo it.
Only the latter instructional situation is usually experienced s typically ‘realistic’ because
contexts areexplicitely involved. But the abilitiesaand b fit as well into the realistic
framework (Treffers & Goffree, 1985), since calculators represent part of a reality
worth exploring.

o

\\. Knowledpe of cslculslors
Though seemingly in contradiction to common thought calculators in ection can exhibit
strange discrepancies of behaviour. To 4 x 5 - 4x S = one calculator answers 80
whereas the other says 0. )
Children don't care. The one calculator works straight linearly whereas the other respects
the Algebraic Operating System (AOS). Both answers are axepiad Not before the end of
the first lesson did the sixth-graders become wary _ the start of a crisis. The prablem
arose when ossre arithmetic was put /nto 6 conlext .

4x5-4x5=

Mohammed (6t grade): That is nought. One can hear it.’

But surprisingly his calculator showed 80. Thanks to the /séructions/ context he had expected
something else.

Michael (6% grade): Isn't it a shame, Mister, these have different results?'

I: Why?

M.: You never know what is correct. The teacher’s calculator can give another result. And then
you get a red mark.

Lateron the c/ridren themselves discover various remedies against the AOS illness:
o splitting the calculator process,
o fnserting somewhere an equality sign
(4x5-4=x5=80 isunambiguous)
0 using parentheses
0 using the memory
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It should be emphasised that the children /emse/ves felt the macessidy to find out such
remedies _ necessity as a source of mathematising

3x3x3=81o0r9

Another aberration of the calculator due to the speed of pressing keys.

For instance, with Casio -f x 80 it happens that 3 x 3 x 3 pressed slowly gives 27.
But done hastily, it becomes 81, and at full speed, it can be 9.

Aberréations, disgnasis. 8nd remegy.
There are a host of aberrations, which usually are discounted s side-effects.
Indeed they derange calculations.
However, a few striking facts are worth mentioning:
o rather than from adults | learnt this kind of aberrations from co#//den. Some children
keep their knowledge secret lest they should buy another calculator.
o If one calculator deviates from another one or from itself or from what the user
expects, the first reaction is to ask Whet is wrong? Which ére the couses?
Then they try to 'diagnose’ the ‘disesse’.
Example:
How comes 3x 3 x 3 =81 or 9?
The calculator did not read
*thelast 30f 3x3x 3 =
* the second 3
* the equality signin3x 3 x 3 =
or:
* The reading and the calculating department are not in step with each other.
Most often several diagnoses are proposed.
Inorder to find the true cause, so-called @ifferent/s/ diagnasis’ is needed. By changing the
numbers involved some possible causes can be eliminated:
Example:
3x 3x 3= (quick) 81t or (rapid) 9.
3x3x = alsogives 81 _ the last 3 being dropped such &s in
2 x 3x 5 =(quick) 36 _ the S being dropped.
3x x 3 = gives 9 _ the second 3 being dropped such as in
3 x6x 3={(rapid) 9 _ the 6 being dropped.
We noticed that
- Calculator aberrations are better known by children than by adults
- the aberrations illicit looking for causes and remedies.

Syndromes
We display a few syndromes, which often occur if children use calculators
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a. the pressing syndrome

0 slow or lasting pressing produces . 333333] on the display,
i 0.

0 soft pressing produces

b. the stress syndrome
3 x 3x 3 =slowly pressed, produces 27.
3 x 3 x 3 = quickly pressed, produces 81.
3 x 3 x 3 = rapidly pressed, produces 9.

c. the confinement syndrome

50000000 x 2 =| 1] or [1.0000006] or [ 1. E8]

('seven noughts)
oreven | 100] if 50.000.000 x 2= is pressed.

(Natice that in continental Europe the role of the decimal point and comma
are interchanged)

The calculators tend to confine numbers to the display, which causes
strange results if large numbers are concerned.

d. the form syndrome
Example:
the long division form 109/11009\ gives 101but it can alss be 0.0099009
(by way of 109 + 11009=).

e. the big shot syndrome.

Partsof small numbers, right of the decimal point ( for instance) might succumb to the

occurrenceof large numbers.
Example:

0.3333333+4444444—4444444;‘0.3333333
f. the persistence syndrome

Former commands may persist.
Example

| :-E'=arc:sin = .

The result 30 is divided by 2 as though there were no ‘arc sin'.

In particular if trigonometric functions are involved one should be careful to distinguish

argument and its function value.

g. the A 0 S syndrome
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Combining the various arithmetical operations can cause problems:
Examples:

4x5-4%%= a3 wellas [A0.
1x3= +3=9nd 1+3=1x3=

can yield different resuits,

W /nstructionsl Prectice

The approach towards calculators as (aberrant) micro worlds, which can be explored and

compared, influences wmstructions/ préctice

There are many ways to use calculators in this sense in mathematics instruction.

* having manus/s written by the pupils for their kind of calculator in order to register
their discoveries ('pupils’ own productions’).

* stimulating c/a:ns of expertise in the class room ('interactive learning from each

other’)

* collective class mvestigation about the use of calculators (starting from real
phenomena; developing interactivity),

* which can result in synarome descriptions, etiolagy, and remediation of calculators —
children es calculator physicians on a medical board. ( Tools of vertical mathematisation
are available: AQ S, arrows language).

* design, exchange and negotiation of calulstor prodlems, that is, of the kind of sums that

yield different results on different calculators (‘interactivity’, ‘negotiations’).
Notice: Diverging results of equal procedures are motivating investigation more than do
equal results by different procedures.

* making good use of the opportunity offered by calculators with a view on #rans/er of
procedures to each other is investigated (Pimm 198 1) ( horizontal mathematisation).
One calculator can sit as a model for other ones.

(Cp. the use of contexts as models, Treffers & de Moor 1984)

* Investigating calculator bouna numbers and gperétions such as the scientific notation,

products by partial multiplications, and so on.

Much more can be said on the consequences for instruction, both with regard to subject
matter contents and ways of teaching, but this would lead us too far away.

IV Instruction Theory Remérks

While taking in mind a course on peculiarities of various kinds of calculators, | feel inclined

to reflect on it in terms of instruction theory and to propose some theses of global character

as well as ones on micro level. Let us start with the last kind.

1. Eachcalculator represents a piae of reslily, a micro-world, & context, which should
be investigated and compared with similar ones ( notations, operational rules).

2. When comparing calculators each pupil uses his own calculator s a mag/ in order to
investigate the other ones _ points of agreement and of divergence.
It looks a bit like the use of models &s happens if the buses model is used in other contexts.

3. This involves mathematising both in the forizonts/ (various calculators) and in the
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vertical sense. Know ledge about one's own calculator extends to that on other ones
(horizontally). First the children knew about the existence of differences, then they learn
about their character (keys, rules). They placidly accepted the differences because they
had to. The development is similar lo that of the number concept, which presents itself in
different mental objects (numerosity, ordinal number, number concept of the Papuas, and
soon). Similarily there are various kinds of calculators.
4. There are, however, striking contrasts between the development of the number concept
and the calculator’s one:
0 The number concept develops gradually .

Moreover it is a means of aw/¢ description rather than a subject of use by the learner.
o0 The need for developing a general understanding of calculators is suan/y experienced

by the chilaren: calculators are reckoning differently, which should not be allowed.
The compulsory school contexts (ordinary arithmetic, social rules in the classroom)
effectuate a ¢r/s/s leading to vertical mathematisation.
S. By the pupils the development of a general calculator concept ( the ca/cw/ating
sutomalon in the sense of the theory of automata) is experienced as a necessity. Asan
idea it isnot vague since it is practically elaborated by lettingdifferent calculators
work in the same way.
6. Summarisingly we can distinguish four pheses in the course we have in mind:
A. Jsoletion
No attention is (yet) paid to a/f7erences between the computing of the calculator and
ordinary arithmetic.

B. acxgptation
The various computing methods of calculators are identified and accepted as equally

justified: they are mere procedures among which there is no preference. One is not
astonished. This phase can 1ast quite long.

C. crisis or confrontstion.
In order to overcome the acceptation of various procedures, celculators must be pleced

into a context.
Only in a context can the crisis of contrast between two bare calculating methods arise.

D. restoration

Means are created to have all calculators in question calculating eccording to the
children's wishes.

By this way a logical systematic was developed by the children.

7. We refrain from tackling more consequences of considering calculators as mental
objects representing the calculating automaton. They are related to questions like the
following ones:

Is the calculator really a didactical aid?
Isn’t the choice of calculating activities determined by the context?
In which way does calculating depend on material bound properties?
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Finally we consider the development towards the calculating automaton in terms of
instruction theories like Van Hiele's ( 1957) and Treffers’ ( Treffers and Goffree

1985).

8. The course we have in mind about various calculators can illustrate the Van Hiele

b

levels.
At level | subjective sensory perceptible abjects are investigated, in the present case
the various calculators with their specific peculiarities.
Al level 2 the re/stions between them are focused on: the one calculating linearly from
the left to the right, the other eccording to AOS; there are corresponding differences
of notation.
At level 3 the Jagrcal systemat/c connection is at issue: the children discover all kind
of means to manipulate the calculators and in this way create the first mental object of
the calculating automaton.
One can also distinguish the five phases leading from one level to the next:
Information (via non-curricular calculators), bound orientation ( per calculator, with
various calculators), explicitation ( by emphasising the divergence and finding
solutions), free orientation (by exchanging calculator problems), integration by
extending regular arithmetic concepts like positional system, decimal numbers,
multiplying).
Treffers' five tenets of realistic arithmetic instruction eccording to Wiskobas
apply:
1. Start from real phenomena ( various calculators in action).
2. Means of vertical mathematisation are made available by specific arithmetical
know ledge (calculating eccording to AOS; arrows language; consulting each other).
3. Large contributions made by the children themselves: each has his own calculator
and investigates the other ones with his own as a model.
4. interactivity is both compulsory ( by need for finding solutions of the problems) and
optional (in the transaction with calculator problems).
S. Learning strands are intertwined: the calculators represent numbers and operations
inastrangely extending way ( scientific notation and decimals, multiplying both &s
iterated adding and straightforwardly).
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